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Abstract001

Multiple Choice Question Answering (MCQA)002
is an important problem with numerous real-003
world applications, such as medicine, law, and004
education. The high cost of building MCQA005
datasets makes few-shot learning pivotal in006
this domain. While Large Language Models007
(LLMs) can enable few-shot learning, their di-008
rect application in real-world scenarios is of-009
ten hindered by their high computational cost.010
To address this challenge, we propose a sim-011
ple yet effective approach that uses LLMs for012
data generation and scoring. Our approach uti-013
lizes LLMs to create MCQA data which con-014
tains questions and choices, and to assign prob-015
ability scores to the generated choices. We016
then use the generated data and LLM-assigned017
scores to finetune a smaller and more effi-018
cient encoder-only model, DeBERTa-v3-base019
by leveraging distillation loss. Extensive ex-020
periments on the Massive Multitask Language021
Understanding (MMLU) benchmark demon-022
strate that our method improves accuracy from023
28.9% to 39.3%, representing a gain of over024
10% compared to a baseline finetuned directly025
on 5-shot examples. This shows the effective-026
ness of LLM-driven data generation and knowl-027
edge distillation for few-shot MCQA.028

1 Introduction029

Multiple Choice Question Answering (MCQA) is a030

crucial task in natural language understanding with031

wide applications across domains like medicine032

(Jin et al., 2021), law (Zheng et al., 2021), and033

education (Liang et al., 2018). While transformer034

encoders offer high performance (Vaswani, 2017;035

Devlin, 2018; Liu, 2019), they typically need a036

large amount of labeled data to achieve good per-037

formance, which can be both expensive and dif-038

ficult to get (Welbl et al., 2017; Yu et al., 2024).039

While large language models (LLMs) perform well040

in few-shot learning (Brown, 2020; Ouyang et al.,041

2022), their large size makes them difficult to use042

in real-world scenarios with limited resources. This 043

work addresses the critical need for efficient few- 044

shot MCQA methods by exploring the potential of 045

LLMs to generate training data for more compact 046

encoder-only models. 047

Despite their few-shot learning capabilities 048

(Brown, 2020; Ouyang et al., 2022), the grow- 049

ing size of LLMs, including powerful open-source 050

variants (Touvron et al., 2023; Team et al., 2024), 051

makes their direct deployment for MCQA costly 052

and impractical in many real-world settings. This 053

motivates the exploration of LLMs not just as tools 054

for answering questions directly, but for generat- 055

ing high-quality, task-specific datasets, as demon- 056

strated in recent studies on classification (Chung 057

et al., 2023) and instruction tuning (Li et al., 2023). 058

While leveraging LLM-generated data for training 059

smaller models shows promise, it often leads to 060

suboptimal performance. This highlights the im- 061

portance of developing methods that can effectively 062

leverage LLM-generated data to boost the perfor- 063

mance of more efficient encoder-only models. 064

To address the challenges of few-shot MCQA, 065

we propose a novel framework that leverages the 066

strengths of both LLMs and efficient encoder-only 067

models. Our approach begins by generating syn- 068

thetic MCQA datasets using an open-source LLM, 069

promoting reproducibility and reducing reliance 070

on costly labeled data. We explore two distinct 071

data generation strategies: (1) direct generation in 072

JSON format and (2) a decomposed approach that 073

separates question, positive answer, and negative 074

answer generation, offering flexibility and avoid- 075

ing format-specific parsing issues. Critically, we 076

further enhance the student encoder-only model by 077

employing LLM-based distillation. Specifically, 078

we use the LLM to give a probability score to the 079

generated answer choices, providing soft labels that 080

are incorporated into the student model’s training 081

through a distillation loss. This combined approach 082

offers a simple, yet effective solution for achieving 083
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strong performance in few-shot MCQA scenarios.084

Extensive experiments on the Massive Multi-085

task Language Understanding (MMLU) bench-086

mark demonstrate the effectiveness of our proposed087

framework. Our approach significantly boosts the088

performance of an encoder-only baseline model,089

DeBERTa-base-v3 trained with only a 5-shot ex-090

amples, achieving a 10.4 absolute improvement091

in accuracy, from 28.9% to 39.3%. Remarkably,092

applying LLM distillation enables DeBERTa-base-093

v3 to surpass the few-shot MCQA performance of094

significantly larger models on the MMLU bench-095

mark. These larger models include the LLaMA-7B096

base, which achieved 35.1% accuracy, and Flan-T5-097

250M, which reached 35.9% accuracy after being098

fine-tuned on a massive multi-task dataset. This099

highlights the potential of our method to achieve100

strong MCQA performance with smaller, and more101

efficient models.102

2 Related Works103

Multiple Choice Question Answering (MCQA)104

Data Generation. Generating synthetic data for105

MCQA has been explored previously (Singh Bha-106

tia et al., 2013; Araki et al., 2016), often relying107

on external resources like Wikipedia (Rodriguez-108

Torrealba et al., 2022) or knowledge graphs (Yu109

et al., 2024). While recent work has investigated110

using LLMs for zero-shot MCQA data generation111

(Cheung et al., 2023), these approaches typically112

involve human supervision to ensure quality, lim-113

iting the scalability of data creation (Kıyak and114

Emekli, 2024). In contrast, our work focuses on115

leveraging LLMs to generate large-scale MCQA116

datasets automatically, with the aim of distilling117

their knowledge into efficient encoder-only models118

for few-shot learning.119

Few-Shot Multiple Choice Question Answer-120

ing (MCQA). Few-Shot MCQA remains a chal-121

lenging problem, as achieving strong performance122

often requires large, computationally expensive lan-123

guage models (Anil et al., 2023b; Touvron et al.,124

2023; Achiam et al., 2023; Anil et al., 2023a).125

While efficient encoder-only models have shown126

promise (Sileo, 2024; Ghosal et al., 2022), they127

typically rely on extensive multi-task training with128

hundreds of datasets. However, acquiring large-129

scale MCQA datasets can be costly and time-130

consuming (Welbl et al., 2017; Yu et al., 2024).131

In this work, we aim to enable effective few-shot132

MCQA with encoder-only models by leveraging133

LLM-generated data and knowledge distillation, 134

addressing the limitations of both data scarcity and 135

computational cost. 136

LLM Distillation. LLM distillation aims to 137

transfer knowledge from large language models 138

into smaller, more efficient ones (Hinton et al., 139

2015; Xu et al., 2024). A common approach in- 140

volves generating training data with LLMs and 141

then fine-tuning smaller models on this data. This 142

approach has proven successful in various tasks 143

like classification (Chung et al., 2023), instruc- 144

tion following (Li et al., 2023), and more (Chen 145

et al., 2022; Yehudai et al., 2024; Long et al., 146

2024). However, most research focuses on dis- 147

tilling into smaller but similar language models 148

(Gu et al., 2024), primarily by creating synthetic 149

datasets (Kim and Rush, 2016; Agarwal et al., 150

2024). Directly distilling LLM representations is 151

challenging (Xu et al., 2024), and distilling into 152

different model architectures, such as encoder-only 153

models, remains largely unexplored. This gap is 154

particularly pronounced in the context of few-shot 155

MCQA, where the potential of distilling LLMs into 156

encoder-only models remains largely unexplored. 157

While some work has investigated LLM distillation 158

for other tasks, such as semantic search (Liao et al., 159

2024), to our knowledge our work is the first to sys- 160

tematically explore a combined approach of data 161

generation and probability score-based distillation 162

for enhancing encoder-only models specifically for 163

few-shot MCQA. 164

3 Method 165

Our method addresses few-shot MCQA by lever- 166

aging the power of LLMs to generate synthetic 167

training data and then distilling their knowledge 168

into a smaller, more efficient encoder-only model, 169

such as DeBERTa. An overview of our method can 170

be seen in Figure 1. We first generate an MCQA 171

dataset and obtain probability scores for each an- 172

swer choice using the LLM. These scores serve 173

as soft targets to guide the training of the encoder 174

model, which learns from both the generated data 175

and the distilled LLM knowledge through distilla- 176

tion losses. This approach enables us to enhance 177

the performance of the encoder model in few-shot 178

scenarios while reducing the computational cost as- 179

sociated with deploying compute-intensive LLMs. 180
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5-shot MCQA
example

JSON data generation

Decompose Data
Generation

Or

Question Generation

Positive Generation

Negative Generation

Step 1
LLM Data Generation

Step 2
LLM Scoring

Which type of rock is
formed from cemented
sand?
A. slate
B. sedimentary
C. igneous
D. metamorphic
Answer: 

LLM Probability Score :
[(A)18.3%, (B)46.9%, (C)14.9%,

(D)19.9%]

Training with
Distillation

Step 3
Finetune Student

Figure 1: Framework for Few-Shot MCQA using LLM-Generated Data and Distillation.

3.1 LLM data generation for MCQA181

Generating high-quality training data is crucial for182

effective few-shot MCQA. In this subsection, we183

explore two distinct strategies for leveraging LLMs184

to create synthetic MCQA datasets: (1) direct gen-185

eration in JSON format, and (2) a decomposed186

approach that separates question, positive answer,187

and negative answer generation. While the direct188

JSON approach can potentially yield higher-quality189

data when successful, it can also suffer from pars-190

ing issues that reduce the amount of usable data.191

The decomposed approach, however, avoids the192

potential parsing issues associated with the JSON193

method by generating data in a simpler, unstruc-194

tured format. We detail both methods below and195

empirically evaluate their impact on the student196

model’s performance in Section 4. We also include197

all the prompts we used in Appendix F.198

3.1.1 JSON199

In our first approach, we attempt to directly gen-200

erate MCQA data in JSON format using few-shot201

examples. The JSON structure includes the ques-202

tion (string), choices (array of strings), and the203

answer (integer representing the index of the cor-204

rect choice). This format implicitly requires the205

LLM to generate the question first, followed by the206

answer choices, and finally, the index of the correct207

answer. However, our experiments reveal that this208

structured generation process can be challenging209

for LLMs. They may not consistently adhere to the210

strict JSON format, leading to parsing errors and a211

reduction in the amount of usable data. To address212

this limitation, we propose a decomposed gener-213

ation method that bypasses the need for parsing214

JSON output.215

3.1.2 Decompose 216

Our second approach termed the decomposed gen- 217

eration method, breaks down the MCQA data gen- 218

eration process into three distinct stages: question 219

generation, positive answer generation, and nega- 220

tive answer generation. For each stage, we utilize a 221

few-shot dataset containing questions, positive an- 222

swers, negative answers, and relevant topics. This 223

decomposition eliminates the need for complex 224

parsing of LLM output, which can be prone to er- 225

rors when enforcing structured formats like JSON. 226

While this approach might potentially lead to a 227

slight decrease in individual data point quality, it 228

significantly reduces data loss due to parsing fail- 229

ures, ultimately yielding a larger volume of usable 230

training data. For simplicity, we focus on generat- 231

ing data within a single topic, such as high school 232

programming or abstract algebra, ensuring readily 233

available background information. We leverage the 234

few-shot examples and topic information to guide 235

the LLM in generating new MCQA instances. 236

Question Generation. The first stage of the de- 237

composed generation method focuses on creating 238

new questions. We prompt the LLM with instruc- 239

tions like "Create a question about {topic}!", where 240

{topic} is replaced with the chosen subject (e.g., 241

high school programming). To guide the LLM and 242

ensure the generated questions are relevant and 243

similar in style to the target domain, we provide a 244

few-shot prompt consisting of examples randomly 245

sampled from the few-shot dataset. We also adjust 246

the LLM’s temperature parameter during this stage 247

to encourage diversity in the generated questions 248

and prevent overfitting to the provided examples. 249

positive answer generation. The second stage 250

focuses on generating the correct answers (positive 251

examples) for the questions created in the previous 252

3



stage. Similar to question generation, we employ253

few-shot prompting to guide the LLM. We provide254

examples of questions and their corresponding cor-255

rect answers from the few-shot dataset. Then, we256

present the newly generated questions to the LLM,257

prompting it to generate relevant and accurate pos-258

itive answers based on the provided context and259

examples.260

negative answer generation. The final stage261

of data generation focuses on creating plausible262

but incorrect answer choices (negative examples)263

for each question. We use few-shot prompting to264

guide the generation process. To ensure diversity,265

we generate N negative examples sequentially for266

each question, prompting the LLM in each itera-267

tion to produce a distinct answer, considering all268

previously generated ones. This iterative approach269

helps create a diverse set of negative examples for270

each MCQA instance.271

3.2 LLM distillation272

After generating the MCQA dataset, we train an273

encoder model Eθ on this data. The encoder274

model comprises a pre-trained encoder, which275

maps strings to vector representations, followed276

by a linear layer that outputs scalar values. For277

each choice c ∈ C associated with a question, we278

concatenate the question and the choice and feed279

it into the encoder, obtaining the output ŷencc ∈ R.280

We train Eθ using the standard cross-entropy loss :281

LCE(p, p̂) = − 1

C

C∑
c=1

pclog(p̂c)282

where p̂c denotes the model’s predicted probability283

for choice c, and pc is the corresponding ground284

truth probability, which is a one-hot vector indi-285

cating the correct answer. We then define the loss286

function Lgenerate for training the encoder model287

using the generated positive answers as labels. This288

loss function is given by Lgenerate = LCE(p, p̂),289

where p̂c is computed using softmax as:290

p̂c =
exp(ŷencc )∑C

c′=1 exp(ŷ
enc
c′ )

.291

Label scoring. We employ an LLM to score292

each question and its associated choices, following293

the approach described in (Robinson and Wingate,294

2023). We present the question and all choices to295

the LLM, with each choice uniquely indexed using296

characters (e.g., A, B, C). The prompt is designed297

to elicit a single character as the LLM’s output,298

representing its predicted answer. We record the 299

LLM’s score for each unique character, denoted as 300

ŷLLMc , where c represents a choice c ∈ C associ- 301

ated with a question. 302

The LLM score ŷLLMc represents the likelihood 303

of the LLM generating the unique character cor- 304

responding to choice c, given the question and all 305

answer choices with their identifiers. Formally: 306

ŷLLMc ∝ PC(c | x), 307

where x is the input string containing the ques- 308

tion and all answer choices, each marked with its 309

unique identifier. This scoring method has been 310

shown to improve LLM performance on MCQA 311

tasks (Robinson and Wingate, 2023). 312

Training using distillation loss. We leverage 313

the LLM scores to guide the training of the encoder 314

model through distillation loss. Following the origi- 315

nal distillation framework (Hinton et al., 2015), we 316

define the distillation loss as Ldistill = LCE(p, p̂) 317

where p represents the soft target probabilities de- 318

rived from the LLM scores: 319

pc =
exp(ŷLLMc )∑C

c′=1 exp(ŷ
LLM
c′ )

. 320

and p̂ represents the encoder model’s predicted 321

probabilities, as previously defined. By using the 322

LLM’s soft target probabilities as a guide, the dis- 323

tillation loss encourages the encoder model to learn 324

a similar probability distribution over the answer 325

choices, effectively transferring knowledge from 326

the LLM to the smaller encoder model. 327

4 Experiments 328

We conduct experiments to evaluate the effec- 329

tiveness of our proposed framework for few-shot 330

MCQA. We use a dataset consisting of only 5 331

MCQA examples covering the same topic, em- 332

ploying Llama-3.1-8B-Instruct 1 as the LLM for 333

data generation and scoring, and DeBERTa-base- 334

v3 (184M parameters) 2 as the efficient encoder- 335

only student model. We chose DeBERTa-base-v3 336

due to its strong performance and relatively small 337

size, making it suitable for resource-constrained 338

scenarios. 339

We train the DeBERTa-base-v3 model for 500 340

iterations with a learning rate of 1e-5, using a batch 341

size of 4 and gradient accumulation for 2 steps, 342

1https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-
Instruct

2https://huggingface.co/microsoft/deberta-v3-base
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which is equal to using a batch size of 8. For the343

decompose generation method we set the number344

of negative examples to be 5 for all experiments,345

except explicitly mentioned. We average the re-346

sults across 5 different random seeds for all ex-347

periments. Unless otherwise specified, we gener-348

ate 1024 MCQA examples from the initial 5-shot349

dataset for training using the temperature of 2. We350

first evaluate our approach on the MMLU bench-351

mark in Section 4.1 and then conduct an ablation352

study on the ARC datasets in Section 4.2 to analyze353

the impact of different components of our method.354

4.1 MMLU benchmark355

We evaluate our approach on the Massive Mul-356

titask Language Understanding (MMLU) bench-357

mark (Hendrycks et al., 2020), a widely used bench-358

mark for assessing few-shot MCQA performance359

in LLMs. MMLU comprises 57 datasets cover-360

ing diverse topics, each divided into development361

(dev), validation, and test splits. We utilize only362

the 5-shot dev set for data generation in all our363

experiments.364

On the MMLU benchmark, we evaluate both365

the JSON and decomposed data generation meth-366

ods, both with and without knowledge distillation367

from the LLaMA-3.1-8B-Instruct model (Dubey368

et al., 2024). Our evaluation includes comparisons369

against a range of baselines, including the LLaMA-370

3.1-8B-Instruct teacher model itself, smaller LLMs371

like LLaMA-7B (Touvron et al., 2023) and Gemma-372

2-2B-it (Team et al., 2024) 3, the encoder-decoder373

model Flan-T5-base (Chung et al., 2024), and a374

strong encoder-only model, Tasksource DeBERTa-375

base 4, which was fine-tuned on a large multi-task376

dataset (Sileo, 2024).377

Table 1 presents the few-shot MCQA results378

on the MMLU benchmark. As expected, directly379

training DeBERTa-base-v3 on only 5 examples380

yields near-random accuracy because of overfit-381

ting. Using LLM-generated data significantly im-382

proves performance, with the decomposed and383

JSON methods achieving average gains of 4.2 and384

4.3 points, respectively. However, incorporating385

LLM-generated soft labels via distillation leads386

to even more substantial improvements, boosting387

accuracy by an additional 5.3 points for the decom-388

posed method and 6 points for the JSON method.389

This suggests that while LLMs may generate some390

3https://huggingface.co/google/gemma-2-2b-it
4https://huggingface.co/sileod/deberta-v3-base-

tasksource-nli

incorrect answers during data creation, the distilla- 391

tion process allows them to effectively relabel these 392

instances, leading to a more accurate training sig- 393

nal for the student model. This observation aligns 394

with findings in (Robinson and Wingate, 2023), 395

which demonstrate that framing answer generation 396

as a multiple-choice task can enhance LLM perfor- 397

mance. 398

Our distilled DeBERTa-base-v3 model with 399

184M parameters achieves encouraging results. It 400

approaches the performance of significantly larger 401

models like LLaMA-7B which is over 30 times 402

larger and Flan-T5-250M, which was extensively 403

fine-tuned on a multi-task dataset. While our 404

method does not yet reach the level of instruction- 405

tuned LLMs like Gemma-2-2B-it and the teacher 406

model LLaMA-3.1-8B-Instruct, we show that when 407

we consider the memory usage used by the LLM, 408

our approach can achieve performance on par with 409

4 bit quantized LLaMA-3.2-1B-Instruct as show 410

in C.4. These findings highlight the potential of 411

our approach to achieve strong performance with 412

smaller, more efficient models, making it particu- 413

larly attractive for resource-constrained settings. 414

Although our method currently lags behind 415

the Tasksource DeBERTa-base model, which was 416

trained on a massive multi-task dataset including 417

MMLU, our data generation and distillation tech- 418

niques hold the potential to boost its performance 419

further. Fine-tuning Tasksource DeBERTa-base 420

with our JSON-generated data and distillation re- 421

sults in a 0.5-point average improvement. Inter- 422

estingly, fine-tuning with data from the decom- 423

posed method leads to a performance decrease, 424

indicating that the pre-trained Tasksource model 425

may be more sensitive to data quality and favors 426

the higher-quality data generated by the JSON ap- 427

proach, which benefits from an implicit filtering 428

mechanism. This is supported by our analysis of 429

the dataset statistic in Appendix E.3 and also the 430

example in Appendix G 431

Considering that our approach generates only 432

1,024 training instances from a mere 5 initial exam- 433

ples, the observed performance gains suggest that 434

our method effectively distills knowledge from the 435

significantly larger LLaMA-3.1-8B-Instruct model 436

into the smaller DeBERTa-base-v3. While these 437

results are promising, they also highlight opportuni- 438

ties for further research and improvement, such as 439

exploring more advanced data generation and dis- 440

tillation techniques to further bridge the gap with 441

state-of-the-art models. 442
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Method Model
Size

STEM Social
Science

Humanities Other Average

LLaMA-7B † 7B 34.0 30.5 38.3 38.1 35.1
Flan-T5-250M † 248M 30.1 44.0 33.9 38.9 35.9
Gemma-2-2b-it 2B 46.8 66.9 61.6 61.3 57.7
Llama-3.1-8B-Instruct 8B 58.4 75.2 71.3 70.0 67.5
DeBERTa 5-shot 184M 28.7 27.1 29.8 29.8 28.9
Decompose generate 184M 27.5 36.7 35.3 35.4 33.1
JSON generate 184M 28.5 36.2 35.6 35.4 33.3
Decompose distill 184M 31.6 42.4 42.6 40.3 38.4
JSON distill 184M 32.5 43.2 44.3 40.6 39.3
Tasksource 184M 35.6 55.4 54.4 50.8 47.5
Tasksource + decompose 184M 36.6 55.1 51.9 49.1 46.8
Tasksource + JSON 184M 37.2 56.3 54.1 50.1 48.0

Table 1: 5-Shot MCQA Performance on the MMLU Benchmark. Results for LLaMA-7B and Flan-T5-250M
(marked with †) are taken from the original papers, which may have different training setups.

4.2 Ablation Study443

In this section, we conduct an ablation study on the444

ARC-easy and ARC-Challenge benchmarks (Clark445

et al., 2018) to analyze the impact of different com-446

ponents of our proposed method. We use a 5-shot447

learning setup, randomly selecting 5 examples from448

the training set to generate 1024 data points, which449

are then scored using LLaMA 3.1-8B-Instruct. We450

train DeBERTa-base-v3 models on the generated451

data and scores.452

We investigate several key aspects. First, we ex-453

amine the effect of the number of generated data454

points, as detailed in Section 4.2.1. Second, in Sec-455

tion 4.2.2, we analyze the impact of using smaller456

LLMs for data generation and scoring. This sec-457

tion also includes a comparison with a paraphrasing458

baseline. Finally, we explore the influence of the459

temperature hyperparameter during data generation460

in Section 4.2.3.461

4.2.1 Effect of Number of generated data462

To analyze the impact of the number of generated463

data points, we evaluate models trained on datasets464

of varying sizes: [16, 32, 64, 128, 256, 512, 1024].465

We use a cumulative approach, where each larger466

dataset includes all the data points from the smaller467

datasets. For instance, the 32-sample dataset con-468

sists of the initial 16 samples plus 16 new sam-469

ples. This ensures that any observed performance470

changes can be directly attributed to the increase471

in training data. We compare the performance of472

models trained on: (1) real data from the ARC473

training set, (2) generated data, and (3) generated474

16 32 64 128 256 512 1024
Number of data

40

50

60

70

Ac
cu

ra
cy

Real Data
Decompose
Decompose Distill
JSON
JSON Distill
5-shot baseline

(a) Arc-Easy

16 32 64 128 256 512 1024
Number of data

20

30

40

50

Ac
cu

ra
cy

Real Data
Decompose
Decompose Distill
JSON
JSON Distill
5-shot baseline

(b) Arc-Challenge

Figure 2: Effect of Generated Data Size on Few-Shot
MCQA Accuracy. The figure compares the performance
of DeBERTa-base-v3 trained on varying amounts of gen-
erated data (using both JSON and Decompose methods),
with and without LLM distillation, against a baseline
trained on real data from the ARC-Easy (a) and ARC-
Challenge (b) datasets.
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data augmented with LLM distillation.475

Figure 2 presents the results of this analysis. We476

observe that both data generation and LLM dis-477

tillation are crucial for improving performance in478

the few-shot setting. Training DeBERTa-base-v3479

with only 5 examples leads to high variance across480

different random seeds, indicating instability due481

to limited data. Leveraging generated data substan-482

tially improves performance and reduces variance.483

Additionally, the inclusion of LLM distillation fur-484

ther boosts accuracy and reduces variance, demon-485

strating the complementary benefits of these tech-486

niques. Our approach significantly outperforms the487

5-shot baseline, demonstrating its effectiveness in488

leveraging limited data for few-shot MCQA.489

We generally observe increasing performance490

with larger amounts of generated data, particu-491

larly when combined with LLM distillation. No-492

tably, LLM distillation consistently boosts accu-493

racy across all data sizes and generation methods,494

demonstrating its robustness and effectiveness. Al-495

though our method does not surpass the perfor-496

mance of a model trained on abundant real data,497

achieving comparable results with significantly less498

real data is significant. Using JSON-generated data499

and distillation, we achieve accuracy similar to500

training on 512 real samples for ARC-Easy and501

256 real samples for ARC-Challenge. This high-502

lights the potential of our approach to reduce the503

reliance on extensive, expensive real-world MCQA504

datasets.505

4.2.2 Effect of Generation and Scoring506

Method507

We further investigate the influence of the LLM508

used for data generation and scoring. Table 2509

presents the results for data generated by LLaMA-510

3.1-8B-Instruct and the smaller Gemma-2-2B-it.511

Interestingly, our approach achieves comparable512

performance with both LLMs, suggesting that even513

smaller LLMs can effectively generate and score514

data for our framework. Notably, using the JSON515

generation method with both LLMs yields similar516

results, although the success rate of JSON parsing517

varies significantly. We hypothesize that this is518

because the JSON format acts as an implicit filter,519

discarding poorly formatted data, which is more520

likely to occur with the smaller Gemma model. Fur-521

thermore, we observe that distillation consistently522

improves performance across all LLM and genera-523

tion method combinations, indicating its ability to524

refine potentially noisy labels from the generated525

data. 526

We also compare our method to a baseline that 527

uses paraphrasing to augment the 5-shot data. We 528

show the prompt we use in Appendix F. While para- 529

phrasing has proven effective for various NLP tasks 530

(Feng et al., 2021), our results demonstrate that 531

LLM-based data generation is significantly more 532

effective for few-shot MCQA. We use LLaMA- 533

3.1-8B-Instruct to paraphrase the questions and 534

choices in the 5-shot dataset via few-shot prompt- 535

ing. Even when using data generated by the smaller 536

Gemma-2-2B-it model, our approach substantially 537

outperforms the paraphrasing baseline on both 538

ARC datasets. This highlights the importance of 539

generating new data, rather than simply rephrasing 540

existing examples, to enhance data diversity and 541

improve performance in few-shot settings. 542

4.2.3 Effect of Generation Hyperparameters 543

We now analyze the influence of the temperature 544

hyperparameter, which controls the diversity of the 545

generated data, on the performance of our approach. 546

Table 3 presents the results for both the JSON and 547

decomposed generation methods across different 548

temperature settings. We observe that temperature 549

plays a crucial role, and increasing it generally 550

leads to improved performance. This highlights the 551

importance of data diversity for effective few-shot 552

MCQA, demonstrating that even simple techniques 553

like temperature control can significantly impact 554

the quality of the generated data. 555

While increasing the temperature doesn’t always 556

consistently improve performance when using only 557

the generated data, the benefits become much more 558

pronounced when combined with distillation loss. 559

We hypothesize that this is because LLMs can intro- 560

duce noise into the generated data, and distillation 561

helps mitigate this noise by encouraging the student 562

model to learn a smoother probability distribution 563

over the answer choices, similar to label smooth- 564

ing, which has been shown to improve robustness 565

to noisy labels (Szegedy et al., 2016; Lukasik et al., 566

2020). To further investigate this, we experimented 567

with replacing the soft labels from the LLM with 568

hard labels (choosing the most probable answer) 569

but observed inferior performance compared to us- 570

ing the full probability distribution, we provide the 571

results in Appendix C.2. This highlights the impor- 572

tance of leveraging the soft labels provided by the 573

LLM for effective knowledge distillation. 574

While the JSON generation method can yield 575

better performance at higher temperatures, it of- 576
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Generation Method
ARC-Easy ARC-Challenge

Generate Distill SR Generate Distill SR
LLaMA-3.1-8B JSON 61.9 ± 0.8 69.8 ± 0.3 0.52 43.6 ± 0.9 48.6 ± 0.9 0.66
Gemma-2-2b JSON 50.6 ± 4.9 68.2 ± 0.6 0.21 40.1 ± 2.6 48.0 ± 0.7 0.28
LLaMA-3.1-8B Decomp. 64.3 ± 2.1 67.8 ± 1.0 1.0 39.4 ± 2.2 45.3 ± 1.1 1.0
Gemma-2-2b Decomp. 61.6 ± 2.4 60.0 ± 1.5 1.0 37.7 ± 2.2 43.9 ± 1.2 1.0
Paraphrase 52.8 ± 3.0 42.2 ± 8.6 1.0 36.6 ± 3.1 41.8 ± 2.5 1.0

Table 2: Impact of Generation and Scoring Methods on Performance. The table shows the accuracy of different
language models on ARC-Easy and ARC-Challenge datasets, using various generation and scoring methods. "SR"
denotes the success rate of JSON parsing. "Decomp." indicates a decomposition-based generation method. All
models utilize instruction-tuned versions.

Generation
Method

Temperature
ARC-Easy ARC-Challenge

Generate Distill SR Generate Distill SR

Decompose
0.5 60.9 ± 1.6 59.7 ± 2.1 1.0 34.1 ± 4.9 37.9 ± 4.1 1.0
1.0 63.2 ± 1.6 66.4 ± 1.1 1.0 39.6 ± 2.2 41.9 ± 1.7 1.0
2.0 64.3 ± 2.1 67.4 ± 0.4 1.0 39.4 ± 2.2 45.4 ± 1.2 1.0

JSON
0.5 50.5 ± 4.1 54.9 ± 8.0 1.0 36.7 ± 1.9 34.6 ± 4.4 1.0
1.0 61.5 ± 1.2 65.1 ± 0.9 0.99 41.9 ± 3.1 41.7 ± 2.3 1.0
2.0 61.9 ± 0.8 69.8 ± 0.3 0.52 43.6 ± 0.9 48.6 ± 0.9 0.66

Table 3: Effect of Generation Temperature on Few-Shot MCQA Performance. The table compares the performance
of the Decompose and JSON generation methods, with and without distillation, across different temperature settings.
SR denotes the success rate of JSON parsing.

ten comes at the cost of a lower usable data rate577

due to parsing errors. Many generated instances578

must be discarded because they don’t adhere to the579

strict JSON format. In contrast, the decomposed580

method consistently achieves competitive perfor-581

mance without requiring any parsing. Even when582

reducing the temperature for JSON generation to583

1 to improve the parsing success rate, its perfor-584

mance still falls short of the decomposed method.585

This demonstrates that the decomposed approach586

offers a more robust and efficient alternative.587

For the decomposed generation method, we also588

investigated the effect of varying the number of589

negative examples generated per question. The re-590

sults, presented in Appendix Table 6, demonstrate591

that our method is robust to changes in this param-592

eter. We did not perform this ablation study for the593

JSON generation method because it does not allow594

for controlling the number of choices.595

5 Conclusion596

This work demonstrates the effectiveness of597

leveraging LLMs for both data generation and598

probability-based distillation to enable strong few-599

shot MCQA performance in smaller, more efficient 600

encoder-only models. Our approach achieves en- 601

couraging results on the MMLU benchmark, even 602

approaching the performance of significantly larger 603

models like LLaMA-7B and Flan-T5-250M, which 604

benefited from more extensive training data and 605

different training objectives. This highlights the 606

potential of our method to achieve strong perfor- 607

mance with more compact and computationally 608

efficient models. However, a performance gap re- 609

mains compared to models trained with large-scale 610

multi-task data, suggesting opportunities for further 611

improvement. Future work will focus on bridging 612

this gap by exploring more advanced data filtering 613

techniques to enhance the quality of the generated 614

data and investigating novel distillation strategies 615

to maximize knowledge transfer from LLMs to 616

smaller models. Additionally, extending our ap- 617

proach to effectively handle longer-context MCQA 618

tasks is a crucial direction for future research. 619

6 Limitations 620

Our work relies on a robust, instruction-tuned LLM, 621

which is currently readily available in English but 622

8



might be less accessible in other languages. This623

language dependence, coupled with the reliance on624

strong LLM capabilities, could limit the generaliz-625

ability of our method to scenarios where suitable626

LLMs are unavailable or less powerful.627

Despite significant improvements over the naive628

5-shot baseline, our method still exhibits a substan-629

tial performance gap compared to models trained630

with extensive data and multi-task learning, as well631

as the teacher LLM itself. Bridging this gap by ex-632

ploring more advanced data generation techniques,633

incorporating diverse knowledge sources, or devel-634

oping more effective distillation strategies remains635

a promising direction for future research.636

Another limitation of our approach is the poten-637

tial for bias in the LLM-generated data. LLMs are638

trained on massive text corpora, which inevitably639

contain societal biases. These biases can be re-640

flected in the generated questions and choices, po-641

tentially leading to a biased downstream encoder642

model. This inherited bias could result in unfair643

or discriminatory outcomes when the model is de-644

ployed in real-world applications. Mitigating this645

bias is a crucial area for future work.646

A further limitation is that our current work647

focuses on MCQA tasks with relatively short648

question-and-answer contexts, which are easier for649

current LLMs to generate and score effectively.650

We observed increased noise in the generated data651

when dealing with longer contexts, evidenced by652

a performance degradation when fine-tuning the653

Tasksource DeBERTa-base model on generated654

data for longer-context MMLU tasks. This sug-655

gests that generalizing our approach to tasks involv-656

ing longer contexts will require further research.657
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A Future Works874

This work lays the foundation for several promis-875

ing research directions, with the potential to sig-876

nificantly advance efficient few-shot learning in877

multiple choice question answering and beyond.878

Specifically, we identify the following key areas879

for future exploration:880

Advanced Distillation Techniques. In this881

work, we used a simple distillation approach to882

establish a clear baseline. Exploring more sophis-883

ticated distillation techniques, such as sequence-884

level knowledge distillation, attention-based dis-885

tillation, or other distillation approach, that could886

further enhance performance.887

Benchmark Dataset Creation. Our findings888

suggest that the JSON generation method coupled889

with LLM distillation is a promising approach for890

creating high-quality MCQA data. This method 891

appears to act as an effective filter for select- 892

ing higher-quality generated examples. Combin- 893

ing our approach with automated quality filtering 894

based on perplexity or LLM-based scoring, post- 895

processing techniques to refine generated text, and 896

retrieval-augmented generation to incorporate ex- 897

ternal knowledge could facilitate the creation of 898

valuable benchmark datasets for few-shot MCQA. 899

This would require developing robust filtering and 900

evaluation metrics to ensure the quality and diver- 901

sity of the generated datasets. 902

Improving Decomposed Generation. While 903

the decomposed generation method offers advan- 904

tages in terms of data generation efficiency, it can 905

produce noisy data due to longer and less struc- 906

tured answers. Investigating more sophisticated 907

prompting techniques could mitigate this limita- 908

tion. Incorporating constraints into the prompts, 909

specifying the desired length or format of the an- 910

swers, could improve the quality of the generated 911

data. Iterative refinement, where feedback is pro- 912

vided to the LLM to revise its responses, is another 913

promising avenue. Additionally, using more di- 914

verse and representative examples in the few-shot 915

prompts could guide the LLM towards generating 916

more appropriate answers. 917

Applications Beyond MCQA. Our framework 918

has broader applicability beyond MCQA. Within 919

NLP, it could be applied to tasks like text classifica- 920

tion, sequence tagging, or any task where efficient 921

few-shot learning is desirable. In these applications, 922

the LLM could generate synthetic training exam- 923

ples and provide soft labels or confidence scores to 924

guide the training of a smaller model. Furthermore, 925

with the advancements in Vision-Language Mod- 926

els (VLLMs), our approach could be extended to 927

vision tasks. For example, in Visual Question An- 928

swering (VQA), the VLLM could generate image 929

captions, which could then be used to synthesize 930

images with a generative model. The VLLM could 931

also generate the question and possible answers. 932

The generated VQA data, along with the VLLM’s 933

confidence scores for each answer, can then be used 934

to distill the knowledge into a smaller, more effi- 935

cient vision-language model or even a specialized 936

VQA architecture. 937

B Implementation Details 938

We implemented our method using the Transform- 939

ers library (Wolf et al., 2020) for loading and inter- 940
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acting with the LLMs and encoder models, and the941

Datasets library (Lhoest et al., 2021) for loading942

and processing the datasets. This appendix pro-943

vides detailed information about the computational944

resources, data generation process, and model train-945

ing procedure946

B.1 Computation Resources947

The experiments were conducted using three ma-948

chines:949

• Two machines: AMD Ryzen 5 2600 Six-Core950

Processor, NVIDIA RTX 3090 24GB GPU.951

• One machine: AMD Ryzen Threadripper952

1920X 12-Core Processor, two NVIDIA RTX953

3090 24GB GPUs.954

B.2 Data generation Details955

We utilize instruction-tuned LLMs that follow the956

standard System, User, and Assistant role format.957

The System role sets the overall instructions for the958

model’s behavior, the User role provides specific959

commands or prompts, and the Assistant role gener-960

ates the model’s responses. Our 5-shot prompting961

approach includes the few-shot examples as the962

first five User-Assistant interactions. Subsequent963

User prompts are then used to elicit new responses964

from the LLM for data generation or scoring.965

JSON Generation: For the JSON generation966

method, we use a straightforward 5-shot prompting967

approach. The full prompt examples for ARC-Easy968

and ARC-Challenge are shown in Tables 17 and969

18, respectively. All five examples in the prompt970

use the same question, but we shuffle their order to971

encourage diversity in the generated outputs.972

Decomposed Generation: The decomposed973

generation method follows a similar 5-shot prompt-974

ing structure as the JSON approach. However, we975

divide the generation process into three distinct976

stages: (1) question generation, (2) positive an-977

swer generation, and (3) negative answer gener-978

ation. Each stage utilizes a separate prompt, as979

shown in Tables 19, 20, and 21, respectively.980

Most data generation tasks could be run981

on a single NVIDIA RTX 3090 GPU. How-982

ever, certain MMLU tasks with longer se-983

quences, such as high_school_european_history,984

high_school_us_history,985

high_school_world_history, professional_law, pro-986

fessional_medicine, and security_studies, required987

two RTX 3090 GPUs to avoid out-of-memory988

errors.989

When using the JSON generation method, we 990

encountered challenges with certain datasets that 991

required significantly longer generation times to 992

obtain 1024 usable data points. This was primarily 993

due to a combination of long sequences and low 994

parsing success rates. The affected datasets and 995

the number of usable data points we were able to 996

obtain are as follows: 997

• college_mathematics: 512 998

• formal_logic: 538 999

• high_school_european_history: 327 1000

• high_school_us_history: 305 1001

• high_school_world_history: 765 1002

After generating the MCQA data (questions, 1003

choices, and answers), we use the LLM to score 1004

each choice. Table 22 shows an example of the 1005

scoring prompt, which includes the 5-shot exam- 1006

ples and the newly generated data. To obtain the 1007

scores, we extract the logits (pre-softmax outputs) 1008

corresponding to the unique character identifiers 1009

for each choice. To avoid out-of-memory errors 1010

during scoring, we limit the prompt length to 1024 1011

tokens when using a single GPU and 3200 tokens 1012

when using two GPUs. This is necessary because 1013

some generated instances can contain very long 1014

sequences 1015

B.3 Model training details 1016

We train the DeBERTa-base-v3 model, which takes 1017

a question and a choice as input, for all our exper- 1018

iments. The model uses the pooled output of the 1019

encoder, which is then fed into a linear layer to pro- 1020

duce a scalar output. We train the model using the 1021

Adam optimizer (Kingma, 2014) for 500 iterations, 1022

with a batch size of 4 and gradient accumulation 1023

for 2 steps (effectively a batch size of 8). This 1024

allows the model to be exposed to approximately 1025

4000 MCQA examples during training. We use a 1026

learning rate of 1e-5. 1027

Before training, we filter the dataset to avoid 1028

out-of-memory errors during training. We use the 1029

DeBERTa tokenizer to count the number of tokens 1030

for the concatenation of each question and its cor- 1031

responding choices. If the total number of tokens 1032

for any question-choice pair exceeds a predefined 1033

maximum (max_tokens), we discard that data point. 1034

For most experiments, we set max_tokens to 320. 1035

However, for MMLU tasks with longer sequences, 1036

we increased max_tokens to 480. 1037
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C Additional Results1038

This appendix provides supplementary results and1039

analyses to complement the findings presented in1040

the main paper. It is organized as follows:1041

• Section C.1: Baseline and Teacher Model1042

Performance on ARC Datasets. This sec-1043

tion presents the performance of the 5-shot1044

baseline, the teacher LLMs, and our pro-1045

posed method on the ARC-Easy and ARC-1046

Challenge datasets.1047

• Section C.2: Effect of Distillation Temper-1048

ature. This section examines the impact of1049

varying the temperature of the softmax func-1050

tion during distillation on the performance of1051

the student model.1052

• Section C.3: Effect of Number of Negative1053

Examples (Decomposed Method). This sec-1054

tion analyzes the influence of the number of1055

negative examples generated per question on1056

the performance of the decomposed genera-1057

tion method.1058

• Section C.4: Lightweight LLM Comparison.1059

This section compares the memory usage and1060

performance of our method with lightweight1061

LLMs.1062

• Section C.5: Binary Classification Extensions.1063

This section explores the application of our1064

method to binary classification tasks, such1065

as scoring the correctness of question-answer1066

pairs.1067

• Section C.6: Learning MCQA Format vs. Do-1068

main Knowledge. This section investigates1069

whether our approach primarily teaches the1070

model the MCQA format or if it also improves1071

domain-specific knowledge.1072

C.1 Baseline and Teacher Performance on1073

ARC-E and ARC-C1074

Table 4 presents the performance of the 5-shot De-1075

BERTa baseline, the teacher LLMs (LLaMA-3.1B-1076

Instruct and Gemma-2-2b-it), and our proposed1077

method on the ARC-Easy and ARC-Challenge1078

datasets. Consistent with the MMLU results,1079

LLM distillation significantly improves perfor-1080

mance over the 5-shot baseline. However, a notable1081

gap remains between our student models and the1082

teacher LLMs, as well as the Tasksource DeBERTa- 1083

base model, which benefited from extensive multi- 1084

task training. This highlights the potential for fur- 1085

ther improvement in our approach, particularly in 1086

terms of bridging the gap with models trained on 1087

larger, more diverse datasets. 1088

C.2 Student Model Distillation Temperature 1089

In the distillation process, we can control the tem- 1090

perature of the softmax function applied to both the 1091

student model’s predictions and the teacher LLM’s 1092

likelihood scores: 1093

pc =
exp(ŷc/r)∑C

c′=1 exp(ŷc′/r)
. 1094

Where r denotes the temperature. A temperature of 1095

0 is equivalent to using hard labels from the teacher 1096

model (selecting the most probable answer). Ta- 1097

ble 5 presents the results of varying the distillation 1098

temperature. We observe that using a temperature 1099

of 0 leads to a significant performance drop, high- 1100

lighting the importance of soft-label distillation for 1101

mitigating the impact of noise in the generated data. 1102

For distillation temperatures other than 0, we ob- 1103

serve that there’s no significant difference between 1104

temperatures. This shows that our method is robust 1105

to the temperature used during distillation. 1106

C.3 Effect of number of negative in 1107

Decompose method 1108

We investigated the effect of varying the number 1109

of negative examples generated per question for 1110

the decomposed generation method. The results, 1111

presented in Table 6, show no significant perfor- 1112

mance difference across the range of negative exam- 1113

ples tested on both ARC-Easy and ARC-Challenge. 1114

This suggests that the decomposed method is ro- 1115

bust to the number of negative choices used during 1116

data generation. 1117

C.4 Lightweight LLM Comparison 1118

To compare our method with a lightweight LLM, 1119

we evaluated the LLaMa-3.2-1B-Instruct and 1120

Gemma-2b-it models. We analyzed the memory 1121

usage of both LLMs, both with and without 4-bit 1122

quantization, and compared them to the encoder- 1123

only DeBERTa-base model during inference. We 1124

measured memory consumption using the vmlDe- 1125

viceGetMemoryInfo function from pynvml, feed- 1126

ing each model sequences of 128 to 4096 random 1127

tokens. Results are shown in Table 7. We ob- 1128

serve that even with a lightweight 1B parameter 1129

13



Method ARC-Easy ARC-Challenge
Tasksource 72.8 ± 0.0 51.2 ± 0.0
Tasksource + JSON distill 74.5 ± 0.5 54.7 ± 1.0
Gemma-2-2b-it 89.6 ± 0.0 73.7 ± 0.0
Llama-3.1B-Instruct 93.3 ± 0.0 82.6 ± 0.0
deberta 5-shot baseline 26.5 ± 13.8 37.1 ± 5.0
Decompose generate 64.3 ± 2.1 39.3 ± 2.2
Decompose distill 67.8 ± 1.0 45.3 ± 1.1
JSON generate 61.9 ± 0.8 43.6 ± 0.9
JSON distill 69.8 ± 0.3 48.6 ± 0.9

Table 4: Result on arc-easy and arc-challenge.

Temperature
ARC-Easy ARC-Challenge

Decompose JSON Decompose JSON
0.0 64.9 ± 1.4 66.8 ± 0.7 42.5 ± 1.4 46.7 ± 0.9
0.5 67.4 ± 0.5 69.2 ± 0.9 45.1 ± 0.7 48.2 ± 1.0
1.0 67.8 ± 1.0 69.8 ± 0.3 45.4 ± 1.2 48.6 ± 0.9
1.5 67.8 ± 1.7 69.7 ± 1.0 44.2 ± 1.0 45.4 ± 1.2
2.0 67.9 ± 0.5 69.5 ± 0.5 45.4 ± 1.2 48.1 ± 1.2

Table 5: Effect of the distillation temperatures on generated data.

Negative
Number

ARC-Easy ARC-Challenge

Generate Distill Generate Distill
3 61.3 ± 1.6 67.4 ± 0.4 38.4 ± 2.2 46.3 ± 0.1
4 62.8 ± 1.5 67.7 ± 1.3 38.7 ± 1.5 47.0 ± 0.5
5 62.2 ± 1.6 67.5 ± 1.8 37.4 ± 1.6 46.5 ± 0.3
6 62.9 ± 1.8 67.2 ± 0.1 39.3 ± 1.8 47.1 ± 0.5

Table 6: Effect of the number of negatives in decompose method.
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LLM and 4-bit quantization, the LLM memory1130

usage is still greater than DeBERTa-base. We be-1131

lieve this is caused by the larger activation sizes of1132

LLMs, which are not quantized during inference,1133

thus requiring more memory. LLMs also often1134

require longer input sequences than encoder-only1135

models due to instructions, concatenated choices,1136

and few-shot examples. This can lead to input1137

sequences that are significantly longer, further in-1138

creasing memory requirements.1139

Table 8 shows the performance comparison.1140

Quantization reduces LLM performance, as ex-1141

pected. To compare at similar memory footprints,1142

we also evaluated LLMs without few-shot prompt-1143

ing. Performance degrades significantly, particu-1144

larly for the smaller LLaMa-3.2-1B-Instruct. We1145

observer that the memory usage of DeBERTa is1146

most similar to that of LLaMA-3.2-1B-Instruct1147

with 4-bit quantization. Compared to this model,1148

DeBERTa achieves comparable performance on1149

MMLU, within 1 percentage point. When consid-1150

ering similar sequence lengths during inference,1151

DeBERTa significantly outperforms the 4-bit quan-1152

tized LLaMA-3.2-1B-Instruct model. This reduced1153

memory footprint and potentially faster inference1154

speed makes DeBERTa a more attractive option for1155

deployment on resource-constrained devices.1156

C.5 Binary Class Extensions1157

In real-world applications like fact verification or1158

information retrieval, it’s often necessary to de-1159

termine the correctness of a given answer with-1160

out explicitly presenting choices. This necessitates1161

framing the problem as binary classification. To1162

investigate our framework’s applicability to this set-1163

ting, we consider two approaches. First, we train1164

a model with binary cross-entropy (BCE) loss and1165

sigmoid activation on the final layer, using data gen-1166

erated by the LLaMA-3.1-8B-Instruct using JSON1167

format. Second, we use a simple heuristic approach.1168

We train the model exactly as in the MCQA setting.1169

During the evaluation, we search for a constant1170

threshold using the same data by averaging the log-1171

its produced by the model for each question-answer1172

pair across all choices. At inference, if the logit for1173

a pair is above the threshold, the pair is classified1174

as correct.1175

For evaluation, we use the binary F1-score, as1176

the number of correct and incorrect pairs is not1177

balanced. Results are presented in Table 9. As1178

expected, using only 5-shot examples performs1179

poorly, while training on real binary data achieves1180

good results. Interestingly, models trained in the 1181

MCQA setting and then classified using the heuris- 1182

tic approach outperform the models trained directly 1183

with BCE loss on generated data. Furthermore, 1184

models trained with distillation and then classified 1185

using the heuristic demonstrate smaller variance 1186

and even outperform models trained on real binary 1187

data on the ARC-Challenge dataset. We hypothe- 1188

size that the heuristic, by leveraging the full proba- 1189

bility distribution learned during MCQA training, 1190

allows the model to develop a more nuanced repre- 1191

sentation of correctness. 1192

C.6 Is the results only from learning MCQA 1193

format? 1194

A potential concern is that the performance gains 1195

observed with our method might stem solely from 1196

learning the structure and format of MCQA, rather 1197

than improving actual question-answering ability. 1198

To investigate this, we conducted the following 1199

cross-evaluation experiment. We used LLaMa-3.1- 1200

8B-Instruct to generate 1024 ARC Easy examples 1201

using the JSON generation method, along with cor- 1202

responding LLM-generated scores for distillation. 1203

We then trained a DeBERTa-v3-base model on this 1204

generated ARC Easy data with distillation, using 1205

the same hyperparameters as our main experiments. 1206

We compared its performance on MMLU with a 1207

model trained directly on MMLU-generated data 1208

with distillation and the 5-shot baseline. Results 1209

are shown in Table 10. 1210

Training on the ARC Easy-generated data 1211

significantly improved performance over the 5- 1212

shot baseline. However, the model trained on 1213

MMLU-generated data performed significantly bet- 1214

ter, achieving an average accuracy of 39.3%, com- 1215

pared to 37.9% for the model trained on ARC Easy 1216

generated data. This gap suggests that our method 1217

is not merely teaching the model the MCQA for- 1218

mat, but is also enabling it to acquire task-specific 1219

knowledge relevant to the MMLU datasets. There- 1220

fore, we conclude that the improvements observed 1221

from our method stem from both an improved un- 1222

derstanding of the MCQA format and, crucially, 1223

an enhanced ability to answer questions within the 1224

specific domains covered by MMLU 1225

D Numerical Results 1226

This appendix provides supplementary numerical 1227

data supporting the results presented in the main 1228

paper. Section D.1 details the quantitative impact 1229
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Sequence
Length

DeBERTa-
base

LLaMA
1B

LLaMA
1B 4 bit

Gemma
2B

Gemma
2B 4 bit

128 1.701 3.576 2.211 6.351 3.444
256 1.728 3.773 2.421 6.705 3.912
512 1.768 4.134 2.794 7.393 4.585
1024 2.060 4.872 3.507 8.792 5.971
2048 3.152 6.235 4.870 11.610 8.699
4096 6.600 9.157 7.741 17.050 14.207

Table 7: Memory usage comparison of LLMs and encoder only method based on sequence length in GB.

Method STEM Social
Science

Humanities Other Average

Gemma-2-2b-it(5-shot) 46.8 66.9 61.6 61.3 57.7
Gemma-2-2b-it 4 bit(5-shot) 45.2 64.5 59.1 57.5 55.2
Gemma-2-2b-it 4 bit(0-shot) 42.6 58.6 56.2 54.9 51.9
LLaMA-3.2-1B-Instruct(5-shot) 36.5 47.8 46.3 45.1 43.1
LLaMA-3.2-1B-Instruct 4 bit(5-shot) 35.7 45.6 42.2 40.6 40.3
LLaMA-3.2-1B-Instruct 4 bit(0-shot) 29.4 33.7 26.7 29.1 29.6
DeBERTa-v3 + JSON distill (5-shot) 32.5 43.2 44.3 40.6 39.3
Tasksource + JSON distill(5-shot) 37.2 56.3 54.1 50.1 48.0

Table 8: Performance Comparison with small and 4-bit LLMs

Method ARC-Easy ARC-Challenge
1024 real data binary 56.81 ± 1.47 40.25 ± 4.08
5 real data binary 27.01 ± 10.09 14.23 ± 9.64
1024 JSON binary 48.86 ± 1.42 32.20 ± 6.93
1024 JSON MCQA heuristic 49.50 ± 1.35 42.38 ± 0.54

Table 9: Results on Binary Classification Tasks

Method STEM Social
Science

Humanities Other Average

Trained on MMLU generated 32.5 43.2 44.3 40.6 39.3
Trained on Arc-E 5-shot 22.0 22.8 21.9 22.5 22.3
Trained on Arc-E generated 32.3 40.5 41.4 40.3 37.9

Table 10: Cross-Datasets Evaluation Comparison
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Figure 3: Maximum Cosine Similarity Observed between Generated Questions and the Training/Test Sets on
ARC-Easy and ARC-Challenge. Similarity is calculated between question embeddings, excluding choices.

of varying the number of generated data points1230

on model performance, corresponding to Figure 2.1231

Section D.2 presents a comprehensive breakdown1232

of the MMLU benchmark results, disaggregated by1233

subject area, to provide a more granular analysis of1234

our method’s performance.1235

D.1 Effect of number of generated data1236

Table 11 provides the numerical results correspond-1237

ing to Figure 2, showing the effect of the number1238

of generated data points on model performance. As1239

expected, increasing the amount of generated data1240

generally leads to improved performance, particu-1241

larly when combined with LLM distillation.1242

D.2 MMLU Detailed Results1243

Tables 12 and 13 present the detailed results for our1244

method on the MMLU benchmark, corresponding1245

to the aggregated results discussed in Section 4.1.1246

Table 12 shows the results for MMLU tasks 0-39,1247

while Table 13 shows the results for tasks 40-56.1248

E Generated Dataset Analysis1249

This appendix provides an in-depth analysis of the1250

datasets generated using our proposed methods.1251

Section E.1 compares the time efficiency of the de-1252

composed and JSON generation approaches. Sec-1253

tion E.2 evaluates the semantic similarity between1254

generated questions and those in the training and1255

test sets to assess the novelty and quality of the1256

generated data. Section E.3 presents key statistical1257

properties of the generated datasets, such as token1258

length distributions.1259

Section E.3.1260

E.1 Generation Duration Comparison 1261

This section analyzes the time required to gener- 1262

ate data using LLaMA 3.1-8B-Instruct for a subset 1263

of MMLU and ARC datasets. We selected five 1264

MMLU datasets: High School European History, 1265

High School US History, High School World His- 1266

tory, Sociology, and US Foreign Policy. The first 1267

three represent tasks with particularly long con- 1268

texts, which we found to be the most challenging 1269

for data generation and required two GPUs. Soci- 1270

ology, US Foreign Policy, ARC-Easy, and ARC- 1271

Challenge are included to provide estimated gener- 1272

ation times for more typical tasks. 1273

To maximize GPU utilization, we adjusted the 1274

batch size for data generation, noting that larger 1275

batch sizes generally lead to faster generation but 1276

are constrained by GPU memory. We estimate the 1277

time based on generating at least 200 data points. 1278

Table 14 shows the chosen batch size for each 1279

dataset, along with the number of generated data 1280

points, the resulting model performance, the time 1281

taken to generate a single data point (in seconds), 1282

and the estimated total generation time (in hours). 1283

As shown in Section E.3, the decomposed 1284

method generally requires smaller batch sizes due 1285

to the longer sequences it produces. However, de- 1286

spite using smaller batch size and the longer se- 1287

quences, the decomposed method often achieves 1288

faster overall data generation. This is attributed to 1289

the lower parsing success rate of the JSON method, 1290

which requires generating and then discarding a 1291

significant portion of the data. As a result, gener- 1292

ating a complete dataset with the JSON method 1293

often takes longer. Notably, for datasets with very 1294

long sequences and low parsing success rates, the 1295
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Dataset Method 8 16 32 64 128 256 512 1024

ARC-
E

Real data 31.9 52.7 59.5 64.6 67.6 68.7 68.0 71.2
Decompose generate 46.3 52.9 56.0 57.9 59.2 62.1 62.1 64.3
Decompose distill 44.8 57.6 59.8 57.2 62.5 65.4 67.4 67.8
JSON generate 22.1 43.5 46.3 55.0 55.3 58.1 59.6 61.9
JSON distill 54.7 53.8 59.3 59.5 64.3 65.4 67.1 69.8

ARC-
C

Real data 38.7 38.9 41.4 44.7 46.1 48.8 50.3 53.6
Decompose generate 32.1 30.3 33.8 36.4 36.0 39.5 39.4 39.4
Decompose distill 36.8 41.4 42.5 43.3 42.1 44.2 43.9 45.4
JSON generate 20.8 21.5 28.1 32.9 35.4 41.1 43.8 43.6
JSON distill 19.9 29.7 35.5 39.3 39.3 44.0 46.9 48.6

Table 11: Effect of number of generated data againts performance and its comparison with real data

decomposed method can even yield higher perfor-1296

mance while using a similar computational budget1297

for data generation. This highlights a key advan-1298

tage of the decomposed approach: its ability to1299

efficiently generate usable data, even if the individ-1300

ual data points might be of slightly lower quality.1301

E.2 Datasets Semantic Similarity1302

To address potential test set contamination, where1303

LLM might have memorized or overfit to the test1304

set during pretraining, and to assess the quality1305

of the generated dataset, we analyzed the seman-1306

tic similarity between the generated, training, and1307

test set questions using the Sentence Transformers1308

all-MiniLM-L6-v2 model 5. For each generated1309

question, we calculated the embedding of the ques-1310

tion, excluding the choices. Then, we computed1311

the maximum cosine similarity between this em-1312

bedding and the embeddings of all questions in the1313

training and test sets. We then averaged these max-1314

imum similarities across all generated questions to1315

obtain an overall measure of similarity.1316

Figure 4 shows the average maximum similarity1317

scores. The average maximum similarity between1318

generated questions and the test set is 0.590 for1319

ARC-Easy and 0.539 for ARC-Challenge. These1320

values are comparable to the similarity between1321

the training set and test set (0.581 and 0.534, re-1322

spectively). If the generated questions were simply1323

copies from the training set, the similarity to the1324

training set would be much higher, and the sim-1325

ilarity to the test set would likely also be higher.1326

The observed comparable similarity scores suggest1327

the generated questions are novel and not mere1328

duplicates.1329

5https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2

To further identify any potential near duplicates, 1330

we also examined the maximum similarity scores 1331

between the generated questions and the training 1332

or test sets. Figure 3 shows these maximum sim- 1333

ilarity scores. The maximum similarity between 1334

the generated data and the test sets is noticeably 1335

lower than the maximum similarity between the 1336

training and test sets. This further supports our 1337

claim that the generated data does not simply repli- 1338

cate the test set questions. The training dataset 1339

exhibits near-duplicate questions (similarity near 1340

1), whereas our generated data does not exhibit 1341

such high similarity to the test set (around 0.93 and 1342

0.88). The observed semantic similarity between 1343

generated and real questions suggests that the LLM 1344

is generating questions that are relevant to the tar- 1345

get domain and similar in style and complexity to 1346

real exam questions. This provides evidence for 1347

the quality of the generated data. 1348

E.3 Generated Dataset Statistic 1349

This section analyzes the statistical properties of 1350

the MMLU datasets generated using both the JSON 1351

and decomposed methods. We compare the aver- 1352

age and standard deviation of token length in the 1353

real, JSON-generated, and decomposed-generated 1354

datasets, calculated by concatenating the question 1355

and all choices and tokenizing them with the De- 1356

BERTa tokenizer. Additionally, we report the pars- 1357

ing success rate for the JSON generation method. 1358

Table 15 presents the statistics of the generated 1359

MMLU datasets. Notably, the decomposed method 1360

produces data with a significantly higher average 1361

token length compared to both the real data and 1362

the JSON-generated data. This is likely due to the 1363

decomposed method’s lack of an inherent filtering 1364

mechanism, leading to the generation of more noisy 1365
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5-shot Decomp.
generate

Decomp.
distill

JSON
distill

Tasksource
JSON

Abstract Algebra 22.4 24.2 26.0 27.2 27.6
Anatomy 24.9 34.5 36.6 34.4 41.5
Astronomy 20.1 29.1 36.2 35.1 40.5
Business Ethics 30.0 42.8 49.4 49.4 54.8
Clinical Knowledge 30.9 31.6 39.3 41.6 54.9
College Biology 23.6 33.8 36.1 36.2 42.2
College Chemistry 27.0 25.4 29.2 26.8 30.6
College Computer Science 36.2 26.2 32.0 33.2 37.0
College Mathematics 27.8 22.4 22.0 24.8 27.2
College Medicine 25.2 31.0 35.5 37.6 46.9
College Physics 25.9 16.7 23.3 25.7 30.6
Computer Security 42.6 38.2 50.0 53.8 63.6
Conceptual Physics 25.4 35.2 35.3 34.3 38.5
Econometrics 25.6 24.2 23.7 21.6 27.0
Electrical Engineering 27.7 27.3 32.4 38.2 44.3
Elementary Mathematics 24.1 24.9 28.3 25.7 30.4
Formal Logic 28.7 33.2 23.5 24.6 26.8
Global Facts 20.4 23.4 30.4 26.4 26.8
High School Biology 23.7 38.8 42.1 40.2 51.6
High School Chemistry 28.8 24.0 26.5 30.0 31.2
High School Computer Science 24.8 28.6 34.2 35.4 49.8
High School European History 25.6 39.3 49.2 50.8 66.1
High School Geography 26.8 44.7 48.6 48.1 66.8
High School Government And Politics 32.3 45.2 52.0 54.0 71.9
High School Macroeconomics 26.8 32.2 42.1 39.9 50.9
High School Mathematics 29.8 15.2 25.6 26.5 27.3
High School Microeconomics 28.3 27.9 36.5 34.0 50.3
High School Physics 25.0 25.0 26.8 28.3 27.2
High School Psychology 33.9 39.3 48.3 51.1 67.7
High School Statistics 28.1 27.1 30.4 30.6 35.2
High School Us History 24.8 40.8 50.4 45.5 59.6
High School World History 33.7 46.4 53.1 51.5 70.1
Human Aging 24.8 31.7 33.6 30.6 48.9
Human Sexuality 32.2 38.2 40.8 46.6 55.7
International Law 44.8 29.3 56.4 65.6 66.0
Jurisprudence 24.3 30.2 44.6 49.3 64.4
Logical Fallacies 29.4 46.1 51.5 55.5 63.7
Machine Learning 26.6 27.1 28.4 30.4 29.8
Management 32.0 40.8 47.2 51.1 64.5
Marketing 43.8 49.1 60.0 61.7 77.4

Table 12: Result on MMLU[:40] datasets.
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5-shot Decomp.
generate

Decomp.
distill

JSON
distill

Tasksource
JSON

Medical Genetics 30.6 42.8 40.8 41.0 42.0
Miscellaneous 37.8 50.6 52.7 53.1 66.7
Moral Disputes 28.4 28.0 39.3 41.8 55.5
Moral Scenarios 24.3 24.2 24.1 24.4 33.0
Nutrition 25.6 33.9 38.1 41.8 53.1
Philosophy 30.9 40.1 42.4 43.2 54.8
Prehistory 26.4 34.9 40.6 42.4 53.8
Professional Accounting 24.2 25.0 29.2 28.7 36.5
Professional Law 24.1 27.9 31.0 30.5 33.0
Professional Medicine 26.0 29.8 34.6 28.7 39.3
Professional Psychology 22.9 31.3 34.7 35.3 45.8
Public Relations 26.9 41.1 44.7 42.0 57.6
Security Studies 31.8 40.2 37.8 41.3 50.9
Sociology 30.0 33.4 48.0 50.3 65.1
Us Foreign Policy 40.4 42.8 52.0 53.8 65.6
Virology 24.7 28.7 32.8 36.1 39.8
World Religions 42.3 38.9 47.8 50.8 56.1
Humanities 29.8 35.3 42.6 44.3 54.1
STEM 27.1 27.6 31.6 32.5 37.2
Social Science 29.8 36.7 42.4 43.2 56.3
Others 28.9 35.5 40.3 40.6 50.1
All Average 28.7 33.1 38.4 39.3 48.0

Table 13: Result on MMLU[40:] datasets.

Dataset Name Generation
Method

Distill
Avg

Batch
Size

Data
Counts

Generate
Time(S)

Estimate Total
Time(H)

High School
European History

Decompose 49.2 4 1024 31.9 9.06
JSON 50.8 6 327 90.4 8.21

High School US
History

Decompose 50.4 4 1024 19.8 5.63
JSON 45.5 6 305 74.6 6.32

High School
World History

Decompose 53.1 4 1024 11.9 3.39
JSON 51.5 8 765 32.9 6.99

Sociology Decompose 48.0 10 1024 3.2 0.91
JSON 50.3 10 1024 5.0 1.43

US Foreign Policy Decompose 52.0 8 1024 4.0 1.13
JSON 53.8 10 1024 5.4 1.55

ARC-Easy Decompose 67.8 4 1024 3.7 1.04
JSON 69.8 4 1024 4.3 1.24

ARC-Challenge Decompose 45.4 4 1024 3.3 0.94
JSON 48.6 4 1024 3.7 1.04

Table 14: The comparison of performance and generation time on some subset of MMLU, with also ARC-Easy and
ARC-Challenge.
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Figure 4: Average Maximum Cosine Similarity between Generated Questions and the Training/Test Sets on ARC-
Easy and ARC-Challenge. Similarity is calculated between question embeddings, excluding choices.

and potentially irrelevant content. For instance,1366

the decomposed method frequently generates ex-1367

cessively long answers, as illustrated in Table 24,1368

where the LLM produced a very long positive an-1369

swer not typically found in the real data. In contrast,1370

the JSON generation method, by directly mimick-1371

ing the structure and style of the few-shot exam-1372

ples, tends to generate higher-quality data with1373

lengths closer to the real data. However, despite1374

the increased noise in the decomposed data, decom-1375

pose generation method surprisingly yields strong1376

performance after applying LLM distillation, as1377

demonstrated in our main experiments.1378

F Prompt List1379

This section provides the prompts used for data1380

generation and scoring in our experiments. Ta-1381

bles 17 and 18 show the JSON generation prompts1382

and the 5-shot examples for ARC-Easy and ARC-1383

Challenge, respectively. For the decomposed gen-1384

eration method, Table 19 presents the question gen-1385

eration prompt, Table 20 shows the positive answer1386

generation prompt, and Table 21 illustrates the neg-1387

ative answer generation prompt. For paraphrase1388

baseline, the prompt is shown in Table 23. Finally,1389

Table 22 provides an example of the prompt used1390

for scoring the choices with the LLM.1391

G Generation Example1392

This section provides examples of the MCQA data1393

generated by our proposed methods. We also note1394

on Decompose generation method, the answer will1395

always be the first choice, as it is the first one to1396

be generated. Our training method with DeBERTa1397

is agnostic to choice permutation, thus using same1398

label over all training data will not have any im- 1399

pact on student model training. Table 24 illustrates 1400

a case where the decomposed method generated 1401

a noisy positive answer with an excessively long 1402

sequence. Table 25 shows an example where the 1403

JSON generation method produced an incorrect la- 1404

bel, but the LLM scoring was able to identify the 1405

correct answer. We also include few generation 1406

example on MMLU datasets, which is shown in 1407

Table 26 to Table 30 1408

21



Dataset Name Real
Length

Decompose
Length

JSON
length

JSON
Parseable

Abstract Algebra 62 ± 19 198 ± 141 62 ± 22 12.7
Anatomy 57 ± 19 93 ± 45 60 ± 19 42.9
Astronomy 70 ± 26 173 ± 57 104 ± 45 40.5
Business Ethics 79 ± 31 127 ± 46 108 ± 38 39.6
Clinical Knowledge 57 ± 16 120 ± 70 69 ± 24 49.5
College Biology 72 ± 35 107 ± 52 78 ± 29 43.1
College Chemistry 72 ± 33 199 ± 113 85 ± 32 20.0
College Computer Science 105 ± 47 155 ± 49 106 ± 44 13.4
College Mathematics 77 ± 30 216 ± 101 94 ± 33 4.9
College Medicine 102 ± 151 134 ± 73 75 ± 29 52.7
College Physics 76 ± 20 151 ± 80 81 ± 27 27.6
Computer Security 66 ± 40 78 ± 31 65 ± 27 49.8
Conceptual Physics 43 ± 12 81 ± 38 62 ± 22 56.0
Econometrics 98 ± 38 157 ± 74 94 ± 36 30.4
Electrical Engineering 44 ± 11 118 ± 75 65 ± 19 39.4
Elementary Mathematics 56 ± 22 214 ± 110 69 ± 29 22.7
Formal Logic 107 ± 43 308 ± 108 92 ± 36 5.2
Global Facts 49 ± 17 80 ± 44 55 ± 18 44.0
High School Biology 74 ± 31 99 ± 59 62 ± 22 51.7
High School Chemistry 77 ± 35 177 ± 109 65 ± 24 32.7
High School Computer Science 106 ± 62 127 ± 47 80 ± 35 34.5
High School European History 334 ± 117 457 ± 184 267 ± 157 13.6
High School Geography 47 ± 15 83 ± 36 58 ± 22 54.1
High School Government And Politics 68 ± 21 116 ± 48 72 ± 27 50.8
High School Macroeconomics 63 ± 18 102 ± 41 68 ± 25 48.0
High School Mathematics 70 ± 28 205 ± 124 77 ± 29 10.8
High School Microeconomics 70 ± 24 102 ± 43 78 ± 29 44.6
High School Physics 95 ± 38 189 ± 112 80 ± 25 19.5
High School Psychology 61 ± 31 116 ± 56 75 ± 28 48.6
High School Statistics 115 ± 42 181 ± 60 110 ± 47 17.5
High School Us History 296 ± 71 382 ± 171 256 ± 144 12.7
High School World History 332 ± 126 262 ± 144 134 ± 81 17.7
Human Aging 46 ± 13 73 ± 29 59 ± 18 45.4
Human Sexuality 55 ± 24 83 ± 38 64 ± 23 52.8
International Law 86 ± 23 222 ± 52 116 ± 42 39.2
Jurisprudence 68 ± 25 91 ± 46 62 ± 20 54.2
Logical Fallacies 66 ± 28 88 ± 33 66 ± 23 45.1
Machine Learning 77 ± 39 153 ± 65 95 ± 43 41.3
Management 42 ± 10 67 ± 32 55 ± 18 48.4
Marketing 60 ± 16 87 ± 36 67 ± 23 58.4

Table 15: Statistics of MMLU[:40] datasets.
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Dataset Name Real
Length

Decompose
Length

JSON
length

JSON
Parseable

Medical Genetics 51 ± 13 83 ± 41 63 ± 23 56.3
Miscellaneous 45 ± 25 60 ± 35 39 ± 11 56.9
Moral Disputes 67 ± 22 158 ± 68 97 ± 40 45.6
Moral Scenarios 101 ± 7 198 ± 92 126 ± 47 11.3
Nutrition 64 ± 26 135 ± 63 92 ± 39 38.5
Philosophy 60 ± 29 78 ± 32 56 ± 17 55.3
Prehistory 63 ± 24 130 ± 44 92 ± 32 33.7
Professional Accounting 96 ± 30 172 ± 83 103 ± 41 25.9
Professional Law 249 ± 95 424 ± 184 214 ± 108 22.5
Professional Medicine 169 ± 62 232 ± 148 139 ± 52 22.1
Professional Psychology 75 ± 32 123 ± 59 85 ± 36 44.5
Public Relations 56 ± 29 98 ± 47 66 ± 23 45.6
Security Studies 152 ± 70 290 ± 81 203 ± 100 35.4
Sociology 66 ± 19 92 ± 40 72 ± 27 49.0
Us Foreign Policy 59 ± 15 140 ± 49 74 ± 26 41.0
Virology 52 ± 26 83 ± 32 69 ± 24 52.8
World Religions 38 ± 8 69 ± 33 46 ± 14 42.8

Table 16: Statistic of MMLU[40:] datasets.

System: You are a bot that excel at creating question about the given topics, and will create question in JSON format!
##### Few-Shot Example 1:
User: create a question about grade school science!
Assistant: {’question’: ’Which of the following materials would best slow the transfer of heat?’, ’choices’: [’aluminum’,
’copper’, ’glass’, ’wood’], ’answer’: 3}
##### Few-Shot Example 2:
User: create a question about grade school science!
Assistant: {’question’: ’In which environment is white fur color an advantage for survival?’, ’choices’: [’desert’,
’grassland’, ’arctic tundra’, ’temperate forest’], ’answer’: 2}
##### Few-Shot Example 3:
User: create a question about grade school science!
Assistant:{’question’: ’The mathematical model for calculating speed is shown below. Speed = distance/time. An
airplane traveled 700 kilometers in two hours during a trip. What was the average speed of the plane during the trip?’,
’choices’: [’5.8 kilometers per hour’, ’350 kilometers per hour’, ’1400 kilometers per hour’, ’84,000 kilometers per
hour’], ’answer’: 1}
##### Few-Shot Example 4:
User: create a question about grade school science!
Assistant:{’question’: ’The aloe plant can absorb a lot of water during a rain shower. The extra water is stored in its
leaves. The ability to store water in its leaves is most likely an adaptation to which type of environment?’, ’choices’:
[’one near the ocean’, ’one with dry conditions’, ’one with a variety of organisms’, ’one that receives a lot of sunlight’],
’answer’: 1}
##### Few-Shot Example 5:
User: create a question about grade school science!
Assistant:{’question’: "Near Earth’s equator, water generally exists naturally in the liquid and gas states. In which other
part of Earth is water usually found naturally in only two states?", ’choices’: [’Indian Ocean’, ’interior of Africa’, ’South
Pole’, ’Tropic of Cancer’], ’answer’: 2}

User: create a question about grade school science!
Assistant:

Table 17: Examples of the MCQA data generation prompt using JSON method and the five data used as few-shot
example on ARC-Easy.
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System: You are a bot that excel at creating question about the given topics, and will create question in JSON format!
##### Few-Shot Example 1:
User: create a question about grade school science!
Assistant: {’question’: ’Which characteristic can a human offspring inherit?’, ’choices’: [’facial scar’, ’blue eyes’, ’long
hair’, ’broken leg’], ’answer’: 1}
##### Few-Shot Example 2:
User: create a question about grade school science!
Assistant: {’question’: ’Many horses grow a heavy coat in autumn and shed that coat in spring. Scientists were not
sure if temperature or the amount of daylight per day (called the photoperiod) caused the change. So, they conducted an
experiment and concluded that the change in photoperiod was responsible for the biological changes. Shedding caused
by which set of conditions would have helped them arrive at this conclusion?’, ’choices’: [’a constant photoperiod,
but varied temperatures’, ’a varied photoperiod, and varied temperatures’, ’a constant photoperiod, and a constant
temperature’, ’a varied photoperiod, but a constant temperature’], ’answer’: 3}
##### Few-Shot Example 3:
User: create a question about grade school science!
Assistant:{’question’: ’Which is evidence of a chemical reaction?’, ’choices’: [’the light produced by magnesium when
burned’, ’the evaporation of water from a solution’, ’the fizzing of a soft drink’, ’the heat from a light bulb’], ’answer’: 0}
##### Few-Shot Example 4:
User: create a question about grade school science!
Assistant:{’question’: ’A class is studying the density of rock samples. What scientific equipment do they need to
determine the density of the rock samples?’, ’choices’: [’microscope and balance’, ’beaker and graduated cylinder’,
’graduated cylinder and balance’, ’microscope and graduated cylinder’], ’answer’: 2}
##### Few-Shot Example 5:
User: create a question about grade school science!
Assistant:{’question’: ’Which energy resource is non-renewable?’, ’choices’: [’oil’, ’solar’, ’water’, ’wind’], ’answer’:
0}

User: create a question about grade school science!
Assistant:

Table 18: Examples of the MCQA data generation prompt using JSON method and the five data used as few-shot
example on ARC-Challenge.

System: You are a bot that excel at creating question about the given topics!
User: create a question about grade school science!
Assistant: Which of the following materials would best slow the transfer of heat?
User: create a question about grade school science!
Assistant: The mathematical model for calculating speed is shown below. Speed = distance/time. An airplane traveled
700 kilometers in two hours during a trip. What was the average speed of the plane during the trip?

(Other 5 shot example)

User: create a question about grade school science!
Assistant:

Table 19: Examples of the question generation prompt.

System: You are a bot that excel at answering question and will answer all question correctly(answer shortly)!
User: Which of the following materials would best slow the transfer of heat?
Assistant: wood
User: The mathematical model for calculating speed is shown below. Speed = distance/time. An airplane traveled 700
kilometers in two hours during a trip. What was the average speed of the plane during the trip?
Assistant: 350 kilometers per hour

(Other 5 shot example)

User: The aloe plant can absorb a lot of water during a rain shower. The extra water is stored in its leaves. The ability to
store water in its leaves is most likely an adaptation to which type of environment?
Assistant:

Table 20: Examples of the positive answer generation prompt.
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System: You are a bot that always answer question with possible but wrong answer and reply with diverse answer(answer
shortly)!
User: Answer the question with wrong but possible answer and use different answer from the Forbidden Answer!
Question: Which of the following materials would best slow the transfer of heat?
Forbidden Answer :
- wood
- copper
Answer:
Assistant: aluminum
User: Answer the question with wrong but possible answer and use different answer from the Forbidden Answer!
Question: The mathematical model for calculating speed is shown below. Speed = distance/time. An airplane traveled
700 kilometers in two hours during a trip. What was the average speed of the plane during the trip?
Forbidden Answer :
- 350 kilometers per hour
- 1400 kilometers per hour
- 5.8 kilometers per hour Answer:
Assistant: 84,000 kilometers per hour

(Other 5 shot example)

User: Answer the question with wrong but possible answer and use different answer from the Forbidden Answer!
Question: The aloe plant can absorb a lot of water during a rain shower. The extra water is stored in its leaves. The
ability to store water in its leaves is most likely an adaptation to which type of environment?
Forbidden Answer :
- one with dry conditions
Answer:
Assistant:

Table 21: Examples of the negative answer generation prompt.

User: Which of the following materials would best slow the transfer of heat?
A. aluminum
B. copper
C. glass
D. wood
Assistant: D
User: The mathematical model for calculating speed is shown below. Speed = distance/time. An airplane traveled 700
kilometers in two hours during a trip. What was the average speed of the plane during the trip?
A. 5.8 kilometers per hour
B. 350 kilometers per hour
C. 1400 kilometers per hour
D. 84,000 kilometers per hour
Assistant: B

(Other 5 shot example)

User: The aloe plant can absorb a lot of water during a rain shower. The extra water is stored in its leaves. The ability to
store water in its leaves is most likely an adaptation to which type of environment?
A. one near the ocean
B. one with dry conditions
C. one with a variety of organisms
D. one that receives a lot of sunlight
Assistant:

Table 22: Examples of the LLMs MCQA scoring prompt.
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System: You are a bot that excel at paraphrasing.
##### Few-Shot Example 1:
User: paraphrase this : AI is transforming various sectors by taking over tasks that used to require human labor. While
this advancement can lead to greater efficiency and cost savings, it also sparks worries about job loss and the moral
considerations surrounding AI-driven choices.
Assistant: Artificial intelligence is revolutionizing industries by automating tasks that were previously performed by
humans. This technology has the potential to increase efficiency and reduce costs, but it also raises concerns about job
displacement and the ethical implications of AI decision-making.
##### Few-Shot Example 2:
User: paraphrase this : Despite the challenges they faced during the project, the team managed to deliver a high-quality
product that exceeded the client’s expectations.
Assistant: Even with the obstacles encountered throughout the project, the team successfully produced a top-notch
product that went beyond what the client had anticipated.
##### Few-Shot Example 3:
User: paraphrase this : Happy
Assistant: Joyful
##### Few-Shot Example 4:
User: paraphrase this : What are the main factors that contribute to climate change, and how do they each affect the
environment?
Assistant: What key elements drive climate change, and what impact does each one have on the environment?
##### Few-Shot Example 5:
User: paraphrase this : The project lead is Sarah.
Assistant: Sarah is leading the project.

Table 23: Few-shot prompt for paraphrase baselines.

What is 6 basic physical changes but isn’t considered chemical is happening? Example of these include, Melting Ice
changing shape into a water molecules without making atoms get mixed up or recombine, also making a ball of dough
gets compressed
Choice 1) Those examples are of physical changes. 6 examples are:
1. Melting
2. Boiling
3. Freezing
4. Compressing
5. Changing shape (or compressing) a ball of dough
6. Evaporation
Choice 2) Dissolving sugar in water
Choice 3) Sublimation
Choice 4) evaporation
Choice 5) Changing the color of a white shirt.
Choice 6) melting a metal statue in a fire.
Answer : 1

Table 24: example of Decompose Generation with positive choice containing long sequences instead of short
answer.

Plants make a sweet tasty treat in large organs called ______ inside their stems.
A. fruits
B. seeds
C. roots
D. leave
Initial Answer : B
LLM Probability Score : [(A) 35.1%, (B) 21.4%, (C) 21.3%, (D) 22.2%]

Table 25: example of Wrong label when generating data directly with JSON method and how distillation could
helps.
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To categorize a viral reemergercy does it need specific molecular features such as sequence of a certain nucleocapsid,
structure of its envelope, specific replication methods and what one or a different option.
A. Yes, including serologic cross-reactivity with other members of the same virus.
B. The presence of a tail of variable length
C. The virus being of aquatic origin
D. Mutual seroneutralization with another reemerging virus
E. The presence of a peculiarly patterned nucleic acid methylation
F. The virus being of terrestrial origin
Initial Answer : A
LLM Probability Score : [(A) 33.4%, (B) 12.3%, (C) 7.8%, (D) 22.2%, (E) 17.9%, (F) 6.4%]

Table 26: Generated data example using Decompose generation method with MMLU dataset Virology.

Loss of which bodily function is most directly attributed to the gradual decrease in dopamine receptors associated with
aging?
A. Motivation
B. Regulation of body temperature
C. Regulation of appetite
D. Coordination
E. Memory
F. Regulation of sleep
Initial Answer : A
LLM Probability Score : [(A) 28.4%, (B) 8.7%, (C) 15.8%, (D) 14.7%, (E) 16.0%, (F) 16.3%]

Table 27: Generated data example using Decompose generation method with MMLU dataset Human Aging.

This question refers to the following information.
We may imagine, if we please, that all white inhabitants of this Province (for, at present, the inhabitants do neither read
nor talk but for white People). that these white inhabitants were all the owners in their Own right as to goods (money
goods) except so few that we do not want and those but a Hand ful they having lost all and taken this Course to beg and
Stealing: which is as clear that I believe even from all Accounts as that some have and will go farther than to Stealers
which is as great as the devil would for one to make himself King of Virginia... They have some hopes some way or an
oother to get that Land on the Sea side.
And yet they all Conceived a Jealousi[e] to take the best Part, especially about this Town and River. in that part so far we
have kept clear their Town and as to them Land all those who were from this year from North England but there were
and was the most averse than the rest... The greatest Body went out of the River... to which this place has yet seen, but of
which one and twenty of this Colony have fallen in.
The first written passage about early American Settlement, is attributed to:
A. Captain John Smith
B. William Bradford
C. John Rolfe
D. John Winthrop
E. Christopher Newport
F. William Penn
Initial Answer : A
LLM Probability Score : [(A) 23.8%, (B) 15.5%, (C) 18.5%, (D) 18.2%, (E) 11.7%, (F) 12.3%]

Table 28: Generated data example using Decompose generation method with MMLU dataset High School US
History.

As per studies, which vitamin deficiency, linked to malnutrition in aged patients is commonly reported
A. Vitamin A deficiency
B. Vitamin C Deficiency
C. Vitamin D Deficiency
D. Biotin Deficiency
Initial Answer : C
LLM Probability Score : [(A) 7.5%, (B) 14.5%, (C) 69.6%, (D) 8.5%]

Table 29: Generated data example using JSON generation method with MMLU dataset Human Aging.
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According to UK nutritional reference intakes (RNI), what amount of water for adults aged over 16, considering a
temperature of 22- 27°C was stated (as of 2020)?
A. At least 30 mL. day/ per day for a normal inactive woman’s diet
B. On average 2ltr water per person per year
C. 75 mL.day /per person per dayfor an active healthy adult diet
D. Less than none
Initial Answer : B
LLM Probability Score : [(A) 29.7%, (B) 13.3%, (C) 49.0%, (D) 8.1%]

Table 30: Generated data example using JSON generation method with MMLU dataset Nutrition.
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