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ABSTRACT

Learning on large graphs presents significant challenges, with traditional Message
Passing Neural Networks suffering from computational and memory costs scaling
linearly with the number of edges. We introduce the Intersecting Block Graph
(IBG), a low-rank factorization of large directed graphs based on combinations of
intersecting bipartite components, each consisting of a pair of communities, for
source and target nodes. By giving less weight to non-edges, we show how an
IBG can efficiently approximate any graph, sparse or dense. Specifically, we prove
a constructive version of the weak regularity lemma: for any chosen accuracy,
every graph can be approximated by a dense IBG whose rank depends only on
that accuracy. This improves over prior versions of the lemma, where the rank
depended on the number of nodes for sparse graphs. Our method allows for efficient
approximation of large graphs that are both directed and sparse, a crucial capability
for many real-world applications. We then introduce a graph neural network
architecture operating on the IBG representation of the graph and demonstrating
competitive performance on node classification, spatio-temporal graph analysis, and
knowledge graph completion, while having memory and computational complexity
linear in the number of nodes rather than edges.

1 INTRODUCTION

Graphs are a powerful representation for structured data, with applications spanning social networks
(Hamilton et al.l [2017a}; Zeng et al.| 2019)), biological systems (Hamilton et al, [2017b), traffic
modeling (L1 et al.} |2018)), and knowledge graphs (Kok & Domingos,2007), to name a few. As graph
sizes continue to grow in application, learning on such large-scale graphs presents computational
and memory challenges. Traditional Message Passing Neural Networks (MPNNs), which form
the backbone of most graph signal processing architectures, scale their computational and memory
requirements linearly with the number of edges. This edge-dependence limits their scalability in
some situations, e.g., when processing social networks that can typically have 108 ~ 10° nodes and
10% ~ 10% as many edges (Rossi et al., 2020)).

Several strategies, called graph reduction methods, have been proposed to alleviate these challenges.
These include graph sparsification, where a smaller graph is randomly sampled from the large graph
(Hamilton et al.; 2017a;|Zeng et al.l 2019;|Chen et al.l|2018)); graph condensation, where a new small
graph is created (Jin et al.} 2022; Wang et al.l [2024; Zheng et al.|[2024), representing structures in the
large graph; and graph coarsening, where sets of nodes are grouped into super nodes (Ying et al.|
2018 [Bianchi et al.|,2020; |[Huang et al.,[2021). However, with the exception of graph sparsification,
graph reduction methods typically do not address the problem of processing a graph that is too large
to fit at once in memory (e.g., on the GPU). For an extended related work, see Section @

Recently, [Finkelshtein et al.| (2024a)) proposed using a low-rank approximation of the graph, called
Intersecting Community Graph (ICG), instead of the graph itself, for processing the data. When
training a model on the ICG representation, the computational complexity is reduced from linear in
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(a) A directed graph. (b) Approximating 3-IBG. (c) The intersecting blocks of the 3-IBG.

Figure 1: (a) Directed graph sampled from a stochastic block model (SBM); (b) The approximating
3-IBG, where source and target community pairs are represented by the same color; (¢) Adjacency
matrix of a graph sampled from the same SBM, with the 3-IBG overlaid on the adjacency matrix.

the number of edges (as in MPNNSs) to linear in the number of nodes. However, ICG approximation
quality deteriorates as graphs become sparser — a significant limitation for domains like fraud
detection, recommendation systems, and social networks where large graph size naturally results
in sparse connectivity. Moreover, ICGs are restricted to undirected graphs, limiting their use in
applications where edge directionality is essential, such as atmospheric flow in weather forecasting
and causal reasoning in algorithms (Oskarsson et al., [2024; |Smit et al.} 2025). In these settings, both
empirical and theoretical work has shown that directionality is key and can significantly boost GNN
performance and expressive power (Rossi et al.| [2024; Bechler-Speicher et al., 2025

Our contribution. We introduce a new procedure for approximating general directed graphs G with
adjacency matrices A € {0, 1} *¥ by low-rank matrices C that have a special interpretation: the
approximating graph consists of a set of overlapping bipartite components. Namely, there is a set of
K < N pairs of node communities (U;,V;),7 =1, ..., K, and each pair defines a weighted bipartite
component, in which edges connect each node of U/; to each node of V; with some weight r; (that
can be negative). The full graph C' is defined as the sum of all of these components, called blocks or
directed communities, where the different communities can overlap (see Figure|[I|for a visualization
of the approximating graph). We demonstrate how processing C' instead of A leads to models that
solve downstream task in linear time and space complexity with respect to the number of nodes, as
opposed to standard MPNNs that are linear in the number of edges.

To fit C to A, we consider a loss function L 4 (C') defined as a weighted norm of A — C, namely,
a standard norm weighted element-wise by a weight matrix Q € (0,00)V*" . The goal of using
weights is to balance the contributions of edges and non-edges. The weight matrix @ is chosen
adaptively, depending on the target adjacency matrix A. We consider a weighted cut norm, denoted
by op(A||C), as the approximation metric. The cut norm is a well-established graph similarity
measure that quantifies the maximum discrepancy in their connectivity structure. It enables graph
approximations with rank independent of the number of nodes for dense graphs. However, for sparse
graphs, the standard cut-metric is dominated by non-edges, which degrades approximation quality.
This motivates the use of a weighted cut-norm that balances the contributions of edges and non-edges.
The cut norm also has a probabilistic interpretation that we discuss in Section [3] and Appendices B]
and [C] Computing the cut norm is NP-hard, which prohibits explicitly optimizing it. To solve this
issue, we prove that it is possible to minimize a weighted Frobenius norm || A — C/| instead of the
cut norm, and guarantee that the Frobenius minimizer C* has a small cut error o (A||C*), even if
the minimum || A — C*||, itself is large. For that, we formulate a version of the Weak Regularity
Lemma (WRL) (Frieze & Kannan, |1999) that we call the semi-constructive densifying directional
soft weak regularity lemma, or in short the Densifying Weak Regularity Lemma.

The WRL asserts that one can approximate any graph with £ edges and /N nodes up to error € w.r.t.
the cut metric by a low-rank graph consisting of N/ (\/Eeg) intersecting communities. For more
details on the standard WRL see Section [B] Our approach, which is an extension of the ICG method
(Finkelshtein et al., 2024al), is different from other forms of the WRL in a number of ways:

* While some variants of the WRL only prove existence (Laszlé Miklds Lovaszl 2007), we find the
approximating low-rank graph as the solution to an “easy to optimize” loss function (hence our
approach is constructive).



Published as a conference paper at ICLR 2026

* While some versions of the WRL (Frieze & Kannan [1999) propose an algorithm that provably
obtains the approximating low-rank matrix, these algorithms are exponentially slow and not
applicable in practice (for example, see Section 7 of |Finkelshtein et al.| (2024a)). Instead, the loss
function we introduce can be efficiently optimized via gradient descent. While the optimization
procedure is not guaranteed to find the global minimum since the loss is non-convex, it nevertheless
produces high-quality approximations in practice (hence the term semi-constructive). To facilitate
a gradient descent-based optimization, we relax the combinatorial problem (hence the term soft).

* Previous versions of the WRL consider undirected graphs, while we treat general directed graphs
(hence the term directional).

* While previous versions of the WRL required N/(v/Ee?) communities for € error w.r.t. the
standard cut metric, we guarantee an ¢ error in weighted cut metric with only 1/e? communities.
Hence, the number of communities in our method is independent of any property of the graph,
including the number of nodes and sparsity level. This capability directly follows from balancing
the importance of edges and non-edges in our optimization target. As a result, it leads to a
formal approach for approximating sparse large graphs by dense low rank graphs, justifying
the term densifying. We emphasize that this independence of the number of communities on
the sparsity level is not merely an artifact of carefully renormalizing the loss to artificially
facilitate the desired error bound. Rather, the loss function is deliberately designed to promote
denseness when approximating graphs. The ability to efficiently densify a given graph can
improve downstream tasks like node classification, as, in some sense, the densified version C* of
the graph A strengthens the connectivity patterns of the graph. We stress that as opposed to naive
densification approaches, our method improves both computational complexity and accuracy.

In this paper, we introduce a new graph similarity measure that enables efficient approximation
of any graph, including sparse and directed ones. We develop a non-trivial extension of the ICG
method called the Intersecting Blocks Graph (IBG). Our central theoretical result shows that any
graph, sparse or dense, can be approximated with an error that depends only on the desired accuracy,
independent of graph size or sparsity level. This advancement enables the design of IBG Neural
Networks (IBG-NNs), which operate directly on the IBG representation of any graph. IBG-NNs allow
solving downstream tasks such as node classification, spatio-temporal graph analysis, and knowledge
graph completion in O(N) operations rather than O(E). We demonstrate that our approach achieves
state-of-the art accuracy on standard benchmarks, while being very efficient. For background on the
predecessor of our method, ICG (Finkelshtein et al.| 2024a), see Appendix @ For a comparison of
our method with ICG, see Sections[J]]and [M.2.1}

2 BASIC DEFINITIONS AND NOTATIONS

We denote matrices by boldface uppercase letters, e.g., D, vectors by boldface lowercase d, and their
scalar entries by the same lowercase letter d; with subscript for the index.

Graph signals. We consider directed (unweighted) graphs G with sets of N nodes V = [N] =
{1,...,N}, E edges £ C V x V, adjacency matrix A = (a;;);;—; € {0,1}V*V, and node
feature matrix X = (mi’j)ﬁ\’;?gl € [-1,1)V*P, called the signal. We follow the graph signal
processing convention and represent the data as graph-signals G = (A, X). We emphasize that
signals are always normalized to have values in [—1, 1], which does not limit generality as the units
of measurement can always be linearly changed. All constructions also apply to signals with values
in R, but for simplicity of the analysis we limit the values to [—1, 1].

We denote the j-th column of the matrix Q by Q. ;, and the i-th row by Q;.. We often also
denote the i-th row by g, and respectively denote Q = (g;),. We identify vectors v = (v1)¥;
with corresponding functions i +— v;. Similarly, we treat X as a function X : [N] — RP, with
X (n) = x,,. We denote by diag(r) € RE*X the diagonal matrix with diagonal elements r € R¥.

Frobenius norm. The weighted Frobenius norm of a square matrix D € RV X" with respect to

the weight Q € (0,00)V* is defined to be || D|g.q = (ﬁ Z;ijl dqui,j)lﬂ. Denote
’ i,j=1 9%, ’ >

[ D||g := || D||p.1, where 11is the all-1 matrix. The Frobenius norm of a signal Y’ € RN*D s defined
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by [|[Y|p = \/ﬁ Zj]-j:l >V y; ;- The weighted Frobenius norm with weights o, 8 > 0 of a

. . . 2 2
matrix-signal (D, Y) is defined by [[(D.Y)[ly.q = |(D. ¥)llpg.0 s = \/a IDlEq + B 1¥ 3.
3  WEIGHTED GRAPH SIMILARITY MEASURES

Weighted cut-metric. The cut-metric is a graph similarity measure based on the cut-norm. Below,
we define it for graphs of the same size; extensions to arbitrary graphs use graphons (see (Laszld
Miklés Lovasz, [2007) for graphons, and (Leviel 2023) for graphon-signals).

Definition 3.1. The weighted matrix cut-norm of D € RN*N with weights Q € (0,00)V*¥, is

defined to be
IDlloq = max |03 dijais|
Z j i j UVCIN €U jev

The signal cut-norm of Y € RV*P is defined to be

D
1
¥l = gy 3 o | o
Jj=1 €U
The weighted matrix-signal cut-norm of (D, Y"), with weights «, 3 > 0, is defined to be
1D, Yo, = 1P, Y)llpga = @1 Plloig + B1IY o - )

Note that Finkelshtein et al.{(2024a) used the weighted cut-norm || D|| := (N?/E) | D,

Densifying cut similarity. A key limitation of the cut-metric in sparse graphs arises from the
dominance of non-edges in the graph structure. Sparse graphs, such as those common in link
prediction and knowledge graph completion (Dettmers et al., 2018)), often have a small number of
edges relative to non-edges. This imbalance causes the cut-metric to be dominated by non-edges
unless they are properly weighted. We believe that this imbalance significantly impacted the quality
of the approximating ICG in |Finkelshtein et al.| (2024a)), which uses the unweighted cut-metric, i.e.
with @ = 1, and consequently the underperformance of downstream tasks which operate on the ICG.

Motivated by this limitation, we define a similarity measure that better addresses the structural
imbalance inherent in sparse graphs. We propose the densifying cut similarity, a modification of
the cut-metric that lowers the contributions of non-edges w.r.t. the standard cut-metric. We define a
weighted adjacency matrix @ that assigns a weight e to non-edges and 1 to edges. The parameter e is
chosen based on the desired balance, controlled by a factor I', which determines the proportion of
non-edges relative to edges. For a detailed derivation of the definition from motivating guidelines, and
its relation to negative sampling in knowledge graph completion and link prediction, see Section[C]

Definition 3.2. Let A € {0, 1} > be an unweighted adjacency matrix, and T' > 0. The densifying
cut similarity between the target A and any adjacency matrix B € RN*Y is defined to be

o(A||B) = oor(Al[B) := (1+1)[|A - Blgq,
where the weight matrix Q a is
TE/N?

= (/N ”

Qa=Qar =eprl+(1—egr)A, with egr =

Given a, f > 0 such that o + = 1, the densifying cut similarity between the target graph-signal
(A, X) and the graph-signal (A’, X') is defined to be

oo((4, X)[|(A', X")) = 00050 (A, X)[[(A, X)) := aopr (Al B) + 8[| X — X||5.

We stress that the weighted Frobenius norm with the weight from Definition [3.2]is well normalized,
ie, (1 +T)[Alpg, = 1, suggesting that the norm op((A, X)||(A’, X")) is meaningfully
standardized. Namely, we expect o1 ((A, X)||(A’, X)) to have magnitude of the order of 1 when
B is a “bad” approximation of A, and to be < 1 when B is a “good” approximation. Also not that
the standard cut metric is retrieved when I' = N2/E — 1.
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4  APPROXIMATIONS BY INTERSECTING BLOCKS

4.1 INTERSECTING BLOCK GRAPHS

For any subset of nodes & C [N], the indicator function 1, is defined as 1,(i) = 1 if i € U and
0 otherwise. As explained above, we treat 1 as a vector in RY. Denote by y the set of all such
indicator functions. We define an Intersecting Block Graph (IBG) with K classes (K-IBG) as a
low-rank graph-signal (C, P) with adjacency matrix and signals given respectively by

K K
C=> rlyl),, P=) 1yf +1yb/
j=1 j=1

where 7; € R, f;,b; € RP, and U;,V; C [N]. Next, we relax the {0, 1}-valued hard indicator
functions 14, 1y, to soft affiliation functions with values in R, as defined next, to allow continuously
optimizing IBGs. Definition[4.1]is taken from [Finkelshtein et al.| (2024a).

Definition 4.1. A set Q of vectors u : [N] — R that contains X is called a soft affiliation model.

Definition 4.2. Let d € N, and let Q be a soft affiliation model. We define [Q] C RVN*N x RNXD t9
be the set of all elements of the form (ruv ', uf’ +vb"), withu,v € Q,r € Rand f,b € RP.
We call [Q] the soft rank-1 intersecting block graph (IBG) model corresponding to Q. Given K € N,
the subset [Q)rc of RV*N x RN*D of ail linear combinations of K elements of [Q) is called the soft
rank- K IBG model corresponding to Q.

In matrix form, an IBG (C, P) € RV*N x RNXD in [Q] can be written as
C =Udiag(r)V' and P=UF+VB 3)

via the target community affiliation matrix U € RN*X | the source community affiliation matrix
V € RVNXK the community magnitude vector r € RX| the target community feature matrix
F ¢ RE*P and the source community feature matrix B € RE*D,

4.2 THE DENSIFYING REGULARITY LEMMA

Directly minimizing the densifying cut similarity (or cut metric) is both numerically unstable and
computationally difficult since it involves a maximization step, making the optimization a min-max
problem. To overcome this, we introduce a middle-ground solution, providing an efficient semi-
constructive version of the weak regularity lemma for intersecting blocks. The approach is termed
semi-constructive because it formulates the approximating graph as the solution to an "easy-to-solve"
optimization problem that can be efficiently handled using standard gradient descent techniques.

The theorem generalizes the semi-constructive WRL based on intersecting communities of
Finkelshtein et al.| (2024a)) in three main ways: (1) extending the theorem to directed graphs and
the densifying graph similarity, instead of undirected graphs and the cut norm, (2) introducing a
certificate for testing that the high probability event in which the cut similarity error is small occurred,
and the key novelty of this theorem — (3) it addresses a major limitation of the previous work by
providing a bound that is independent of the graph size for both sparse and dense graphs, whereas
the bound in |Finkelshtein et al.|(2024a)) depended on the graph size for sparse graphs. For a more
extensive comparison between our approach and [Finkelshtein et al.[(2024a) see Appendix

Theorem 4.1. Let (A, X) be a graph-signal, K € N, 6 > 0, and let Q be a soft affiliation model. Let
a, 3 > 0 such that o+ = 1. Let T’ > 0 and let Q 4 be the weight matrix defined in Definition [3.2]
Let R > 1 such that K/R € N. For every k € N, let

. 2
m=(40) min ((A.X) = (C.P)liquanins-

Then,

1. For every m € N, any IBG (C*, P*) € [Q],, that gives a close-to-best weighted Frobenius
approximation of (A, X)) in the sense that

(A, X) —(C~, P*)||§‘;QA,Q(1+F)”3 < N 4)
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also satisfies

000,60 (4, X)[(C*, PY)) < (Va(l 1) + VB), [ — 25 ©)

1+0

2. If m is uniformly randomly sampled from [K)], then in probability 1 —

77m+1 R(1 + 6
<\4/o 6
\/ 140~ TR ©)
Specifically, in probability 1 — +, any (C*, P*) € [Q],,, which satisfies (4), also satisfies

R(1+0)
+ =

00.0.5((4, X) = (C*, P")) <vV2+T %

The proof of Theorem [.1]is in Appendix

Specifically, the three main ways in which Theorem {.1] generalizes ICG to IBG are depicted in: (1)
The use of directional IBGs, (2) the deterministic certificate for the high probability event given by
Item[I] and (3) the approximation bound in Item 2] which is independent of graph sparsity.

4.3 OPTIMIZING IBGS WITH ORACLE FROBENIUS MINIMIZERS

Suppose there exists an oracle optimization method that solves (4) in Tk operations for any m < K.
Theorem [4.1| motivates the following algorithm for approximating a graph-signal by an IBG.
* Randomly sample m € [K]. By Itemof Theorem the approximation bound (7)) is satisfied
in high probability (1 — 1/R).
* To verify that (/) really happened for the given realization of m, we estimate the left-hand-side of
(6], using the oracle optimizer in 2T operations (computing both 7,,, and 7,,, 1), checking if (6)
is satisfied. If it is, it guarantees (7) by (3).
* If the bound @ is not satisfied (in probability less than %), resample m and repeat.

The expected number of resamphngs of mis R/(R — 1), so the algorithm’s expected runtime to
find an IBG satisfying (7) is 2T, R/(R — 1). In practice, instead of an oracle optimizer, we apply
gradient descent to estimate the optlmum of the left-hand side of (4 . which requires T = O(E)
operations by Theorem .2 This makes the algorithm as efficient as message passing in practice.

4.4  FITTING INTERSECTING BLOCKS USING GRADIENT DESCENT

In this section, we propose an efficient computation for fitting IBGs to directed graphs based on
Theorem [4.1] (minimizing the left-hand-side of (@) via gradient descent) As the soft affiliation
model, we consider all vectors in [0,1]". In the notations of (3), we optimize the parameters
U,V c[0,1]V*K r ¢ RE and F, B € RX*P to minimize the Welghted Frobenius norm
LU.V,r.F.B)= o1 +T) A~ Udiag(r)V" s, +8|X ~UF - VB[Z. ®

In practice, we implement U, V' € [0, 1]V *X by applying a sigmoid activation function to learned
matrices U’, V' € RV*X getting U = Sigmoid(U’) and V' = Sigmoid(V").

Optimizing (8) naively requires O(NN?) operations, as the matrix A — U diag(r)V " € RV*¥ s
not sparse nor low-rank. However, we can exploit the sparsity of A and the low-rank structure of

U diag(r)V T separately to enable an efficient computation with time and space complexities of
O(K?N + KE) and O(KN + E), respectively.

Proposition 4.2. Let A = (ai’j)ﬁ\szl be an adjacency matrix of an unweighted graph with F edges.
The graph part of the sparse Frobenius loss (8) can be written as

e . .
|A — U diag(r VTHFQA HAH%;QA+ﬁﬁ((VTV)dlag(r)(UTU)dlag(r))

(1 +2F) Z Z U, diag(r) (V' ) ajj+ 1+6EF Z Z (U;,. diag(r (VT):J)2

i=1 jeN (i) i=1 jEN(7)

where Q 4 and e 1 are defined in @) Computing the right-hand-side and its gradients with respect
to U, V and v has a time complexity of O(K2N + KE), and a space complexity of O(KN + E).
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We prove Proposition4.2)in Section[E] The parametres of the IBG, U, V', r, F, and B, are optimized
efficiently using gradient descent on Equation (8], but restructured like Proposition [4.2]

4.5 THE LEARNING PIPELINE WITH IBGS

When learning on large graphs using IBGs, the first step is fitting an IBG to the given graph. This
is done once with little to no hyperparameter tuning in O(E) time and memory complexity. The
second step is solving the task, e.g., node classification. This step typically involves an extensive
hyperparameter search. In our pipeline, the neural network processes the IBG representation of the
data, instead of the standard graph representation. This improves time complexity from O(FE) to
O(N). Thus, when searching through S € N hyperparameter configurations, the whole search takes
O(SN) time, while learning directly on the graph would take O(SE). The efficiency of our pipeline
is even more pronounced in spatio-temporal prediction, where the graph remains fixed while node
features evolve over time. Here, the IBG is fitted to the graph only once, regardless of the time steps.

Initialization of IBG. In Appendix |G| we explain how to use a low-rank SVD of the graph to
efficiently initialize a rank K IBG, before the gradient descent minimization of Equation (§). When
the graph is too large to fit in memory, we also propose an efficient randomized SVD algorithm for
approximating the SVD while only loading a fraction of the graph into memory (Appendix[G.2).

SGD for fitting IBGs to large graphs. Fitting an IBG to a graph requires O(E) memory complexity,
which may exceed the GPU capacity in some situations. To solve this, in Appendix [H|we propose a
sampling approach for optimizing the IBG, which reduces the memory complexity, allowing fitting
IBGs to large graphs on hardware with limited memory.

5 PROCESSING IBGS WITH NEURAL NETWORKS

Graph signal processing with IBG. |Finkelshtein et al.| (2024a) proposed a signal processing
paradigm for learning on ICGs. In this section we provide an extended paradigm for learning on
IBGs, which runs in O(N K) operations per layer, which is often faster than the O(E) complexity
of MPNNs. Let U, V' € RY*K be target and source community affiliation matrices. We call RV * P
the node space and R¥ %P the community space. We use the following operations to process signals:

e Target synthesis and source synthesis are the respective mappings F' — U F'; B — V B from the
community space to the node space, in O(NK D).

* Target analysis and source analysis are the respective mappings X — UTX or X — VX
from the node space to the community space, in O(NK D).

e Community processing refers to any operation that manipulates the community feature vectors F'
and B (e.g., an MLP) in O(K2D?) operations (or less).

* Node processing is any function that operates on node features in O(N D?) operations.

IBG Neural Networks. We propose an IBG-based architecture (IBG-NN) defined as follows. Let
D) denote the dimension of the node features at layer ¢, and set the initial node representations as
H© = X Then, for layers 0 < ¢ < L — 1, the node features are defined by

H"D o (07 (HY) + 05 (VBY)), H =0 (6 (H")+04 (UFY)),

and require O(D(NK + KD + ND)) operations. The final representation, used for node-level
predictions, is taken as H® = H‘gL) + Ht(L), where ©; and ©5 are MLPs or multiple layers of

deepsets, F(©), B() ¢ RE*D " are taken as trainable parameters, and o is a non-linearity. See
Sections [J] to [[] for further details and comparisons with MPNNs and ICG-NNs.

IBG-NNs for spatio-temporal graphs. Given a graph with fixed connectivity and time-varying
node features, we fit the IBG to the graph once. We then train a model on the frozen IBG to predict
the next-step signal from past time steps. Thus, given T training signals, an IBG-NN requires
O(TN K D?) operations per epoch, compared to O(T ED?) for MPNNs, with the preprocessing
time remaining independent of 7. Thus, as the number of training signals increases, the efficiency
gap between IBG-NNs and MPNNs becomes more pronounced.
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6 EXPERIMENTS

In this section, we conduct experiments addressing the core research questions:

Q1 Does IBG-NN ’s computational efficiency match theoretical expectations in practice when
compared to traditional MPNNs on dense and sparse graphs?

Q2 Do IBG-NN’s theoretical guarantees for approximating arbitrary directed and sparse graphs
translate to improved empirical performance compared to traditional GNNs and ICG-NN?

Q3 How does IBG-NN perform against other graph condensation methods, across varying conden-
sation ratios on large-scale graph benchmarks?

In Section we further expand our evaluation with a series of additional experiments and ab-
lations. We conduct an ablation study across additional domains, showcasing the versatility and
applicability of IBG-NN on Spatio-temporal tasks (Section[M.1.1), Knowledge graph comple-
tion (Section [M.1.2), and node classification using subgraph SGD (Section [M.1.3)), achieving
state-of-the-art performance. We further validate the importance of densification (Section [M.3)
with additional comparisons to ICG-NN. We analyze the computational advantages of IBG-NN
with memory complexity experiments (Section[M.4.1), and provide an ablation on the number of
communities (Section[M.2), showcasing how adding communities can lead to performance improve-
ments and better approximations. Lastly, we test our SVD initialization method (Section[M.4.2)),
demonstrating improvements in convergence time of IBG approximation.

Full hyperparameter details are provided in Section [P|and our codebase is publicly available at:
https://anonymous.4open.science/r/IBGNNL

6.1 THE EFFICIENT RUN-TIME OF IBG-NNs

Setup. To evaluate the efficiency of IBG-NN (Q1), we measure the forward pass runtimes of
IBG-NN and DirGNN (Rossi et al., 2024) — a simple and efficient method for directed graphs. We
then compare it on dense Erdds-Rényi ER(n,p = 0.5) graphs and sparse ER(n, p = 25/n) graphs
with up to 7,000 nodes. We sample 128 node features per node, independently from U[0, 1]. Both
models use a hidden and output dimension of 128, and 3 layers.

Results. Figure [2] shows that the runtime of IBG-NN is consistently faster than DirGNN across
both dense and sparse graph settings. For dense graphs, IBG-NN runtime exhibits a strong square
root relationship when compared to DirGNN. This matches our theoretical expectations given that
IBG-NN and MPNNs have O(N) and O(FE) complexity respectively. For sparse graphs, the scaling
relationship appears linear. This still aligns with our theoretical expectations, as in this setting the
number of edges scales linearly with N. Still, compared to DirGNN, IBG-NN achieves significant
speedups of 5.68x and 5.26x for K = 10 and K = 100 respectively. Notably, even when using
K = 100 communities, which exceeds the average degree of 25 used in the experiments, IBG-NN
still maintains faster performance. This advantage stems from IBG-NN’s simple and efficient
operations compared to the complex message-passing computations required by DirGNN.
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Figure 2: Runtime of K-IBG-NN as a function of DirGNN forward pass duration on sparse
ER(n,p = 25/n) graphs (left) and dense ER(n,p = 0.5) graphs (right) for K=10, 100.
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Table 1: Results on directed node classification benchmarks; top models colored First, Second, Third.

Model Squirrel Chameleon Tolokers
MLP 2877+ 156 4621299 7295+ 1.06
GCN (Kipf & Welling| [2017) 5343 +£2.01 64.82+224 83.64%+0.67
GAT (Velickovic et al., 2018) 40.72 £1.55 66.82 £2.56 83.70+ 0.47
H2GCN (Zhu et al.l [2020) 6190+ 140 46.21+£299 73.35+£1.01
GPR-GNN (Chien et al.||2020) 74.80+£ 0.50  78.30+ 0.60  72.94+ 0.97
FSGNN (Maurya et al., [2021) 74.10 £ 1.89 7827 £1.28 -
GloGNN (Li et al.| 2022b) 5788 £1.76 7121 +£1.84 73.39+1.17
DirGNN (Rossi et al.,[2024) 7513 £1.95 79.74 £1.40 -

FaberNet (Koke & Cremers, [2024) 76.71 £192 80.33 £1.19 -

ICG-NN (Finkelshtein et al.,2024a) 64.02 +1.67 63.9+£2.13  83.73+£0.78
IBG-NN (undirected) 70.02 £1.34 75.15+£1.33 83.76 £0.51
IBG-NN 77.63£1.79  80.15£1.13  83.76 £ 0.75

6.2 THE IMPACT OF DIRECTIONALITY AND DENSIFICATION

Setup. To evaluate the impact of our theoretical guarantees (Q2), enabled by directionality and
densification, we compare IBG-NN to ICG-NN (Finkelshtein et al., [2024a)), and IBG-NN with
an undirected optimization setting. This allows us to isolate the contribution of each addition. We
evaluate IBG-NN on several directed benchmark datasets: Tolokers (Platonov et al.| 2023)), Squirrel,
and Chameleon (Pei et al.,|[2020), following the 10 splits of [Platonov et al.|(2023)); Pei et al.| (2020).
We report average ROC AUC and standard deviation for Tolokers, and average accuracy and standard
deviation for Squirrel and Chameleon. For Tolokers, we report the baselines MLP, GCN (Kipf
& Welling|, 2017), GAT (Velickovi€ et al., [2018), HoGCN (Zhu et al.| [2020), GPR-GNN (Chien
et al.} 2020), FSGNN (Maurya et al., 2021)), GIoGNN (Li et al., 2022b) and ICG-NN taken from
Finkelshtein et al.| (2024a). For Squirrel and Chameleon, we report the same baselines, as well as
FSGNN (Maurya et al.| 2021), DirGNN (Rossi et al.| 2024) and FaberNet (Koke & Cremers}, [2024),
taken from (Koke & Cremers), [2024).

Results. Table[T]establishes IBG-NNs as state-of-the-art for directed graphs, surpassing GNNs
specifically tailored for directed graphs, despite their quadratic scaling compared to IBG-NNs. The re-
sults reveal that both directionality and densification contribute significantly to the strong performance
of IBG-NN. Specifically, IBG-NN without directionality surpasses ICG-NN by 6% on Squirrel
and 11.2% on Chameleon, improvements attributed to densification. Adding directionality provides
additional improvements of 7.6% and 5% respectively, achieving state-of-the-art performance on both
datasets. For Tolokers, both IBG-NN variants achieve nearly identical performance with minimal
improvement over [CG-NN. We believe this could be the result of Tolokers already being very dense,
minimizing the benefits provided by densification. Similarly, the graph’s directed structure may not
contain meaningful directional patterns that improve node classification performance.

6.3 IBG-NN ON LARGE-SCALE GRAPH BENCHMARKS

Setup. To evaluate IBG-NN’s performance on large graphs (Q3), we compare IBG-NNs and their
predecessor ICG-NN on the large graphs Reddit (Hamilton et al.,|2017a)), Flickr (Zeng et al.,|2019),
Arxiv and Products datasets (Hu et al., [2020), following the data split provided in (Zheng et al.| 2024)).
Accuracy and standard deviation are reported for experiments conducted with 5 different seeds over
varying condensation ratios r = %, where NV is the total number of nodes, and M is the number of
sampled entries of the graph adjacency matrix. The graph coarsening baselines Random (Huang et al.;
2021), Herding (Welling, [2009), K-Center (Sener & Savarese, |2017)) and the graph condensation
baselines GCOND (Jin et al., 2021), SFGC (Zheng et al.}[2024), GC-SNTK (Wang et al., 2024) and
SimGC (Xiao et al.,|2024) are taken from (Zheng et al., |2024; Wang et al., [2024; | Xiao et al., 2024)).
We note that a condensation ratio of 100% corresponds to a standard GCN for the baseline methods.

Results. Table [2|demonstrates that subgraph SGD IBG-NN achieves state-of-the-art performance,
surpassing other coarsening and condensation methods that operate on the full graph in memory,
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Table 2: Results on graph densification benchmarks; top models colored First, Second, Third.

Flickr Reddit Arxiv Products

Condensation (%) 0.5% 1% 100% 0.1% 0.2% 100% 0.05% 0.02%
Random 440+04 446402 472+£0.1 580+22 663+£19 939400 | 47.1£39 | 535+13
Herding 439+09 444+06 472+£0.1 627+£10 71016 9394+00 | 524+18 | 551+£03
K-Center 432+ 0.1 441+04 47240.1 53.0+33 585+21 9394+0.0 | 472+£3.0 | 485402
GCOND 47.1 £0.1 47.1 £ 0.1 472+ 0.1 89.6 £0.7 90.1 £0.5 939+0.0 | 61.34+0.5 55.0 £ 0.8
SFGC 47.0 £ 0.1 47.1 £ 0.1 472 +£0.1 90.0 £0.3 89.9+04 939+00 | 6554+0.7 | 61.7£05
GC-SNTK 46.8 + 0.1 4654+02 472+0.1 - - - 644 +0.2 -
SimGC 456+04 438415 472+ 0.1 9.1 £1.0 920+£03 939400 | 63.6+£08 | 633+ 1.1
ICG-NN 50.1 £0.2  50.8+0.1 52.74+0.1 89.7+£13 907+ 15 93.6£1.2 -
IBG-NN 50.54+ 0.1 513402 53.0+£0.1 923 + 1.1 926+0.6 94.1£05 | 644 i 1.1 61.9+0.3

while also improving upon the performance of its predecessor, ICG-NN. A comparison between
graph coarsening methods and IBG-NNs can be found in Section [A]

7 CONCLUSION

We proved a new semi-constructive version of the weak regularity lemma, in which the required
number of communities for a given approximation error is independent of any property of the graph,
including size and sparsity. This contrasts previous formulations of the lemma, where the number of
communities increased with graph size for sparse graphs. Our formulation is achieved by introducing
the densifying cut similarity, which, when optimized, leads the approximating IBG to effectively den-
sify the target graph. This enables fitting IBGs of very low rank (K = O(1)) to large sparse graphs,
while previous works required the target graph to be dense for low rank approximations. We intro-
duced IBG-NNs- a network which operates on the IBG instead of the graph, and has O (V) time and
memory complexity. IBG-NNs demonstrate state-of-the-art performance in multiple domains: node
classification on directed graphs, spatio-temporal graph analysis, and knowledge graph completion.
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A RELATED WORK

Intersecting Community Graphs (ICG). Our work continues the ICG setting of |[Finkelshtein et al.
(2024a)), which introduces a weak regularity lemmas for practical graph computations. The work
of |[Finkelshtein et al.| (20244l presented a pipeline for operating on undirected, non-sparse graphs.
Similarly to our work, Finkelshtein et al.| (2024a) follow a two stage procedure. In the first stage,
the graph is approximated by learning a factorization into undirected communities, forming what
they call an Intersecting Community Graph (ICG). In the second stage, the ICG is used to enrich
a neural network operating on the node features and community graph without using the original
edge connectivity. This setup allows for more efficient computation, both in terms of runtime and
memory, since the full edge structure of the graph, used in standard GNNs, can be replaced with a
much smaller community-level graph—especially useful for graphs with a high average degree. The
constructive weak regularity lemma presented in (Finkelshtein et al.,|2024a)) shows any graph can be
approximated in cut-norm, regardless of its size, by minimizing the easy to compute Frobenius error.

More concretely, an ICG with K communities is just like an IBG with only node features (no edge-
features), but with the transmitting and receiving communities being equal U = V. Namely, an ICG
can be represented by a triplet of community affiliation matrix Q € RN*¥K | community magnitude
vector r € RE, and community feature matrix F € RE*P . An ICG (C, P) with adjacency matrix
C and signal P is then given by

C = Qdiag(r)Q" and P = QF,

where diag(r) is the diagonal matrix in REX*¥ with r as its diagonal elements. Here, K is the
number of communities, /N is the number of nodes, and E is the number of edges.

When approximating a graph-signal (A, X), the measure of accuracy, or error, in (Finkelshtein
et al., 2024a) is defined to be the standard (unweighted) cut metric ||(A, X) — (C, P)||5. The
semi-constructive regularity lemma of [Finkelshtein et al.| (2024a) states that it is enough to minimize
the standard Forbenius error ||(A, X ) — (C, P)|| in order to guarantee

I(A, X) = (C, P)llg = O(N/VKE), ©

Looking at (9) it is clear that in order to guarantee a small approximation error in cut metric,
the number of communities must increase as N/+/E becomes larger. Specifically, the number of
communities K is independent of the size of the graph only when E = N2, i.e., the graph is dense.
Hence, the ICG method falls short for sparse graphs

Our IBG method solves this shortcoming and more. For example, a main contribution of our
method is a densification mechanism, supported by our novel densifying cut similarity measure
and our densifying regularity lemma, which is a non-trivial continuation and extension of the semi-
constructive weak regularity lemma of |Finkelshtein et al.| (2024a). Please see Appendix [J| for a
detailed comparison of our IBG method to ICG.

Cluster Affiliation models (BigClam and PieClam). A similar work is PieClam (Zilberg &
Levie| 2025)), extending the well known BigClam model (Yang & Leskovec| [2013)), which builds
a probabilistic model of graphs as intersections of overlapping communities. While BigClam only
allows communities with positive coefficients, which limits the ability to approximate many graphs,
like bipartite graphs, PieClam formulates a graph probabilistic autoencoder that also includes negative
communities. This allows approximately encoding any dense graph with a fixed budget of parameters
per node. We note that as opposed to ICG and PieClam, which can only theoretically approximate
dense symmetric graphs with O(1) communities, our IBG method can approximate both sparse and
dense (non-symmetric in general) graphs with O(1) communities via the densification mechanism
(the densifying constructive regularity lemma with respect to the densifying cut similarity).

GNN:s for directed graphs. The standard practice in GNN design is to assume that the graph is
undirected (Kipf & Welling, [2017). However, this assumption not only alters the input data by
discarding valuable directional information, but also overlooks the empirical evidence demonstrating
that leveraging edge directionality can significantly enhance performance (Rossi et al.,|2024). For
instance, DirGNN (Rossi et al., |2024) extends message-passing neural networks (MPNNG5) to directed
graphs, while |Geisler et al.| (2023)) adapts transformers for the same purpose. FaberNet (Koke &
Cremers, 2024)) generalizes spectral convolutions to directed graphs, all of which have led to improved
performance. Co-GNN (Finkelshtein et al., 2024b) demonstrates the advantage of learning edge
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directionality over using conventional undirected graph representations. Furthermore, the proper
handling of directed edges has enabled Maskey et al.|(2024) to extend the concept of oversmoothing to
directed graphs, providing deeper theoretical insights. IBG-NNs also capitalize on edge directionality,
achieving notable performance improvements over their predecessor ICG-NNs (Finkelshtein et al.|
2024a)), as demonstrated in Section[M.2.T] When compared to existing GNNs designed for directed
graphs, IBG-NNs offer a more efficient approach to signal processing. Specifically, for IBG-NNs to
outperform message-passing-based GNNs in terms of efficiency, the condition X' N < E must hold.
Such a choice of K typically produces good performance for most graphs. This efficiency advantage
allows IBG-NNs to make better use of the input edges while being more efficient than traditional
GNNG.

Graph Pooling GNNs. Graph pooling GNNs generate a sequence of increasingly coarsened graphs
by aggregating neighboring nodes into "super-nodes” (Ying et al., 2018} Bianchi et al.,[2020), where
standard message-passing is applied on the intermediate coarsened graphs. Similarly, in IBG-
NN, the signal is projected, but onto overlapping blocks rather than disjoint clusters, with several
additional key distinctions: (1) The blocks in IBG-NNs are overlapping and cover large regions
of the graph, allowing the method to preserve fine-grained, high-frequency signal details during
projection, unlike traditional graph pooling approaches. (2) Operations on community features in
IBG-NNs possess a global receptive field, enabling the capture of broader structural patterns across
the graph — an extremely difficult task for local graph pooling approach. (3) IBG-NNs diverge
from the conventional message-passing framework: the flattened community feature vector, which
lacks symmetry, is processed by a general multilayer perceptron (MLP), whereas message-passing
neural networks (MPNNSs) apply the same function uniformly to all edges. (4) IBG-NNs operate
exclusively on an efficient data structure, offering both theoretical guarantees and empirical evidence
of significantly improved computational efficiency compared to graph pooling methods.

Graph reduction methods. Graph reduction aims to reduce the size of the graph while preserving
key information. It can be categorized into three main approaches: graph sparsification, graph
coarsening and graph condensation. Graph sparsification methods (Hamilton et al., 2017a}; Zeng
et al.| 2019} [Chen et al.,|2018} Rong et al.l 2020) approximate a graph by retaining only a subset of
its edges and nodes, often employing random sampling techniques. Graph coarsening (Fey et al.|
2020; Huang et al.; 2021 clusters sets of nodes into super-nodes while aggregating inter-group edges
into super-edges, aiming to preserve structural properties such as the degree distribution (Zhou et al.,
2023)). Graph condensation (Jin et al.|[2021) generates a smaller graph with newly created nodes and
edges, designed to maintain the performance of GNNs on downstream tasks.

While subgraph SGD in IBG-NNss also involves subsampling, it differs fundamentally by providing
a provable approximation of the original graph. This contrasts with graph sparsification for example —
where some, hopefully good heuristic-based sampling is often employed. More importantly, subgraph
IBG-NNs offer a subgraph sampling approach for cases where the original graph is too large to fit in
memory. This contrasts with the aforementioned coarsening and condensation methods, which lack a
strategy for managing smaller data structures during the computation of the compressed graph.

Graph reduction methods generally rely on locality, applying message-passing on the reduced graph.
In particular, condensation techniques require O(E M) operations to construct a smaller graph Jin
et al.[(2021); Zheng et al.[(2024); Wang et al.|(2024), where E is the number of edges in the original
graph and M is the number of nodes in the condensed graph. In contrast, IBG-NNs estimate the
IBG with only O(E) operations.

Furthermore, while conventional reduction methods process representations on either an iteratively
coarsened graph or mappings between the full and reduced graphs, IBG-NNs incorporate fine-grained
node information at every layer, leading to richer representations.

Cut metric in graph machine learning. The cut metric is a useful similarity measure, which
can separate any non-isomorphic graphons|Lovasz|(2012). This makes the cut metric particularity
useful in deriving new theoretical insights for graph machine learning. For instance, (Leviel 2023)
demonstrated that GNNs with normalized sum aggregation cannot separate graph-signals that are
close to each other in cut metric. Using the cut distance as a theoretical tool, (Maskey et al., 2023)
proves that spectral GNNs with continuous filters are transferable between graphs in sequences of
that converge in homomorphism density. [Finkelshtein et al.[(2024a)) introduced a semi constructive
weak regularity lemma and used it to build new algorithms on large undirected non-sparse graphs. In
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this work we introduce a new graph similarity measure — the densifying cut similarity, which gives
higher importance to edges than non-edges in a graph. This allows us to approximate any graph
using a set of overlapping bipartite components, where the size of the set only depends on the error
tolerance. Similarly to|Finkelshtein et al.|(2024a), we present a semi constructive weak regularity
lemma. As oppose to Finkelshtein et al.|(2024a), using our novel similarity measure, our regularity
lemma can be used to build new algorithms on large directed graphs which are sparse.

B THE WEAK REGULARITY LEMMA

Consider a graph G with anode set V = [N] = {1,..., N} and an edge set £ C V x V. We define
an equipartition P = {Vy,...V;} as a partition of V into k sets where ||V;| — |V;|| < 1 for every
1 < 4,5 < k. For any pair of subsets U, S C V denote by e (U, S) the number of edges between
U and S. Now, consider two node subsets U, S C V. If the edges between V; and V; were to be
uniformly and independently distributed, then the expected number of edges between I/ and S would
be

ZZGG Vo Vi) 1y Ay VNS

i1 =1 Vil [V
Using the above, we define the irregularity:
. 2
) 1
irreg (P) Josx lecU,S) —ep(U,S)|/ V] (10)

The irregularity measures how non-random like the edges between {V); } behave.

We now present the weak regularity lemma.
Theorem B.1 (Weak Regularity Lemma Frieze & Kannan|(1999)). For every ¢ > 0 and every graph

G = (V,E), there is an equipartition P = {V1,...,Vi} of Vinto k < 2¢/<* classes such that
irreg(P) < e. Here, c is a universal constant that does not depend on G and e.

The weak regularity lemma states that any large graph G can be approximated by a weighted graph

G* with node set V¢ = {V, ...,V }. The nodes of G€ represent clusters of nodes from G, and the
edge weight between two clusters V; and V; is given by % In this context, an important
il Vi

property of the irregularity irreg (P) is that it can be seen as the cut metric between the G and a
SBM based on G¢. For each node ¢ denote by V,, € P the partition set that contains the node. Given

G, construct a new graph G* with N nodes, whose adjacency matrix A” = (a! ])pjl 1 is defined
by
of = 6G(quvqj)
Val
Let A be the adjacency matrix of G. It can be shown that
||A — AP”D = irregs(P),

which shows that the weak regularity lemma can be expressed in terms of cut norm rather than
irregularity.

C GRAPHONS AND NORMS
Kernel. A kernel Y is a measurable function Y : [0,1]2 — [-1,1].

Graphon. A graphon (Borgs et al., 2008} Lovasz, 2012)) is a measurable function W : [0, 1}2 —
[0,1]. A graphon can be seen as a weighted graph, where the node set is the interval [0, 1], and for
any pair of nodes z,y € [0, 1], the weight of the edge between z and y is W (z, y), which can also be
seen as the probability of having an edge between = and y. We note that in the standard definition a
graphon is defined to be symmetric, but we remove this restriction in our construction.

Kernel-signal and Graphon-signal. A kernel-signal is a pair (Y,y) where Y is a kernel and

y : [0,1] — RP is a measurable function. A graphon-signal is defined similarly with a graphon in
place of a kernel.
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Induced graphon-signal. Consider an interval equipartition Z,,, = {I1, ..., I, }, a partition of
[0, 1] into disjoint intervals of equal length. Given a graph G with an adjacency matrix A, the induces
graphon W4 is the graphon defined by Wa(z,y) = Afzm)[ym], Where we use the convention that
[0] = 1. Notice that W4 is a piecewise constant function on Z,,, X Z,,. As such, a graph of m nodes
can be identified by its induced graphon that is piecewise constant on Z,,, X Z,,.

C.1 WEIGHTED FROBENIUS AND CUT NORM
Weighted Frobenius norm. Let g : [0,1]> — [c,00) be a measurable function in £%°([0, 1]?),

where ¢ > 0. We call such a g a weight function. Consider the real weighted Lebesgue space
£2([0,1])?; q) defined with the inner product

(V,Y"),

g’ / Y(z,y)Y'(z,y)q(z,y)dxdy,
||1||1 0 0.2

where 1 is the constant function [0,1]2 > (z,y) — 1 and 1], = [ g. When g = 1, we denote
(X,Z) = (X,Z),. Let a, B > 0. Consider the real Hilbert space L?([0,1]% ¢) x (L?[0,1])”
defined with the weighted inner product

<(}/3 y)? (Y/a y/)> = <(Y7 y)a (Ylv y/)>q,a B
5L
|1”1q/[01 Y (z,y)Y'(x,y)q(z,y)dzdy + Dzz:/ y;(x)dz.

We call the corresponding weighted norm the weighted Frobenius norm, denoted by

D
2 B 2
Fiq,a,8 = Q ||Y||F7q + B Z ||y]||F7
j=1

1Y 9)lleq = (Vs 9)]

2 2
where [[Y[|g,, = (Y, Y), and [ly;llp = (5, 95)1-

NXxXN

Similarly, for a matrix-signal, we consider a weight matrix Q € [c,0) , where ¢ > 0. For

D, D’ € R¥*N define the weighted inner product by
1

(D,D"), di jd; ;45

H]'“lQ JE[N]2

where 1 € RN >V is the matrix with all entries equal to 1, and ||1]|,.q = >, jc(ny2 ¢i,j- Define the
weighted matrix-signal Frobenius norm by

D
B
(D, Z)llp.q = I(D, Z)p.gas = 1| @I Dlgq + D >zl
j=1

2 2
where HD||F;Q = <D,D)Q and || 2]z = (25, 2j),-

Graphon weighted cut norm and cut metric. Define for a kernel-signal (Y, y) the weighted cut
norm

sup
1ig UV

H(Y7 y)HD;q,a.ﬂ = H(K y)HD;q ||1

where the supremum is over the set of measurable subsets I/, ) C [0, 1].

The weighted cut metric between two graphon-signals (W, f) and (W', f') is defined to be
W, f) =W ) llog:
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Graph-signal weighted cut norm and cut metric. Define for a matrix-signal (D, Z), where
D € [-1,1]V*N and Z € RV*D | the weighted cut norm

I(D; Z)0.q.a = (D, Z)lln.q = allPlng + 811Zllo

D
E Zi,j .
€U

B
w5 |+ o 3
|\1||1quqzv] Py szluc[N]
The weighted cut metric between two graph-signals (A, s) and (A’,s’) is defined to be
[(A,s) — (A, 8)||q.q- Wenote that this metric gives a meaningful notion of graph-signal similarity
for graphs as long as their number of edges satisfy [|1[|,.o = @(E)ﬂ All graphs with £ < |[1]].4
have distance close to zero from each other, so the cut metric does not have a meaningful or useful
separation power for such graphs.

The weighted cut-metric between two graphs A and A’ represents the maximum (weighted) dis-
crepancy in edge densities of A and A’ across all blocks, giving the cut-metric a probabilistic
interpretation. For simple graphs A, A’, the difference A — A’ is a granular function with values
jumping between —1, 0, and 1. In such a case ¢, norms of A — A’ tend to be large. In contrast, the
fact that the absolute value in is outside the sum, unlike the /; norm, results in an averaging effect,
which can lead to a small distance between A and A’ in the cut distance even if A — A’ is granular.

Densifying cut similarity. In this paper, we will focus on a special construction of a weighted cut
norm, which we construct and motivate next.

In graph completion tasks, such as link prediction or knowledge graph reasoning, the objective is to
complete a partially observed adjacency matrix. Namely, there is a set of known dyad M C [N]?,

and the given data is the restriction of A to the known dyads
A‘M M- {0,1}.

The goal is then to find an adjacency matrix B that fits A on the known dyads, namely, B|q = A| 1,
with the hope that B also approximates A on the unknown dyads due to some inductive bias.

Recall that £ denotes the set of edges of A. We call £¢ = [N]?\ € the set of non-edges. The training
set in graph completion consists of the edges £ N M and the non-edges £¢ N M. Typical methods,
such as VGAE (Kipf & Welling, |2016) and TLC-GNN (Yan et al.l 2021])), define a loss of the form

Z(B) = Z Cn,mwl(bn,ma an,m) + Z Cnnn’l/)Q(bn,ma an,m)a

(n,m)eMNE (n,m)eMnEe

where 91, : R? — R are dyad-wise loss functions and ¢, ,,, € R are weights. Many methods,
like RotateE (Sun et al.,|2019), HousE (L1 et al., |2022a) and NBFNet (Zhu et al., 2021)), give one
weight ¢, ,,, = C for edges (n,m) € €N M and a smaller weight ¢, ., = ¢ < C for non-edges
(n,m) € £° N M. The motivation is that for sparse graphs there are many more non-edges than
edges, and giving the edges and non-edges the same weight would tend to produce learned B that
does not put enough emphasis on the connectivity structure of A. In practice, the smaller weight for
non-edges is implemented implicitly by taking random samples from M during training, balancing
the number of samples from £ N M and from £° N M. The samples from £° N .M are called negative
samples.

Remark C.1. In this paper we interpret such an approach as learning a densified version of A.

Namely, by putting less emphasis on non-edges, the matrix B roughly fits the structure of A, but with
a higher average degree.

Motivated by the above discussion, we also define a densifying version of cut distance. Given a target
unweighted adjacency matrix A = (a;, ]) _ to be approximated, we consider the weight matrix

Q = el + (1 —e)A for some small e and 1 being the all 1 matrix. Denote the number of edges

"The asymptotic notation a,, = ©(b,,) means that there exist positive constants c1, c2 and ng such that
cibp < an < c2by, for all n > ng. In our analysis, we suppose that there is a sequence of graphs with N,,
nodes, E,, edges, and weight matrices Q.

2A dyad is a pair of nodes (m,n) € [N]?. For a simple graph, a dyad may be an edge or a non-edge.
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by E = |£|. Next, we would like to choose e to reflect some desired balance between edges and
non-edges. Since the number of non-edges is N2 — F and the number of edges is E, we choose e in
such a way that e — (E/N?)e = T'E/N? for some I > 0, namely,

I'E/N?

=@ (11)

€ =€ETr =
The interpretation of I' is the proposition of sampled non-edges when compared with the edges.
Namely, the weight matrix Q = e + (1 — e) A effectively simulates taking T E negative samples and
E samples. Observe that

E/N?2
S g =2 — 1Tt 0).

2
\|AHF;61+(176)A e+ (1—e)E/N?
i,JE[N]?

Z ije[N)2 Qs

To standardize the above similarity measure, we normalize it and define the weighted Frobenius norm
(1+71)|Bllg.q, and weighted cut norm (1 +I') | B|| 5. , - Where

Qa=Qar:=eprl+(1—epr)A, (12)
and where e r is defined in (TT). We now have
(14+D) [|Allpq, =1- (13)

This standardization assures that merely increasing I' in the definition of the cut metric (1 +
') |A — Bl|f.q, Would not lead to a seemingly better approximation. The above discussion leads

to the following definition.

Definition C.1. Let A € {0, 1}V XY be an unweighted adjacency matrix, and T' > 0. The densifying
cut similarity between the target A and any adjacency matrix B € RN*N is defined to be

on(A||B) = ooir(A||B) == (1+ 1) [|A = Bllgq,

where Q 4 is defined in (I2). Given o, 3 > 0 such that a + 8 = 1, the densifying cut similarity
between the target graph-signal (A, X ) and the graph-signal (A’, X') is defined to be

oo ((A, X)[[(A", X)) = 000,50 (A, X)[|(A", X)) := aonr(A||B) + | X - X' 5.
We moreover note that the similarity measure o(A||B) is not symmetric, and hence not a metric.

The first entry A in o (A||B) is interpreted as the thing to be approximated, and the second entry
B as the approximant. Here, when fitting an IBG to a graph, A is a constant, and B is the variable.

D PROOF OF THE SEMI-CONSTRUCTIVE DENSIFYING DIRECTIONAL SOFT
WEAK REGULARITY LEMMA

In this section we prove a version of the constructive weak regularity lemma for asymmetric graphon
signals. Prior information regarding cut-distance, the original formulation of the weak regularity
lemma and it’s constructive version for symmetric graphon-signals can be found in (Finkelshtein
et al.,[2024a, Appendix A, B).

D.1 INTERSECTING BLOCK GRAPHONS

Below, we extend the definition of IBGs for graphons. The construction is similar to the one in
Appendix B.3 of [Finkelshtein et al.| (2024a)), where ICGs are extended to graphons. Denote by x the
set of all indicator functions of measurable subset of [0, 1]

x = {1, | u C [0,1] measurable}.

Definition D.1. A set Q of bounded measurable functions q : [0, 1] — R that contains  is called a
soft affiliation model.

For the case of node level graphon-signals, we use the following definition:
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Definition D.2. Let D € N. Given a soft affiliation model Q, the subset [Q] of L?[0,1]? x (L?[0,1])”
of all elements of the form (au(x)v(y),bu(z) + cv(z)), with u,v € Q, a € Rand b,c € RP, is
called the soft rank-1 intersecting block graphon (IBG) model corresponding to Q. Given K € N,
the subset [Q]x of L*[0,1)% x (L?(0,1])? of all linear combinations of K elements of [Q) is called
the soft rank-K IBG model corresponding to Q. Namely, (C,p) € [Q]k if and only if it has the form

K K
Cla,y) = Y arup(x)ox(y) and p(z) =Y brux(z) + cxvg(2)
k=1 k=1

where (up)E_, € QK are called the target community affiliation functions, (vi)E_, € OF are
called the source community affiliation functions, (ay)X_, € R¥ are called the community affiliation
magnitudes, (by)E_, € REXD are called the target community features, and (c;)K_; € RE*D the

source community features. Any element of [Q]k is called an intersecting block graphon-signal
(IBG).

D.2 THE SEMI-CONSTRUCTIVE WEAK REGULARITY LEMMA IN HILBERT SPACE

In this subsection we prove the constructive weak graphon-signal regularity lemma.

Laszl6 Miklos Lovasz (2007) extended the weak regularity lemma to graphons. They showed that
the lemma follows from a more general result about approximation in Hilbert spaces — the weak
regularity lemma in Hilbert spaces (Laszl6 Miklds Lovasz, 2007, Lemma 4). We extend this result to
have a constructive form, which we later use to prove Theorem 4.1] For completeness, we begin by
stating the original weak regularity lemma in Hilbert spaces from (Laszlé Miklés Lovasz, [2007).

Lemma D.1 ((Laszlo Mikldos Lovasz, [2007). Let K1, Ko, . . . be arbitrary nonempty subsets (not

necessarily subspaces) of a real Hilbert space H. Then, for every ¢ > 0 and g € H there is
m < [1/€*] and (f; € K;)™, and (v; € R)™, such that for every w € K41

] <w,g - (éwfi>> ‘ <l gl

Finkelshtein et al.| (20244) introduced a version of Lemma [D.T|(Lemma B.3 therein) with a “more
constructive flavor.”” They provide a result in which the approximating vector > .~ ~; fi is given
as the solution to a "manageable" optimization problem, whereas the original lemma in (Laszl6
Miklés Lovasz, 2007) only proves the existence of the approximating vector. Below, we give a
similar result to (Finkelshtein et al.| 2024a, Lemma B.3.), where the constructive aspect is further
improved. While [Finkelshtein et al.| (2024a) showed that the optimization problems leads to an
approximate minimizer in high probability, they did not provide a way to evaluate if indeed this
“good” event of high probability occurred. In contrast, we formulate this lemma in such a way that
leads to a deterministic approach for checking whether the good event happened. In the discussion
after Theorem[D.2] we explain this in detail.

Lemma D.2. Let {K;};cn be a sequence of nonemply subsets of a real Hilbert space H. Let K € N,
d0>0,let R>1suchthat K/R € N, let § > 0, and let g € H. For every k € N, let

k
— ] J— . . 2
M = (140)inf |lg ;mhi\l

where the infimum is over & = {k1,...,kr} € REand h = {hy,... hy} € K1 X ... x Ky. Then,

1. For every m € N, any vector of the form

m

g = Z*yjfj suchthat v = (v;)iL; € R™ and f=(f;)]L; € Kix...xKy, (14)
j=1

that gives a close-to-best Hilbert space approximation of g in the sense that
lg — gl < M, (15)

€ Ko, [(w.g =g < ]y fom — 7555 (16)
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2. If m is uniformly randomly sampled from [K|, then in probability 1 — % (with respect to the

choice of m),
77m+1 R(1+5)
— < - .
el [ = T2 < ol gl /5 + 2 (7)

Specifically, in probability 1 — %, any vector of the form which satisfy , also satisfies

* R(1+6
Vo € Ker, (.9 — %) < o gl /3 + "D, (1)

The lemma is used as follows. We choose m at random. We know by Item [2]that in high probability
the approximation is good (i.e. (I8) is satisfied), but we are not certain. For certainty, we use the
deterministic bound (I6), which gives a certificate for a specific m. Namely, given a realization of
m, we can estimate the right-hand-side of (]E[), which is also the left-hand-side of the probabilistic
bound . For that, we find the (m + 1)’th error 7,1, solving another optimization problem, and
verify that (I7) is satisfied for m. If it is not, we resample m and repeat. The expected number of
times we need to repeat this until we get a small error is R/(R — 1).

Hence, under an assumption that the we can find a close to optimum ||g — ¢g*|| for a given m in Tk
operations, we can find in probability 1 a vector g* in the span of K1, ..., Kx that solves (I8) with
expected number of operations T R/ (R — 1).

Proof of Lemma([D.2] Let K > 0. Let R > 1 such that K/R € N. For every k, let

k
=(1 inf ||g — ihi||?
M = (1+6) inflg ;mh@\l
where the infimum is over k = {x1,..., 5t} € RFandh = {hy,... hp} € K1 x ... x K}.
Note that every
g =Yl (19)
j=1
that satisfies )
||g - g*H S Tim

also satisfies: for any w € IC,,,41 and every t € R,

2
+ st = 9= 97 T — Dt
— (g +tw)|? > Imrl _ Tm > - :
lg = (" +#w)ll” = 7775 1+0 =156 1+6

This can be written as

_ 1
vt € R 242 49 gVt I T mAl 2 Vg gt 2> 0. (20
R, P+ 2(wg ) e+ I gLy s o)

The discriminant of this quadratic polynomial is

*\ 2 2 "7m_77m+1 1 * 12
g =) —afwl (T 0= ) le - o))

and it must be non-positive to satisfy the inequality (20), namely

2 2 (Mm = M1 1 .2 2 (Mm — M1 1
dfw.g - g < dfull’ (P05 e - o'l ) < ol (P 0 g

2 Nm+1
= 4fwl® (mn — 1755).

[w.9 = g%)| < wll o = 7255
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For Item note that ||g||* > 145 = 185 = ... > 0. Therefore, there is a subset of at least
(1— %)K—i— 1 indices m in [K] such that 7,,, < an + R(H‘S) ||g|| Otherwise, there are % indices
m in [K7] such that 1, 11 < 7y — =
K R(l R(1+96)
R

which is a contradiction to the fact that nx > 0. Hence, there is a set M C [K] of (1 — &) K indices
such that for every m € M,

Nm+1 R(]- + 5) 2 Nm+1
< - 7 —
ol g/ = 222 < ol + 2 gl = 22

) R(1+4+9 1+5
< oty s + T D i < g o e+ FEED g2

R(1 +9)
K

, 2 which means that

nK <m - lgll* < (1 +8) llgll* = (1 +6) llg]* =

= [lwllgll
O

D.3 THE DENSIFYING SEMI-CONSTRUCTIVE GRAPHON-SIGNAL WEAK REGULARITY LEMMA

Define for kernel-signal (V, f) the densifying cut distance

D
IV, )l = Ve p)alo,s)dads] + DZup’/fj )da|.

sup

q

Below we give a version of Theorem [.1] for intersecting block graphons.

Theorem D.3. Ler (W, s) be a graphon-signal, K € N, § > 0, and let Q be a soft indicators
model. Let q be a weight function and o, 8 > 0. Let R > 1 such that K/R € N. Consider the
graphon-signal Frobenius norm with weight ||(Y,y)|p., = [[(Y,¥)|lp.q.0, 5 and cut norm with weight

H(K y))”D;q = H(K y)HD;q,aﬁ' For every k€N, let

=(1+46) inf W, s) — (C,p)|3.,-
e = ( )(c,,}fle[g]ku( ) = (C.p)lFyq

Then,

1. Foreverym € N, any IBG (C*, p*) € [Q], that gives a close-to-best weighted Frobenius
approximation of (W, s) in the sense that

(W, s) = (C*, p") 5o < T 1)

also satisfies

O < (Va+ /By 1 — 2t

[(W.5) = (C*,p") el

2. If m is uniformly randomly sampled from [ K|, then in probability 1 — + ( with respect to the

choice of m),
_ Mt R(1+90)
T — 1S < wxnquq +Blsl2y /s + TR @)

Specifically, in probability 1 — , any (C*,p*) € [Q],, which satisfy , also satisfies

[(W.5) — (€. < (Va+ VB (JalWi, + 8 lsly o+ BEED )
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Theorem@] is similar to the semi-constructive weak regularity lemma of [Finkelshtein et al.|(2024a,
Theorem B.1). However, our result extends the result of |Finkelshtein et al.| (2024a)) by providing
a deterministic certificate for the approximation quality, as we explained in the discusson after

Lemma|D.2] extending the cut-norm to the more general weighted cut norm, and extending to general
non-symmetric graphons.

Proof of Theorem[D.3} Let us use Lemma [D.2} with H = L2([0,1]%;q) x (L2[0,1])” with the
weighted inner product

(Vyy), (V',y'), = |1||1 / 01]2‘/ z,y)V'(z,y)q(x,y) dwdy+ﬁ2/ y;(2)y;(x

and corresponding norm denoted by ||(Y,y)l|p,, = \/a ||Y||F;q + ﬁijl Hyj||F, and K; = [Q].
Note that the Hilbert space norm is the Frobenius norm in this case. Let m € N. In the setting of the
lemma, we take g = (W, s), and g* € [Q],,. By the lemma, any approximate Frobenius minimizer
(C*, p*), namely, that satisfies [|(W, s) — (C*, p*)|[p., < nm. also satisfies

(T, 9), (W,) — (€0 g < T, 9l — 20
forevery (T, y) € [Q].

Hence, for every choice of measurable subsets S, 7 C [0, 1], we have

[[E /S/T(W(”f’y) - C*(ﬂﬁ,y))q(a%y)dxdy‘

— ’; (1s @ 17,0), (W, s) — (C*,p")),

77m+1
146

IN

1
~ (15 ® 17, 0) gy —

IN

]- 77m+1
oz\/a T 1+9

Hence, taking the supremum over S, 7 C [0, 1], we also have

* Nm+1
afW-C ||IZI;q§\/a hm — 1+6

Now, for n randomly uniformly sampled from [K], consider the event M (regarding the uniform
choice of n) of probability (1 — 1/R) in which

T]n+1 \/ R(1+5)
s S | W2, + BlslE tex
Hence, in the event M, we also have
. R(1+9)
QW = g, < a2 IWIE, +aBllslpy/o+ =

Similarly, for every measurable 7 C [0, 1] and every standard basis element b = (J;,)2; for any
j € [P,

1 77m+1
< —|[(0, b1 m
< 210,617l 1 — 2252
< 76 " nm-&-l’

B 146
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s0, taking the supremum over 7 C [0, 1] independently for every j € [D], and averaging over
j € [D], we get

Tm+1
Blls = p"llo < VB — T2

Now, for the same event M as above regarding the choice of n € [K],

. RO+
8l —p'lls < JaBIW IR, + 87 sl /o + T0E0.

Overall, we get for every m and corresponding approximately optimum (C*, p*),

I0,5) (€Yo < (Va -+ V) fm — 125

Moreover, for uniformly sampled n € [K], in probability more than 1 — 1/R,

10:5) = (€.l < (Va+ VB (W I, + 8 1slly /5 + F2

D.4 PROOF OF THE SEMI-CONSTRUCTIVE DENSIFYING WEAK REGULARITY LEMMA

Next, we show that Theorem [D.3|reduces to Theorem[d.1]in the case of graphon-signals induced by
graph-signals.

Theorem Let (A, X) be a graph-signal, K € N, § > 0, and let Q be a soft indicators model.
Let o, 8 > 0 such that a+3 = 1. Let ' > 0 and let Q 4 be the weight matrix defined in Definition[3.2]
Let R > 1 such that K/R € N. For every k € N, let

2
e = (1 +5) , Frp)ln[g H(A X) - ( 7P)||F;QA,a(1+F),B

Then,

1. Foreverym € N, any IBG (C*, P*) € [Q),, that gives a close-to-best weighted Frobenius
approximation of (A, X) in the sense that

I(A, X) = (C*, P*) |} n a14r).5 < s (24)

also satisfies

00 (A, X)|(C*, P)) < (Va(l+T) + /By [nm — 22 (25)

1+06

2. If m is uniformly randomly sampled from [K]|, then in probability 1 — % (with respect to the

choice of m),
77m+1 1 + 5
/1 <1/d 2
1+ — (26)

Specifically, in probability 1 — , any (C*, P*) € [Q],, Wthh satisfy H) also satisfies

e (4.X) — (€, P) < (vEFT) o+ ZOED), @)
In practice, Theorem [4.T]is used to motivate the following computational approach for approximating
graph-signals by IBGs. We suppose that there is an oracle optimization method that can solve
in TK operations whenever m < K. In practice, we use gradient descent on the left-hand side
of (24), which takes O(F) operations as shown in Proposition 4.2l The oracle is used as follows.
We Choose m € [K] at random We know by Item 2] of Theorem [4.1] that in high probability the
good approximation bound (27) is satisfied, but we are not certain. For certainty, we use Item [T]of
Theorem .1} Given our speciﬁc realization of m, we can estimate the right-hand-side of @ by
our oracle optimization method in 27 operations, and verify that the right-hand-side of (25)) is less
than the right-hand-side of (27| . If it is not (in probability 1/R), we resample m and repeat The
expected number of times we need to repeat this process until we get a small error is R/(R — 1), s
the expected time it takes the algorithm to find an IBG with error bound is2TxkR/(R—1).
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Proof of Theorem Let Q 4 be the weight matrix defined in (I2)). Consider the following identities
between the weighted Frobenius norm of induced graphon-signals and the Frobenius norm of the
graph-signal, and, a similar identity for the densifying cut similarity.

I(Wa,sx) = (We, We)lg, 8= (A, X)-(C, P

00,0.6(Wa,sx)[[(We, sp)) = 00,0, (A, X)[[(C, P)).
We apply Theorem on the weighted Frobenius and cut norms with weight Q = Wg,. We
25)

immediately obtain from @ For (26), by (22) of Theorem[D.3] and by (13) and by the fact
that signals have values in [-1,1],

TIm+1 2 R(1+6)
= 5 <\ o DIWalRar, + 8 lsallpy/s+ =2

2
)HF§QA70‘(1+F)7B ) (28)

R(1+9)
<A/O+ ———=.
= + K
Lastly, ll follows the fact that for a, § > 0 such that « + § = 1, we must have (y/a(1+T) +
VB) <V2+T. O

E FITTING IBGS TO GRAPHS EFFICIENTLY

Below we present the proof of Theorem§.2] The proof follows the lines of the proof of Proposition
4.1 in (Finkelshtein et al., 2024a)). We restate the proposition below for the benefit of the reader.

Propositiond.2t Let A = (a;, J) _1 be an adjacency matrix of an unweighted graph with E edges.
The graph parft of the sparse Frobemus loss can be written as

|A - Udiagr)VT[;,, = ||A||§;QA +— e (VTV)diag(r)(U U) diag(r))

(1+F)E
Z Z Ui, diag(r (VT); @i,
i= 1J€N()
1—e
AT Z Z (U;,. diag(r (VT):’J,)2
1= 176,/\/'(

where Q 4 is defined in Equation (2)). Computing the right-hand-side and its gradients with respect
toU, V and r has a time complextty of O(K%N + KE), and a space complexity of O(KN + E).

The proof is similar to that of Proposition 4.1 in (Finkelshtein et al., 2024a), while applying the
necessary changes under the new weighted Frobenius norm and the structure of IBGs.

Proof. The loss can be expressed as

(1+ F E g: Z (ai’j — U, diag(r) (VT):,j)2 +

i=1 \jEN(4)

3 ()

JEN (@)

|A - U diag(r)V 5., =

= ﬁ Z Z (ai,j - U, diag(r) (V ) + Ze (U diag(r) (VT):J.)2

i=1 \jeN(i) j=1

-y e(Ui,:diag(") (VT):J)Q

JEN ()
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2
We expand the quadratic term (ai, j — Ui diag(r) (V'T), j) , and get
N

2
HA . Udlag(T)VTH;QA — ﬁ Z (Ui,: dlag(T) (VT)’J) +
4,],_1

i+ F Z Z ( c o —2U,; . diag(r) (VT):J ai7j>

1= 1JEN(1)
1—e 2
+(1+I‘) Z Z (U diag( )( ) )
i= 1]6_/\/.
eNZ
:WHUdlag VTHF
al 2
.
1+F P 1+0)E Z D Ui ding(r) (V7), ;ass
i,7=1 i=1 jeN (i)
1—e N 2
(1+T) EZ > (U diag(r) (V ),j)
i=1jEN (i)
- ﬁ Tr (VT V diag(r)U T U diag(r)) +
N2
er“AHI%‘
N
Z Z U dlag ( ):A.ai,j—k
(1—|—I‘)E = v J
1—e N - 2
1—|—I‘EZZ (U diag( )(V))
i=1 jeN (i)

Here, the last equality uses the trace cyclicity, i.e., VI, J € RN*K . Tr(IJ ") = Tr(J " I), with
I =Vdiag(r)UTUdiag(r)and JT =V .

To calculate the first term efficiently, we can either perform matrix multiplication from right to left or
compute U " U and V' TV, followed by the rest of the product. This calculation has a time complexity
of O(K?N) and a memory complexity O(K N). The second term in the equality is constant and,
therefore, can be left out during optimization. The third and fourth terms in the expression are
calculated using message-passing, and thus have a time complexity of O(K E). Overall, we end up
with a complexity of O(K?N + K E) and a space complexity of O(K N + E) for the full computation
of the loss and its gradients with respect to U, V and r. O

F EXTENDING THE DENSIFYING WEAK REGULARITY LEMMA FOR
GRAPHON-EDGE-SIGNALS

In this section we prove a version of Theorem [D.3]for the case where the graph has an edge signal.

The proof is very similar to the previous case, and the new theorem can be used for the analysis of
IBG-NN when used for knowledge graphs (see Section [[).

F.1 WEIGHTED FROBENIUS AND CUT NORMS FOR GRAPHON-EDGE-SIGNALS

Graphon-edge-signal A graphon-edge-signal is a pair (V,Y) where V is a graphon and
Y :[0,1]> — RP is a measurable function.
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Weighted edge-signal Frobenius norm Consider the real Hilbert space L2([0,1]%;¢q) x
(L?[0,1])P defined with the weighted inner product

(VY), (V/7Y/)>q =((VY), (V/7 Y/)>q a,B =

Yj(z,y)Y! .
J[, VeV iy Z/ (e.9)Y] (. 9)dady

||1H1q [0,1]2

We call the corresponding weighted norm the weighted edge-signal Frobenius norm, denoted by

D

2 B 2

V) g = 1V ) psg a8 = [ @1V Iwg + 35 D 1Vl
j=1

We similarly extend the definition of a graphon weighted cut norm and cut metric.

Graphon weighted cut norm and cut metric. A kernel-edge-signal (V,Y) is a pair where V' :
[0,1]2 = [-1,1] and Y : [0,1]?> — R are measurable. Define for a kernel-edge-signal (V,Y") the
weighted edge signal cut norm

09 g0 = 1Vl = = sup | [ [ Viempato e +
Lig U

5L zsup

where the supremum is over the set of measurable subsets U,y clo,1].

/Y T ydmdy’

The weighted edge signal cut metric between two graphon-edge-signals (W, f) and (W, f/) is
defined to be |[(IV, /) — (W, /'),

For simplicity’s sake, and for this section only, we refer to the weighted edge-signal Frobenius and
cut norms simply as the weighted Frobenius and cut norms.

F.2 IBGS WITH EDGE SIGNALS

Here, we define IBGs for graphon-edge-signals. We use the same terminology of soft rank-K 1BG
model introduced in Definition slightly changing the signal part of the graphon.

Definition F.1. Let D € N. Given a soft affiliation model Q, the subset [Q] of L?[0, 1] x (L?[0,1]?)?
of all elements of the form (au(x)v(y), bu(z)v(w)), withu,v € Q, a € R and b € RP, is called the
soft rank-1 intersecting block graphon (IBG) model corresponding to Q. Given K € N, the subset
[Q]k of L2[0,1)% x (L2[0,1)*)P of all linear combinations of K elements of [Q) is called the soft
rank- K IBG model corresponding to Q. Namely, (C,p) € [Q]k if and only if it has the form

K
x,y) = Zakuk(x)vk(y) and p(x,y) Zbkuk
k=1

where (uy)E_, € QX are called the target community affiliation functlons, (v)f_, € QK are called
the source community affiliation functions, (a;)X_, € RE are called the community affiliation
magnitudes, (by)K_, € REXD are called the edge features. Any element of [Q)k is called an
intersecting block graphon-signal (IBG).

We emphasize that for the rest of this section, when referencing weighted Frobenius and cut norms,
as well as the soft rank-K IBG model, we refer to the new definitions as formulated in Section[F]

Corollary F.1. Ler (W, s) be a graphon-edge-signal, K € N, 6 > 0, and let Q be a soft indicators
model. Let q be a weight function and o, 3 > 0. Let R > 1 such that K/R € N. Consider the
graphon-signal Frobenius norm with weight ||(Y,y) ., = (YY)l p.q.0.5 and cut norm with weight

H(Y7 y>||D;q = H(Y7 y)”D;q,a,ﬁ- For every k € N, let
=(1+46) inf W, s) — (C,p)|3.,
=00t 0s) - ColE,

Then,
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1. Foreverym € N, any IBG (C*, p*) € [Q], that gives a close-to-best weighted Frobenius
approximation of (W, s) in the sense that

I(W.5) = (C*,p")[isg < 1y (29)
also satisfies

I(W.s) = (C",p") o < (Va + V/B) —?Tg.

2. If m is uniformly randomly sampled from [ K|, then in probability 1 — % (with respect to the

choice of m),
st ; s[5, BO+0)
i 1+5swnwuﬁqwnsnﬂ/m at (30)

Specifically, in probability 1 — +, any (C*,p*) € [Q],, which satisfy , also satisfies

(W, 5) = (C*,p")|mq < f+f(\/ af[Wig, + Blls IIFW

The proof is very similar to the original proof, with a slight adjustment for the analysis of the signal
part of the graphon-signal. For completeness of the analysis, we provide the full proof.

Proof. Let us use Lemma with H = L2([0,1)%;q) x (L?[0,1]?)P with the weighted inner
product

(V,Y), (V' ¥"), = o |1”1 / /[ V@V eyl )y

+BZ ”1”1 - / Y (2,9)Y" (2, y)q(x, y)dxdy,

[0,1]2

and corresponding norm denoted by (V. Y)][g,, \/a ||VH%;Q + ﬂZle ||Yj||%;q, and ; = [Q].
Note that the Hilbert space norm is a weighted Frobenius norm. Let m € N. In the setting of the
lemma, we take g = (W, s), and ¢g* € [Q],,. By the lemma, any approximate Frobenius minimizer
(C*,p*), namely, that satisfies [|(W, s) — (C*, p*)||p,, < 1im. also satisfies

(T.9), (W,5) = ("5 < ICT) gy — 120

for every (T, y) € [Q]. Hence, for every choice of measurable subsets S, T C [0, 1], we have
i | L v - ¢t sy
11,4 [Js J1

_ ‘; (Ls @ 17,0), (W, 5) — (C*,p")),

MNm+1
1456

IN

1
~[|(1s © 17,0) g1 f1m

1 7]m+1
< = _
_a\/5 O

Hence, taking the supremum over S, 7 C [0, 1], we also have

* TIm+1
a|w-C ”IZI:,qS\/a Im = 175"

Now, for n randomly uniformly from [K], consider the event M (regarding the uniform choice of n)
of probability (1 — 1/R) in which

Mn+1 (1+5)
Vi = 1 <ol W, + 8 sl -
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Hence, in the event M, we also have

R(1+9)
==

Similarly, for every measurable S, 7 C [0, 1] and every standard basis element b = (4, ;)2 ; for any
j € [P,

al[W—C%g, < \/OPIIWH%;(, +aB|lsllgy/0 +

|1|1|m /S/T(S(J?,y)—p*(a;7y))q(x,y)dxdy’

1
1 m
< 2100015 8 17 gy — 2%
1 m
S B\/B 77"” - ’r} +1

1+0

s0, taking the supremum over S, 7T C [0, 1], independently for every j € [D], and averaging over
j € [D], we get

* n 1
5”5_}7 H|:|;q S \/B N — m

146
Now, for the same event M as above regarding the choice of n € [K],
* 2 R(1+9)
Blls = 0l <\ aBIWIR, + 52 sl /6 + =2,

Overall, we get for every m and corresponding approximately optimum (C*, p*),

(W, s) = (C*p")log < (Va + \/B)m

Moreover, for uniformly sampled n € [K], in probability more than 1 — 1/R,

[0, 5) = (€9l < (Va + VB) (ol WIR, + B lsl12 /6 +

R(1+0)
—

G INITIALIZING THE OPTIMIZATION WITH SINGULAR VECTORS

Here, we propose a good initialization for the GD minimization of [§] We explain how to use the SVD
of the graph to initialize the parameters of a rank K-IBG, before the gradient descent minimization
of Equation (8). This is inspired by the eigendecomposition initialization described of ICGs. The full
method is presented in Section |G| and summarized here.

We begin by calculating the /4 SVD decomposition of the graph adjacency matrix. Denote by

OK/4 = (cfk)kK:/i1 the sequence of the K'/4 largest singular values of A, and by ®x /4 = ((;Sk)kK:/f,

Wiy = (¢k)£(:/ 111 their corresponding left and right singular vectors.

For each singular value o and corresponding singular vectors ¢,1, we designate
N VO S hy Ve P Py P i
{rexm Tem Te=T e} 8 target communities, and {7ty =, gy oy ) s the corre

sponding source communities, where €1 € [0,00)" denotes the positive or negative parts of the
vector &, i.e., £ = &4 — £_. The corresponding affiliation magnitudes are then taken to be

11 =0 @1l 1P+l s 72 = =0 D+l 1Pl o -
r3 = =0 [[¢lloo 1P+l s 74 = Pl 1%l o -

If K is not divisible by 4, we discard the excess components with the smallest community affiliation
magnitudes in absolute value.

To efficiently calculate the leading left and right singular vectors, we may use power method variants
such as the Lanczos algorithm (Saad, 2011)) or simultaneous iteration (Trefethen & Baul [2022) in
O(E) operations per iteration. For very large graphs, we propose in Section a more efficient
randomized SVD algorithm that does not require reading the whole graph into memory at once.
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G.1 THEORETICAL ANALYSIS OF SVD INITIALIZATION

Next, we analyze this initialization and show that it attains a relatively high initial accuracy. The
following is a corollary of the densifying weak regularity lemma with constant g(x,y) = %2 the
signal weight in the cut norm set to 3 = 0, using all measurable functions from [0, 1]? to [0, 1] as the
soft affiliation model, and taking relative Frobenius error with 6 = 0 on theorem In this case,
according to the best rank- K approximation theorem (Eckart—Young—Mirsky Theorem (Trefethen
& Bau, 2022, Theorem 5.9)), the minimizer of the Frobenius error is the rank-K singular value
decomposition (SVD). This leads to the following corollary.

Corollary G.1. Let A be a graph, K € N, let m be sampled uniformly from K], and let R > 1 such
that K/R € N. Let uq, . .., U, and v1,. .., vy, be the leading left and right singular vectors of A
respectively, with singular values o1, . . . , 0., of highest magnitudes |o1| > |o2| > ... > |oy|, and
let C* = Z;anl Ukuk'v,;r. Then, in probability 1 — % (with respect to the choice of m),

. R
14 - Cllo < [Allg | 5

Proof. Consider Theorem[D.3] with 6 = 0,3 = 0,T" = 0, and taking the constant weight

N2
q(z,y) = -
Under this setting, the weighted Frobenius norm becomes the standard Frobenius norm, and the
weighted similarity measure becomes the cut norm. Consider the induced graphon signals W 4 and
We-. Note that under the standard Frobenius norm, W satisfies Equation @, as We- is the
SVD of W 4, and is also the best Frobenius norm approximator. Hence, the bound in Equation is
satisfied in probability 1 — 1/ R, and becomes

R
Wa = We-llo < [Wallry/ -
We immediately get in probability 1 — 1/R
R
A-C* A —
14~ Cllo < | Alls /7
as required. O

The initialization is based on Corollary [G.T]restricted to induced graphon-signals with a densifying
cut similarity with a constant weight ¢; ; = N2 /E. Consider C = UK/4EK/4VE/4, the rank K /4
singular value decomposition of A. We get

N 4R
[A—=Cllg,n k< TEVE 3D

We note that while the lemma guarantees a good initialization for the graph, the goodness is not
measured in terms of the graph-signal densifying similarity, but rather with respect to cut metric. Still,
we find that in practice this initialization improves performance significantly.

It is important to note that the method described in the previous section relies on computing the
singular value decomposition (SVD) of the graph’s adjacency matrix. Traditional algorithms for
SVD require the entire adjacency matrix to be loaded into memory, which can be computationally
expensive for large graphs. Similar to the approach proposed for computing the IBG in Section [H]
we aim to allow SVD computation without loading the entire edge set into memory.

In the following subsection, we introduce a Monte Carlo algorithm for computing the SVD of a matrix
by processing only a random small fraction of its rows, significantly reducing memory requirements.
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G.2 MONTE CARLO SVD ALGORITHM

For very large graphs, it is impossible to load the whole graph to GPU memory and estimate the SVD
with standard algorithms. Instead, we propose here a randomized SVD algorithm which loads the
matrix to GPU memory in small enough chunks.

The following theorem relates eigendecomposition of symmetric matrices to SVD (Trefethen & Bau,
2022| Lecture 31).

Theorem G.2. Let A € RN*N with singular values o1 > ... > oy, left singular vectors
U1, ..., Uy, and right singular vectors v1, . .., vn. Consider the augmented matrix
T
B=(0 4 )
A 0
Then, the eigenvalues of B are exactly o1,...,0Nn,—0N,...,—01, and the eigenvectors are all

vectors of the form

1 V; .
ﬂ<iu) i=1,...,N. (32)

Theorem[G.7]is the standard way to convert eigendecomposition algorithms of symmetric matrices to
SVD of general matrices. Namely, one applies the eigendecomposition algorithm to the symmetric
augmented matrix B, and reads the singular values and vectors from o1,...,05, —0ON, ..., —01
and from (32).

We hence start with a basic randomized eigendecomposition algorithm for symmetric matrices, based
on the simultaneous iteration (also called the block power method) (Trefethen & Baul [2022] Part V).

Given a symmetric matrix C, the standard simultaneous iteration (Algorithm (1)) is an algorithm
for finding the leading (largest in their absolute values) M eigenvector-eigenvalue pairs of C'. We
next replace the full matrix product CQ by a Monte Carlo method, initially proposed in (Drineas

et alL[2006). Consider a matrix C € RV*" with columns c;, . ..,cy € RY and a column vector
v = (vi,...,vn) € RV. Let my, ..., my be chosen independently uniformly at random from [N].
Let us denote m = (my,...,my) and
J
[CV|m = qum]. Cm,-
j=1

One can show that in high probability
[CV]m = C,
where the expected square error satisfies
E[[Cv]m — Cvl|3 = O(1/J).

The advantage in the computation [Cv],, is that it reduces the computational complexity of matrix-
vector product from O(N?) to O(JN).

We hence consider a Monte Carlo simultaneous iteration algorithm, which is identical to Algorithm
with the exception that the matrix-vector product Z = C'Q is approximated by [C Q]

Algorithm 1 Simultaneous Iteration for Eigendecomposition of Symmetric Matrix

Input: Matrix C € RY*N number of leading eigenvalues to be computed M, number of
iterations J.

Initialize Q@ € RV*M randomly

fori =1to J do

Z=CQ
(Q, R) = Reduced-QR-Factorization(Z)
end for
Compute A = (A1,...,A\y) with \; = Q[:, 7] TCQL:, j]
Output: Approximate eigenvalues A1, ..., Ay and corresponding columns vy, ..., vps of Q as

the approximate eigenvectors.
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Lastly, we would like to use the Monte Carlo simultaneous iteration algorithm for estimating the
SVD of a matrix A via Theorem For that, we require an additional consideration. Note that
the simultaneous iteration finds the leading eigenvalues and eigenvectors (up to sign) in case they
are distinct in their absolute value. In case A\; # \; but |\;| = |);|, the simultaneous iteration would
find a vector in the span of the eigenspaces corresponding to A; and A;. Now, note that Theorem
[G.2] builds the SVD of A via the eigendecomposition of B, and every value \; of B is repeated
twice, with positive and negative sign (in case the singular values are not repeated), and Algorithm 2]
finds vectors only in the span of the two eigenspaces corresponding to £);. This is not an issue in
the exact algorithm, as the singular vectors can be read off (32)) regardless of the mixing between
eigenspaces. However, in the Monte Carlo simultaneous iteration algorithm, the algorithm separates
the two dimensional spaces of B to one-dimensional spaces arbitrarily due to the inexact Monte Carlo
matrix product. Moreover, the split of the space to two one dimensional spaces arbitrarily changes
between iterations. Hence, when naively implemented, the SVD algorithm based on Theorem|[G.2]
fails to converge.

Instead, we apply the Monte Carlo eigendecomposition algorithm on B + A1, where \; is the
largest eigenvalue of B, computed by a Monte Carlo power iteration on B. Since the addition of A1
shifts the spectrum of B by A1, all eigenvalues of B become non-negative and distinct (under the
assumption that the singular values of A are distinct). We summarize in Algorithm 2] the resulting
method (in the next page).

H LEARNING IBG WITH SUBGRAPH SGD

For message-passing neural networks, processing large graphs becomes challenging when the number
of edges F exceeds the capacity of GPU memory. For this reason, processing IBGs with neural
networks, which take O(N) operations, is advantageous. However, one still has to fit the IBG to the
graph as a preprocessing step, which takes O(F') operations and memory complexity. To address this,
we propose two sampling-based optimization methods for the IBG. The first method performs node
sampling, extending the SGD approach of |[Finkelshtein et al.|(2024a)). The second samples individual
entries of the adjacency matrix, which we refer to as diodes. We term these methods node-sampling
SGD and diode-sampling SGD, accordingly.

H.1 CONSTRUCTION OF NODE SAMPLING SGD

In a standard GD procedure, all edges of the graph are loaded into memory. Instead, in our node-
sampling SGD procedure, a set of M < N nodes is sampled uniformly with replacement from
[N]. Denote these nodes by n := (n,,)M_,. We then perform the gradient step using the gradients

calculated solely using these sampled nodes. More specifically, by denoting A(™) € RM*M the

sampled subgraph with entries agg) = Un;m,» X (n) ¢ RM*K the sampled sub-signal with entries
(n) = ,and U™, V(™) ¢ [0, 1]M*K a5 the sampled community target and source affiliation

matrlces w1th entries u( ™ = Up, ; and vl(_’;) = vy, ;- The loss over the sampled nodes becomes:

M K
L(M)(U(”), V("),r,F,B) — % Z (uni,kmvnj7k o am,nj)qu,nj
ij=1k=1
g M DK
+ D SN (nkfrd + vn, kbrid — Tn,.a),
i=1 d=1 k=1

H.2 CONSTRUCTION OF DIODE SAMPLING SGD

We sample a set of M < N? diodes D = (s,t) = (Sm, tm)M_, independently from a distribution

we define over all diodes of the graph. The probablhty of samphng diode (i, 7) is T E +r) %> and the
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Algorithm 2 Monte Carlo Simultaneous Iteration for SVD decomposition of Non-Symmetric Matrix

Input: Matrix C € RY*N | number of leading eigenvalues to be computed M, number of
iterations J, sample ratio 0 < r < 1.

{Augment the non-symmetric matrix to be symmetric}

(0 CT
DeﬁneB—(C 0 )

{Leading eigenvalue estimation }

Initialize Q1 € R2N*! randomly
fori=1to J do
Generate 2N - r samples n of indices from [2N] with repetitions.
B = B[:,n]
Q1 = Qi[n,1]
Z =BQ
(Q1, R) = Reduced-QR-Factorization(Z)
end for

= QIBQl

{Shift the spectrum of B}
B =B+ |\| Ly

{Randomized simultaneous iteration on B}

Initialize Q € R2N*M randomly
fori=1to J do
Sample vector n of 2N - 7 indices from [2N] with repetitions.

B = B[:,n]

Q=Qn,]]

Z = BQ

(Q, R) = Reduced-QR-Factorization(Z)
end for

{Generate the output}

Sample a vector n of 2N - r indices from [2N] with repetitions.

B = B[:,n|

Q= Q[n7 :] ~ o~

Compute o = (01, ...,05) with o; = Q[:,j] T BQ[:, j]

Qv = Q[l : N, :]

Q.=Q[N +1:2N,]

Output: Approximate singular values o1, . .., 0, and corresponding columns w1, . . ., u,, and
v1,...,0, of Q, and Q, as the approximate left and right singular vectors.

loss over the sampled nodes is

a(1+7T) &

M

K
2
uqmykrkvt7n7 a'smrvtm,) :
m=1 k=1

LMW, V,r)

We then perform the gradient step using the gradients calculated solely using these sampled diodes.

We note that for diode-sampling SGD, we define the loss only over the graph part. To perform SGD
over the signal part of the loss, the method is identical to node-sampling SGD.
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H.3 THEORETICAL ANALYSIS OF DIODE-SAMPLING SGD

In the following section, we prove that the gradients calculated using diode-sampling SGD with
respect to the sampled diodes approximate those calculated over the full graph using the standard
loss in . Throughout the section we denote 1 = 1/ )" ¢; ; and refer only to the sample loss of
diode-sampling SGD.

Proposition H.1. Let 0 < p < 1. Consider the Frobenius loss weighted by Q, o and (. If we restrict
all entries of C, U, V, and 7 to be in [—1, 1], then in probability at least 1 — p, for every k € [K]
and m € [M]

21og(1 21og(K) + 21

‘Vu,,LWkL V. LD <2a(1 4 F)u\/ og(1/p) + ;\)f( ) +2log(6)
, 21og(1 21og(K) + 21

‘Vunt,kaV%,kLW) < 2a(1+F),u\/ og(1/p) + ]c\}g( ) +2log(6)
21og(1 21og(K) + 21

‘vrkameW) 520[(1+F)M\/ og(1/p) + z(\)4g( ) + 2log(6)

Theorem [H.T] provide a probabilistic bound on the difference between the gradients computed on the
full graph and those calculated using subgraph SGD. Notably, it shows that the gradients of the IBG
parameters calculated with SGD closely approximate those calculated with standard GD.

We prove Theorem [H.T|by comparing the gradients of the full loss L with those of the sampled loss
LD,

Consider the graph part of the IBG loss:

N K
LU, V.,r)=a(l+D)u Z Z Wi TRV K — Qi) Qi
i,j=1 k=1

Next, we calculate the gradients of C' = U diag(r)V " with respect to U, V, and 7 in coordinates.
We have
VireCij = Ui kVj &,
V1 Cij = Tk0i—tVj
and
V%kci,j = Tk(;j—tui,kv

where §; is 1 if ¢ = 0 and zero otherwise. Hence, the gradients of the loss are

N

Ve L =20(1+T)p Y (cij — i) i k05 ks

ij=1

N
vun,kL = 20‘ 1+ F ﬂz Cn,j — anj qn,iTEVj ks

j=1

and N
Vo L =201+ 1) (¢jn = aj.n)qjnThtj k-

j=1

Similarly

M
201+ T
Vi LMD = % E :(Csjﬂfj = s, )Us; kUL ks
P

M

, 20(14+T

Vunka(]\/[) = ( M )M Z(Cnnut an?n; )rkvt ko
j=1
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and

M

, 2a(1+T)p

vvnmykL(Aj) = 4M Z(Csj,nm - aSj,'er)Tk’usj,k7
j=1

The following convergence analysis is based on Hoeffding’s inequality, and a supporting Monte Carlo
approximation lemma.

Theorem H.2 (Hoeffding’s Inequality). Let Y1, ..., Yas be independent random variables such that
a <Y,, < balmost surely. Then, for every k > 0,

2k2M )

PQﬁ{ﬁéa%-qu4ﬂ>k)<2am(—(b_ay

We now use Hoeffding’s inequality to derive a standard Monte Carlo approximation error bound.

Lemma H.3. Let {i,,}M_, be uniform i.i.d in [N]. Let v € RN be a vector with entries v,, in the
set [—1,1]. Then, for every 0 < p < 1, in probability at least 1 — p

M N
1 1 2log(1/p) + 21og(2)
— E ;= — E < .
M — Vi N — Un| > \/ M

Proof. This is a direct result of Hoeffding’s Inequality on the i.i.d. variables {v; }M_,. O

We use Theorem [H.3|on the i.i.d samples . We first show:
E[V, LM =V, L,

E[Vunm,kL(M)} _ vu”m’kL’
and
]E[vvnm,kL(M)] = V’U-n,yn‘k
Indeed we have
1+T
E[vrkL(M)] - (M ) El(cs;,t; = as;.t;) s, ke, ] =
j=1
M
2a(1+7T)
= T ZE[(CSLH — Qs ty )usl,kvtl,k] =
j=1
N
= 20[(1 —+ F) Z P(S = i,t = j)(CiJ‘ — aiyj)uiykvﬂk =
ij=1

N
—20& 1+F Z Clj azj qZ]quUjk‘7
20(1+T) &
E[vunm,kL(M)] = (T) ZE[(C’ﬂm7tj - anmxtj)rkvtj’k] =
M
2a(14T)
= T ;E[(Cn7yl7t1 - annutl)rkvtlxk] =

N
= 20[(1 + F)lu Z(Cnnuj - anwtaj)qnwtjlrkvjvk”
Jj=1

36



Published as a conference paper at ICLR 2026

and
M
2(1 + T
BV, L) = 20D S (e, 1, — v, a] =
j=1
M
2a(14T)
= T ZE[(cnm,t1 - annutl)’rkvtl;k] =
Jj=1
N
= 2(1(1 + F):U’ Z(cnmaj - anm,j)qnmjrkvj,k'
j=1

This shows that the expected value of the sampled loss gradients is equal to the standard loss’s
gradients, which meets the conditions of Theorem We therefore use the lemma to obtain a
probabilistic bound on the difference between the approximated gradients and the full gradients.

Specifically, for any 0 < p; < 1, for every k € [K] there is an event Ay, of probability at least 1 — p;
such that

2log(1/p1) + 2log(2)
7 .

For any 0 < py < 1, for every k € [K] there is an event U, of probability at least 1 — p such that
for every n € [N]

‘VT'kL - VML(M)’ S 20&(& + F)M\/

2log(1/ps) + 2log(2)

‘waL—V%kUMW§2Ma+Du¢ n

For any 0 < ps < 1, for every k € [K] there is an event V), of probability at least 1 — p3 such that
for every n € [N]

2log(1/p3) + 2log(2)
i .

‘an,kL - an,kL(M)’ < 2a(a + F)u\/

Lastly, given 0 < p < 1, choosing p; = ps = p3 = p/3K and intersecting all events for all
coordinates gives in the event £ of probability at least 1 — p

21log(1/p) + 2log(K) + 21log(6)
M b

‘VNL—VWUMW<2Ma+mu¢

2log(1/p) + 2log(K) + 2log(6)

‘Vuka - Vun’kL(M)’ < 2a(a+ F),u\/

M )
and
2log(1 2log(K) + 21
‘VU,,L,,CL—V'un,kL(M)’ < 204(a+F)u\/ og(1/p) + ;\)5( ) + 2log(6)
proving Theorem [H.T]

H.4 THEORETICAL ANALYSIS OF NODE SAMPLING SGD

In this section, we provide a similar result to the one in Section proving that the gradients
calculated using node-sampling SGD with respect to the sampled nodes approximate those calculated
over the full graph using the standard loss in (8). Throughout the section we use the loss of node-
sampling SGD.

Proposition H.4. Let 0 < p < 1. Consider the Frobenius loss weighted by Q, o and (3. If we restrict
all entries of C, P, U, V, v, F and B to be in [—1, 1], then in probability at least 1 — p, for every
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k € [K], d € [D] and m € [M]

‘vunm,kL — %vunm)kyw < 2a(1 + F)MN\/2IOg(1/p) + 210g(2N3W+ 2log(K) + 210g(10)’
’vva - %V%m,kﬂm < 2a(1 + F)MN\/Qlog(l/p) +2 log(2N3w+ 2log(K) + 21log(10) |
‘V,.kL —V, LM| < 4a(1 + I,)MNQ\/Qlog(l/p) + 21og(N)]\j[— 2log(K) + 2log(10))
pul V5,200 < 45\/210g(1/p) + 210g(K)]\44r 210g(D) + 210g(10)
]vbwL — VLM | < ‘W\/Qlog(l/p) + 210g(K)]J 2log(D) + 2log(10)

The proof of Theorem [H.4]is similar to that of Theorem [H.1} Define the graph part and the signal part
of the IBG loss

(1 +D)p -
LU, V,r)=——F5" D0 (wikrhvin —ai)’ai;
ij=1k=1

(Wi g fr.d + Vi kbr,a — Tid)*

Mx

B N D
Ly(U,V,F,B) = ﬁzz

i=1 d=1

E
Il

1

The IBG loss in (8) is L = N2?L; + Lo. We normalize and multiply L; by N2 for reasons that will
become clear later.

Similarly, we define the graph and signal parts of the subgraph SGD loss

M K
L(M)(U(n) V) ) — a(l+T)u 2
1 ’ ’T) - M2 Z Z(uni,krkvnj7k - a}ni,nj) An;,m;
ij=1 k=1

K

M D
LU, v, F.B) MﬁD;;k_l<um,kfk,d+vm,kbk,d — Tn,0)%

where L(M) = NQLEM) + LgM)

Next, we extend the calculations of the gradients of C = U diag(r)V " and P = UF + V B with
respect to U, V', r, F and B in coordinates. We have

VfaPid = Ui k01—d,

Vo, Pid = Vik01—d,
Vi Pid = fr,d0i—t,

and
Vo, xPid = br,adi—t.
Hence,
o(1+ D)y <
Vida = N2 Z (Cij = @i j) i Ui kVj ks
ij=1
N D
a(l+D)u 6
Vurln = == ; Ctg = at5)eg eV Vuale = 55 ;(pt,d — Tt,d) [r,d;
N D
1 Jr F B
vvt,kLl = ’u Z Ct,] - at,] qt Jrk,‘u] k Vm k ND Z(pt,d — xt,d)bk,d7
Jj=1 d=1
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N
B
Vivale = 5p Z;(pi,d = Tid)Wi ks
and
N
B
ka,dLQ = ND Zl(}?z d— xi,d)vi,k-
Similarly
vy _o(1+TD)p
v'rkLg ) = T Z (cni,nj - ani,nj)Qni,njuni,kvnj,kv
i,j=1
M
My  o(l+T)u
Vunm_kLg )= % Z(Cnm,nj - anm,nj)Qnm,ankUnj,k
j=1
5 D
M
vu”wnwk‘ é ) = m dz_l(pnmvd - mnm,yd)fkyd’
M
a(l+7T)
anm,kL(M) + ,U Z Criny — Gy ), iy ThUng &
j=1
on_ B %
M
anm,kLQ m ;(pnm,d - xnm,d)bk,da
on_ B <
M
vfk oL =MD ;(pni,d - xni,d)uni,}m
and

M
vbk,dLg )= an17 — Tn;d Uni,k'

The following Lemma provides an error bound between the sum of a 2D array of numbers and the sum
of random points from the 2D array. We study the setting where one randomly (and independently)
samples only points in a 1D axis, and the 2D random samples consist of all pairs of these samples.
This results in dependent 2D samples, but still, one can prove a Monte Carlo-type error bound in
this situation. The Lemma is similar to Lemma E.3. in |Finkelshtein et al.| (2024a)), generalized to
non-symmetric matrices.

Lemma H.5. Let {i,,}!_, be uniformi.i.din [N]. Let A € RN*N with a; ; € [~1,1]. Then, for
every 0 < p < 1, in probability more than 1 — p

N N M M
1 21og(1/p) + 21log(2N) + 2log(2 )
N2 ZZ Ve Z D i | < 2\/ M

im1n=1

m=1[=1

Proof. Let 0 < p < 1. For each fixed n € [N], consider the independent random variables
Ymn = Qi n> with

1 N
= N Za]‘/n
j=1

and -1 <Y, <1.
Similarly define the independent random variables W, = a,, ;. with

m

m - E :a"J
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By Hoeffding’s Inequality, for & = \/2 log(1/p)+2 1‘3&(2]\[”2 106(2) ' we have
N M
1 1
- i Y G| <
N L m TN L S| = g

and
1Y 1 Y
Nzan,j_ﬂmzz:lan,im Sk

in the event £ and £ of probability more than 1 — p/2N. Intersecting the events {£Y }_, and
{EWAN_ |, we getVn € [N] :

1 & 1 &

N;a]nfﬂnbzﬂazmn <k
and

1 & 1 &

N;an,j_ﬂmz::lan,im <k

in the event £ = N,,EY N, EWV with probability at least 1 — p. The rows and columns of A are
not independent, meaning the probability of their intersection is at least 1 — p and by the triangle
inequality, we also have in the event £

| M N | MM
NM DD i - el DD aiin| <k
I=17=1 =1 m=1

and

1 N N 1 N M
N7 2 2 Gin = g 2 D G| <K
n=1 j= n=1m=

Hence, by the triangle inequality,
1 N N 1 M M
N2 Z Z%n Y] Z Z Qipyir | < 2K
n=1j=1 I=1 m=1

O

We now derive bounds on the approximation errors for the gradients of L. Note that the gradients of
the SGD loss with respect to each element of the IBG are

Vunm,kL(M) = NQVuankL(M) + v“vlm,kLgM)

M M

Vo, IO =N?v, 1M 4w, LM
v, LMD = N2y, LM
ka,mL(M) _ ka,ngM)
70D

k,m 2

We use Lemmas [H.3]and [H.5] These results are applicable in our setting because all entries of the
relevant matrices and vectors, A, X, C, P, U, V,r, F, and B are bounded in [—1, 1].
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Specifically, for any 0 < p; < 1, for every k € [K] there is an event .4, of probability at least 1 — p;
such that

)+ 2log(2N) + 21og(2)
i :

2log(1
‘vrkL_me(M)‘ S4OL(1+F)[LN2\/ og(1/p1

Moreover, for every k € [K] and | € [D], and every 0 < p, < 1 there is an event Cy, ; of probability
at least 1 — po such that

48 [21oa(1/ps) + 2108(2)
D M '
Similarly, for every 0 < p3 < 1 there is an event Dy, ,,, of probability at least 1 — p3 such that

48 [2log(1/ps) + 2log(2)
‘vbkﬂnL - vbk,nLL(J\/[)‘ S D\/ M
For the approximation analysis of V,,, L and V,,, L, note that the index n; is random, so we
derive a uniform convergence analysis for all possible values of n;. For that, for every n € [N] and
k € [K], define the vectors

‘ka,mL - ka,mL(M)‘ <

M
v, _ a(l + a(l+T)u
U k1 Cn,nj - an,nj)Qn,njrkvnj,k
Jj=1

—_~—

B D
vunk 2]”) MD Z Pn,d — Tn,d fk d»
d=1

and
V’Un,kLgM) Z Cn,nj - an,nJ )Qn,njrkunj,k
/—\_/( : 3 D
M
Vo, oLy " = VD ;(pn,d — Tn,d)bk,d-

—_~—

Note that V,,, , L) and V,, , L) are not gradients of L*) (since if n is not a sample from {n; }
the gradient must be zero), but are denoted with V for their structural similarity to V,,,, L) and
Vo, L™ However, we get for every m € [M]

and

Vila = vvnm,kL;M)

Hence, for every m € [M], we have

Vo o LMD = N2V, LM

Un, k Un, k

and

Vo, L = N2y, LM

Let 0 < ps < 1. By Lemma for every k € [K] there is an event U}, of probability at least 1 — py
such that for every n € [IV]

M_ ™ Tan| _ a(l+D)u \/210g(1/p4) + 2log(N) + 21og(2)
‘v“n,kLl Nv"«n kL ‘ N M )

Similarly, for 0 < ps < 1 for every k € [K] there is an event V;, of probability at least 1 — p5 such
that for every n € [N]

M_ ™ a(l+T 21og(1 +21og(N) + 21og(2
9t - M | < 00D 2o 2T ) 20o2)
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This means that in the event Uy, for every m € [M] we have

<a(l+ F)MN\/QIOg(l/p‘l) + QJI\Zg(N) +2log(2)

-Mg L)

Uny, , k N Unm ,k

\%

and in the event Vy, for every m € [M] we have

<a(l+ mw Zlog(1/p) - 21o8(X) + 21 ®)

_M ()

Unm , k N Unm ,k

Lastly, given 0 < p < 1, choosing p; = py = p5 = p/5K and ps = p3 = p/5K D and intersecting
all events for all coordinates gives in the event £ of probability at least 1 — p

2log(1/p) 4+ 21og(N) + 2log(K) + 21og(10)

\mL - me(”“\ <da(l+ F)MNQ\/

M )

M
’ka L-v, L(M)' < 26\/210g(1/p) + 2log(K') 4 2log(D) + 210g(10)’
,m ,m D M
‘ka L—V, L(M)’ < 2[3\/210g(1/p) + 2log(K) 4 2log(D) + 210g(10)7
,m ,m D M
M 2log(1 2log(N) + 2log(K) + 2log(1
Vu,,Lm,kL—NVunm,kL(M)‘ Sa(l—i—F)uN\/ 0g(1/p) + 2log( )]\}L og(K) + 2log(10)
and
M , 2log(1/p) + 21og(N) + 2log(K) + 21og(10
‘ vl = 5 Vo )| < a(lJrF)uN\/ og(1/p) + 2log(NV) + 2log(K) + 2log(10)

thus proving Theorem [H.4]

H.5 COMPARISON OF NODE SAMPLING AND DIODE SAMPLING

Propositions and [H.4]both provide a probabilistic bound on the difference between the gradients
calculated using subgraph SGD and the standard loss (8) using the full graph. Despite this similarity,
these approces differ in their sampling schemes and computational tradeoffs.

For Theorem [H.4] unlike Theorem[H.T] only a subset of entries from U and V" are involved in the
loss computation per step. This introduces a time-memory tradeoff: since only a subset of U and V'
is updated in each step, the number of iterations required grows by a factor of N/M in expectation,
and the memory consumption reduces by M /N, where M denotes the number of sampled nodes.
This mild growth in runtime is acceptable, as the number of iterations only grows by a linear scale,
while each iteration becomes faster to complete due to the reduced size of the graph.

For Theorem [H.T| we sample the diodes of the graph directly. Therefore potentially all nodes of the
graph are involved in the calculation of the loss. Using this method, the time and memory complexity
of calculating the loss becomes O(M K'), where M is the number of sampled edges.

Notably, the bounds in Theorem [H.1] are independent of the graph size, while the bounds in Theo-
rem [H.4]improve as the graph becomes more dense. However, in practice, we see that both diode
sampling SGD and node sampling SGD provide good IBG approximations that work well for
IBG-NN.

I KNOWLEDGE GRAPHS

I.1 BASIC DEFINITIONS

Knowledge graph signals. We consider knowledge graphs G = (N, &, R), where N, € and R
represent the set of NV nodes, the set of E typed edges, where £ C R x N x N, and the set of R
relations, correspondingly. Note that in this case there is no signal (i.e. feature matrix). We represent

the graphs by an adjacency tensor T' = (¢;, j7r)£j;7’1,:[7:R1 € RVXNXE Frobenius norm. The weighted
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Frobenius norm of a tensor where its two first dimension are equal D € RY*N*R with respect to
the weight Q € (0, 00)N*N* M is defined to be || D||p,q = \/N; SVNE g2

SN i =1 i,5,rdisg,r

Cut-norm. The weighted tensor cut norm of D € RN*N*E with weights Q € (0, 00)VXNV*E jg
defined to be
1 R

IDllog = s — 3 max 13 dioaiin

. N
ig,r Qisdr r:lu’vd ] €U jEV

and the definition for the densifying cut similarity follows.

1.2 APPROXIMATIONS BY INTERSECTING BLOCKS

We define an Intersecting Block Graph Embedding (IbgE) with K classes (K-IbgE) as a low rank
knowledge graph C' € RY*N>1 ith an adjacency tensor given respectively by

K
_ ) T
C..,= E :ijp]]'uj]]'vj‘
j=1

where r;. € R, and U;,V; C [N]. We relax the {0, 1}-valued hard source/target community
affiliation functions 1 s, 17 to soft affiliation functions in R to allow differentiability.

Definition L1. Let d € N, and let Z be a soft affiliation model. We define [Z] C RN*N>E 1o be the
set of all elements of the form uv' ® m, with w,v € Q and m € RE. We call | Z] the soft rank-1
intersecting block graph embedding (IbgE) model corresponding to Z. Given K € N, the subset
[Qli of RNXNXE of ail linear combinations of K elements of [Z] is called the soft rank-K TbgE
model corresponding to Z.

In matrix form, an IbgE C € RY*N xR in [Z] can be represented by a triplet of source community
affiliation matrix V. € RN*K target community affiliation matrix U € RN*X  and community
relations matrix M € RE*E_that satisfies:

C..,=Udiag(M. V'
where p € [R].

1.3 FITTING IBGS TO KNOWLEDGE GRAPHS

Given a knowledge graph G = (N, £, R) with N nodes and R relations and an adjacency tensor
T € RV*NXE _ 4 true triple is defined as (1, p,7), where n,7 € N and p € [R]. We define the
following soft rank- K intersecting block score function, based on the weighted Frobenius distance:

. 2
d(na P T) = Hé(na P T) — Uy, dlag(r:,p)v:—!—‘r HF;QT
where the weight matrix Q is

Qr=Qrr:=eprl+(1—epr)maxT ,,
PE[R]
§(h,r,t) is 1if (h,r,t) is a true triplet, otherwise 0, V;.. € R¥ is the source community affiliation
of the head entity, U,, . € R¥ is the target community affiliation of the tail entity, R. , € R¥ is the

. . _ TE/N? .
community relation vector, and eg 1 = T=(E/N7) with T" > 0.

We minimize a margin-based loss function with negative sampling, similar to|Sun et al.|(2019):
‘1
L=—logo(y—dn,p71) - ¢ logo (d (v}, phy ) =)
i=1

where ~ is a fixed margin, o is the sigmoid function, ( is the number of negative samples and
Y g g g p
(n}, pl, 7}) is the i-th negative triplet. An empirical validation of IbgE is provided in Section
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J COMPARISON OF IBGS 10 ICGS

In this section we highlight the key advancements and distinctions between our method and its
predecessor (Finkelshtein et al., [2024al).

Approximation of directed graphs. Graph directionality is crucial for accurately modeling real-
world systems where relationships between entities are inherently asymmetric. Many applications
rely on directed graphs to capture the flow of information, influence, or dependencies, and ignoring
directionality can lead to the loss of critical structural information. One domain which benefits from
directionality is spatiotemporal graphs — graphs where the topology is constant over time but the
signal varies. For example, in traffic networks|Li et al.[|(2018]), where directionality represents the
movement of vehicles along roads, traffic congestion in one direction does not necessarily imply
congestion in the opposite direction. Thus, ignoring directionality can lead to inaccurate predictions.
Another domain is citation networks, where nodes represent academic papers, and directed edges
represent citations from one paper to another. The concrete task of prediction of the publication year
is highly depedant on the direction of each edge due to the causal nature of the relation between two
papers (Rossi et al., [2024). Many more additional domains benefit from directionality, some of which
are Email Networks, Knowledge Graphs and Social Networks (Yujie et al., 2023; |Changping et al.}
2020).

An ICG takes on the form
C = Qdiag(r)Q", P = QF,

Where () is the community affiliation matrix, and F' is the community feature matrix. Here, @ is
used as both the source and the target affiliation matrix, making the ICG a symmetric, undirected
graph. The community affiliation matrix () also acts as a mapping from the community space to the
node space, converting the community feature matrix F' to node features.

An IBG takes the form
C = Udiag(r)VT,P=UF + VB.

IBG generalizes the ICG by using a different affiliation matrix for source nodes V', and target nodes
U, enabling approximation of directed graphs. The use of source and target community affiliation
matrices naturally leads to the use of two community feature matrices. The source community
feature matrix, B, and the target community feature matrix, /. Over undirected graphs, the IBG
representation converges to the ICG representation.

In our analysis of IBGs, we adopt the simplifying assumption that the approximated graph is
unweighted, whereas ICG assumes a weighted approximated graph. This assumption is introduced to
provide a clearer derivation of our theoretical guarantees; however, it can be relaxed using the same
line of derivation with straightforward modifications to account for edge weights,

Densifying the adjacency matrix. The major caveat of ICG-NNss is their limited applicability to
sparse graphs. Both their theoretical guarantees and approximation capabilities weaken as sparsity
increases, with the approximation error of ICGs being O(N/(EK)'/?). This issue stems from the
imbalance between the number of edges and non-edges in sparse graphs. As graphs grow sparser,
non-edges dominate, and since standard metrics assign equal weight to edges and non-edges, the
approximation shifts from capturing the relational information that we aim to capture — to capturing
the absence of relations. To address this limitation, we introduce the densifying cut similarity, a
novel similarity measure that explicitly accounts for the structural imbalance in sparse graphs. This
similarity measure enables IBG-NNs to efficiently learn a densified representation of sparse graphs,
achieving an approximation error of O (K ~!/2) for both sparse and dense graphs while preserving the
relational information. We emphasize that, unlike ICGs, whose approximation quality is measured
with respect to the cut norm, IBGs are evaluated based on the densifying cut similarity.

Architecture and empirical performance. At first glance, [CG-NNs and IBG-NNs may appear
conceptually similar, as both follow a two-step process: first estimating the graph approximation,
followed by processing through a neural network architecture. Both also support a subgraph stochastic
gradient descent (SGD) method. However, the fine-grained details of their implementations differ
significantly.

In the graph approximation stage, IBG-NNs extend the capabilities of ICG-NNs in two ways.
They can approximate directed graphs, and more importantly they minimize a weighted Frobenius
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norm, where edges and non-edges are assigned different weights. This contrasts with ICG-NNs,
which minimize the standard Frobenius norm. This critical difference enables IBG-NNs to handle
sparse graphs more effectively, as demonstrated in Section[M.3] In the neural network stage, IBG-
NN offer greater architectural flexibility. While ICG-NNs operate on a single community signal,
IBG-NNs incorporate two community signals (source and target) when mapping back to the node
space. Although we simplify the architecture by using a basic addition operation, more sophisticated
manipulations could be employed. These architectural and methodological advancements result in
IBG-NNs’ empirical superiority across various domains. Specifically, IBG-NNs outperform ICG-
NN in node classification (see Section[6.2), spatiotemporal property prediction (see Section[M.1.T),
subgraph SGD on large graphs (see Sections [6.3] and [M.1.3), and efficiency in the number of
communities used (see Section [M.2.1)). This broad dominance underscores the effectiveness of
IBG-NNs in addressing the limitations of ICG-NNs while delivering state-of-the-art performance.
Lastly, we note that IBG-NNs uses DeepSets within each layer. We include this component because
it improves performance in practice. For fairness in our experiments, we also evaluated an ICG-NN
variant using DeepSets and observed no additional gains.

K COMPLEXITY COMPARISON OF IBG-NN AND MPNNSs

Our IBG-NN architecture takes O(D(NK + K D + N D)) operations at each layer. For comparison,
simple MPNNs such as GCN and GIN compute messages using only the features of the nodes, with
computational complexity O(ED + N D?). More general message-passing layers which apply an
MLP to the concatenated features of the node pairs along each edge have a complexity of O(ED?).
Consequently, IBG neural networks are more computationally efficient than MPNNs when K < Dd,
where d denotes the average node degree, and more efficient than simplified MPNNs like GCN when
K <d.

L. ADDITIONAL IMPLEMENTATION DETAILS ON IBG-NN
Let us recall the update equation of an IBG-NN for layers 1 < ¢ < L — 1
H") =g (67 (H") + 05 (VBY)),

H =g (6 (H")+ 05 (UF")),

And finally for layer L:
HD = gD 4 Ht(L)’

In each layer, the learned functions ©f and ©! are applied to the previous node representations

H ge)and Ht(z) seperately, while ©3 and ©% are applied to the post-analysis source community
features V. B() and the post-analysis target community features U B(®), respectively. To simplify,
we restrict the aforementioned architecture of the learned function to linear layers and a pooling
operation (e.g. DeepSets (Manzil et al.,[2017)), interleaving with a ReLU activation function. An
example of an IBG-NN linear layer with mean pooling is:

1
o, (H“)) - HOWY ¢ S11THY W

with W, W? e RP*D“"" peing learnable weight matrices.

M ADDITIONAL EXPERIMENTS

M.1 ANALYSIS ON VARYING DOMAINS

M.1.1 SPATIO-TEMPORAL GRAPHS

Setup. We evaluate IBG-NN on the real world traffic-network datasets METR-LA and PEMS-BAY
(L1 et al.| 2018]). We report the baselines DCRNN (Li et al., | 2018)), GraphWaveNet (Wu et al., [2019),
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Table 3: Results on temporal graphs. Top three models are colored by First, Second, Third.

Model METR-LA PEMS-BAY
# nodes 207 325
# edges 1515 2369
Avg. degree 7.32 7.29
Metrics MAE MAE
DCRNN 322+0.01 1.64+£0.00
GraphWaveNet 3.05+£0.03 1.56 +£0.01
AGCRN 3.16 £0.01 1.61 +0.00
T&S-IMP 335£0.01 1.70+£0.01
TTS-IMP 334£0.01 1.72+£0.00
T&S-AMP 3224+0.02 1.65%0.00
TTS-AMP 324 £0.01 1.66+£0.00
ICG-NN 3.124+£0.01 1.56 & 0.00
IBG-NN 3.10£0.01 1.55+£0.00
Table 4: Comparison with KG completion methods. Top three models are colored by First, Second,
Third.
Method Model Kinship UMLS
MRR Hit@l Hit@l0 | MRR Hit@l Hit@10
TransE 0.31 0.9 84.1 0.69 523 89.7
DistMult 0.35 18.9 75.5 0.39 25.6 66.9
KGE ComplEx 0.42 24.2 81.2 0.41 27.3 70.0
RotatE 0.65 50.4 932 0.74 63.6 93.9
IbgE 0.69 55.0 95.3 0.82 71.5 96.3
Neural-LP | 0.30 16.7 59.6 0.48 332 71.5
DRUM 0.33 18.2 67.5 0.55 35.8 85.4
Rule Learning | RNNLogic | 0.64 49.5 92.4 0.75 63.0 92.4
RLogic 0.58 43.4 87.2 0.71 56.6 93.2
NCRL 0.64 49.0 92.9 0.78 65.9 95.1

AGCRN (Bai et al/ [2020), T&S-IMP, TTS-IMP, T&S-AMP, and TTS-AMP (Cini et al., [2024)),
and ICG-NN (Finkelshtein et al., 20244a) all taken from [Finkelshtein et al.|(2024a). We follow the
methodology of [Cini et al.|(2024), segmenting the datasets into windows of time steps, and training
the model to predict the subsequent 12 observations. Each window is divided sequentially into
train, validation, and test using a 70%/10%/20% split. We report mean average error and standard
deviation over 5 different seeds. Finally, we use a GRU to embed the data before using it as input for
the IBG-NN model.

Results. Table 3] demonstrates that IBG-NNs suppresses ICG-NNs by a small margin. This
slight difference could be attributed to the small size of the graph (207 and 325 nodes), where local
interactions are likely sufficient for the task, and the ability of IBG-NNs to capture global structure
becomes less relevant. This raises questions about the role of directionality in traffic networks,
suggesting the need for further investigation. Notably, IBG-NNs show strong performance in another
domain, matching the effectiveness of methods specifically designed for spatio-temporal data, such
as DCRNN, GraphWaveNet, and AGCRN, despite the small graph size and low edge density.

M.1.2 KNOWLEDGE GRAPHS

Setup. We evaluate IbgE on the the Kinship and UMLS (Kok & Domingos| 2007) datasets. We
report the knowledge graph embedding baselines TransE (Bordes et al.|[2013)), DistMult (Yang et al.|
2014), ConvE (Dettmers et al., [ 2018), ComplEx (Trouillon et al., 2016) and RotatE (Sun et al., 2019).
We also report the rule learning baselines Neural-LP (Yang et al.,2017), RNNLogic (Qu et al., [2020),
RLogic (Cheng et al., [2022) and NCRL (Cheng et al., 2023) to compare with the state-of-the-art
models over these datasets. Results for all baselines were taken from (Cheng et al.| 2023)).
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Table 5: Comparison of node-sampling subgraph SGD with coarsening methods across varying
condensation ratios. Top three models are colored by First, Second, Third.

Flickr Reddit

Condensation ratio 0.5% 1% 100% 0.1% 0.2% 100%
Coarsening 445+01 446401 472+£0.1 | 428+08 4744+09 939+0.0
Random 440+04 4464+02 472+£0.1 | 580+22 663+19 939+0.0
Herding 439+09 444406 472+0.1 | 627+1.0 71.0£1.6 939+0.0
K-Center 432+01 4414+04 472+£0.1 | 53.0+£33 585+£21 939+0.0
GCOND 47.1+0.1 47101 472+£0.1 | 89.6+£0.7 90.1£0.5 939+0.0
SFGC 470£0.1 471401 472+£0.1 | 90003 89.9+04 939+0.0
GC-SNTK 468 +£0.1 465+02 4724+0.1 - - -
SimGC 45604 438+15 472+£0.1 [ 91.1 1.0 920£03 939+0.0
ICG-NN 50.1+£02 50.8+0.1 527+0.1 | 89.7+13 90.7£15 93.6+1.2
IBG-NN 50.740.1 512+£02 530+£0.1 | 923+1.1 9234+06 941405

Results. Table [ shows that IbgE achieves state of the art results across all datasets, solidifying
IBGs potential as a knowledge graph embedding method. This strong performance is expected, as
IbgE is both computationally efficient and expressive, capable of modeling arbitrary head-relation-tail
triplets, making it particularly well-suited for modeling knowledge graphs.

M.1.3 SUBGRAPH SGD USING NODE SAMPLING

Setup. In Section [6.3| we test the diode sampling SGD method proposed in Section [H] In this section
we test the same experiment using the node sampling SGD method (see Section[H.I). We follow the
setup described in Section for Flickr and Reddit, under condensation ratios » = M /N, where N
is the total number of nodes, and M is the number of sampled nodes. For a condensation ratio of
100%, the competing methods correspond to standard GCN.

Results. Once again, Table [5] shows IBG-NN using node sampling subgraph SGD outperforms
all other coarsening and condensation methods, as well as its predecessor, ICG-NN. These results
are consistent with our theoretical guarantees (see Theorems [H.1] and [H.4), which predict a low
approximation error. This demonstrates that IBG-NNs are capable of good approximations even
while loading a small fraction of the graph into memory. Additionally, we observe that node-
sampling and diode-sampling methods yield nearly identical empirical performance, although their
approximation errors decay at different asymptotic rates (see Theorems and [H.4), offering
flexibility in choosing the sampling strategy based on practical considerations.

M.2 THE EFFECT OF NUMBER OF COMMUNITIES
M.2.1 PERFORMANCE

Setup. We evaluate IBG-NN and ICG-NN on the non-sparse Squirrel and Chameleon graph (Pei
et al., 2020). We follow the 10 data splits of [Pei et al.| (2020); [Li et al.| (2022b)) for Squirrel and
Chameleon reporting the accuracy and standard deviation.

Results. In Figure[3] IBG-NNs exhibit significantly improved performance compared to ICG-NNss.
For a small number of communities (10) on Squirrel, IBG-NNs achieve 66% accuracy, whereas
ICG-NNs achieve only 45%, further highlighting the superiority of IBG-NNs, allowing it to reach
competitive performance while being efficient. The performance gap persists across both datasets,
with IBG-NNs continuing to improve as the number of communities increases, whereas ICG-NNs
appear to plateau. This trend can be attributed to IBG-NNs * ability to capture directionality in the
graph, allowing them to model increasingly fine-grained asymmetric structures that ICG-NNs cannot
represent.
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Figure 3: Accuracy of IBG-NNs and ICG-NNs on the Squirrel (left) and Chameleon (right)
datasets as a function of the number of communities.

M.2.2 APPROXIMATION QUALITY

Setup. We evaluate the effect of the number of communities K on the densifying cut similarity of
the IBG approximation on the Chameleon and Squirrel datasets. We compare the weighted Frobenius
error to the densifying cut similarity for a number of communities ranging from 10 to 250.

Results. As shown in Figure[d] both the densifying cut similarity and the weighted Frobenius error
of IBG decrease as the number of communities increases. This stands in line with our theory, and
demonstrated the bound in Equation also in fact holds in practice.
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Figure 4: Densifying cut similarity as a function of the weighted Frobenius norm on the Squirrel
(left) and Chameleon (right) datasets. The number of communities is specified above every point.

M.3 THE IMPORTANCE OF DENSIFYING

M.3.1 DENSIFICATION FOR SPARSE GRAPHS

Setup. We evaluate the effect of our proposed densifying lemma by assessing the performance of
IBG-NN as a function of I', a parameter that controls the weight assigned to non-edges relative to
edges in the IBG approximation. We explore I' values ranging from 0, where weight is assigned only

2
to existing edges, to % where a uniform weight of 1 is given to each entry in the adjacency

matrix. Our experiments are conducted on the large node classification graph Arxiv-Year (Lim et al.|
2021) due to its low density (average degree of 6.89).

Results. Figure [S|presents that the perfromance of densified IBG-NNs with I' = % equals

to that of IBG-NNs learned with standard unweighted loss, matching expectations. More importantly,
Figure 5| shows that densified IBG-NNs consistently outperform IBG-NNs learned with standard
unweighted loss, across all the densification scales, validating that the theoretical improvements also
translate into significant practical benefits.
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Table 6: Comparison of node-sampling subgraph SGD with and without densification.

Flickr Reddit
Condensation ratio 0.5% 1% 100% 0.1% 0.2% 100%
ICG-NN 50.1 +£02 50.8+0.1 527+0.1|89.7+13 907+£15 93.6+1.2
IBG-NN (no densification) | 49.6 0.1 50.1 402 52.14+0.1 | 893+1.1 909+06 934+0.5
IBG-NN 50.7£0.1 51.2+£02 53.0+0.1|923+1.1 923+06 94.1+0.5
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Figure 5: IBG-NN accuracy over the sparse dataset Arxiv-Year as a function of I'. The dotted line is
IBG-NN accuracy when using standard uniformly weighted loss for the IBG approximation. The
rightmost point is the value of I" which results in a uniform cut norm under the densifying loss.

M.3.2 DENSIFICATION FOR LARGE GRAPHS

Setup. We repeat the node-sampling subgraph SGD experiment from Section We compare
IBG-NN with and without densification to ICG-NN, evaluating the importance of densification for
IBG-NN on the large, undirected graphs Flickr and Reddit.

Results. Table[f]reveals that densification significantly impacts the performance of IBG-NN for large
graphs. Here, IBG-NN without densification achieves results comparable to ICG-NN. When adding
densification, IBG-NN significantly outperforms ICG-NN, further demonstrating the importance of
our contribution.

M.3.3 EFFECT OF DENSIFICATION ON APPROXIMATION QUALITY

Setup. We study the approximation error of ICG and IBG on their target metrics, cut metric and
densifying cut similarity, when approximating Erdds-Rényi graphs with 1000 nodes on a different
range of edge probabilities. We set the densification parameter I' = 1/2p when approximating
ER(1000,p).

Results. Figure[6]clearly demonstrates that the approximation quality of IBG remains consistent
across different sparsity levels, while ICG’s deteriorates as the graphs grow sparser. This greatly
supports our claims that IBGs learn a densified version of the original graph while still sharing the
same structure with the original graph.

M.4 EFFICIENCY ANALYSIS

M.4.1 MEMORY ANALYSIS

Setup. We compare the IBG approximation and IBG-NN forward pass memory complexity to that
of GCN. We use Erdds-Rényi ER(n,p = 0.5) graphs with up to 7k nodes and sample node features
uniformly from U0, 1] with dimension 128. We test IBG-NN and GCN with 3 layers, and hidden
and output dimensions of 128.
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Figure 6: Cut norm and densifying cut similarity of ICG and IBG approximations on FR(1000, p)
for different values of p.

Results. Figure[7|clearly shows IBG’s memory complexity scales linearly with GCN, while IBG-

NN’s memory complexity has a square root relati

onship with that of GCN. This result stands strongly

in line with the results in Figure |2} as both the time and memory complexity of IBG approximation
and IBG-NNs are O(F) and O(N) respectively.
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Figure 7: Memory complexity of K-IBG (left) and K-IBG-NN (right) as a function of GCN forward
pass on ER(n, p = 0.5) graphs for K=10, 100.

M.4.2 TIME UNTIL CONVERGENCE OF IBG APPROXIMATION

Setup. We test the time until convergence (in
using our proposed SVD initialization method

seconds) of the IBG approximation process when
(G) vs. when using a random initialization. We

consider the IBG representation to have converged if the loss in (8)) has not improved by 0.5% for

over 500 epochs. We perform our comparison
Tolokers, reporting mean time until convergence

on the directed graphs Squirrel, Chameleon, and
and standard deviation over 5 different seeds.

Table 7: Time until convergence in seconds on directed graphs.

Squirrel Chameleon Tolokers
# nodes 5201 2277 11758
# edges 217073 36101 519000
avg. degree 41.71 15.85 88.28
random init. 139.63 £ 10.58 101.69 £ 6.56 184.54 + 13.94
eigenvector init.  107.20 £2.73  99.22 £7.24 65.89 £ 0.39

Results. Table[7]indicates that SVD initialization consistently converges faster than random initial-

ization across all datasets. Notably, for Tolokers,

using SVD initialization results in nearly 3 faster

convergence, highlighting the benefits of the method.
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M.5 ADDITIONAL EXPERIMENTS
M.5.1 HYPERPARAMETER SENSITIVITY

Setup. We evaluate the sensitivity of IBG-NN to the number of communities K and the densification
parameter I' on three datasets: Squirrel, Chameleon (Pei et al.,[2020), and Arxiv-Year (Lim et al.,
2021). We train IBGs with varying values of K and T, with K € {25, 50, 100, 200, 250,400} and
egr € {0,0.01,0.05,0.1,0.25, 1}, where eg = 1 implies no densification was used. We report
test accuracy averaged over the 10 of |Pei et al.|(2020) splits for Squirrel and Chameleon, and over 5
seeds for Arxiv-Year.

Squirrel Chameleon Arxiv-Year

69.7 72.3 742 73.7 748 0 0{70.2 731 76.2 77.4 78.6 78.6 [0 . .3 454 46.3
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Figure 8: Accuracy of IBG-NN across different node classification benchmarks under varying
values of K and eg 1. Top score is marked by a red boarder.

Results. Figure (8| shows test accuracy heatmaps for different (X, I") combinations, with red boxes
indicating optimal configurations. The results reveal that K = 250 and eg,r = 0.05 consistently
achieve top performance across all three datasets. Moreover, a general trend seems to be that (X,
ep,r) points that are further away from (K = 250, eg r = 0.05) have worse performance than closer
ones, suggesting (K = 250, eg r = 0.05) as a promising starting point.

The table also showcases (K = 25, e = 0.01) as a more efficient alternative which uses less
communities, while still remaining close in accuracy to the top-performing choice.

M.5.2 SVD INITIALIZATION

Setup. We test the IBG approximation quality and downstream IBG-NN performance when
using random initalization compared to SVD initialization. We report results on the directed node
classification benchmarks Squirrel, Chamelon, and Tolokers. To evaluate the IBG approximation we
report the IBG loss (Equation (8)), with standard deviation over 5 seeds. We report average ROC
AUC and standard deviation for Tolokers, and average accuracy and standard deviation for Squirrel
and Chameleon, following the 10 splits of |Platonov et al.|(2023)); Pei et al.| (2020).

Table 8: Effect of initialization on IBG loss and downstream IBG-NN accuracy.

Squirrel Chameleon Tolokers
IBG loss IBGNN acc. IBG loss IBGNN acc. IBG loss IBGNN acc.
random init. 022+001 7736162 0.19+001 7959+1.02 040+0.01 83.41+0.87

eigenvector init.  0.23 £0.01 7741+1.79 0.17+0.01 79.65+1.13 040+£0.01 83.40+0.75

Results. As seen in Table[8] SVD initialization results in little to no change in IBG approximation
quality and IBGNN performance. This further demonstrates the practicality of our initialization, as it
offers improved approximation runtime efficiency with no performance drawback.

M.5.3 CONVERGENCE OF IBG APPROXIMATION

Setup. To validate the stability and efficiency of our proposed method, we analyze the progression
of the IBG approximation loss throughout the optimization process. We conduct experiments on
three benchmark datasets: Squirrel, Chameleon, and Arxiv-Year. For each dataset, we track the IBG
loss over 5,000 epochs, reporting average loss and standard deviation over 5 different seeds.
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Figure 9: IBG approximation loss during IBG approximation process for Squirrel, Chameleon, and
Arxiv-Year.

Results. As seen in Figure Q] across all datasets, the loss converges rapidly in the early stages of
training, with minimal improvement observed after 1000 epochs. While the loss continues to decrease
slowly with additional training, we observe that extending training beyond 10000 epochs rarely leads
to additional improvement in downstream IBGNN performance.

M.5.4 TOPOLOGICAL ANALYSIS

Setup. To evaluate how graph structure may affect IBG approximation quality and IBG-NN
performance, we analyze several graph properties (Homophily level, Density, Cheeger constant, and
Spectral gap) across six datasets, and examine their relationship to the IBG approximation quality
and downstream IBG-NN performance.

Table 9: IBG approximation error and downstream performance over .

Homophilic Heterophilic

Metric Citeseer-full Cora-ML Ogbn-Arxiv Chameleon Squirrel Arxiv-year
Homophily 0.949 0.792 0.655 0.235 0.223 0.221
Density 0.0006 0.0009 0.0001 0.0121 0.0147 0.0001
Cheeger Const. ~ 0 ~0 0.0004 0.0032 0.0218 0.0004
Spectral Gap 2.6 1.7 58.9 25.1 194.9 58.9
IBG Approx. Error | 0.56 0.75 0.89 0.17 0.23 0.91
IBG-NN Performance 1 92.40 84.20 65.30 80.15 77.63 60.14

Results. TableQreveals that, despite the differences across the homophily level, density, Cheeger
constant, and spectral gap, IBG-NN performance shows no clear correlation with these properties.
While IBG approximation error is lower for denser graphs such as Chameleon and Squirrel, this
does not directly translate to superior IBG-NN performance. These findings may suggest that graph
structure alone does not determine IBG-NN performance, as factors like node feature quality and
task-specific characteristics also play crucial roles.

N CHOICE OF DATASETS

We present IBG-NNs, a method best suited for large graphs, capable of effectively approximating
directional graphs. Consequently, our primary experiments in Section [6.3] follow the standard
graph coarsening and condensation benchmarks Reddit (Hamilton et al., 2017a), Flickr (Zeng et al.|
2019), Ogbn-Arxiv and products (Hu et al.,|2020), where IBG-NNs demonstrates state-of-the-art
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performance. We note that the large-graph benchmarks we use are undirected, as there are no
commonly adopted large-scale directed graph datasets.

Additionally, IBG-NNs are used for handling directed graphs. To evaluate its performance in this
domain, we conduct experiments on standard directed graph datasets Squirrel, Chameleon (Pei et al.
2020), and Tolokers (Platonov et al.,|2023), where it also achieves state-of-the-art results. Finally, our
graph approximation method proves particularly efficient for spatio-temporal datasets, where a fixed
topology supports time-varying signals. We validate this by experimenting with IBG-NNs on the
METR-LA and PEMS-BAY [Li et al.|(2018) datasets, where it matches the effectiveness of methods
that are specifically designed for spatio-temporal data.

O DATASET STATISTICS

The dataset statistics of the real-world directed graphs, spatio-temporal, graph coarsening and
knowledge graph benchmarks used are presented below in Tables [I0]to

Table 10: Non-sparse node classification dataset statistics.

Squirrel Chameleon Tolokers

# nodes (N) 5,201 2,277 11,758

# edges (E) 217,073 36,101 519,000
Avg. degree (£)  41.71 15.85 88.28

# node features 2089 2325 10

# classes 5 5 2
Metrics Accuracy Accuracy ROC AUC

Table 11: Spatio-temporal dataset statistics.

METR-LA PEMS-BAY

# nodes (N) 207 325
# edges (E) 1,515 2,369
Avg. degree (£)  7.32 7.29
# node features 34272 52128
Metrics MAE MAE

Table 12: Graph coarsening dataset statistics.

Flickr Reddit Ogbn-Arxiv  Products

# nodes (N) 89,250 232,965 169,343 2,449,029
# edges (E) 899,756 114,615,892 1,166,243 61,859,140
Avg. degree (E/N) 10.08 491.99 6.89 25.26

# node features 500 602 128 100

# classes 7 41 40 47
Metrics Accuracy Micro-F1 Accuracy  Accuracy

Table 13: Knowledge graph completion dataset statistics.

Kinship UMLS

# entities 104 135
# relations 25 46
# training triples 8,544 5216
# validation triples 1,068 652
# testing triples 1,074 661
Avg. train. degree  82.15 38.64

P HYPERPARAMETERS

All experiments are conducted on a single NVIDIA L40 GPU, using the Adam optimizer.
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In Tables [T4]to [I7] we report the hyper-parameters used in our real-world directed graphs, spatio-
temporal, graph coarsening and knowledge graph completion benchmarks.

For our spatio-temporal experiments, we utilize the time of the day and the one-hot encoding of the
day of the week as additional features, following |Cini et al.[(2024). Additionaly, for spatio-temporal
graphs we usually ignore the signal when fitting the IBG to the graph, but one can also concatenate
random training signals and reduce their dimension to obtain one signal with low dimension D to be
used as the target signal for the IBG optimization.

Table 14: Non-sparse node classification hyperparameters.

Squirrel Chameleon Tolokers

# communities 250 250 50
Encoded dim 128 128 -
B/ 1 1 1
r 20 5 5
Approx. Ir 0.03 0.03 0.03
Approx. epochs 10000 10000 10000
# layers 7 6 4
Hidden dim 128 128 128
Dropout 0.2 0.2 0.2
Residual connection - v v
Jumping knowledge  Cat Cat Max
Normalization True True True
FitIr 0.003 0.003 0.003
Fit epochs 1500 1500 1500

Table 15: Spatio-temporal node regression hyperparameters.

METR-LA PEMS-BAY

# communities 50 100
Encoded dim - -
B/ 0 0

T 0 0
Approx. Ir 0.01, 0.05 0.01, 0.05
Approx. epochs 10000 10000
# layers 6 6
Hidden dim 128 128
Dropout 0.0 0.0
Residual connection v v
Jumping knowledge Max Cat
Normalization True False
Fit Ir 0.003 0.001
Fit epochs 300 300
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Table 16: Graph coarsening node classification hyperparameters. On Flickr and Reddit we use 750
communities for a condensation ratio of 100%, and 50 communities for the other settings.

Reddit Flickr Ogbn-Arxiv  Products

# communities 50, 750 50, 750 50 50
Encoded dim - - - -
B/ 0 0 0 0
r 5 5 5 5
Approx. Ir 0.05 0.05 0.05 0.05
Approx. epochs 1000 1000 2500 2500
# layers 4 4 3 4
Hidden dim 128 256 256 128
Dropout 0 0 0 0
Residual connection v/ - v v
Jumping knowledge Max Cat Max Max
Normalization True  True True True
Fitlr 0.003  0.003 0.003 0.003, 0.005
Fit epochs 1500 1500 1500 1500

Table 17: Knowledge graph completion hyperparameters.

Kinship UMLS

# communities 20 15
Encoded dim 24 48
Approx. Ir 0.05  0.003

Approx. epochs 250 750
# negative samples 64 128
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