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Abstract
Transformers are increasingly prevalent for multiview computer vision tasks, where
geometric relationships between viewpoints are critical for 3D perception. To
leverage these relationships, multiview transformers must use camera geometry
to ground visual tokens in 3D space. In this work, we compare techniques for
conditioning transformers on cameras: token-level raymap encodings, attention-
level relative pose encodings, and a new relative encoding—Projective Positional
Encoding (PRoPE)—that captures complete camera frustums, both intrinsics and
extrinsics, as a relative positional encoding. Our experiments begin by showing
how relative conditioning methods improve performance in feedforward novel
view synthesis, with further gains from PRoPE. This holds across settings: scenes
with both shared and varying intrinsics, when combining token- and attention-level
conditioning, and for generalization to inputs with out-of-distribution sequence
lengths and camera intrinsics. We then verify that these benefits persist for different
tasks, stereo depth estimation and discriminative spatial cognition, as well as larger
model sizes. Code is available on our project webpage2.

1 Introduction
Images of our world exist in the context of the viewpoints they were captured from. The geometry
of these viewpoints—intrinsic and extrinsic parameters that give pixel coordinates their physical
meaning—ground visual observations in 3D space. This spatial grounding is increasingly important
in deep learning, especially as advances in 3D vision and embodied intelligence make multiview
tasks more ubiquitous.

To solve multiview tasks with transformers, models must bind viewpoint information to patch
tokens from each input image. This binding requires special care: just as naive positional encoding
techniques for 1D sequences hinder performance for learning in language models [1], naive encodings
of camera geometry may also be suboptimal for multiview vision models [2–4]. Advances in both
settings can be summarized as transitions from absolute [5] to relative [6] encodings.

In this work, we study the problem of conditioning vision transformers on the camera geometry of
input images. We survey existing techniques for addressing this, which include (i) absolute encodings
in the form of pixel-aligned, token-level raymaps—these are the most common in recent state-of-the-
art models [7–10]—and (ii) attention-level relative encodings based on SE(3) pose relationships [3, 4].
We then present a new camera conditioning technique, Projective Positional Encoding (PRoPE), that
is designed to capture the complete geometry of cameras as a relative positional encoding. PRoPE
models viewing frustum relationships that describe both intrinsics and extrinsics, while remaining
easy to incorporate with standard transformer architectures and fused attention kernels [11].

Our experiments are on three tasks, which span six datasets. We begin with a series of studies compar-
ing camera conditioning techniques for feedforward novel view synthesis using RealEstate10K [12]
and Objaverse [13]. Our results highlight the advantages of relative encodings—particularly PRoPE—
compared to absolute ones. We then verify that these benefits extend to other settings: we demonstrate
improvements when integrating PRoPE into UniMatch [14] for stereo depth estimation across three
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Figure 1: Cameras as relative positional encoding. Language models and multiview transformers
must both bind “positional” information to input tokens, in terms of sequence position for language
and camera parameters for multiview computer vision. We present a study on camera conditioning
that includes absolute positional encodings (raymaps), relative pose encodings [2, 4], and a new
method captures relative projective relationships between more complete camera frustums.

benchmarks, for a discriminative spatial cognition task using DL3DV [15], and when scaling to larger
novel view synthesis models [7, 8].

The contributions of this paper are as follows:

(1) Survey. We survey both absolute raymap and relative SE(3) conditioning techniques for camera
geometry in multiview transformers.

(2) Method. We propose PRoPE (Projective Positional Encoding), a new relative positional encoding
technique that injects both camera intrinsics and extrinsics into a transformer’s self-attention blocks.

(3) Evaluation. We present a series of novel view synthesis (NVS) experiments that compare camera
conditioning techniques empirically. Our results highlight the advantages of relative pose encoding
methods like CAPE [4] and GTA [3], while demonstrating further improvements from PRoPE
across a range of settings: scenes with shared intrinsics, scenes with varying intrinsics, for hybrid
conditioning that combines both token-level and attention-level representations, and in generalization
for out-of-distribution test inputs.

(4) Task generalization. We show that the benefits of cameras as relative positional encoding
generalize (i) to stereo depth estimation when integrated into UniMatch, (ii) to discriminative spatial
cognition, and (iii) when scaling to larger model sizes.

2 Related Work

Absolute and relative positional encodings. Transformer architectures are permutation-invariant;
they therefore require explicit position encoding to understand token order in sequential inputs [5].
Position encoding in sequence models has been an active area of research [1, 16–19]. While early
works [20–27] focused on absolute positional encoding (APE), recent methods have increasingly
adopted relative positional encoding (RPE), particularly RoPE [28], as a standard across domains,
including natural language processing [29, 30, 1, 31] and computer vision [32–34, 28, 35]. Relative
encodings aim to improve models by defining positions as relative offsets between token pairs. These
offsets are injected into the pairwise interactions of standard dot product attention [5]:

Attn(Q,K, V ) = softmax
(
QK⊤
√
d

)
V, (1)

where Q,K, V ∈ RT×d. Position offsets can be injected using the pairwise nature of the
QK⊤ ∈ RT×T matrix, either via additive biases [6, 36, 37] or SO(2)-based rotation [1]. RPE
offers important advantages over APE, including translation invariance, improved relationship mod-
eling, and generalization to long sequences [38, 1, 39]. In this work, we study both absolute and
relative encodings for conditioning transformers on camera geometry instead of 1D position.

Multiview transformers. Many computer vision tasks are multiview: they take multiple images
and known camera geometry for each image as input. Examples exist in 3D reconstruction and view
synthesis [40–44], pose estimation [45], depth prediction [14, 46, 47], 3D scene understanding [48,
49], robotics [50], and world models [51]. Many recent works leverage the improved scaling
properties [22, 52, 53] of vision transformers for solving these tasks [8, 7, 9, 10, 54]. These models
slice input images into patches, and use each patch as an independent visual token for the transformer.
In this work, we use the model designs proposed by LVSM [8] and UniMatch [14] as a starting point
for studying a critical design decision—how transformers are conditioned on camera geometry.
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Camera conditioning in transformers. The dominant approach for conditioning multiview trans-
formers on cameras is currently raymaps [45, 7, 8, 10]: per-pixel 6D embeddings that contain either
ray origins and directions [44, 7] or Plücker coordinates [55, 45]. Concatenating these parameters
to pixels enables conditioning on both camera intrinsics and extrinsics at the token level. Raymaps,
however, require defining a frame of reference [56, 7, 57], which is problematic because the choice
of world coordinate system is arbitrary and can hinder generalization. While this problem can be
partially addressed by normalizing poses [58, 57, 8], prior works have shown that a more fundamental
fix is possible through relative parameters [2–4, 59]. Notably, attention-level encodings that capture
relative SE(3) poses don’t require defining a consistent global frame, are compatible with fused
attention kernels [11], and have been shown to improve novel view synthesis performance [3, 4].
In the following section, we survey both absolute raymap and relative SE(3) methods for encoding
camera geometry for transformers. We then propose a new relative encoding method, PRoPE, that
encodes relationships between more complete camera frustums.

3 Conditioning Transformers on Cameras

3.1 Preliminaries

We study transformers that take N images from known cameras as input:

{(Ii,Ki,T
cw
i )}Ni=1 , (2)

where each Ii ∈ RH×W×3 is an image, Ki ∈ R3×3 is the camera intrinsics, and T cw
i =

(Rcw
i , tcw

i ) ∈ SE(3) is the transformation for computing camera coordinates from world coordi-
nates. The latter two terms encode the viewing frustum that corresponds to each image: intrinsics
capture the shape and field-of-view of the frustum, while extrinsics capture position and orientation.
Both intrinsics and extrinsics are encapsulated in the “world-to-image” projection matrix P i ∈ R3×4:

P i =
[
Ki 03×1

]
T cw

i . (3)

For notational convenience, these 3× 4 projection matrices can be made invertible by lifting to 4× 4
with the standard basis vector e4 = (0, 0, 0, 1)⊤. This transformation maps 3D world coordinates to
a projective image space defined by the frustum of camera i. It can be used to compute 2D image
coordinates from world coordinates:

P̃ i =

[
P i

e⊤4

]
;

[
x̃i

1

]
∝ P̃ iX̃world, (4)

where x̃i ∈ R3 and X̃world ∈ R4 are homogeneous coordinates in the image and world respectively.
The inverse relationship can be used to compute ray directions in 3D space from 2D image coordinates.
For homogeneous image coordinate x̃u,v

i = (u, v, 1)⊤,[
αdu,v

i
1

]
∝ P̃

−1

i

[
x̃u,v
i
1

]
, (5)

where α ∈ R is a scalar magnitude and du,v
i ∈ S2 is a unit-norm ray direction.

3.2 Pixel-aligned Camera Encoding
Token-level, pixel-aligned raymaps are the dominant method for encoding geometry in multiview
transformers [7, 42, 10, 9]. Networks that employ raymaps concatenate images Ii ∈ RH×W×3

with per-pixel raymaps Mi ∈ RH×W×R along the channel dimension, which expands inputs to
RH×W×(3+R). There are two main approaches for computing these raymaps, which we refer to as
“naive” and Plücker.

Naive raymaps. Naive raymaps [7] are computed as per-pixel origin and direction vectors:

Mu,v
i,Naive =

[
oi

du,v
i

]
∈ R6 for (u, v) ∈ [1,W ]× [1, H] (6)

oi = −(Rcw
i )⊤tcw

i , (7)

where each ray direction du,v
i is computed using P̃ i by following Equation 5.
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Plücker raymaps. Plücker raymaps [45, 8] can be implemented by replacing the origin term in naive
raymaps with a moment term:

Mu,v
i,Plücker =

[
oi × du,v

i
du,v
i

]
∈ R6 for (u, v) ∈ [1,W ]× [1, H]. (8)

This moment term makes the ray representation invariant to the choice of origin along the ray.

Properties. Raymaps offer a simple approach for conditioning on both camera intrinsics and
extrinsics. An important drawback, however, is that they are absolute: similar to early position
encoding techniques for 1D sequences [5], raymaps are expressed in global terms. They are sensitive
to the arbitrary choice of reference frame, which can hinder generalization.

3.3 Relative SE(3) Encoding
To remove the need for a global reference frame, recent works have introduced relative encodings for
SE(3) camera poses. Two existing approaches fall under this category: CaPE [4] and GTA [3]. Given
images i1 and i2, both aim to condition networks on T cw

i1 (T cw
i2 )−1 using modified self-attention

blocks. This captures dense relationships—how each camera pose is situated relative to every other
camera pose—and makes networks invariant to how the world frame w is defined.

Notation. To formalize the operations required for attention-level geometry encoding, we denote the
batched matrix-vector product ⊚ , Kronecker product ⊗, and identity matrices Ik ∈ Rk×k. We use
i for image/camera indices and t for patch/token indices. i(t) is the index of the image that patch
t belongs to. Rows of the Q,K, V ∈ RT×d matrices are subscripted Qt,Kt, Vt ∈ Rd. Batched
matrix-vector products are defined as:

A ∈ RN×d1×d2 , B ∈ RN×d2 =⇒ (A⊚B) ∈ RN×d1 (9)

(A⊚B)nj =
∑
k

AnjkBnk. (10)

We use D ∈ RT×d×d to denote batches of block-diagonal matrices, where individual matrices in
D = [D1, . . . ,DT ] are subscripted Dt ∈ Rd×d.

CaPE [4]. CaPE injects relative SE(3) pose by transforming the Q and K matrices before they are
passed to self-attention. CaPE can be formalized using per-token block-diagonal matrices DCaPE

t ,
which is computed by diagonally repeating the camera extrinsics:

DCaPE
t = Id/4 ⊗ T cw

i(t) (11)

Like RoPE [1], transformations are then applied to the Q and K matrices before self-attention. This
can be encapsulated into an augmented self-attention block:

AttnCaPE(Q,K, V ) = Attn((DCaPE)⊤⊚Q, (DCaPE)−1⊚K,V ). (12)

The effect of this is that each Q⊤
t1Kt2 ∈ R dot product in QK⊤ ∈ RT×T is replaced with:

Q⊤
t1D

CaPE
t1 (DCaPE

t2 )−1Kt2 ∈ R, (13)

where DCaPE
t1 (DCaPE

t2 )−1 = Id/4 ⊗
[
T cw

i(t1)(T
cw
i(t2))

−1
]
, thus conditioning outputs on relative pose.

GTA [3]. GTA proposes a formulation for per-token transformations with a similar high-level goal as
CaPE. GTA’s attention variant transforms the Q and K matrices the same way, while proposing to
also transform the V matrix:

AttnGTA(Q,K, V ) = DGTA⊚Attn((DGTA)⊤⊚Q, (DGTA)−1⊚K, (DGTA)−1⊚V ). (14)

This has the added benefit of injecting relative transformations into the attention operator’s value
aggregation. The attention layer output for each token t1 becomes[

AttnGTA(Q,K, V )
]
t1

=
∑
t2

αt1,t2D
GTA
t1 (DGTA

t2 )−1Vt2 , (15)

where αt1,t2 is a softmax score computed from the transformed dot product (Equation 13). GTA’s
experiments [3] compare several SE(3)-based formulations for DGTA, with and without the value
matrix transformation. The best-performing methods include the value transform, and both SE(3) for
camera pose and RoPE [1] for 2D patch position. Our experiments include GTA using these terms.
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3.4 Projective Position Encoding (PRoPE)
We introduce a new relative positional encoding method in our study, which we call PRoPE. The core
observation of PRoPE is that the SE(3) poses considered by existing relative encoding techniques are
only a partial representation of camera geometry. Instead of relating each camera i1 and camera i2
with only their poses T cw

i1 and T cw
i2 , PRoPE uses the projective relationship between full frustums:

P̃ i1P̃
−1

i2 . (16)

This 4×4 matrix can be interpreted as a transformation between the local projective spaces defined by
each camera; it encodes the complete geometric relationship between camera views. As we will see
in Equation 20, it also retains the key global invariance property of SE(3)-based relative encodings.

To implement PRoPE, we define a new set of DPRoPE
t ∈ Rd×d matrices and use GTA-style attention

(Equation 14) to inject them into transformer blocks. We design these matrices to (1) encode frustum
relationships between cameras—this uses the projective relationship in Equation 16—and (2) encode
relative patch positions within cameras—this follows GTA [3] and uses RoPE terms. These goals are
achieved with complementary submatrices, each with shape d

2 × d
2 :

DPRoPE
t =

[
DProj

t 0
0 DRoPE

t

]
(17)

DProj
t = Id/8 ⊗ P̃ i(t) ∈ R

d
2×

d
2 (18)

DRoPE
t =

[
RoPEd/4(xt) 0

0 RoPEd/4(yt)

]
∈ R

d
2×

d
2 . (19)

In these definitions, RoPEd/4(·) constructs d
4 × d

4 rotary embeddings [1] for (xt, yt), which are the
patch coordinates for token t.

3.5 Properties of PRoPE

PRoPE has several important properties, which become more evident when we expand the projective
transformation:

P̃ i1P̃
−1

i2 =

[
Ki 0
0 1

]
T cw

i (T cw
j )−1

[
K−1

j 0
0 1

]
. (20)

Global frame invariance. Redefining the world frame is equivalent to right-multiplying both T cw

SE(3) terms, which is algebraically eliminated in Equation 20.

Reduction to relative SE(3) attention. For cameras with identity intrinsics, Equation 20 reduces to
the relative SE(3) transformations utilized in CAPE and GTA. These methods can be interpreted as
a case of PRoPE where the intrinsic matrices are set to identity.

Reduction to RoPE [28]. Equation 20 evaluates to identity for patches from the same image. For
these token pairs, DPRoPE

t contains only the RoPE terms used by single-image vision transformers.

4 Experiments
The goal of our experiments is to understand how camera conditioning techniques—including
PRoPE—impact the performance of multiview transformers. To accomplish this, we present experi-
ments comparing encoding strategies under several task and evaluation conditions.

4.1 Experiment Setup
We include metrics for several camera conditioning techniques—Naive and Plücker raymap encodings,
CAPE [4], GTA [3], and PRoPE. In our experiments, GTA refers to the SE(3)+SO(2) variation studied
by [3], where SO(2) refers to RoPE on patch positions. As discussed in Section 3.4, PRoPE adopts
the self-attention mechanism and RoPE combination proposed by GTA. The primary difference
between PRoPE and GTA is therefore the use of relative projective relationships instead of relative
SE(3) relationships between cameras.

Our core experiments evaluate camera conditioning techniques using feedforward novel view synthe-
sis (NVS). NVS is an ideal benchmarking task because it requires fine-grained geometric reasoning:
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Method RealEstate10K [12] Objaverse [13]
PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

Plücker Raymap 20.48 0.209 0.622 21.44 0.159 0.851
Naive Raymap 20.54 0.210 0.623 21.59 0.153 0.856

CAPE [4] 21.11 0.234 0.656 19.68 0.220 0.827
GTA [3] 22.51 0.164 0.707 23.70 0.104 0.879
PRoPE 22.80 0.146 0.725 23.70 0.104 0.879

Table 1: Novel view synthesis comparison, with constant intrinsics in each scene. We compare
different camera conditioning approaches applied to the LVSM [8] framework.

Method RealEstate10K [12] Objaverse [13]
PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

Plücker Raymap 19.89 0.327 0.608 21.43 0.177 0.852
Naive Raymap 20.56 0.301 0.629 21.00 0.191 0.845

CAPE [4] 15.94 0.497 0.699 16.78 0.322 0.760
GTA [3] 15.77 0.512 0.641 18.00 0.257 0.775
PRoPE 21.42 0.247 0.678 22.98 0.138 0.871

Table 2: Novel view synthesis, with varying intrinsics in each scene. We compare the LVSM [8]
model trained with different camera conditioning strategies, on intrinsics-augmented dataset variants.

models are trained to render scenes from target viewpoints, given only calibrated reference images
and target camera parameters. We do this by reimplementing and training variants of LVSM [8], a
state-of-the-art novel view synthesis method that originally encoded camera geometry with Plücker
raymaps. We train and evaluate separately on the RealEstate10K [12] and Objaverse [13] datasets.
Scenes in RealEstate10K are captured with constant intrinsics, but cameras vary between scenes.
Objaverse renders use the same camera intrinsics across the entire dataset.

We take several steps to ensure fairness in evaluations. Models are trained in the same codebase, with
matched hyperparameters and training steps. All main experiments use identical input, output, and
overall model sizes (∼25M parameters); we also validate larger models in Section 4.7. More details
are provided in Appendix A.1.1.

4.2 Relative vs Absolute Positional Encodings
Novel view synthesis results are presented in Table 1 and discussed below.

Relative encodings outperform absolute ones. Consistent with prior work [4, 3], we observe that
relative encodings for camera geometry consistently outperform absolute ones. CAPE, GTA, and
PRoPE all yield improvements over widely used raymap encodings, with PRoPE (followed closely
by GTA) producing the best results.

Projective positional encoding improves view synthesis quality. PRoPE consistently outperforms
other encoding methods across metrics on RealEstate10K [12], despite the dataset’s limited intrinsics
variation. This confirms that capturing more complete camera information (both intrinsic and
extrinsic) in our relative encoding is beneficial. We also find no loss of performance when the train
and test images all have constant intrinsics: GTA [3] and PRoPE produce identical metrics for the
Objaverse dataset, which verifies that PRoPE reduces to GTA when camera intrinsics are unimportant.

4.3 Attention-Level Intrinsics Conditioning
Real-world data often involves different cameras and focal lengths—consider multiview rigs on
autonomous cars or zoom lenses on point-and-shoot cameras. To understand how effective PRoPE is
at encoding intrinsics information, we evaluate each conditioning method on intrinsics-augmented
versions of the RealEstate10K [12] and Objaverse [13] datasets. We augment RealEstate10K by
applying a zoom factor sampled uniformly in [1, 3] to each image. For Objaverse, we switch from
constant field of views to uniformly sampled ones between 35 and 50 degrees. In contrast to
Section 4.2, this means that cameras within scenes can vary in both extrinsics and intrinsics. We
present quantitative results in Table 2 and qualitative results in Figure A.1.

PRoPE enables intrinsic-aware multiview understanding. We observe that PRoPE outperforms
all alternative camera conditioning techniques for both the RealEstate10K and Objaverse datasets.
Existing attention-based methods, which let networks condition on relative pose, perform poorly
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Figure 2: Hybrid camera encoding. Left: token-level conditioning using only raymaps, which
capture both intrinsics and extrinsics. Right: hybrid encoding where attention-level PRoPE captures
relationships between camera frustums, and token-level CamRay encodes local ray directions.

Method RealEstate10K [12] Objaverse [13]
PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

GTA [3] 15.77 0.512 0.641 16.98 0.261 0.762
GTA+CamRay 21.41 0.238 0.673 22.69 0.123 0.869

PRoPE 21.42 0.247 0.678 22.82 0.119 0.872
PRoPE+CamRay 21.78 0.211 0.692 22.98 0.114 0.874

Table 3: Novel view synthesis with hybrid camera encodings, with varying intrinsics in each
scene. Intrinsics can be conditioned by concatenating local frame camera rays to the network input.

without knowledge of intrinsics. While token-level raymaps carry sufficient camera information, they
perform worse overall than PRoPE’s relative conditioning formulation.
4.4 Hybrid Encoding Strategies
Token- and attention-level camera encodings require modifications to different parts of the transformer
architecture. They are therefore compatible with each other: both conditioning styles can be used
simultaneously. To compare PRoPE against a stronger baseline while simultaneously exploring these
“hybrid” conditioning strategies (Figure 2), we train LVSM variations that couple relative encodings
with local, camera-frame raymaps:

Mu,v
i,CamRay = Rcw

i du,v
i ∝ K−1

i [u v 1]
⊤ ∈ R3 (21)

We refer to this raymap as CamRay. CamRay shares many properties with existing raymaps (Sec-
tion 3.2)—it encodes intrinsics, is pixel-aligned, and can be concatenated to input images—but it
is not tied to an absolute coordinate system. It can therefore be used in conjunction with relative
pose and camera encoding techniques without sacrificing global frame invariance. As we observe in
Section 4.6, this provides empirical advantages over Plücker raymaps.

CamRay can be interpreted as a token-level encoding of camera intrinsics. We therefore evaluate it
using the intrinsics-augmented NVS datasets described in Section 4.3. Results are reported in Table 3
and discussed below.

PRoPE effectively encodes camera geometry. On both RealEstate10K and Objaverse, we observe
that PRoPE is comparable with or outperforms GTA+CamRay. This is true even though PRoPE is
simpler: it is only applied attention-level, while GTA+CamRay includes both attention-level and
token-level terms.

Token-level and attention-level conditioning techniques are complementary. GTA and PRoPE
both benefit from the extra CamRay input. GTA benefits significantly more; this can be explained by
the absence of intrinsics information in the standard SE(3)-based GTA formulation.

4.5 Out-of-distribution Robustness
One hypothesis for why relative camera encodings outperform absolute ones is improved generaliza-
tion characteristics; this is similar to why RoPE [28] can improve performance for language modeling.
To test this, we benchmark conditioning methods using test-time settings that introduce distribution
shifts in sequence length and intrinsics (Figure 3).

Setting 1: Longer Input Sequences at Test Time. Inspired by test-time context length extrapolation [60,
61], our first setting deploys NVS models trained with a fixed number of input views (2 in our
experiments) to significantly more views (up to 16) at test time. This is particularly important
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Figure 3: Out-of-distribution tasks. Left: We evaluate camera conditioning methods on both longer
sequence lengths and unseen camera intrinsics. Right: PRoPE improves results for both unseen
sequence lengths and unseen intrinsics.

(a) Testing with {2, 4, 8, 16} input views.

(b) Testing with {1, 2, 3}× zooming-in.

Figure 4: Evaluation on RealEstate10K [12]. Relative encoding methods demonstrate superior
robustness on handling (a) varying numbers of input views and (b) different focal lengths at test time.

Testing w/

2 views

Testing w/

16 views

GT

PRoPE+CamRayPRoPEGTACAPEPlucker

Figure 5: Results of Longer Input Sequences at Test Time. PRoPE demonstrates superior robust-
ness when tested with varying numbers of input views, despite being trained with only 2 views.

Testing w/

zoom 3x

GTPRoPE+CamRayPRoPEGTACAPEPlucker

Figure 6: Results of Varying Focal Length at Test Time. PRoPE explicitly models relative
intrinsics—we find this makes it more robust to zoomed-in test views.

in real-world scenarios where the number of observations can vary substantially across different
applications, and sometimes dynamically increase.

Setting 2: Out-of-distribution Intrinsics at Test Time. Our second setting evaluates a model’s ability to
handle varying focal lengths at test time. This is crucial as focal length can vary significantly across
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Dataset Model Abs Rel Sq Rel RMSE RMSE log

RGBD [62]
UniMatch 0.123 0.175† 0.678 0.203
UniMatch + PRoPE 0.105 0.203† 0.573 0.181

SUN3D [63]
UniMatch 0.131 0.098 0.397 0.169
UniMatch + PRoPE 0.117 0.075 0.343 0.152

Scenes11 [64]
UniMatch 0.065 0.085 0.575 0.126
UniMatch + PRoPE 0.049 0.063 0.474 0.104

Table 4: Performance Improvement on Stereo Depth Estimation Task with UniMatch [14]. †The
“Sq Rel” metric is less reliable on the RGBD dataset due to the imperfect depth and camera pose [64].
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RGBD Scenes11 SUN3D

Figure 7: Qualitative Results on Stereo Depth Estimation Task. Attention-level camera condition-
ing in UniMatch [14] leads to significant estimation improvements.

Method 5 views 9 views 17 views

Plücker 69.1% 76.9% 74.6%
PRoPE+Plücker 81.1% 90.5% 91.8%
PRoPE+CamRay 86.1% 93.0% 94.3%

Table 5: Spatial cognition results. We report the accuracy of detecting inconsistent image-camera
pairs on the DL3DV [15] dataset under varying numbers of input views. Both CamRay and PRoPE
significantly help with performance, without introducing additional model parameters. An illustration
of this task can be found in Figure A.3.

different cameras and zoom levels, and it is impractical to train a separate model for every possible
focal length. We test our models with focal lengths ranging from 1× to 5× the training focal length,
simulating scenarios where more zoomed-in images are seen during deployment.

Relative encodings improve generalization; PRoPE outperforms alternatives. Evaluated results
on the RealEstate10K [12] dataset are summarized in Figure 4, with visuals provided in Figure 5 and 6.
We make three main observations. First, while Plücker Raymap encodes more complete camera
information than CAPE and GTA, it consistently underperforms across all settings—even when
intrinsics information is critical. Second, PRoPE improves performance and robustness in both out-
of-distribution settings, particularly when handling out-of-distribution focal lengths. This indicates
that explicitly modeling the relative projective relationship between cameras is more effective than
modeling only the relative SE(3) relationship, as done in GTA and CAPE. Finally, we found adding
CamRay to PRoPE actually hurts performance for intrinsics extrapolation; this suggests that PRoPE
is uniquely useful for intrinsics generalization.

4.6 Task Generalization
Like our results so far, prior studies on relative pose encodings [3, 4] for multiview transformers have
focused experiments on novel view synthesis. To better understand how these conclusions generalize,
we evaluate PRoPE in two new tasks: stereo depth estimation using UniMatch [14] and a spatial
cognition task designed around DL3DV [15].

Stereo Depth Estimation. We set up this task using UniMatch [14], a pretrained multiview transformer
that has seen wide adoption in downstream applications [65–68]. UniMatch was originally trained on
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Method 1× Compute 100× Compute
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Plücker Raymap 20.48 0.622 0.209 25.64 0.809 0.084
PRoPE 22.80 0.725 0.146 26.56 0.832 0.071

Table 6: Scaling LVSM with increased compute. We compare LVSM [8] models trained with
Plücker raymaps versus PRoPE on RealEstate10K [12] at two compute scales.

three different tasks; we focus on the stereo depth estimation task, which assumes known relative
camera poses between input views. We incorporate camera information into UniMatch’s cross-view
attention mechanism using PRoPE, modifying only ∼50 lines of the official code. All models follow
the exact same training protocols as described in the original paper.

Spatial Cognition. Next, we design a spatial cognition task inspired by [69]. In this task, a network
is given multiple images of the same scene, each paired with camera information. The problem is
designed so that it cannot be solved by analyzing the camera information alone, the images alone, or
without reasoning about the multiview relationships among all inputs. One of the image-camera pairs
is intentionally corrupted by assigning it an incorrect camera pose sampled from other frames. The
network is then required to identify the incorrect image-camera pair based on geometric consistency.
See Appendix A.1.3 for implementation details, and Figure A.3 for input-output examples.

PRoPE’s benefits generalize across tasks. For depth estimation, we provide quantitative results in
Table 4 and qualitative results in Figure 7. For spatial cognition, accuracy metrics are provided in
Table 5. We find that PRoPE significantly improves multiview understanding across both tasks. In our
spatial cognition task, we observe that performance with PRoPE continues to improve as the number
of views increase during testing, whereas the Plücker raymaps do not exhibit the same trend. We
also observe improvements when replacing Plücker with CamRay, which indicates that the absolute
extrinsics information hinders the model’s ability to generalize.

4.7 Scaling PRoPE

In our final set of experiments, we evaluate how the advantages of relative camera encoding extend to
larger models with more computational resources. We conducted two experiments for this, which are
discussed below.

PRoPE’s benefits persist when scaling LVSM. We scale our LVSM training pipeline with approxi-
mately 100× more computational resources (details in Appendix A.1.1). We train two variants of
this larger LVSM model: one that follows the original LVSM paper [8] and uses Plücker rays and one
that incorporates PRoPE. Results are reported in Table 6, where we observe that the relative PRoPE
encoding continues to improve model quality—by a smaller but still significant margin—on larger
model variants trained with more resources.

PRoPE improves CAT3D results. With assistance from the original authors, we add PRoPE to
and retrain CAT3D [7], a large multiview diffusion model conditioned on naive raymaps. We report
metrics from this model in Table A.2. PRoPE produces consistent improvements across metrics,
while introducing zero additional model parameters and negligible computational overhead.

5 Conclusion and Future Work
In this work, we highlight how representing cameras as relative positional encodings—particularly
in a way that captures both camera intrinsics and extrinsics—improves multiview transformers
across settings and tasks. Possibilities for future work include improving numerical stability when
directly multiplying projective matrices with Q/K/V vectors; it may be possible, for example, for
ill-conditioned matrices to emerge from telephoto focal lengths. It would also be interesting to extend
PRoPE to distorted camera models, for example by applying PRoPE to per-patch projective approx-
imations. Furthermore, incorporating “multi-frequency” [19, 1] encoding for camera parameters
remains nontrivial due to the non-commutativity of projective transforms, a challenge shared by
relative SE(3) attention methods [3, 4].
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We state our contribution as a theoretical grounded analysis and an new
approach for camera conditioning in transformer that is more robust than previous works.
This has been well discussed in the method section and proved in the experiment section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: Our paper does involve plenty of math in section 3 but is not proving anything.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We outline the method section with detailed math. We will also provide Pseudo
code in supplemental material of our algorithm.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Code will be released soon.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training details will be provided in the supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The experiments are expensive to run, and we are an academic group so can’t
afford multiple runs for error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Will be provided in supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We did our best to follow the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is a foundational research on the camera encoding approaches and
not tied to particular applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work is a foundational research on the camera encoding approaches so
does not poses such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets in the paper are created by our own, except for the dataset which is
properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A.1 Experiment details

A.1.1 LVSM-based Model Details

We adhere to the original LVSM [8] implementation specifications, maintaining consistency across
most settings. For complete details regarding these configurations, we direct readers to the original
LVSM paper [8]. The modifications we made include:

• We trained exclusively at 256×256 resolution and did not perform the additional fine-tuning
at higher resolutions.

• Limited by academic-level resources, we use a smaller version of the LVSM model with 6
transformer blocks, and reduce the MLP channel dimension from 3072 to 1024. Our models
are trained on 2x GPUs with a total batch size of 4, as opposed to 512 in the original paper.
This applies to all experiments expect for the ones in Section 4.7.

• For the scaling-up experiments in Section 4.7, we use a LVSM model with 12 transformer
blocks and keep the all other configurations including the MLP channel dimension (3072).
These models are trained on 8x GPUs with a total batch size of 64.

A.1.2 UniMatch Modification Details

UniMatch [14]’s model consists of a cross-attention transformer to capture multi-view relationship,
as well as a self-attention transformer that serves as a single-view image encoder/decoder. We inject
the camera information into both transformers, on the Q/K/V/O vectors, using our formulation. Note
that our formula exactly falls back to RoPE [28] in the single-view scenario. It therefore naturally
works with both transformer networks in UniMatch.

A.1.3 Spatial Cognition Model Details

We formulate this task as a classification problem, where the number of classes corresponds to
the number of input image-camera pairs, and the “ground-truth” class is the ID of the inconsistent
image-camera pair. The training objective is to identify the inconsistent pair, which we optimize using
the cross-entropy loss. The architecture of the model is largely similar to LVSM [8], where the only
change is that the last linear layer is modified to output a single scalar for each token. Outputs are
then averaged over all tokens for each input pair, resulting in a vector that represents the probability
that each input pair is the “bad” one (over softmax). We provide more data exemplars we used for
training and testing in Figure A.3.

A.2 Additional Results

A.2.1 Ablating PRoPE

As our proposed PRoPE includes two terms: the projective relationship between cameras (DProj
t ) and

the patch coordinate relationship (DRoPE
t ). We here ablate each of them to study their contribution.

As shown in Table A.1, as a crucial component to the system, modeling the projective relationship
between cameras alone already yields strong performance. Introducing RoPE [28] further enhances
model’s ability on understanding patch relationship, which is a minimal unit in vision transformer
architecture. Notably, in PRoPE, we allocate half of the feature channels to encode each term.
Ablating one term therefore means using all feature channels to encode the remaining one.

A.2.2 PRoPE v.s. GTA: More Analysis on the Affect of Intrinsic Modeling

The main difference between our proposed PRoPE and prior work GTA [3] is the introduce of camera
intrinsic into the formulation. While GTA itself does not take into account camera intrinsics, as
we have pointed out in Section 4.4, it is compatible with our proposed CamRay – which encodes
the intrinsic at token level – to form a complete representation for camera conditioning. In this
section, we run more thorough experiments focusing comparing PRoPE and GTA in differnet settings
(with/without CamRay) as the camera conditioning techniques on both UniMatch for stereo depth
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Encoding Method PSNR↑ LPIPS↓ SSIM↑

w/o DProj
t 16.04 0.505 0.509

w/o DRoPE
t 21.39 0.238 0.673

PRoPE 21.78 0.211 0.692
Table A.1: Ablation Study on PRoPE. DProj

t is crucial for encoding the relative camera information,
and DRoPE

t is also helpful to capture the relative patch coordinate. Experiments are conducted on
RealEstate10K [12] with CamRay as input.

3-view 6-view 9-view
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Zip-NeRF [70] 12.77 0.271 0.705 13.61 0.284 0.663 14.30 0.312 0.633
ZeroNeRF [71] 14.44 0.316 0.680 15.51 0.337 0.663 15.99 0.350 0.655
ReconFusion [72] 15.50 0.358 0.585 16.93 0.401 0.544 18.19 0.432 0.511
CAT3D [7] 16.62 0.377 0.515 17.72 0.425 0.482 18.67 0.460 0.460
CAT3D [7] + PRoPE 16.93 0.382 0.505 18.01 0.443 0.479 18.98 0.474 0.461

Table A.2: Incorporating PRoPE into CAT3D. Adding PRoPE to the CAT3D [7] multiview
diffusion model yields improvements over the original model, with zero additional model parameters
and negligible computational overhead.

Method 1× 3× 5× 7×
Plücker 19.89 21.03 20.75 20.32
GTA 15.77 18.14 18.12 18.29
GTA+CamRay 21.41 22.70 22.35 21.77
PRoPE 21.42 22.95 22.75 22.40
PRoPE+CamRay 21.86 23.06 22.83 22.40

PSNR (↑) across zoom-in levels.

Method 1× 3× 5× 7×
Plücker 0.608 0.694 0.732 0.755
GTA 0.512 0.626 0.683 0.721
GTA+CamRay 0.673 0.741 0.764 0.780
PRoPE 0.678 0.748 0.775 0.794
PRoPE+CamRay 0.693 0.751 0.776 0.794

SSIM (↑) across zoom-in levels.

Method 1× 3× 5× 7×
Plücker 0.327 0.272 0.308 0.345
GTA 0.641 0.488 0.439 0.403
GTA+CamRay 0.238 0.191 0.242 0.288
PRoPE 0.247 0.193 0.227 0.244
PRoPE+CamRay 0.218 0.183 0.220 0.242

LPIPS (↓) across zoom-in levels.

Table A.3: Additional Novel View Synthesis Results on Out-of-distribution Intrinsics at Test
Time. Experiments are conducted with LVSM [8] on RealEstate10K [12] dataset with augmented
intrinsics (1-3× zoom-in) as described in Section 4.3.

estimation in Table A.4 and LVSM for novel view synthesis in Table A.3, both with augmented
intrinsics in training to highlight the benefits of PRoPE on intrinsic modeling.

The new results corroborate the benefits of PRoPE that were originally shown in the main paper.
We find that PRoPE consistently outperforms GTA. Importantly, both PRoPE and PRoPE+CamRay
outperform GTA+CamRay, despite the fact that these methods include the same information and
are all invariant to the choice of global frame. This supports our finding that attention-level intrinsic
conditioning (as in PRoPE) is important.

A.2.3 Qualitative Results for Stereo Depth Estimation

In Figure A.2 we show more qualitative results on the task of stereo depth estimation with Uni-
Match [14].
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Method 1.0× 1.5× 2.0× 3.0×
UniMatch 0.234 0.228 0.238 0.299
+Plucker -2.47% -9.35% -7.74% -4.67%
+GTA -28.83% -33.48% -32.15% -12.55%
+GTA+CamRay -29.90% -35.25% -32.42% -13.65%
+PRoPE -33.75% -36.66% -33.85% -26.40%
+PRoPE+CamRay -31.99% -35.82% -33.24% -28.21%

abs_rel (↓) across zoom-in levels.

Method 1.0× 1.5× 2.0× 3.0×
UniMatch 0.357 0.376 0.408 0.613
+Plucker -1.08% -9.46% -2.76% -3.37%
+GTA -31.77% -41.52% -41.16% -11.88%
+GTA+CamRay -33.54% -44.06% -42.34% -13.09%
+PRoPE -45.13% -46.79% -44.53% -38.56%
+PRoPE+CamRay -41.79% -46.75% -44.08% -39.88%

sq_rel (↓) across zoom-in levels.

Method 1.0× 1.5× 2.0× 3.0×
UniMatch 1.059 1.031 1.035 1.188
+Plucker +1.03% -3.95% -0.53% +1.64%
+GTA -19.55% -26.12% -25.68% -4.50%
+GTA+CamRay -20.41% -27.44% -25.72% -6.12%
+PRoPE -28.64% -29.79% -28.25% -22.61%
+PRoPE+CamRay -26.86% -29.29% -28.09% -23.74%

rmse (↓) across zoom-in levels.

Method 1.0× 1.5× 2.0× 3.0×
UniMatch 0.322 0.322 0.336 0.421
+Plucker +0.49% -5.46% -2.33% +2.00%
+GTA -23.29% -30.33% -30.03% -3.24%
+GTA+CamRay -24.08% -31.64% -30.23% -4.34%
+PRoPE -32.01% -33.56% -32.67% -26.78%
+PRoPE+CamRay -29.98% -32.68% -32.31% -27.71%

rmse_log (↓) across zoom-in levels.

Table A.4: Additional Stereo Depth Estimation Results on Out-of-distribution Intrinsics at Test
Time. Experiments are conducted with UniMatch [14]’s official code as described in Section 4.6 but
with 1/8 of the training resources (2 GPUs x 50k steps).
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Figure A.1: More Qualitative Results of Novel View Synthesis on RealEstate10K [12] and
Objaverse [13].
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Figure A.2: More Qualitative Results of Stereo Depth Estimation on RGBD [62], SUN3D [63]
and Scenes11 [64].
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Figure A.3: The Spatial Cognition Task. The model takes multi-view images and corresponding
camera information as input and aims to identify inconsistent image-camera pairs (yellow here).
Understanding the cross-view relationships between images and cameras is crucial for this task.
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