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Abstract

The causal revolution has stimulated interest in understanding complex relation-
ships in various fields. Most of the existing methods aim to discover causal
relationships among all variables within a complex large-scale graph. However, in
practice, only a small subset of variables in the graph are relevant to the outcomes
of interest. Consequently, causal estimation with the full causal graph—particularly
given limited data—could lead to numerous falsely discovered, spurious variables
that exhibit high correlation with, but exert no causal impact on, the target outcome.
In this paper, we propose learning a class of necessary and sufficient causal graphs
(NSCG) that exclusively comprises causally relevant variables for an outcome of
interest, which we term causal features. The key idea is to employ probabilities of
causation to systematically evaluate the importance of features in the causal graph,
allowing us to identify a subgraph relevant to the outcome of interest. To learn
NSCG from data, we develop a necessary and sufficient causal structural learning
(NSCSL) algorithm, by establishing theoretical properties and relationships between
probabilities of causation and natural causal effects of features. Across empirical
studies of simulated and real data, we demonstrate that NSCSL outperforms ex-
isting algorithms and can reveal crucial yeast genes for target heritable traits of
interest.

1 Introduction

Causal discovery has gained significant attention in recent years for disentangling complex causal
relationships in various fields. Building upon the causal graphical model [see e.g., 23], many causal
structural learning algorithms have been developed [see e.g., 35; 7; 34; 14; 4; 27; 46; 44; 48; 5] to
infer the causal knowledge (e.g., causal graphs) from observed data. These algorithms are based
on the assumption of causal sufficiency (the absence of unmeasured confounders). In real-world
applications, to satisfy such an assumption, we strive to learn large-scale causal graphs [see e.g.,
20; 6; 38; 21], in the hope of sufficiently describing how an outcome of interest depends on its
relevant variables.

In addition to sufficiency, it is also crucial to account for the concept of necessity by excluding
redundant variables in explaining the outcome of interest. Failure to do so can result in the inclusion
of spurious variables in the learned causal graphs, which are highly correlated but have no causal
impact on the outcome. These variables can impede causal estimation with limited data and lead to
falsely discovered spurious relationships, leading to poor generalization performance for downstream
prediction [31]. For example, it might be observed that men aged 30 to 40 who buy diapers are also
likely to buy beer. However, beer purchase is a spurious feature for diaper purchases: their correlation
is not necessarily causal, as both purchases might be confounded by a shared cause, such as new
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Figure 1: Left: Illustration of the causal relationship between the customer being a new father or not,
beer purchasing, and diaper purchasing, where solid lines represent the true model, and the dashed
line corresponds to the spurious correlation between beer purchasing and diaper purchasing. Right:
Relationship between various causal structures. The nodes A, B, and C belong to the necessary and
sufficient causal graph for the desired result Y and are represented within the solid green square.
Among them, nodes B and C' are members of the Markov blanket of Y, enclosed by the blue square.
The node S is the spurious variable for Y, while the nodes N and M are not related to the target.

fathers buying diapers for childcare while also buying beer to alleviate stress. Therefore, simply
increasing the availability of diapers or beer will not causally improve the demand for the other (see
also Fig. 1(left)).

Furthermore, the number of variables causally relevant to the outcome of interest is often considerably
smaller than the number of variables included in estimating a causal graph (see Fig. 1(right)). For ex-
ample, while an individual’s genome may encompass 4 to 5 million single nucleotide polymorphisms
(SNPs), only a limited number of non-spurious genes or proteins are found to systematically regulate
the expression of the phenotype of interest [e.g., 6]. Similarly, in natural language processing tasks,
excluding spurious embeddings such as writing style and dialect can enhance model accuracy and
downstream prediction performance [e.g., 10]. Thus, a more parsimonious causal graph is required to
unveil the necessary and sufficient causal dependencies.

In this work, we focus on learning necessary and sufficient causal graphs (NSCG) that only contain
causally relevant variables (which we term causal features) for an outcome of interest, offering a
compact representation of causal graphs for a target outcome. Our contributions are three-fold.

e We propose the notion of NSCG (see an illustration inside the green solid square in the right panel
of Fig. 1). The key idea is to leverage the marginal and conditional probabilities of causation (POC)
to systematically characterize the importance of variables (a.k.a. features).

o We establish theoretical properties and relationships between POC and the natural causal effects of
features, and derive the conditions under which they are equivalent, with lower bounds provided for
identification. The natural causal effects of features have explicit forms under parametric models such
as the linear structural equation model, enabling convenient estimation of the POC from observed
data.

e To select necessary and sufficient features in causal graphs, we propose a necessary and sufficient
causal structural learning algorithm (NSCSL) to learn an NSCG containing all necessary and sufficient
causes without unnecessary spurious features. This enables feature selection for causal discovery.

The proposed method provides concise explanations of causal relationships with high-dimensional
data (i.e., with a large number of variables). Empirical studies in simulated datasets show that NSCSL
outperforms existing algorithms in distilling relevant subgraphs for outcomes of interest; NSCSL can
also identify important quantitative trait loci for the yeast and the causal protein signaling network
for single cell data, as demonstrated in real data analyses.

1.1 Related Works

The literature on causal structural learning can be broadly classified into three classes. The first
class of methods focuses on using local conditional independence tests to identify the causal skeleton
and determine the direction of the edges, such as the PC algorithm [35; 14; 36]. The second class
of methods uses functional causal models with additional assumptions about the data distribution,
including ICA-LiNGAM [34] and the causal additive model (CAM) [4]. The third class, the score-
based methods, includes greedy equivalence search (GES) [7; 27; 11] and acyclicity optimization
methods [46]. Refer to [44; 48; 17; 5; 47; 41] for additional cutting-edge causal structural learning
methods. Yet, these works do not consider the necessity of the variables incorporated in the causal
graph, i.e., whether the variables are causally relevant to the outcome. Consequently, such algorithms
can often produce a redundant or potentially misleading graph, as depicted in Fig. 1 (right).



Our work also links to feature selections [see an overview in 16]. Despite the extensive literature,
only a few studies have examined variable selection in causal graphs. One notable exception is
Aliferis et al. [1], which uses the concept of the Markov blanket to construct a local causal graph
for the target variable of interest. In this context, a Markov blanket of a variable Y is the minimal
variable subset conditioned upon which all other variables become probabilistically independent of Y.
Consequently, their algorithm uncovers only direct parents or children in the identified causal graph
(such as the blue dotted square in the right panel of Fig. 1) and thereby overlooks the ancestors that
contain atavistic information and indirectly influence the outcome. Recent works [18; 19] consider a
minimal sufficient action set in bandits. Yet, these methods [also see 12; 13] rely on a true or known
graph. We instead propose to simultaneously learn the causal graph and select the causal features.

Lastly, our work is connected to the body of research on probability of causation [e.g., 22; 39; 45],
which delineates the necessity and sufficiency of features for the outcome of interest. Recently, Wang
& Jordan [42] introduced this concept into representation learning, formulating the non-spuriousness
and efficiency of representations by generalizing the probabilities of causation to accommodate low-
dimensional representations of high-dimensional data. However, these works primarily concentrate
on the identification of probabilities of causation, assuming that the causal graph among the variables
under consideration is known with causally independent features. We address this gap in our work by
incorporating the notion of probabilities of causation into learning complex causal graphs.

2  Framework

Graph terminology. Consider a graph G = (X, Dx ) with a node set X and an edge set D x that
encompasses all edges in G for nodes X. A node Xj; is said to be a parent of X; if there is a directed
edge from X; to X, i.e., X; is a direct cause of X;. A node X}, is said to be an ancestor of X if
there is a directed path from X, to X; regulated by at least one additional node X; for i # k and
1 # j,i.e., X is an indirect cause of X;. Let the set of all parents/ancestors of node X; in G as
PAx,(G). A directed graph G that does not contain directed cycles is called a directed acyclic graph
(DAG). The structural causal model (SCM) characterizes the causal relationship among | X | = d
nodes via a DAG G and noises ex = [ex,, - ,ex,] ' suchthat X; := h;{PAx,(G), ex, } for some
unknown h; andi =1,--- ,d.

Notations and assumptions. Denote O = (Z,Y) as a collection of nodes that contains features
Z =[Z, - ,Zy)" € Z C RP and a discrete outcome of interest as Y € £ = {y1,--- ,y;} for [
different values. Here, the features can be intervened, such as treatment and mediators. Let Y (Z = z)
be the potential value of Y that would be observed after setting variable Z as z. This is equivalent
to the value of Y by imposing a ‘do-operator’ of do(Z = z) as in Pearl et al. [23]. Similarly, one
can define the potential outcome, Y (Z; = z;), by setting an individual variable Z; as z;, while
keeping the rest of the model unchanged. Suppose there exists an SCM that characterizes the causal
relationship among O, with its DAG as Go. A notation and abbreviation table is provided in App. A.
Following the causal inference literature [see e.g., 29; 22; 23; 42], we assume:

(A1). Consistency: Z =z« Y(Z=2)=Y,Vz€ Z.
(A2). Ignorability: ()Y (Z =2) L Z,Vze€ Z; ()Y (Z; =z) L Z;|PAzuyv(Go), Yz € Z;.

Here, (A1) implies that the outcome observed for each unit under study with features as z is identical
to the outcome we would have observed had that unit been set with features Z = z. In addition,
since we include as many confounders as possible, the ignorability assumption in (A2), also known
as the no unmeasured confounderness assumption, is satisfied.

3 Necessary and Sufficient Causal Graphs

We care about a subset or a function of Z, denoted as X = [X1,--- , X,]" (of d dimension with
possibly d < p), which indeed captures the causal relationship between Z and Y. To be specific,
let an SCM for causal nodes V' = (X,Y) with its DAG as Gy = (V,Dy)andey asad+ 1
dimensional independent noise, to characterize the causal relationship between X and Y. Let Pg
be the mass/density function for an SCM with its DAG G. Following the causal (or disentangled)
factorization in the causal graphical model [23], we define the sufficient causal graph as follows.

Definition 3.1. (Sufficient Graph) The graph Gy is a sufficient causal graph to capture the causal
relationship among Z and Y with X C Z or X = f(Z) (where f is within a countable
or Vapnik-Chervonenkis (VC) class) if Pg, {Y[PAy (Gv )} [Ix,epay (gv) Pov {XilPAX, (Gv)}

=Pgo{Y[PAY(Go)} 12, epay (go) Poo{ZilPAZ, (Go)}-



Here, Def. 3.1 refers to a sub-structure Gy, (from the whole graph Go) containing all directed edges
or paths towards Y, making it sufficient to describe how Y depends on all its ancestors. Then, the
causal graph Gy is said to be necessary and sufficient if it satisfies the following definition.

Definition 3.2. (Necessary and Sufficient Graph) Suppose Gy satisfies Def. 3.1, then Gy is a
necessary and sufficient causal graph to capture the causal relationship among Z and Y if for
any true subset W of X, i.e., W C X or W = g(X) (where g is within a countable or VC
class), with U = (W,Y), we have Pg, {Y[PAy (Gv)} IIx,cpa, (gv) Pov {XilPAX, (Gv)} #
Po {Y[PAY (Gu)} I, epay (6r) Pou {WilPAw, (Gu )}, where Gy is the causal graph for U.

Therefore, by Def. 3.2, we can further identify the minimal sub-structure Gy which includes only all
directed edges or paths leading to Y. The goal is to learn such a necessary and sufficient causal graph
(NSCG) Gy from the observed data denoted as {o/) = (2\9), y()))}, <<, with sample size n, by

identifying the latent causal features X . Denote the resulting estimated graph as Gy, .

4 Probability of Causation and Causal Effects

Obtaining an NSCG Gy directly based on Def. 3.2 poses several challenges, as the latent causal
features X driving the causal graph remain unknown. A naive approach is to search all different
combinations of Z for a candidate of X such that Def. 3.2 holds, which yields a complexity of O(p?).
This motivates us to assess the necessity and sufficiency of features in determining the outcome by
introducing the concepts of probabilities of causation and causal effects, which will be elaborated on
and interconnected in this section.

4.1 Probabilities of Causation and Lower Bounds

The probabilities of a feature being necessary and sufficient, known as the probability of causation
(POC), have been proposed and studied [see 22; 39; 42]. Specifically, the probability of necessity
and sufficiency (PNS) of feature Z is first defined in Tian & Pearl [39] as follows.

Definition 4.1. PNS in Tian & Pearl [39] with a univariate binary feature Z:

PNS=P{Y(Z #2)#y,Y(Z=2) =y} by P(Z =2,Y =y)- PN+P(Z # 2,Y # y)-PS,
y

where the probability of necessity (PN) is PN = P{Y(Z # z) # y|Z = 2,Y = y}, and the

probability of sufficiency (PS) is PS =P{Y(Z = z) = y|Z # 2,Y # y}.

The second equation in Def. 4.1 holds under (A1) [see details in 22; 39]. The PN score reflects the
necessity of Z by evaluating the probability of the outcome becoming worse if revising the features
given the good outcome observed. Similarly, the PS score indicates the sufficiency of Z by evaluating
the probability of the outcome becoming better if changing the features given the bad outcome
observed. Therefore, the PNS score shows the causal importance of the features by combining
necessary and sufficient properties. The above definition can be generalized to multivariate cases for
nonbinary features [see e.g., 42] to quantify the POC of an individual feature Z;. Let Z_; = Z \ Z;
be the set of complementary variables of Z;. In the following, we consider two different POCs for Z;
by extending the work of Wang & Jordan [42].

Definition 4.2. Marginal POC (M-POC) for Z;:

M-POC;(y) = P{Y(Z; # z:) # 4, Y (Zi = z;) = y}.
Definition 4.3. Conditional POC (C-POC) for Z;:

C-POC,(y) = P{Y(Z7 7é Zis Z_,; = Z_i) 7é y,Y(ZZ = Zi, Z_i = Z_i) = y}

We introduce the marginal POC (M-POC) as a novel quantity in the literature to summarize the overall
causal importance of an individual feature in determining the outcome’s value. The conditional POC
(C-POC) in Def. 4.3 corresponds to the conditional PNS in Wang & Jordan [42], which quantifies the
likelihood of an individual feature being a direct and significant cause of the outcome while holding
other features constant. As per Section 9.2.3 in Pearl et al. [22], the PNS in Def. 4.1 is not estimable
unless additional conditions (monotonicity) are specified. To alleviate such a condition for identifying
Defs. 4.2 and 4.3, we derive the lower bounds for the proposed POCs as follows.

Theorem 4.4. (Lower Bound of Probabilities of Causation) Suppose (Al) and (A2) hold. Then
M-POC;(y) =2 P(Y = y|Z; = z;) = P(Y =y|Z; # z),
C-POCL(y) > P(Y = y|Zl = Z, Z—i = Z_,‘) — ]P)(Y = y|Zz 75 Ziy Z—i = Z_i).



Table 1: Causal effects from the customer being a new father or not (X ) and diaper purchasing
(X p) on beer purchasing (X ), where wy,ws € (0, 1) with wy +ws = 1 and ¢ — 1, in the estimated

causal graph (X Bad TN Xp,and Xp - Xp 22y XB).

Variable Name Direct Effect  Total Effect

New Father (Xr) w1 wi+ows =1 (>ws)

Diaper (Xp) wa wo

The proofs of Thm. 4.4 are in App. D. The lower bound equality holds when an additional mono-
tonicity condition is imposed, with details in App. D. The results in Thm. 4.4 allow us to estimate the
lower bound of POC from observed data by learning the conditional probability of Y given various
combinations of confounders. This, in turn, aids in evaluating the significance of features, with details
provided in App. B. Yet, estimating these conditional probabilities of Y based on high-dimensional
features is very challenging [e.g., 32; 42], which motivates us to consider the corresponding expected
mean outcome given different combinations of the confounders.

4.2 Causal Effects and Connection to POCs

To connect the proposed POCs and facilitate the empirical estimation, we introduce the natural total
effect (TE) and natural direct effect (DE) for Z; by extending definitions in Pearl et al. [22].

Definition 4.5. Natural Causal Effects for Z;:
TE, =E{Y(Z;=2z+1)} —E{Y(Z; = )},
DE; =R{Y(Zi =2+ 1,Z_; = 2"} —R{Y(Z; = )},

where z(_z;) is the value of Z_; if setting do(Z; = z;).

The natural total effect (T'E;) can be understood as the marginal change in the outcome when
increasing Z; by one unit. Similarly, the natural direct effect (D E;) represents the conditional change
in the outcome when Z; is increased by one unit, with all other features held constant. Indeed, the
natural total and direct causal effects delineated in Pearl et al. [22] emerge as particular instances of
Def. 4.5 when examining a solitary treatment subject to intervention. By comparing Def. 4.5 with
Defs. 4.2 and 4.3, it is natural to establish the relationship between POCs and causal effects below.

Theorem 4.6. (Relation between POCs and Causal Effects) Define dp;(z;) = B{Y|Z; = z;} —
E{Y|Z; # zi} and 6¢c(z;) = B{Y|Z; = 2z, Z_; = z—;} —B{Y|Z; # 2;,Z_; = z_;}. Suppose
(Al)-(A2) hold, then

> yM-POCi(y) > 6u(z), Y yC-POCi(y) > bc(z),
yeL yeL

if Y is nonnegative. Further, if Z; is binary, we have

min{» " yM-POCi(y),|TEil} > 6u(zi),  min{)_ yC-POC;(y),|DEi|} > dc(z).
yeL yeL

The proofs of Thm. 4.6 can be found in App. D, with the lower bound equality holds when an
additional monotonicity condition is imposed. We can summarize the findings of Thms. 4.4 and 4.6
in two key aspects. First, the marginal and conditional POCs assess the likelihood of a feature being
spurious, while the absolute values of natural causal effects quantify the size of such a spurious effect
based on the magnitude of the outcome of interest. Both are lower bounded by the same quantity, that
is, the differences in expectations based on the corresponding POC, given non-negative outcomes and
binary features. With appropriate data processing, we can transform the outcome to be nonnegative,
and thus causal effects become a suitable substitute for POCs. Second, these two approaches exhibit
consistency under the monotonicity condition. The natural causal effects of features have explicit
forms under parametric models (see details in § 5.1), such as the linear structural equation model,
enabling convenient estimation of the necessity and sufficiency of features from observed data. This
section concludes with a toy example illustrating the identification of spurious features through the
proposed causal effects and the distinction between total and direct causal effects.

Example 4.7. (Recall: Beer and Diaper) Given the causal graph in Fig. 1(left), consider a linear
SCM for the customer being a new father or not (X ), diaper purchasing (X p), and beer purchasing
(XB): Xp =Xr +epand Xp = X + ep, where ep and ep are independent mean zero noises.



Since the true SCM is unknown, fitting a linear model Xp ~ w1 Xp + wsXp would result in
ambiguous coefficients wy,ws € [0, 1] with wy + we = 1. By fitting Xp ~ c¢Xr and obtaining ¢
close to 1, we have the estimated causal graph as X L Xp, and Xr - Xp L2, Xp. Based
on Def. 4.5, we estimate the corresponding causal effects in Table 1. It can be observed that the total
effect of Xr on Xp surpasses the total effect from X p, indicating the spurious nature of the diaper
purchasing, which should be removed to form the desired NSCG. Yet, using the direct effect may not
be able to distinguish their differences due to the high correlation between X and Xp if wy < wa.

5 Necessary and Sufficient Causal Structural Learning

In this section, we formally present how to learn NSCG. Based on Thms. 4.4 and 4.6, a simple
solution is to first use a pre-screening process to find necessary and sufficient features from Z that
achieve high scores of causation, and then estimate the causal graph among the selected nodes and
Y to approximate Gy . This approach works for general SCMs while may suffer from overfitting.
Instead of using such a two-step learning, we propose to learn necessary and sufficient features
and the causal graph simultaneously through a single-step optimization. To this end, in § 5.1, we
first introduce the structural equation model in order to provide the closed-form expressions of the
proposed causal quantities. The main algorithm based on causal effects is presented in § 5.2 for the
linear model, with the POC-based version available in App. B for the nonlinear model.

5.1 Structural Equation Model and Close Form of Causal Effects

Structural equation model. We define a selection function g that maps the feature set Z to a subset,
aiming to maintain good interpretability. Thatis, g : Z € R? — ¢(Z) € R? where d < p, and
we denote the i-th dimension of g(Z) as g;(Z). Following the causal structure learning literature
[35; 25; 46; 44, 48; 5], we assume the Markov and faithfulness conditions and consider a linear
structural equation model (LSEM) such that {g(Z), Y'} is characterized by the pair (B, €) as
G R R G
where Bisa (d + 1) x (d 4+ 1) weighted adjacent matrix that characterizes the causal relationship
among {g(Z),Y}, and € = [e,ey] " isad + 1 dimensional random vector of jointly independent
errors. Here, B consists of three components: (1). a d x d matrix By = {b; ; }1<i<d,1<j<a With
b; ; as the weight of the edge g;(Z;) — ¢,(Z;) if exists and b, ; = 0 otherwise; (2) a 1 x d vector
0 = [0y, - ,0,] for §; presenting the weight of the direct edge ¢;(Z) — Y;and 3). a(d+1) x 1
zero vector indicating the outcome of interest Y cannot be any parent of the features. Without further
assumptions, the model in (1) given a particular selector g can be identified only up to a Markov
equivalence class (MEC) [35; 25]. In the following, we focus on cases where the DAG can be
uniquely identifiable, such as LSEM with Gaussian noises of equal variance [35; 26; 24], and linear
model with non-Gaussian noise [34; 47]. See more details and extensions to MEC in App. C.1.

Close form and estimation of causal effects. We next provide the close forms of the causal effects
in Def. 4.5 under the model in (1). Recall that §; presents the weight of the direct edge g(Z); — Y.
According to (1) and Def. 4.5, we have

DE;(B;g) =06;.

The total causal effect can be quantified by the path method [see e.g., 43; 20]. Specifically, the
causal effect of g;(Z) on ¢;(Z) along a directed path from ¢;(Z) — ¢;(Z) in G can be calculated
by multiplying all edge weights along the path, under LSEM. Denote the set of directed paths that
starts with g;(Z) and ends with Y as m; = {g;(Z) — --- — Y} with the size as m;. Then the
causal effect of g;(Z) on Y through the directed path wgk) ={i,l1, - ,ls,d+ 1} € m; with length
T+ 1is PE{wi(k)} = iy b, (a+1), by the path method, where b; ; is the weight of the edge
9i(Z) — g;(Z) if it exists, and b; ; = 0 otherwise, for ¢, j € {1,--- ,d}, and by (411) = b1, as
the direct edge from g;_ (Z) to Y. Thus,

TE( Z PE{x™}.
k=1
Both TE; and DE; can be be explicitly calculated given a matrix B under a selector g. We denote their
estimates as TE and DE given the estimated matrix B and g.



5.2 Learning Algorithm based on Causal Effects

The primary algorithm based on causal effects comprises three steps that quantify two sources of loss
and learn the causal graph, specifically: loss of causal structural learning, loss of discovering causal
features, and minimizing the overall loss to learn NSCG based on data {0\) = (20, y))}1<;<,.

Step 1: Form the loss from causal structural learning. To estimate the matrix B in (1), we adopt
the acyclicity constraint [44; 46] as hy(B) = tr[(Ig41 + tB o B)*™!] — (d+ 1) = 0, where 141
is a d + 1-dimensional identity matrix, and tr(+) is the trace of a matrix and ¢ is a hyperparameter that
depends on the estimated largest eigenvalue of B. The first loss by the augmented Lagrangian is

Li(B,g,0,M[{0"}) = f(B,g.0|/{o"}) + A1 h1(B), )

where f(B, g,0|{0/)}) is some loss such as the least square error in NOTEARS [46] or the Kullback-
Leibler divergence in DAG-GNN [44] with parameters 6, and \; is the Lagrange multiplier. Other
causal structural leaning algorithms [see e.g., 35; 7; 34; 14; 4; 27; 48] can also be applied by
formulating the corresponding score or loss function.

Step 2: Constraints for causal relevance and causal identifiability. We next measure the causal
relevance of the selection function g by the natural causal effects. We convert the outcome Y to be
nonnegative. According to Thm. 4.6, we can avoid the estimation of POCs by using the related causal
effects in Def. 4.5 with their explicit expressions. This part of loss thus becomes

d d+1
L§* (B, g,7{0"}) = —Z |CE;(B; g)| + Z |bi,a+1] +7gl- 3)

i=1

Here, C/'EZ can either take the estimated D E; or the estimated T F; given the matrix B and g, as
detailed in § 5.1. The second term corresponds to the causal identification constraint on the last
column of B, requiring all elements to be zeros as in (1). This constraint restricts the causal structural
learning to a smaller class of DAGs. Finally, |g| denotes the number of selected nodes in g, with a
penalty ~y to control the complexity of the selector.

Step 3: Necessary and sufficient causal structural learning. Combining two sources of loss
functions in (2) with (3), leads to the objective as

min | Li(B, 9,0, \1[{09}) + aL§" (B, g,9/{o"})], “
»9

where « can be reviewed as a trade-off parameter between two loss functions. Next, we provide a
solution for (4) without tuning «.. Specifically, based on no unmeasured confounders in (A2), we can
calculate the highest causal effects that could be achieved given all variables without any penalty.
Denote the estimated highest absolute causal effects in data as 6*. The goal is to find a subset of Z
such that g(Z) achieves a similar level of necessity and sufficiency, i.e., the resulting score is close
to §*. Hence, we set the second loss as a constraint by comparing the overall causal effects of the
selected nodes with the highest reference over the entire observed feature space, i.e.,

hy(B;g) = &§* — Z|CE ,g|+Z|bl7d+1|,
=1

should be approaching O given a good selector g. This yields a new objective function as
min f(B,g,0{0"}) + Ml (B) + Asha(Bs g) + clha (B) + dlha(Bi g)|* +91gl. (5)

where A, is the Lagrange multiplier for the new constraint, and ¢ and d are penalty terms. To
minimize the loss in (5) and satisfy both k1 (B) — 0 and ho(B; g) — 0, we simultaneously update
A1 and A2 and increase c and d to infinity, by modifying the updating technique [see e.g., 46; 44] for
multiple constraints, with the class of functions g specified as the subset of Z and its penalty v as
the size of selected nodes in g. Here, the minimization can be solved using a black-box stochastic

optimization such as ‘Adam’ [15]. Denote the estimated matrix as ﬁ, based on which we can obtain
the estimated causal graph as Gv consisting of nodes g(Z). Finally, we name this proposed algorithm
as necessary and sufficient causal structural learning (NSCSL). The computational complexity of
NSCSL is provided in App. B.3. We next establish the consistency of estimated causal graphs below.
Theorem 5.1. Assume Model (1) holds with independent Gaussian error and equal variance. Suppose
the topological ordering of the true bounded matrix B is consistently estimated. Then the estimated
matrix B minimizing the loss in (5) converges to B with the probability going to 1 as n — oo.



Table 2: Comparison results across S1 to S3 under different sample sizes (n). Methods are evaluated
by FDR, TPR, and SHD, with the standard error (SE) reported for each metric, over 50 replications.

FDR+SE TPR+SE SHD+SE
Scenario Method ny (small)  no (large) nq (small) no (large) nq (small)  no (large)
S1 NSCSL-TE  0.094+0.03 0.02+0.01 0.95+0.02 1.00+0.00 0.64+0.20 0.14=+0.06
p=5 NSCSL-DE 0.08+0.03 0.02+0.01 0.954+0.03 1.00+0.00 0.724+0.20 0.14+0.06
ny; = 30 NOTEARS  0.39+0.01 0.34+0.00 0.96+0.02 1.00+0.00 2.56+0.14 2.02+0.01
ne =100 PC 0.53+0.02 0.53+0.01 0.474+0.05 0.414+0.01 3.12+0.11 3.20+0.07
ER Model LiNGAM 0.31£0.02 0.33+0.00 0.78+0.02 0.98+£0.01 2.30+0.10 2.00+0.00
S2 NSCSL-TE  0.10+0.03 0.02+0.01 1.00£0.00 0.994+0.01 0.38+0.14 0.12+0.06
p=>5 NSCSL-DE 0.124+0.04 0.01+£0.01 0.67+£0.04 0.504+0.00 1.00+0.12 1.02+0.01
ny = 30 NOTEARS  0.63+0.01 0.60+0.00 1.00£0.00 1.004+0.00 3.46+0.13 3.02+0.01
ny =100 PC 0.73£0.02  0.794+0.00 0.50+0.00 0.50+0.00 3.62+0.15 3.88+0.03
ER Model LiINGAM 0.62+0.01 0.60+0.00 0.98+0.02 1.00£0.00 3.184+0.09 3.00+0.00
S3 NSCSL-TE  0.10+0.02 0.01+£0.00 0.94+0.02 1.00+0.00 0.84+0.16 0.06+0.02
p=>5 NSCSL-DE 0.084+0.02 0.01+£0.00 0.84+0.03 0.81+0.00 1.30+0.14 1.00-0.00
ny =30 NOTEARS  0.11+0.02 0.01+£0.00 0.96+0.02 1.00+0.00 0.76+0.16 0.06-0.02
ny =100 PC 0.00£0.00  0.00+0.00 0.66+0.02 0.80+£0.00 1.68+0.12 1.00+0.00

ER Model LiNGAM 0.03+0.01  0.00+0.00 0.98+0.01 1.00£0.00 0.24£0.09 0.02+0.01

The proof and detailed conditions for Thm. 5.1 are provided in App. D, which align with those
commonly imposed in causal structural learning [e.g., 33]. Our proof follows similar strategies but
accounts for the extra penalty term from causal effects. Notice that the explicit forms of causal effects
under LSEM are linear combinations of elements of B. This implies our new regulation can similarly
vanish away as n goes to infinity.

6 Experiments

Experiment design. Scenarios are generated as follows. We consider the dimension of variables in
the graph as p = 5 in Scenarios 1 to 3 (S1 to S3), p = 20 in Scenario 4 (S4), and p = 50 in Scenario
5 (S5), to examine the scalability of NSCSL. For each scenario, the DAG that characterizes the causal
relationship among variables O = (Z,Y") is generated from the ErdGs-Reriyi (ER) model with an
expected degree as 2 for S1 to S3 and degree as 5 for S4 to S5. We also generate the graph from the
scale-free (SF) model for S5 with the degree of 5 to examine the robustness of the proposed method
under diverse synthetic graphs. Each edge is assigned positive weights. We set the last variable as
the outcome of interest Y, and generate the data based on LSEM by Z = BT Z + €, where € is a
random vector of jointly independent binary variables with equal probability taking value one or zero.
Thus, the outcome is nonnegative and discrete. In addition, we also include a nonlinear structural
equation model for S4 where O; := ¢;{PAo,(G)} + eo, and ¢;(x) = |2log(x + 1)]| where |z ]
rounds to nearest integer for z. In S1, the true causal graph contains one spurious node (indexed by
0) and three non-spurious nodes (indexed by 1, 2, and 3), as shown in sub-figures (a) of Fig. E.7, with
the associated true NSCG in sub-figures (b) of Fig. E.7. Moreover, we design a balanced setting with
half spurious variables and half non-spurious variables in S2, as depicted in Fig. E.8, and a baseline
setting without any spurious variables in S3, shown in Fig. E.9. Finally, S4 contains 2 non-spurious
variables with 17 spurious variables in Fig. E.10. The experiments are conducted on a Google Cloud
Platform virtual machine with 8 processor cores and 32GB memory.

Methods and benchmark specification. We apply the proposed NSCSL based on TE and DE as
the criteria of necessity and sufficiency, respectively, to capture the marginal and conditional causal
effect of the confounders. Note that we consider fully identifiable models in the experiments so that
it is meaningful to evaluate causal effects from the estimated graph. The underlying causal structure
learning algorithm is set to NOTEARS [46]. We also compare the proposed method against other
methods, including PC [35] and LiNGAM [34] for S1 to S5; DAG-GNN [44], GES with generalized
score [GSGES, 11], fast causal inference [FCI, 36], and the causal additive model [CAM, 4], for
all high-dimensional settings in S4 and S5. Here, we use a graph threshold of 0.3 (commonly used
in the literature [46; 44; 48; 5]) to prune the noise edges for a fair comparison. The training details
are provided in Table E.1. The true and estimated graphs with the associated matrix under different
approaches are illustrated in Figs. E.2 to E.6 and Figs. E.7 to E.11 in App. E for S1 to S4. The
comparison results across different sample sizes (n) are presented in Table 2 for S1 to S3, in Table 3
for S4 to S5 with linear ER model, in Table 4 for S4 with nonlinear ER model, and in Table 5 for
S5 with linear SF model. All the results are evaluated by false discovery rate (FDR), true positive



Table 3: Comparison studies under S4 to S5 under different sample sizes (n) and dimensions (p) with
the Erdés-Renyi (ER) model. Methods are evaluated by FDR, TPR, SHD, and runtime (seconds),
with standard errors (SE) reported for each metric, over 50 replications.

FDR+SE TPR+SE SHD+SE Time+SE
Scenario Method ny (small)  no (large)  ny (small)  no (large)  ny (small) ngy (large) ny (small) ngy (large)
S4 NSCSL-TE  0.11£0.02 0.00£0.01 1.00£0.00 1.00+0.00 0.86+0.24 0.04+0.01 10.8+0.3 56.2+1.1
p=20 NSCSL-DE  0.11£0.02  0.00+0.01  0.69+0.01 0.67+0.00 1.34+0.08 1.00£0.01 12.4+0.8 545+1.3
ny =100 NOTEARS 0.93+0.00 0.92+0.00 1.00£0.00 1.00+0.00 40.80+0.20  36.40+0.04  22.9+6.4 69.8+8.7
ny = 1000 PC 0.924+0.00 0.95+0.00 0.514+0.02 0.67+£0.00 19.084+0.17  33.34+£0.03  6.9+0.5 16.3+0.8

ER Model LiNGAM 0.92£0.00 0.93£0.00 0.994+0.01 1.00£0.00 33.00+0.20  37.10£0.02  8.1+0.5 24.6+0.6
Degree=5 DAGGNN  0.93£0.00 0.934£0.00 0.974+0.01 0.97+£0.00 41.34+0.19  40.10+£0.06  28.3°+43  39.12+7.2

GSGES 0.98+£0.01  0.98+£0.00 0.224£0.02 0.20+£0.01 43.20£0.26  45.70+£0.34  14.92+7.5  26.3249.1
FCI 0.98+0.01 0.99+0.00 0.104+0.02 0.06+£0.01 22.704+0.17  32.90£0.02  6.6+0.3 12.7£0.2
CAM 0.93+0.00 0.94+0.00 0.63+0.02 1.00+£0.00 29.80+0.38  40.30-+0.07 19.62+18.3  25.62423.2
S5 NSCSL-TE  0.03+0.01 0.02£0.01  0.86+0.03  0.93+0.01 2.18+0.13 1.58+0.07 110.14£3.9  21.12+12.1
p =50 NSCSL-DE = 0.024+0.02  0.01£0.01  0.2940.02  0.28£0.01  10.08+0.21 9.76+0.13 119.0£5.5  23.52+10.9
ny = 1000 NOTEARS 0.86+0.04 0.85+0.01 0.93+£0.03 0.92+0.01 79.20+1.40  77.12+0.53 128.348.2  26.92+15.1
ng = 3000 PC 0.96+£0.03 0.97+0.02 0.07£0.02 0.06£0.01 82.12+1.21  88.28%£1.63  20.9%0.5 359+£3.2
ER Model LiNGAM 0.86+0.02 0.864+0.01 0.974+0.02 0.99+0.01 86.12+1.20  85.70+0.84  43.1+6.3 145.3+£7.9
Degree=5 DAGGNN  0.8740.02 0.88+£0.01 0.93+£0.02 0.94+0.01 87.50+1.10  85.62+£0.96  49.32+£7.5  81.12£87.6
GSGES 0.89+0.03 0.93+£0.01 0.19+£0.03 0.12+£0.01 93.54+1.46  95.70+0.79  31.22+10.1 45.32+18.1
FCI 0.96+0.02 0.97+0.01 0.084+0.01 0.07£0.01 84.00+0.80  88.50+£0.60  14.31+0.8 17.7£0.5
CAM 0.93+£0.04 0.95+£0.02 0.66+0.03 0.67+£0.02 126.00+3.64 127.80+£2.06 28.424+31.7 75.62+63.9

rate (TPR), and the structural Hamming distance (SHD) to the true causal graph, with their standard
errors, over 50 replications. The average running time of these methods is also reported in Table 2 to
Table 5 to reflect the computational complexities. In addition, the sensitivity analyses concerning all
hyperparameters in Table E.1 are conducted using S4, as presented in Fig. 2.

Results and conclusion. NSCSL performs the best in discovering NSCG in S1, S2, S4, and S5, and
shows comparably best results in S3 (a setting without any spurious variables). To be specific, the
benchmark methods for causal structural learning aim to reveal causal relationships in the whole
graph (i.e., sub-figures (a) in Figs. E.2 to E.6), which contains spurious effects on the target outcome
Y. The proposed algorithm overcomes this drawback by purely identifying the true important causal
relationships (i.e., sub-figures (b) in Figs. E.2 to E.6). By comparing the sub-figures (c) and (d) in
Figs. E.2 to E.6 as well as Table 2 to Table 5, NSCSL-TE detects all necessary and sufficient causal
paths towards the outcome, while NSCSL-DE only extracts direct causal relationships between the
features and the outcome, resulting in a slightly lower TPR and slightly higher SHD than NSCSL-TE.
Furthermore, from Table 2 to Table 5, the results under the proposed algorithm approach the truth
more closely as the sample size increases in all scenarios, regardless of the underlying graph models
and data-generating process. In contrast, the benchmark methods all fail to discover NSCG in
the high-dimensional setting, exhibiting extremely high FDRs and SHDs. In addition, Table 3 to
Table 5 reveal that NSCSL is as fast as the quickest benchmarks such as PC, LINGAM, and FCI,
and significantly faster than others like DAGGNN, GSGES, and CAM. Our method’s integration of
treatment effects into the optimization adds efficiency and restricts the searching space, making it
practical and even beating NOTEARS in computation. The sensitivity analyses in Fig. 2 indicate that
our method remains robust to these parameters set within a reasonable range.

Real data analysis - Sachs et al. [30]. We conduct real data analysis using the benchmark data from
Sachs et al. [30]. To validate our method’s capacity to find the NSCG and align with Def. 3.2, we
designated the protein Akt as the target outcome. This designation ensures that NSCG exists (see Fig.
3) and that finding an NSCG is meaningful. Our method (NSCSL-TE) and seven baseline methods
were applied and evaluated against the true NSCG associated with the protein Akt. Table 6 shows
that our method achieves the best performance in finding the NSCG concerning the protein Akt.

Real data analysis - Brem & Kruglyak [2]. Furthermore, we apply NSCSL to gene expression
traits in yeast [2] using a dataset of 104 yeast segregants with diverse genotypes. The goal is to
identify genes, known as quantitative trait loci (QTLs), influencing the expression level (nonnegative)
of the genetic variant YER124C, a daughter cell-specific protein involved in cell wall metabolism.
Following a similar approach as in Chakrabortty et al. [6], we include 492 QTLs by filtering out
genes with missing or low variability in expression levels. The total sample size is 262. Given
the high-dimensional QTLs, constructing an NSCG with only causally relevant variables for the
outcome of interest is essential. We apply NSCSL-TE and compare it with all baseline methods. The
summarized results in Table 7 highlight our method’s ability to identify relevant genetic influencers



Table 4: Comparison studies under the nonlinear structural equa-

tion model for S4 over 50 replications. i
& 1.00
Scenario  Method FDR+SE TPR+SE  SHD+4SE  Time+SE O L ois 02 oas o3
S4 NSCSL-TE  0.03+0.01 0.834+0.01 0.60+£0.02  55.840.3 oo L1 penalty
p=20 NSCSL-DE  0.03+0.01 0.5040.01 1.60+0.02  56.8+0.2 200
n=1000 NOTEARS 0.9140.01 0.83+0.01 35.9040.04 56.5+0.7 %100 [
ER Model PC 0.9940.01  0.12+0.01 44.1240.03 15.740.2 0w m e w10
Degree=5 LINGAM  0.934+0.01 0.70+0.00 37.30+0.03 11.6£0.1 Maximum ascent steps
DAGGNN  0.94+0.01 0.8640.01 34.80+0.06 41.3249.8 3.00
GSGES 0.98+0.01 0.23£0.01 52.40+0.38 22.1247.5 820
FCI 0.9740.01 0.1340.01  33.80+0.06 12.6+0.3 000
CAM 0.9540.01  1.00+0.01 31.604+0.08 27.92+33.7 B8 IE7IES ES 1E4 163162
Tolerance level
3.00
. . 2 2.00
Table 5: Comparison studies under the scale-free (SF) model for Mol ioes e i e e )
S5 over 50 rep]ications, 1644 1646 1648 16410 1E+12 16414 1E+16
Dual updating limit
Scenario  Method FDR+SE TPR+SE  SHD=+SE Time+SE Figure 2: Sensitivity analyses.
S5 NSCSL-TE  0.02+0.02 0.7840.03 5.08+0.11 135.745.6
p=250  NSCSL-DE 0.0240.02 0.51+0.02 17.2040.35  147.0+6.3 P
n=1000 NOTEARS 0.88+0.04 0.7540.03 123.10£1.50 160.5+8.1 ' o
SF Model PC 0.9740.03 0.06+0.02 79.34+1.17  32.140.8 b phnek
Degree=5 LINGAM  0.914+0.02 0.98+0.01 212.00+5.12 117.746.3 hA PN
DAGGNN  0.92+0.02 0.854+0.02 203.50+7.80 57.3%°+13.6 x )
GSGES 0.96+0.03 0.10+0.03 98.34+2.15 35924135 e < VAR,
FCI 0.97+0.02  0.07£0.01 81.70+£1.40  15.7+1.1 PIP2 e L S
CAM 0.9840.04 0.24+0.03 218.00+8.15 37.12+53.6 ;;;A \‘
pakts473 |
o
Table 6: Real data results for the single-cell data by Sachs et al. pink b
[30], evaluated by total edges, correct edges, and SHD, based on Figure 3: The causal signaling
the true NSCG with respect to the protein Akt. network in Sachs et al. [30],

where the blue-colored

Method NSCSL NOTEARS PC LiINGAM DAGGNN GSGES FCI CAM .
sub-graph is the true NSCG

Total Edges 8 20 25 6 33 28 1 7 .

Correct Edges 4 2 2 1 4 2 21 for protein Akt (purple).

SHD 8 21 28 11 30 ) 2710

Table 7: Real data results for the yeast gene data, evaluated by total edges, the identified par-
ents/ancestors of the variant YER124C, and the edges towards YER124C.

Method NSCSL NOTEARS PC LiINGAM DAGGNN GSGES FCI CAM
Total Edges 11 25 22 15 35 27 22 33

# Parents/Ancestors of YER124C 8 8 6 4 8 7 5 7

# Edges towards YER124C 11 9 8 6 10 9 8 10

for the variant YER124C without contamination by irrelevant genes. The estimated causal graph
and causal effects as well as more detailed analyses are provided in App. E.2. These observations
align with findings from our simulation studies, further supporting NSCSL’s superiority in revealing
important causal features.

7 Limitations and Future Research

In this work, we introduced NSCSL that leverages causal effects/POCs to systematically assess feature
importance while learning a causal graph. By identifying a subgraph closely related to the outcome,
our method filters irrelevant variables, presenting a significant advancement in the field. Extensive
empirical evaluations on simulated and real-world data underscore NSCSL’s superior performance
over existing algorithms, including important findings on yeast genes and the protein signaling
network. However, this promising advancement is not without limitations. First, NSCSL, like most
existing causal structural learning methods, assumes no unmeasured confounders (A2) and the causal
Markov condition. These assumptions may not hold in practice, leading to biased causal effect
estimates and potential errors in the causal graph. Second, NSCSL employs absolute causal effects as
a substitute for POCs to facilitate estimation in high-dimensional settings. Although theoretically
consistent under certain conditions, examining the differences between these two methods in general
feature and outcome spaces is an area for future research.
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