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ABSTRACT

The progress in reinforcement learning algorithm development is at one of its
highest points starting from the initial study that enabled sequential decision mak-
ing from high-dimensional observations. Currently, deep reinforcement learning
research has had quite recent breakthroughs from learning without the presence
of rewards to learning functioning policies without even knowing the rules of the
game. In our paper we focus on the trends currently used in deep reinforcement
learning algorithm development in the low-data regime. We theoretically show
that the performance profiles of the algorithms developed for the high-data regime
do not transfer to the low-data regime in the same order. We conduct extensive
experiments in the Arcade Learning Environment and our results demonstrate that
the baseline algorithms perform significantly better in the low-data regime com-
pared to the set of algorithms that were initially designed and compared in the
large-data region.

1 INTRODUCTION

Reinforcement learning research achieved high acceleration upon the proposal of the initial study
on approximating the state-action value function via deep neural networks (Mnih et al., 2015). Fol-
lowing this initial study several different highly successful deep reinforcement learning algorithms
have been proposed (Hasselt et al., 2016b; Wang et al., 2016; Hessel et al., 2018; 2021) from target-
ing different architectural ideas to employing estimators targeting overestimation, all of which were
designed and tested in the high-data regime (i.e. two hundred million frame training).

An alternative recent line of research with an extensive of amount of publications focused on push-
ing the performance bounds of deep reinforcement learning policies in the low-data regime (Yarats
et al., 2021; Ye et al., 2021; Kaiser et al., 2020; van Hasselt et al., 2019; Kielak, 2019) (i.e. with
one hundred thousand environment interaction training). Several different unique ideas in current
reinforcement learning research, from model-based reinforcement learning to increasing sample ef-
ficiency with observation regularization, gained acceleration in several research directions based on
policy performance comparisons demonstrated in the Arcade Learning Environment 100K bench-
mark. However, we demonstrate that there is a significant overlooked assumption being made in
this line of research without being explicitly discussed. This implicit assumption, that is commonly
shared amongst a large collection of low-data regime studies carries a significant importance due to
the fact that these studies shape future research directions with incorrect reasoning; hence, influenc-
ing the overall research efforts put in for particular research ideas for several years following. Thus,
in our paper we target this implicit assumption and aim to answer the following questions:

• How can we theoretically explain the relationship between asymptotic sample complexity
versus the low-data regime sample complexity in deep reinforcement learning?

• How would the performance profiles of deep reinforcement learning algorithms designed
for the high-data regime transform to the low-data regime?

• Can we expect the performance rank of algorithms to hold with variations on the number
of samples used in policy training?

Hence, to be able to answer the questions raised above in our paper we focus on sample complexity
in deep reinforcement learning and make the following contributions:
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• We provide theoretical foundation on the non-transferability of the performance profiles of
deep reinforcement learning algorithms designed for the high-data regime to the low-data
regime.

• We theoretically demonstrate that the performance profile has a non-monotonic relation-
ship with the asymptotic sample complexity and the low-data sample complexity region.
Furthermore, we prove that the sample complexity of distributional reinforcement learning
is higher than the sample complexity of baseline deep Q-network algorithms.

• We conduct large scale extensive experiments for a variety of deep reinforcement learning
baseline algorithms in both the low-data regime and the high-data regime Arcade Learning
Environment benchmark.

• We highlight that recent algorithms proposed and evaluated in the Arcade Learning En-
vironment 100K benchmark are significantly affected by the implicit assumption on the
relationship between performance profiles and sample complexity.

2 BACKGROUND AND PRELIMINARIES

2.1 DEEP REINFORCEMENT LEARNING

The reinforcement learning problem is formalized as a Markov Decision Process (MDP) represented
as a tuple 〈S,A,P,R, γ, ρ0〉 where S represents the state space, A represents the set of actions, P
represents the transition probability distribution P on S × A × S, R : S × A → R represents the
reward function, and γ ∈ (0, 1] represents the discount factor. The aim in reinforcement learning is
to learn an optimal policy π(s, a) that maps state observations to actions π : S → ∆(A) that will
maximize expected cumulative discounted rewards.

R = Eat∼π(st,·)
∑
t

γtR(st, at, st+1), (1)

This objective is achieved by constructing a state-action value function that learns for each state-
action pair the expected cumulative discounted rewards that will be obtained if action a ∈ A is
executed in state s ∈ S.

Q(st, at) = R(st, at, st+1) + γ
∑
st

P(st+1|st, at)V(st+1). (2)

In settings where the state space and/or action space is large enough that the state-action value
function Q(s, a) cannot be held in a tabular form, a function approximator is used. Thus, for deep
reinforcement learning the Q-function is approximated via deep neural networks.

θt+1 = θt + α(R(st, at, st+1) + γQ(st+1, arg max
a

Q(st+1, a; θt); θt)

−Q(st, at; θt))∇θtQ(st, at; θt).

Dueling Architecture: At the end of convolutional layers for a given deep Q-Network, the dueling
architecture outputs two streams of fully connected layers for both estimating the state values V(s)
and the advantage A(s, a) for each action in a given state s.

A(s, a) = Q(s, a)−max
a
Q(s, a) (3)

In particular, the last layer of the dueling architecture contains the forward mapping

Q(s, a; θ, α, β) = V(s; θ, β) +
(
A(s, a; θ, α)−max

a′∈A
A(s, a′; θ, α)

)
(4)

where θ represents the parameters of the convolutional layers and α and β represent the parameters
of the fully connected layers outputting the advantage and state value estimates respectively.

Distributional Reinforcement Learning: The baseline distributional reinforcement learning algo-
rithm C51 was proposed by Bellemare et al. (2017). The projected Bellman update for the ith atom
is computed as

(ΦT Zθ(st, at))i =

N−1∑
j

[
1−
|[T zj ]vmax

vmin
− zi|

∆z

]1
0
τj(st+1,max

a∈A
EZθ(st+1, a)) (5)
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where zi = vmin + i∆z : 0 ≤ i < N represents the set of atoms in categorical learning, and the
atom probabilities are learnt as a parametric model

τi(st,max
a∈A

EZθ(st, a)) =
eθi(st,at)∑
j e
θj(st,at)

where ∆z :=
vmax − vmin

N − 1
(6)

Following this baseline algorithm Dabney et al. (2018b) proposed the QRDQN algorithm to learn
the quantile projection of the state-action value distribution

T Z(st, at) = R(st, at, st+1) + γZ(st+1, arg max
a∈A

Ez∼Z(st+1,at+1)[z]) (7)

with st+1 ∼ P(·|st, at) where Z ∈ Z represents the quantile distribution of an arbitrary value
function. Following this study Dabney et al. (2018a) proposed the IQN algorithm (i.e. implicit
quantile networks) to learn the full quantile function instead of learning a discrete set of quantiles as
in the QRDQN algorithm. The IQN algorithm objective is to minimize the loss function

L =
1

K

K∑
i=1

K′∑
j=1

ρδ(R(st, at, st+1) + γZδj ′(st+1, arg max
a∈A

Qβ(st, at))−Zδi(st, at)) (8)

where ρδ represents the Huber quantile regression loss, and Qβ =
∫ 1

0
F−1Z (δ)dβ(δ). Note that

Zδ = F−1Z (δ) is the quantile function of the random variable Z at δ ∈ [0, 1].

3 LOW-DATA REGIME VERSUS ASYMPTOTIC PERFORMANCE

The high-level message of our empirical results is that comparing the asymptotic performance of
two reinforcement learning algorithms does not necessarily give useful information on their relative
performance in the low-data regime. In this section we provide mathematical motivation for this
claim in the setting of finite-horizon MDPs with linear function approximation. In particular, a
finite horizon MDP is represented as a tuple 〈S,A,P,R,H〉 where S is the set of states, and A
represents the set of actions. For each timestep t ∈ [H] = {1, . . . ,H}, state s, and action a the
transition probability kernel Pt(st+1|st, at) gives the probability distribution over the next state, and
the rewardRt(st, at, st+1) gives the immediate rewards. A non-stationary policy π = (π1, . . . , πH)
induces a state-action value function given by

Qπt (st, at) = Rt(st, at, st+1) + Est∼Pt(st+1|st,at),at∼π

[ H∑
h=t+1

Rt(sh, πh(sh), sh+1)

∣∣∣∣st, at
]

(9)

where we let π(s) be the action taken by the policy π in state s, and the corresponding value function
Vπt (st) = Qt(st, π(st)). The optimal non-stationary policy π∗ has value function V∗t (st) = Vπ∗t (st)
satisfying

V∗t (st) = sup
π
Vπt (st). (10)

The objective is to learn a sequence of non-stationary policies πk for k ∈ {1, . . . ,K} while interact-
ing with an unknown MDP in order to minimize the regret, which is measured asymptotically over
K episodes of lengthH

REGRET(K) =

K∑
k=1

(
V∗1 (sk1)− Vπ

k

1 (sk1)
)

(11)

where sk1 ∈ S is the starting state of the k-th episode. In words, regret sums up the gap between
the expected rewards obtained by the sequence of learned policies πk and those obtained by π∗
when learning for K episodes. In the linear function approximation setting there is a feature map
φt : S ×A→ Rdt for each t ∈ [H] that sends a state-action pair (s, a) to the dt-dimensional vector
φt(s, a). Then, the state-action value function Qt(st, at) is parameterized by a vector θt ∈ dt so
that Qt(θt)(st, at) = φt(s, a)>θt.

Recent theoretical work in this setting Zanette et al. (2020) gives an algorithm along with a lower
bound that matches the regret achieved by the algorithm up to logarithmic factors.
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Theorem 3.1 (Zanette et al. (2020)). Under appropriate normalization assumptions there is an
algorithm that learns a sequence of policies πk achieving regret

REGRET(K) = Õ

( H∑
t=1

dt
√
K +

H∑
t=1

√
dtIK

)
, (12)

where I is the intrinsic Bellman error. Furthermore, this regret bound is optimal for this setting up
to logarithmic factors in dt,K andH whenever K = Ω((

∑H
t=1 dt)

2), in the sense that for any level
of intrinsic Bellman error I, there exists a class of MDPs where any algorithm achieves at least as
much regret on at least one MDP in the class.

Utilizing this theorem we can then prove the following proposition on the relationship between the
performance in the asymptotic and low-data regimes.
Proposition 3.2. For every 1 > α > β > 0, there exist two thresholds U > L > 1, and a class of
finite-horizon MDPs and feature maps φt each of dimension dt such that

1. Every algorithm receives regret at least REGRET(K) = Ω̃ (αK) after K ≤ L episodes.

2. There exists an algorithm receiving regret REGRET(K) = Õ (βK) after K ≥ U episodes.

Proof. Let I = β∑H
t=1

√
dt

and apply the lower bound of Theorem 3.1 with intrinsic Bellman error

I. Let L = O( 1
(α−β)2 (

∑H
t=1 dt)

2). Then after K episodes for K ≤ L, the regret of any algorithm
on the class of MDPs guaranteed by the theorem is at least

REGRET(K) = Ω̃

( H∑
t=1

dt
√
K +

H∑
t=1

√
dtIK

)
= Ω̃

( H∑
t=1

dt
√
K + βK

)

= Ω̃

(
(α− β)

√
K

(
1

α− β

H∑
t=1

dt

)
+ βK

)
≥ Ω̃ ((α− β)K + βK)

= Ω̃ (αK)

where the second equality follows from the choice of I, and the inequality from the fact that K ≤
L = O( 1

(α−β)2 (
∑H
t=1 dt)

2). Next fix any constant ε > 0 and let U = Ω((
∑H
t=1 dt)

2
1−2ε ). Then for

K ≥ U episodes the algorithm guaranteed by Theorem 3.1 achieves regret

REGRET(K) = Õ

( H∑
t=1

dt
√
K +

H∑
t=1

√
dtIK

)
= Õ

( H∑
t=1

dt
√
K + βK

)
≤ Õ

(
K1−ε + βK

)
= Õ (βK)

where the inequality follows from the bound K ≥ U = Ω((
∑H
t=1 dt)

2
1−2ε ).

Intuitively Proposition 3.2 shows that in the linear function approximation setting, the gap between
performance in the low-data regime (K ≤ L episodes) and the high-data/asymptotic regime (K ≥ U
episodes) can be arbitrarily large. Thus, comparisons between algorithms in the asymptotic/high-
data regime are not informative when trying to understand algorithm performance with limited data.

4 MEAN ESTIMATION VERSUS LEARNING THE DISTRIBUTION

To obtain theoretical insight into the larger sample complexity exhibited by distributional reinforce-
ment learning we consider the fundamental comparison between learning the distribution of a ran-
dom variable X versus only learning the mean E[X ]. In base distributional reinforcement learning
the goal is to learn a distribution over state-action values that has finite support. Thus, to get a fun-
damental understanding of the additional cost of distributional reinforcement learning, we compare
the sample complexity of learning the distribution of a finitely supported random variable with that
of estimating the mean.
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Proposition 4.1. Let X be a real-valued random variable with support on exactly k known values.
Further, assume |X | < 1 and let ε > 0. Any algorithm that learns the distribution P(X ) within total
variation distance ε requires Ω(k/ε2) samples, while there exists an algorithm to estimate E[X ] to
within error ε using only O(1/ε2) samples.

Proof. See appendix for the full proof.

Although Proposition 4.1 proves that distributional reinforcement learning has an intrinsically higher
sample complexity than that of standardQ-learning, it does not provide insights into the comparison
of an error of ε in the mean with an error of ε in total variation distance. Hence, the following
proposition demonstrates a precise justification of the comparison: whenever there are two different
actions where the true mean state-action values are within ε, an approximation error of ε in total
variation distance for the state-action value distribution of one of the actions is sufficient to reverse
the order of the means.

Proposition 4.2. Fix a state s and consider two actions a, a′. Let X (s, a) be the random variable
distributed as the true state-action value distribution of (s, a), and X (s, a′) be the same for (s, a′).
Suppose that E[X (s, a)] = E[X (s, a′)] + ε. Then there is a random variable Y such that

dTV (Y,X (s, a)) ≤ ε and E[X (s, a′)] ≥ E[Y].

Proof. Let τ∗ ∈ R be the infimum

τ∗ = inf{τ ∈ R | P[X (s, a) ≥ τ ] = ε} (13)

i.e. τ∗ is the first point in R such thatX (s, a) takes values at least τ∗ with probability exactly ε. Next
let the random variable Y be defined by the following process. First, sample the random variable
X (s, a). If X (s, a) ≥ τ∗, then output τ∗ − 1. Otherwise, output the sampled value of X (s, a).

Observe that the probability distributions of Y and X (s, a) are identical except at the point τ∗ − 1
and on the interval [τ∗,∞). Let µ be the Lebesgue measure on R. By construction of Y the total
variation distance is given by

dTV (Y,X ) =
1

2

∫
R

∣∣P[X (s, a) = z]− P[Y = z]
∣∣ dµ(z)

=
1

2

∣∣P[X (s, a) = τ∗ − 1]− P[Y = τ∗ − 1]
∣∣

+
1

2

∫
[τ∗,∞)

∣∣P[X (s, a) = z]− P[Y = z]
∣∣ dµ(z) =

ε

2
+
ε

2
= ε.

Next note that the expectation of Y is given by

E[Y] = ε(τ∗ − 1) +

∫
(−∞,τ∗]

zP[X (s, a) = z] dµ(z)

= ε(τ∗ − 1) +

∫
R
zP[X (s, a) = z] dµ(z)−

∫
(τ∗,∞]

zP[X (s, a) = z] dµ(z)

≤ ε(τ∗ − 1) + E[X (s, a)]− ετ∗

= E[X (s, a)]− ε

where the inequality follows from the fact that X takes values larger than τ∗ with probability ε.

To summarize, Proposition 4.2 shows that, in the case where the mean state-action values are within
ε, unless the state-action value distribution is learned to within total-variation distance ε, the incorrect
action may be selected by the distributional reinforcement learning policy. Therefore, it is natural
to compare the sample complexity of learning the state-action value distribution to within total-
variation distance ε with the sample complexity of simply learning the mean to within error ε, as is
done in Proposition 4.1.
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5 SAMPLE COMPLEXITY WITH UNKNOWN SUPPORT

The setting considered in Proposition 4.1 most readily applies to the base distributional reinforce-
ment learning algorithm C51, which attempts to directly learn a discrete distribution with known
support in order to approximate the state-action value distribution. However, further advances in
distributional reinforcement learning including QRDQN and IQN do away with the assumption
that the support of the distribution is known. This allows a more flexible representation in or-
der to more accurately represent the true distribution on state-action values, but, as we will show,
potentially leads to a further increase in the sample complexity. The QRDQN algorithm mod-
els the distribution of state-action values as a uniform mixture of N Dirac deltas on the reals i.e.
Z(s, a) = 1

N
∑N
i=1 δθi(s,a), where θi(s, a) ∈ R is a parametric model.

Proposition 5.1. Let N > M ≥ 2, ε > M
4N , and θi ∈ R for i ∈ [N ]. The number of samples

required to learn a distribution of the form Z = 1
N
∑N
i=1 δθi to within total variation distance ε is

Ω
(M
ε2

)
.

Proof. Let M ≥ 2 and D = {1, 2, · · · ,M} ⊆ R. First we will show that any distribution p(z)
supported on z ∈ D is within total-variation distance k

4N of a distribution of a random variable of
the form Z = 1

N
∑N
i=1 δθi for numbers θi ∈ D. Indeed we can construct such a distribution as

follows. First let p̃(z) be the rounded distribution obtained by rounding each probability p(z) to the
nearest integer multiple of 1

N . The total variation distance between p(z) and p̃(z) is given by

1

2

M∑
z=1

|p(z)− p̃(z)| ≤ 1

2

M∑
z=1

1

2N
≤ M

4N
. (14)

Next partition the set of θi into M groups G1,G2, . . . ,GM, where group Gz has size N p̃(z) (this
size is an integer by construction of p̃). Finally, for each θi ∈ Gz assign θi = z. Thus for Z =
1
N

∑N
i=1 δθi we have for each z ∈ D

P[Z = z] =
1

N

N∑
i=1

1[θi = z] =
1

N
|Gz| = p̃(z). (15)

Therefore, any distribution p(z) can be approximated to within total variation distance M4N by a
distribution Z of the prescribed form. Thus, by the sample complexity lower bounds for learning a
discrete distribution with known support, for any ε > M

4N at least Mε2 samples are required to learn a
distribution of the form Z = 1

N
∑N
i=1 δθi .

Depending on the choice of parameters, the lower bound in Proposition 5.1 can be significantly
larger than that of Proposition 4.1. For example if the desired approximation error is ε = 1

8 one can
takeM = N

2 . In this case if the value of k in Proposition 4.1 satisfies k = o(N ), then the sample
complexity in Proposition 5.1 is asymptotically larger than that of Proposition 4.1.

6 LARGE SCALE EXPERIMENTAL INVESTIGATION

The experiments are conducted in the Arcade Learning Environment (ALE) (Bellemare et al., 2013).
The DoubleQ-learning algorithm is trained via Double DeepQ-Network (Hasselt et al., 2016a) ini-
tially proposed by van Hasselt (2010). The dueling algorithm is trained via Wang et al. (2016).
The prior algorithm refers to the prioritized experience replay algorithm proposed by Schaul et al.
(2016). The distributional reinforcement learning policies are trained via the C51 algorithm, IQN
and QRDQN. To provide a complete picture of the sample complexity we conducted our exper-
iments in both low-data, i.e. the Arcade Learning Environment 100K benchmark, and high data
regime, i.e. baseline 200 million frame training. All of the results are reported with the standard
error of the mean in all of the tables and figures in the paper. The experiments are run with JAX
(Bradbury et al., 2018), with Haiku as the neural network library, Optax (Hessel et al., 2020) as
the optimization library, and RLax for the reinforcement learning library (Babuschkin et al., 2020).
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Alien Amidar Assault Asterix

BankHeist ChopperCommand Hero JamesBond

Kangaroo CrazClimber MsPacman FrostBite

RoadRunner Seaquest UpNDown Qbert

Figure 1: The learning curves of Alien, Amidar, Asterix, BankHeist, ChopperCommand, Hero,
CrazyClimber, JamesBond, Kangaroo, MsPacman, FrostBite, Qbert, RoadRunner, Seaquest and
UpNDown with dueling architecture, C51, IQN and QRDQN algorithms in the Arcade Learning
Environment with 100K environment interaction training. See appendix for the full learning curves.

More details on the hyperparameters and direct references to the implementations can be found in
the appendix. Note that human normalized score is computed as follows:

ScoreHN =
Scoreagent − Scorerandom

Scorehuman − Scorerandom
(16)

Figure 1 reports learning curves for the IQN,QRDQN, dueling architecture and C51 for every MDP
in the Arcade Learning Environment low-data regime 100K benchmark. These results demonstrate
that the simple base algorithm dueling performs significantly better than any distributional algo-
rithm when the training samples are limited. For a fair, direct and transparent comparison we kept
the hyperparameters for the baseline algorithms in the low-data regime exactly the same with the
DRQICLR paper (see appendix for the full list and high-data regime hyperparameter settings). Note
that the DRQ algorithm uses the dueling architecture without any distributional reinforcement learn-
ing. One intriguing takeaway from the results provided in Table 1 and the Figure 41 is the fact that
the simple base algorithm dueling performs 15% better than the DRQNeurIPS implementation, and
11% less than the DRQICLR implementation. Note that the original paper of the DRQICLR algorithm
provides comparison only to data-efficient Rainbow (DER) (van Hasselt et al., 2019) which inher-
ently uses distributional reinforcement learning. The fact that the original paper that proposed data
augmentation for deep reinforcement learning (i.e. DRQICLR) on top of the dueling architecture did
not provide comparisons with the pure simple base dueling architecture (Wang et al., 2016) resulted
in inflated performance profiles for the DRQICLR algorithm.

More intriguingly, the comparisons provided in the DRQICLR paper to the DER and OTR algorithms
report the performance gained by DRQICLR over DER is 82% and over OTR is 35%. However, if a

1DER2021 refers to the re-implementation with random seed variations of the original paper data-efficient
Rainbow (i.e. DER2019) by van Hasselt et al. (2019). OTR refers to further implementation of the Rainbow al-
gorithm by Kielak (2019). DRQNeurIPS refers to the re-implementation of the original DRQ algorithm published
in ICLR as a spotlight presentation with the goal of achieving reproducibility with variation on the number of
random seeds (Agarwal et al., 2021).
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Median Mean 20th Percentile

Median Mean 20th Percentile

Figure 2: Up: Human normalized median, mean and 20th percentile results for the dueling algorithm,
C51, IQN and QRDQN in the Arcade Learning Environment 100K benchmark. Down: Human
normalized median, mean, and 20th percentile results for the dueling algorithm, C51, IQN and
QRDQN in the high-data regime towards 200 million frame.

Table 1: Large scale comparison of Q-based deep reinforcement learning algorithms with human
normalized mean, median and 20th percentile results in the Arcade Learning Environment 100K
benchmark for DQN (Mnih et al., 2015), deep Double-Q learning (Hasselt et al., 2016a), dueling
architecture (Wang et al., 2016), Prior (Schaul et al., 2016) C51, QRDQN and IQN.

Algorithms Human Normalized Median Human Normalized Mean 20th Percentile

DQN 0.0481±0.0036 0.1535±0.0119 0.0031±0.0032
Double-Q 0.0920±0.0181 0.3169±0.0196 0.0341±0.0042
Dueling 0.2304±0.0061 0.2923±0.0060 0.0764±0.0037
C51 0.0941±0.0081 0.3106±0.0199 0.0274±0.0024
QRDQN 0.0820±0.0037 0.2171±0.0098 0.0189±0.0031
IQN 0.0528±0.0058 0.2050±0.0123 0.0091±0.0011
Prior 0.0840±0.0018 0.2792±0.0123 0.0267±0.0042

direct comparison is made to the simple dueling algorithm as Table 1 demonstrates with the exact
hyperparameters used as in the DRQICLR paper the performance gain is utterly restricted to 11%.
Moreover, when it is compared to the reproduced results of DRQNeurIPS it turns out that there is
a performance decrease due to utilizing the DRQ algorithm over dueling architecture. Thus, the
fact that our paper provides foundations on the non-transferability of the performance profile results
from large-data regime to low-data regime can influence future research to have more concrete and
accurate performance profiles for algorithm development in the low-data regime.

Table 1 reports the human normalized median, human normalized mean, and human normalized 20th

percentile results over all of the MDPs from the 100K Arcade Learning Environment benchmark for
DQN, Double-Q, dueling, C51,QRDQN, IQN and prior. One important takeaway from the results
reported in the Table 1 is the fact that one particular algorithm performance profile in 200 million
frame training will not directly transfer to the low-data region. Figure 2 reports the learning curves
of human normalized median, human normalized mean and human normalized 20th percentile for
the dueling algorithm, C51, QRDQN, and IQN in the low-data region. These results once more
demonstrate that the performance profile of the simple base algorithm dueling is significantly better
than any other distributional reinforcement learning algorithm when the number of environment
interactions are limited.

The left and center plots of Figure 3 report regret curves corresponding to the theoretical analysis in
Proposition 3.2 for various choices of the feature dimensionality d and the intrinsic Bellman error
I. In particular, the left plot shows the low-data regime where the number of episodes K < 1000,
while the right plot shows the high-data regime where K is as large as 500000. Notably, the relative
ordering of the regret across the different choices of d and I is completely reversed in the high-data
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Regret in the Low-data Regime Regret in the High-data Regime Distributional vs Baseline Q
Figure 3: Left: Regret in the low-data regime. Center: Regret in the high-data regime. Right:
Distributional vs baseline Q comparison of algorithms that were proposed and developed in the
high-data regime in the Arcade Learning Environment in both high-data regime and low-data regime.

Sample Complexity of C51 Sample Complexity of IQN Overall Comparison

Figure 4: Left: Number of samples (i.e. environment interactions) required by the base distribu-
tional reinforcement learning algorithm to achieve the performance level achieved by the dueling
algorithm. Center: Number of samples required by IQN to achieve the performance level achieved
by dueling. Right: Overall comparison of algorithms recently developed in the low-data regime
ALE 100K benchmark to the dueling algorithm that were designed in the high-data region.

regime when compared to the low-data regime. Figure 4 reports results on the number of samples
required for training with the baseline distributional reinforcement learning algorithm to reach the
same performance levels achieved by the dueling algorithm for each individual MDP from the Ar-
cade Learning Environment low-data regime benchmark. These results once more demonstrate that
to reach the same performance levels with the dueling algorithm, the baseline distributional rein-
forcement learning algorithm requires orders of magnitude more samples to train on. As discussed
in Section 5, more complex representations for broader classes of distributions come at the cost of a
higher sample complexity required for learning.

One intriguing fact is that the original SimPLE paper provides a comparison in the low-data regime
of their proposed algorithm with the Rainbow algorithm which is essentially an algorithm that is
designed in the high-data region by having the implicit assumption that the state-of-the art perfor-
mance profile must transfer linearly to the low-data region. These instances of implicit assumptions
also occur in DRQICLR, CURL, SPR and Efficient-Zero even when comparisons are made for more
advanced algorithms such as MuZero.

7 CONCLUSION

In this paper we aimed to answer the following questions: (i) Do the performance profiles of deep
reinforcement learning algorithms designed for certain data regimes translate approximately lin-
early to a different sample complexity region?, and (ii) What is the underlying theoretical relation-
ship between the performance profiles and sample complexity regimes? To be able to answer these
questions we provide theoretical investigation on the sample complexity of the baseline deep rein-
forcement learning algorithms. We conduct extensive experiments both in the low-data region 100K
Arcade Learning Environment and high-data regime baseline 200 million frame training. Our results
demonstrate that the performance profiles of deep reinforcement learning algorithms do not have a
monotonic relationship across sample complexity regimes. The implicit assumption of the mono-
tonic relationship of the performance characteristics and the sample complexity regions that exists
in many recent state-of-the-art studies has been overly exploited. Thus, our results demonstrate that
several baseline Q algorithms are almost as high performing as recent variant algorithms that have
been proposed and shown as the state-of-the-art.
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A APPENDIX

A.1 RESULTS ON THE COMPLETE LIST OF GAMES FROM ARCADE LEARNING
ENVIRONMENT 100K BASELINE

Table 2 reports the average scores obtained by the human player, random player, baseline Q-
based algorithm dueling architecture, baseline distributional reinforcement learning algorithm C51,
QRDQN and IQN across all the games in the Arcade Learning Environment 100K baseline. These
results once more demonstrate that the baselineQ-based algorithm performs significantly better than
any distributional reinforcement learning algorithm as has also been explained in detail in Section 5.

Table 2: Average returns for human, random, dueling Wang et al. (2016), C51, QRDQN and IQN
across all the games in the Arcade Learning Environment 100K benchmark.

Games Human Random C51 QRDQN IQN Dueling

Alien 7127.7 227.8 547.16 509.57 330.81 705.58
Amidar 1719.5 5.8 78.41 55.70 74.98 199.31
Assault 742.0 222.4 465.30 314.58 488.55 503.82
Asterix 8503.3 210.0 475.90 367.32 286.26 705.16
BankHeist 753.1 14.2 22.81 21.53 18.17 243.19
BattleZone 37187.5 2360.0 2728.52 6238.27 3105.70 6880.37
Boxing 12.1 0.1 9.60 2.03 12.41 1.68
Breakout 30.5 1.7 11.35 16.50 15.09 8.28
ChopperCommand 7387.8 811.0 831.83 752.51 629.04 1313.90
CrazyClimber 35829.4 10780.5 71776.14 21366.42 22649.44 17039.44
DemonAttack 1971.0 152.1 789.09 198.01 1035.17 694.42
Freeway 29.6 0.0 20.42 5.98 19.37 5.93
FrostBite 4334.7 65.2 215.25 218.11 192.33 259.18
Gopher 2412.5 257.6 791.83 576.19 466.81 429.85
Hero 30826.4 1027.0 7097.42 1108.44 1322.63 8210.53
Jamesbond 302.8 29.0 43.85 108.71 26.23 296.46
Kangaroo 3035.0 52.0 301.01 120.60 294.46 1914.86
Krull 2665.5 1598.0 3744.04 2040.50 2319.74 2867.78
KungFuMaster 22736.3 258.5 6877.62 11574.02 1526.76 5367.90
Mspacman 6951.6 307.3 917.78 749.29 533.98 1355.21
Pong 14.6 -20.7 11.17 -7.49 -10.86 -4.20
PrivateEye 69571.3 24.9 -103.30 -6.32 33.83 100.00
Qbert 13455.0 163.9 528.30 590.05 582.72 1710.23
RoadRunner 7845.0 11.5 3993.34 400.59 1202.20 6031.80
Seaquest 42054.7 68.4 163.69 183.25 213.87 351.10
UpNdDown 11693.2 533.4 1970.28 1622.67 1552.27 3553.12

Figure 5 reports the learning curves of the complete list of the games in the Arcade Learaning Envi-
ronment 100K benchmark; in particular, for Alien, Amidar, Asterix, BankHeist, BattleZone, Boxing,
Breakout, ChopperCommand, Hero, CrazyClimber, JamesBond, Kangaroo, PrivateEye, MsPacman,
FrostBite, Qbert, RoadRunner, Seaquest, Pong, Gopher, DemonAttack, Krull, and UpNDown with
dueling architecture Wang et al. (2016), C51, IQN and QRDQN algorithms with 100K environ-
ment interaction training. The learning curves reported in Figure 5 demonstrate that the number of
samples required to obtain the performance level achieved via the simple base dueling architecture
is significantly higher for any distributional reinforcement learning algorithm. Note that the dis-
tributional reinforcement learning algorithm C51 represents the state-action value distribution as a
discrete probability distribution supported on 51 fixed atoms evenly spaced between a pre-specified
minimum and maximum value. In contrast, QR-DQN represents the value distribution as the uni-
form distribution over a larger number of atoms with variable positions on the real line. Thus,
QR-DQN is able to more accurately approximate a broader class of state-action value distributions.
Finally, IQN parameterizes the quantile function of the state-action value distribution via a deep
neural network, leading to a yet more flexible representation of the state-action value distribution.
As discussed in Section 5, more complex representations for broader classes of distributions come
at the cost of a higher sample complexity required for learning.
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Alien Amidar Assault Asterix

BankHeist BattleZone Boxing BreakOut

ChopperCommand DemonAttack Hero JamesBond

Kangaroo Krull CrazClimber MsPacman

FrostBite RoadRunner Seaquest UpNDown

Pong Gopher Qbert PrivateEye

Figure 5: The learning curves of Alien, Amidar, Asterix, BankHeist, BattleZone, Boxing, Breakout,
ChopperCommand, Hero, CrazyClimber, JamesBond, Kangaroo, PrivateEye, MsPacman, FrostBite,
Qbert, RoadRunner, Seaquest, Pong, Gopher, DemonAttack, Krull, and UpNDown with dueling ar-
chitecture Wang et al. (2016), C51, IQN and QRDQN algorithms in the Arcade Learning Environ-
ment with 100K environment interaction training.

A.2 REPRODUCIBILITY AND CONFIGURATION DETAILS

The hyperparameter settings of all of the algorithms in our paper, double-Q, dueling, QRDQN,
and IQN for the high-data region are exactly the same with the original papers that proposed these
algorithms in the high-data region. See the hyperparameter settings in Hasselt et al. (2016) for
double-Q, Wang et al. (2016) for dueling architecture, Bellemare et al. (2017) for C51, Dabney et
al. (2018a) for QRDQN, and Dabney et al. (2018b) for IQN.

For a fair and transparent comparison, we kept the hyperparameters exactly the same with the
DRQICLR paper for all of the baseline Q algorithms in the low-data region. Note that DRQ is
an observation regularization study; hence the hyperparameters in the DRQ paper are specifically
tuned for the purpose of the paper besides tuning for the Arcade Learning Environment 100K low-
data regime. We did not tune any of the hyperparameters for the baseline algorithms (i.e. dueling
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architecture and distributional reinforcement learning algorithms). Hence, it is even further possible
to conduct hyperparameter tuning and get better performance profile results with the simple baseline
dueling architecture. For the purpose of this paper we kept the hyperparameters exactly the same
with the DRQICLR paper. However, we would strongly encourage further research to conduct hyper-
parameter optimization to obtain better results from the baseline dueling architecture in the low-data
regime.

Table 3: Hyperparameter settings and architectural details for the dueling algorithm, double-Q learn-
ing, C51, QRDQN, and IQN in the low-data regime of the Arcade Learning Environment.

Hyperparameters Settings

Grey-scaling True
Observation down-sampling (84, 84)
Action repetitions 4
Frames stacked 4
Batch Size 32
Update Double-Q
Max Frames per episode 108000
Evaluation exploration epsilon 0.01
Min replay size for sampling 1600
Max gradient norm 10
Discount factor 0.99
Maximum absolute rewards 1
Training steps 100000
Evaluation steps 125000
Exploration epsilon decay frame fraction 0.0125
Gradient error bound 0.03125
Optimizer Adam
Replay period every 1
n-step length 10
Exploration ε-greedy
ε-decay 5000
Number of atoms 51
Number of quantiles 201
vmax 10

Q-Network channels 32,64,64
Q-Network filter size 8× 8, 4× 4, 3× 3
Q-Network stride (4, 4), (2, 2), (1, 1)
Q-Network hidden units 512

We have also tried the hyperparameter settings reported in the data efficient Rainbow (DER) paper
for C51, IQN and QRDQN in the low-data regime. The performance results are provided in Table
4 for the hyperparameter settings of DER. As can be seen, the hyperparameter settings of DRQICLR

gave better performance results also for C51, IQN and QRDQN in the low-data region. The results
in Table 4 also align with the claims of the DER paper in which there was not been extensive
hyperparameter tuning conducted to achieve the results provided, and it is possible to obtain better
results by further hyperparameter tuning.

Table 4: Human normalized mean, human normalized median, and human normalized 20th per-
centile results for the C51 algorithm, QRDQN, and IQN in the low-data regime of the Arcade
Learning Environment with the hyperparameter settings reported in the DER paper.

Algorithms Human Normalized Median Human Normalized Mean Human Normalized 20th Percentile

C51 0.0490±0.0038 0.1352±0.0057 0.0163±0.0029
QRDQN 0.0203±0.0033 0.0778±0.0101 -0.0012±0.0053
IQN 0.0202±0.0020 0.0590±0.0139 -0.0035±0.0031
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A.3 MEAN ESTIMATION VERSUS LEARNING THE DISTRIBUTION

Proposition A.1 (Proposition 4.1). Let X be a real-valued random variable with support on exactly
k known values. Further, assume |X | < 1 and let ε > 0. Any algorithm that learns the distribution
P(X ) within total variation distance ε requires Ω(k/ε2) samples, while there exists an algorithm to
estimate E[X ] to within error ε using only O(1/ε2) samples.

Proof. Learning a distribution with known discrete support of size k requires Ω(k/ε2) samples to
achieve total variation distance at most ε with constant probability (Canonne, 2020). On the other
hand, let X1, . . . ,Xn be independent samples of the random variable X and consider the sample
mean

X̄ =
1

n

n∑
i=1

Xi. (17)

The expectation is given by E[X̄ ] = E[X ] and the variance is σ2(X̄ ) = 1
nσ

2(X ). Further, since
|X | < 1 we have that σ2(X) < 1 and so σ2(X̄ ) ≤ 1

n . Hence, by Chebyshev’s inequality

P
[
|X̄ − E[X ]| > ε

]
≤ 1

ε2n
. (18)

Thus with n = O( 1
ε2 ) samples, X̄ is within ε of E[X ] with constant probability.
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