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ABSTRACT

Numerical solution of partial differential equations (PDEs) plays a vital role in
various fields of science and engineering. In recent years, deep neural networks
(DNNs) have emerged as a powerful tool for solving PDEs. DNN-based methods
exploit the approximation capabilities of neural networks to obtain solutions to
PDEs in general domains or high-dimensional spaces. However, many of these
methods lack the use of mathematical prior knowledge, and DNN-based methods
usually require a large number of sample points and parameters, making them
computationally expensive and challenging to train. This paper aims to introduce
a novel method named the Neural Evolutionary Kernel Method (NEKM) for solv-
ing a class of evolutionary PDEs through DNNs based kernels. By using operator
splitting and boundary integral techniques, we propose particular neural network
architectures which approximate evolutionary kernels of solutions and preserve
structures of time-dependent PDEs. Mathematical prior knowledge are naturally
built into these DNNs based kernels through convolutional representation with
pre-trained Green functions, leading to serious reduction in the number of param-
eters in the NEKM and very efficient training processes. Experimental results
demonstrate the efficiency and accuracy of the NEKM in solving heat equations
and Allen-Cahn equations in complex domains and on manifolds, showcasing its
promising potential for applications in data driven scientific computing.

1 INTRODUCTION

Partial differential equations (PDEs) find extensive applications in describing a wide range of phys-
ical and chemical phenomena, including but not limited to diffusion, heat transfer, fluid dynamics,
and other related processes. For general PDEs, obtaining exact solutions is usually not feasible,
while numerical approximations are often important alternatives for scientific discovery. Over the
past century, numerous numerical methods based on linear approximation theory have been devel-
oped to solve PDEs, including finite difference/finite element/finite volume methods, and spectral
method. However, these traditional methods usually suffer from the curse of dimensionality (E et al.,
2019). And establishing high-order and sufficiently stable numerical schemes are often difficult for
problems in complex geometries.

With the Universal Approximation Theorem of neural network by Cybenko (1989) as the theoretical
support, the ability of neural network in approximating function has been widely explored (E et al.,
2019; Barron, 1993; Shen et al., 2022; Zhang et al., 2022). As an alternative, deep neural networks
(DNNs)-based methods for solving PDEs have emerged as a promising approach to solving PDEs.
Many of these methods can bypass the need for explicit discretization of PDEs and learn maps
between the specific spaces which are helpful for finding solutions of PDEs. Numerous studies have
focused on the development of DNN-based approaches for solving a wide range of PDEs, which
will be discussed in detail in section 1.1.

When utilizing DNN-based methods for solving PDEs, there are several frequently encountered lim-
itations. Many of these methods necessitate sampling in a large domain covering feature space of the
equation, and achieving better solutions requires gathering more comprehensive information from a
large number of sample points. Furthermore, the selection of network architecture and optimizer can
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also impact the convergence of training process. In extremal cases, when we are dealing with PDEs
with oscillatory or even singular solutions, many of these DNN-based methods can even encounter
failure because the appearance of high-order derivatives may lead to instability in training (Yang &
Zhu, 2021; Lyu et al., 2022).

This paper presents the Neural Evolutionary Kernel Method (NEKM), a novel approach for solving
a class of evolutionary PDEs. The proposed method employs the idea of operator splitting to divide
numerical solution of a semi-linear PDE into two alternating steps: analytically (or numerically)
solving the corresponding nonlinear ordinary differential equation (ODE) to obtain a flow map and
numerically integrating the related linear PDE using a convolution kernel. This natually gives rise
to a convolution block with an appropriate activation function. By utilizing fundamental solution
of differential operator and boundary integral representation of solution in the given geometry, we
recast the approximation of the convolution block into training of neural networks with squared loss
over the boundary of the domain. The use of mathematical prior knowledge (such as fundamental
solutions and geometry information in boundary integrals) facilitates the approximation capability of
our proposed networks, leading to serious reduction in the number of training parameters. Moreover,
boundary integral representations only require sampling from the boundary that is one dimension
lower than the whole domain, which improves training efficiency. The proposed method provides a
generic neural network framework for solution to a class of semi-linear PDEs, which is applicable
to problems in complex domains.

1.1 RELATED WORKS

The utilization of neural networks for solving PDEs has garnered substantial interest in recent years
owing to its capability to provide precise and efficient solutions. While the concept of using neural
networks for solving PDEs dates back to Dissanayake & Phan-Thien (1994), the advent of the deep
learning era has revitalized research interest and facilitated innovation in this domain.

Numerous studies have suggested diverse neural network architectures, diverse loss functions and
even diverse activation functions for solving PDEs. For instance, the deep Galerkin method (DGM)
(Sirignano & Spiliopoulos, 2018) and the physics-informed neural networks (PINNs) (Raissi et al.,
2019) proposed a simple but general framework to solve PDEs using residuals of equations as their
losses. To minimize these losses, the DNNs are trained via stochastic gradient descent that employs
random sampling at spatial points in the domain. Boundary conditions are imposed either by an
explicit integration into the networks (Berg & Nyström, 2018) or through penalization in the losses.
The former approach needs reformulations of networks that may restrict their approximation perfor-
mance. The latter method relaxes boundary conditions with some penalty coefficients as hyperpa-
rameters, the tuning of which remains an art and needs further systematic studies. It is noteworthy
that the inclusion of high-order derivatives in the loss function can significantly compromise the
solution accuracy. To mitigate this issue, Lyu et al. (2022) proposed the deep mixed residual method
(MIM) in which high-order PDEs are recast as first-order PDE systems, therefore improving the
approximation accuracy. Instead of using the strong forms of PDEs, the deep Ritz method (Yu et al.,
2018) applies their weak formulations to convert PDEs into optimization problems, whose solutions
are naturally obtained using backward propagation within deep learning framework. Recently, the
convergence analysis of PINNs and Deep Ritz method has been investigated in detail (Lu et al.,
2022; Duan et al., 2022; Jiao et al., 2022). Many other DNN-based PDE solvers are also available
by using, for instance, minimax formulation (Zang et al., 2020), backward stochastic differential
equations (Han et al., 2018), operator splitting (Lan et al., 2023). Besides, learning differential oper-
ators has also attracted increasing interests in recent years (Lu et al., 2021; Li et al., 2021). Fourier
Neural Operator (FNO), regarded as a kernel operator method, offering an approach to learning
mappings between infinite-dimensional spaces of functions through neural networks. Rooted in the
principles of Fourier analysis, FNO can learn the resolution-invariant solution operator for PDEs.
This methodology presents a promising avenue in the exploration of kernel operator methods for
the effective representation and learning of complex mathematical operators, particularly within the
realm of partial differential equations.

In DNN-based methods, the representations of solution operators are quite crucial, as it will af-
fect the training efficiency and the stability of the methods. A recently proposed boundary inte-
gral network (BINet) (Lin et al., 2023b) presented a convolution representation of the solutions
to elliptic PDEs using Green’s functions. Specifically, given an elliptic PDE Lu(x) = 0 for
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x ∈ Ω and u(x) = g(x) on x ∈ ∂Ω, where Ω is a bounded domain in Rd and the operator
L possesses a known fundamental solution, BINet shows that the solution operator can be rep-
resented using the single and double layer potentials (S[h](x) := −

∫
∂Ω

G0(x, y)h(y)dsy and
D[h](x) := −

∫
∂Ω

∂G0(x,y)
∂ny

h(y)dsy with ny denoting out normal of ∂Ω at y) for some appro-
priate continuous function h defined on ∂Ω. Moreover, the density function h can be approximated
by a neural network that can be trained by comparing the solution with neural network involvement
and the boundary condition. This method was further implemented with general Green’s function
that can be learned using another neural network (Lin et al., 2023a), as detailed in Appendix A. It
is observed that the approximation accuracy of solution operators and the training efficiency can be
improved if more mathematical prior knowledge could be built into the network architectures or loss
functions.

1.2 SCOPE AND CONTRIBUTION OF THIS WORK

We summarize our contribution as follows:

• We proposed a new method called Neural Evolutionary Kernel Method (NEKM) for solv-
ing a class of time-dependent semi-linear PDEs. Our proposed method synergistically inte-
grates operator splitting, boundary integral techniques, and DNNs to establish evolutionary
blocks to approximate solution operators. The mathematical prior knowledge are built into
each block through a convolution operation and nonlinear activations, which are adapted
for the PDEs of concern. The boundary integral representation facilitates the lower regular-
ity assumption on the solutions and serious reduction of network parameters and sampling
points, leading to improved training efficiency. In addition, the proposed method can be
applied to problems in complex domains as well as on manifolds.

• This approach can be combined with other time discretization schemes that possess struc-
ture preserving properties, for example, energy stability.

• We proposed a method for calculating singular boundary integrals arising from fundamen-
tal solutions, improving the training efficiency.

• We tested our method on the heat equations, Allen-Cahn equations on complex domains
and manifolds, demonstrating its high accuracy and generalizability across different do-
mains.

2 METHOD

In this section, we detail our method in two parts: the main framework of NEKM and a variant that
possesses some properties. Let Ω ⊂ Rd be a bounded domain, we consider this evolutionary PDE
with initial condition and Dirichlet boundary condition (other conditions can also be handled by our
method with a little modification of the following method):

∂u
∂t = L̃u(x, t), x ∈ Ω, t ≥ 0

u(x, 0) = f(x), x ∈ Ω,

u(x, t) = g(x, t), x ∈ ∂Ω, t > 0,

(1)

where L̃ is an linear or semi-linear operator composed of differential operations (on spatial variables)
and other operations acting on the value of u. For example, L̃u = ∆u or L̃u = ∆u+ ϕ(u), here ϕ

is a scalar function. In fact, we need to impose some restrictions on the operator L̃ and function g :

Assumption 1. (1.1) L̃ could be written as L̃ = L + ϕ, where L is an linear operator that the
fundamental solution for I − kL(k ∈ R+) can be obtained and ϕ is a scalar function of u.

(1.2) g should be independent of time variable t. Otherwise, although our methods still work,
we need to perform neural network training at each time step.

2.1 MAIN FRAMEWORK

Denote τ ∈ R as the time step size, then we can use u0(x), u1(x), ..., un(x), ... to approximate
the solution u at time t = 0, t = τ, ..., t = nτ, ... . The first equation of 1 can be discreted as
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un+1−un

τ = L̃un+1, which can be further rewritten as (I − τ L̃)un+1 = un, here I is the identity
operator. We aim to determine a rule that reflects the transition from the solution at the current time
step to the solution at the next time step.

Depending on whether ϕ is equal to 0 or not, we can classify equation 1 into the following two cases.

Case 1: Linear Equations In this case, we want to solve PDE 1 with L̃ = L+ ϕ and ϕ = 0, here
L is an linear operator that the fundamental solution for I − kL(k ∈ R+) can be obtained.

Suppose un (n ∈ Z≥0) is known (since u0 = f is known and we can do induction), then un+1 is
the sum of solutions vn+1,1 and vn+1,2 of these two equations:{

(I − τL)vn+1,1 = un in Ω,

vn+1,1 = 0 on ∂Ω,
(2)

{
(I − τL)vn+1,2 = 0 in Ω,

vn+1,2 = gn+1 on ∂Ω,
(3)

where gn(x) := g(x, nτ). Due to the linearity of operator L, this decomposition is obvious.

To achieve high-accuracy solutions of equation 3 on arbitrary domains, we consider utilizing the
BINet method by Lin et al. (2023b) to solve it and get the solution vn+1,2. Suppose the fundamental
solution G0 corresponding to operator (I − τL) is known, then we have

vn+1,2(x) = −
∫
∂Ω

G0(x, y)Nn+1
S (y, θ)dsy, (4)

or

vn+1,2(x) = −
∫
∂Ω

∂G0(x, y)

∂ny
Nn+1

D (y, θ)dsy, (5)

where the neural network Nn+1
S (y, θ) or Nn+1

D (y, θ) for single or double layer potential is used to
approximated the density function.

And the solution vn+1,1 of equation 2 can be gained by the inhomogeneous term un and Green’s
function G as this form (see Appendix B for details):

vn+1,1(x) =

∫
Ω

G(x, y)un(y)dy. (6)

Notice that the network Nn+1
S or Nn+1

D in expression 4 or 5 may be different for different n, which
means we need to train a new neural network for each step. But if we impose the previously men-
tioned restrictions on the function g, we will discover the following wonderful fact. Since the bound-
ary conditions of equation 3 are uniform for different n, the neural network Nn+1

S or Nn+1
D are the

same for different n. This indicates that the rules to obtain un+1 from un are the same for every n:

un+1(x) = vn+1,1(x) + vn+1,2(x) =

∫
Ω

G(x, y)un(y)dy −
∫
∂Ω

G0(x, y)NS(y, θ)dsy, (7)

or

un+1(x) = vn+1,1(x) + vn+1,2(x) =

∫
Ω

G(x, y)un(y)dy −
∫
∂Ω

∂G0(x, y)

∂ny
ND(y, θ)dsy. (8)

This also means that if the Green’s function is known, we only need to train the neural network
once to obtain all the un+1 based on these uniform recursive formulas. If the Green’s function is
unknown, we only need to train another neural network one more time based on the BI-GreenNet
method by Lin et al. (2023a) to obtain the Green’s function of operator (I − τL) and domain Ω.

Remark.

• When the domain Ω is a square domain, We might be able to use some fast algorithms to
solve equation 2 instead of using the Green’s function.

• The details of BINet method and BI-GreenNet method can be found in Appendix A.
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• The numerical computation of the integrals 4 and 5 are not trivial. In general, for well-
known singularities such as those caused by functions like ln(x) and 1√

x
, we can directly

integrate or apply integration by parts. For singularities caused by unfamiliar functions, we
can employ an asymptotic expansion technique to transform them into well-known singular
functions for further processing. Here is an example to describe the detail implementation.

To compute equation 4 for G0(x, x
′) = 1

2πτK0(
|x−x′|√

τ
) (Kγ(x) is the modified Bessel

function of the second kind of order γ), which is the fundamental solution of L = I − τ∆,
we note the asymptotic series of K0 as following (Bender et al., 1999):

K0(x) = −(ln(
x

2
) + γ)I0(x) +

∞∑
n=1

(x2 )
2n

(n!)2
(1 +

1

2
+ ...+

1

n
), (9)

where γ is the Euler–Mascheroni constant with γ ≈ 0.5772156649... and I0 is the modified
Bessel function of the first kind of order 0 which can be regarded as:

I0(x) =
∞∑

n=0

(x2 )
2n

(n!)2
. (10)

For integral 4, the singularity happens when y nears x. For these y, we can approximate
the value of G0(x, y) according to some leading terms of K0 by equation 9. For d = 2, the
variable y on ∂Ω and near x can be parameterized by one parameter, and we just need to
deal singular integral such as

∫ ϵ

−ϵ
ln yh(y)dy where ϵ is a small positive number. This can

be handled as:∫ ϵ

−ϵ

ln yh(y)dy =

∫ ϵ

−ϵ

h(y)d(y ln y − y)

= h(y)(y ln y − y)|ϵ−ϵ −
∫ ϵ

−ϵ

h′(y)(y ln y − y)dy.

And this form has no singularity since y ln(y) − y → 0 as y → 0. For d ≥ 3, we can
parameterize y ∈ (x + ϵBd−1)

⋂
∂Ω by polar coordinates (with ϵ being a small positive

number), where Bn is the n-dimensional unit ball.

Case 2: Semi-Linear Equations In this case, we want to solve PDE 1 with L̃ = L+ϕ and ϕ ̸= 0,
here L is an linear operator that the fundamental solution for I − kL(k ∈ R+) can be obtained and
ϕ is a scalar function about u.

We will use the idea of operator splitting to transform equation 1 to a linear PDE and an equation
independent with the spatial differential, which can be regarded as an ordinary differential equation
(ODE). In our method, we will use the Strang’s scheme of operator splitting for equation 1. In
specifically, to solve PDE 1 in [tn, tn+1](n ∈ Z≥0, t

n := nτ) with a initial value un and boundary
condition g, we can consider the three equations:

∂u∗

∂t
= ϕ(u∗) for t ∈ [tn, tn+

1
2 ], with u∗(·, tn) = un, (11)

∂u∗∗

∂t
= L(u∗∗) for t ∈ [tn, tn+1], with u∗∗(·, tn) = u∗(·, tn+ 1

2 ), (12)

∂u∗∗∗

∂t
= ϕ(u∗∗∗) for t ∈ [tn+

1
2 , tn+1], with u∗∗∗(·, tn+ 1

2 ) = u∗∗(·, tn+1), (13)

where tn+
1
2 := tn + 1

2τ and u∗, u∗∗, u∗∗∗ are functions defined on Ω× [tn, tn+1]. Note that above
equations are needed to impose the appropriate boundary conditions given by function g. In this
way, we can use function u∗∗∗(·, tn+1) to approximate the function un+1, which we desired as a
numerical solution to PDE 1 at time t = (n+ 1)τ .

Note that the equations 11 and 13 can be integrated using standard ODE solvers either analytically
or numerically. This together with the numerical solution of equation 12 using the approach in case
1 implies an alternating process for approximating the semi-linear PDE 1.

The standard framework for NEKM is shown in Figure 1.

Unique features of the NEKM
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un ODE
Solver un,∗

Green’s Function Block
(hereinafter referred

to as ‘GF’ block)

Kernel Function Block
(hereinafter referred

to as ‘KF’ block)

vn,1

vn,2G0 or ∂G0(x,y)
∂ny

+ un,∗∗ ODE
Solver un+1 ... un+2 ...

Figure 1: Schematic sketch of NEKM.

• This method effectively prescribes a network structure through boundary integral convo-
lution by using prior knowledge from both fundamental solutions and domain geometries.
Furthermore, the Green’s function as a convolution kernel can be pre-trained once and
reused in subsequent evolutionary process, thereby saving the training cost and improve
the learning efficiency.

• Within each step, the kernel function is defined on ∂Ω, which is one-dimensional lower
than the whole domain. This makes the sampling and training processes more efficient.

• The boundary integral representations allow the network approximations of solutions on
complex domains with low regularity assumptions. This avoids unnecessary differentiation
of neural networks and facilitates their approximation accuracy. The boundary condition
is naturally incorporated and no additional hyper-parameters are needed. In particular, the
difficulties in the convergence of loss function and even the inability in training, which are
often suffered from by other derivative based methods, may be circumvented (Appendix
D.2).

2.2 NEKM COMBINED WITH OTHER TIME DISCRETIZATION SCHEMES

Due to the fact that our method only utilizes neural networks at the spatial level and is capable of
solving equations in the form of (I − aL)un+1 = f(un) (a is a constant numbers, L is a linear
operator and f is a scalar function) after time discretization, NEKM can be combined with vari-
ous time discretization schemes that possess desirable properties such as energy decay and energy
conservation, thereby preserving the properties inherent in such schemes.

For instance, many PDEs can simulate physical phenomena that possess energy stability properties
which mean the energy does not increase over time. Therefore, it is desirable for the numerical
solutions of PDEs to also exhibit this important characteristic. NEKM can be combined with many
energy-stable algorithms, such as convex splitting (Elliott & Stuart, 1993), invariant energy quadrati-
zation (IEQ) (Yang, 2016; Zhao et al., 2017), and scalar auxiliary variable (SAV) (Shen et al., 2019)
The specific implementation details can be referred to in section 3.2.

3 EXPERIMENTS

The heat equation is a common and important type of equation that describes the phenomenon of
heat conduction. The Allen-Cahn equation is one of the basic models for the diffuse interface ap-
proach that is developed to study phase transitions and interfacial dynamic in material science (Shah
& Yuan, 2011), which was originally introduced by Allen & Cahn (1979) to describe the motion of
anti-phase boundaries in crystalline solids. The Allen-Cahn equation is typically expressed in one
of these common forms: ut = ϵ∆u − 1

ϵF
′(u) or ut = ∆u − 1

ϵ2F
′(u), where ϵ is a small positive

number and the function F (u) = 1
4 (u

2 − 1)2. Hence, we choose these two kinds of PDEs as the
subjects of our numerical experiments. More numerical experiments can be found in Appendix D.

In the part of neural network, the fully connected neural networks (FCNNs) or residual neural net-
works (ResNets) are used to approximate the density function. Specifically, we will use ReLU
functions or tanh functions as the activation functions and Adam as the optimizer.

3.1 HEAT EQUATIONS

In this subsection, we consider the heat equation ut = ∆u which u is the function of x and t with
x ∈ Ω, with different Ω, initial and boundary conditions.

6



Under review as a conference paper at ICLR 2024

Rectangular Domain In this example, we set Ω = [0, π]2, t ∈ [0, 0.5], initial condition u(x, 0) =
sin(x1) sin(x2) + 1 and boundary condition u(x, t) = 1, x ∈ ∂Ω and t ∈ [0, 0.5] which has the
exact solution u(x, t) = e−2t sin(x1) sin(x2)+1. We use NEKM with the main framework to solve
it.

Firstly, we choose τ = 0.1. To get vn+1,2 (the result of ‘KF’ block) using BINet method, we use the
fully connected neural network with 6 hidden layers and 100 neurons per layer with tanh activation
functions. For computing the loss function, we choose equidistant 400 sample points on ∂Ω. To
get vn+1,1 (the result of ‘GF’ block) in this special case, we can use the two-dimensional fast sine
transformation. Some results are shown in figure 2. To compute the error, we uniformly set up
51 ∗ 51 sampling points in the domain Ω and calculate the function values of the predict solution
and the exact solution at time t = 0.1 on these points. By computing, the absolute L2 error and
relative L2 error at t = 0.1 are 6.51322e − 3 and 4.85667e − 3, respectively. Incidentally, the

absolute L2 error is defined as errorabs =

√
N∑
i=1

(upredict(xi)− uexact(xi))2/
√
N in this paper.

Another concern about NEKM is whether the error will increase to an unbearable level as time goes
on. In this regard, we give a negative answer. To see this, we show the relative L2 errors at time
t = 0.1, 0.2, 0.3, 0.4, 0.5 in figure 3. From this figure we can find that the error grows slower and
slower, and keeps within the range of high precision.

(a) Predict solution. (b) Exact solution.

Figure 2: Solution for the heat equation at time t = 0.1.
These figures compare the solution given by NEKM and
the exact solution at time t = 0.1.

Figure 3: Relative errors. This figure
shows the relative L2 errors at differ-
ent time for the predict solutions and
exact solutions.

L-shaped Domain To illustrate the applicability of NEKM to general domains, we denote two
rectangle domains by R1 = [−1, 0] × [−1, 1] and R2 = [−1, 1] × [−1, 0]. Then R1

⋂
R2 defines

a L-shaped domain, which is the Ω in this example. And we set the initial value as u(x, 0) =
sin(x1) sin(x2) and the boundary condition as zero.

In this example, we choose τ = 0.01. vn+1,2 (the result of ‘KF’ block) can be obtained in exactly
the same way as in the rectangular domain example. To get Green’s function G by BI-GreenNet, we
use the fully connected neural network with 6 hidden layers and 150 neurons per layer with tanh
activation functions. After gaining G, vn+1,1 (the result of ‘GF’ block) can be obtained by equation
6. Some results are shown in figure 4.

Figure 4: Solution for the heat equation at time t = 0, 0.01, 0.02. These figures compare the
solutions given by NEKM and the exact solutions.
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3.2 ALLEN-CAHN EQUATIONS

We aim to obtain a predictive solution for energy decay in Allen-Cahn equation ut = ∆u+ 1
ϵ2 (u−

u3), ϵ = 0.1, x ∈ Ω = [− 1
2 ,

1
2 ]

2, t > 0 with initial u(x, 0) = tanh( |x|−0.3

0.1
√
2
) and boundary condition

u = 1,∀x ∈ ∂Ω and t > 0. Convex splitting scheme implies that un+1−un

τ = ∆un+1 − sun+1 +

sun − 1
ϵ2 f

′(un), where f(u) = 1
4 (u

2 − 1)2. In order to ensure stability, we require s− 1
ϵ2 f

′′(u) ≥
0,∀u ∈ [−1, 1], which implies s ≥ 2

ϵ2 . Thus we can obtain

(id− τ

1 + sτ
∆)un+1 = (id− τ

ϵ2(1 + sτ)
f ′)un (14)

which is a form that can be solved by NEKM with case 1, requiring replacing τ with τ
1+sτ in

equation 2 and 3 and modifications of the right hand side of the first equation in equation 2.

In NEKM, we choose τ = 0.005. And we need to get vn+1,2 (the result of ‘KF’ block) by BINet
method. For this, we use the fully connected neural network with 6 hidden layers and 150 neurons
per layer with tanh activation functions. For computing the loss function, we choose equidistant
3200 sample points on ∂Ω. To get vn+1,1 (the result of ‘GF’ block) in this special case, we can use
the 2D fast sine transformation. Then we can get the solution un+1 by vn+1,2 and vn+1,1.

To compare the results obtained by NEKM and traditional finite difference method for solving
equation 14, and to validate that the NEKM framework combined with convex splitting indeed
possesses the property of energy stability, we also employ finite difference methods with small
∆x = ∆y = 0.005 and the same τ = 0.005 with our method to solve equation 14. If we consider
the solution obtained by finite difference method with a very fine mesh as the exact solution, the
errors of our method are shown in the following table 1. Figure 5 illustrates the energy evolution for
both methods.

Table 1: L2 Errors given by NEKM combined with
convex splitting

L2 absolute errors L2 relative errors
t = 0.005 1.961500E − 03 2.679015E − 03
t = 0.010 2.637368E − 03 3.575214E − 03
t = 0.015 3.043784E − 03 4.097140E − 03
t = 0.020 3.355984E − 03 4.482861E − 03
t = 0.025 3.626770E − 03 4.803405E − 03
t = 0.030 3.875158E − 03 5.084055E − 03
t = 0.035 4.109637E − 03 5.335856E − 03
t = 0.040 4.335455E − 03 5.565334E − 03
t = 0.045 4.557162E − 03 5.777788E − 03
t = 0.050 4.779471E − 03 5.978301E − 03

Figure 5: Value of energy functional.
This figure shows the value of energy
functional of two solutions.

From the above graphs, it can be observed that NEKM combined with convex splitting exhibits good
accuracy and also maintains energy stability properties.

3.3 NEKM FOR PDES ON SURFACES

One noteworthy fact is that our method can be extended to PDEs on surfaces, as long as the operators
on the surface and their corresponding fundamental solutions exist. An example of solving the heat
equation on a hemisphere is provided below.

Heat equation Suppose Ω = {(ρ, θ, φ) ∈ R+ × [0, π
2 ] × [0, 2π] : ρ = 1} is the episphere with

the spherical coordinate: x = ρ sin(θ) cos(φ), y = ρ sin(θ) sin(φ), z = ρ cos(θ). In spherical
coordinates, the Laplace-Beltrami operator instead of the common Laplacian is given by ∆s =
1
ρ2

1
sin2 θ

∂2

∂φ2 + 1
ρ2

1
sin θ

∂
∂θ (sin θ

∂
∂θ ). In this example, we consider heat equation on episphere with

initial condition u(θ, φ, t = 0) = cos θ and zero boundary condition (∂Ω = {(ρ, θ, φ) ∈ {1} ×
{π
2 } × [0, 2π]}), whose exact solution is u(θ, φ, t) = e−2t cos θ. NEKM with the main framework

8
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was used to solve it. We choose τ = 0.1 as the time step. Note that the detail expression of
fundamental solution G0 of I − k∆s(k > 0) can be found in Appendix F and we can employ
the method of images to compute the Green’s function G on the upper hemisphere with Dirichlet
boundary conditions as follows:

G((θ, φ), (θ′, φ′)) = G0((θ, φ), (θ
′, φ′))−G0((θ, φ), (π − θ′, φ′)). (15)

To get vn+1,2 (the result of ‘KF’ block) using BINet method, we use the fully connected neural net-
work with 6 hidden layers and 100 neurons per layer with tanh activation functions. For computing
the loss function, we choose equidistant 400 sample points on ∂Ω. To get vn+1,1 (the result of ‘GF’
block), we can use the known Green’s function G and integral 6. Some results are shown in figure
6. To compute the error, we uniformly set up 80 ∗ 320 sampling points in the domain Ω at time
t = 0.1, 0.2, ..., 0.5 and calculate the function values of the predict solution and the exact solution.
By computing, the absolute L2 error over (θ, ϕ, t) ∈ [0, π

2 ]× [0, 2π]× [0, 0.5] is 0.0188670.

Figure 6: Solution for the heat equation at time t = 0, 0.1, 0.2. These figures compare the solutions
given by NEKM and the exact solutions.

Allen-Cahn equation In this part, we employ NEKM to solve the Allen-Cahn equation
ut(θ, φ, t) = ∆su(θ, φ, t)+

1
ϵ2 (u−u3)(ϵ = 0.1) defined on episphere with zero Neumann boundary

condition and random initial value between −0.1 and 0.1, which simulates the processes of phase
separation. We present the results of solving this equation using NEKM directly in figure 7, as the
process of solving it is similar with solving the heat equation in the previous section except the ODE
solver processes which are detailed in Appendix D.1. It can be observed that the solution of this
equation actually simulates phase separation process.

Figure 7: Predict solution for the Allen-Cahn equation. These figures show the predict solution of
Allen-Cahn equation given by NEKM at time t = 0.1, 0.2, 0.3 and 0.4.

4 CONCLUSION AND DISCUSSION

In summary, this paper presents the Neural Evolutionary Kernel Method (NEKM) for solving a
class of semi-linear time-dependent PDEs. NEKM combines operator splitting, boundary integral
techniques, and DNNs to establish evolutionary blocks and accurate numerical solutions in com-
plex domains. The method can be combined with other time discretization schemes that possess
desirable properties such as energy stability, thereby preserving the structure of the PDEs. Experi-
ments on heat equations, Allen-Cahn equations in different domains confirms the high accuracy and
generalizability of the method.

Extensions of the proposed method are also available, for example, solving systems of PDEs and
even equations with discrete operators. These promote neural network modeling and solutions of
general evolutionary problems in real world, as many realistic dynamics are represented using man-
ifold operators or graph Laplacian. We will also consider higher-order accuracy approximations of
solution operators with general boundary conditions.

9
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A BINET METHOD AND BI-GREENNET METHOD

In this part, we will present two novel methods that offer important contributions to our approaches
in solving time-dependent PDEs. The first method is designed for solving PDEs on general do-
mains, while the second one is specifically developed for finding Green’s functions. These two
methods serve as essential building blocks and provide valuable insights into the development of
our approach.

A.1 BOUNDARY INTEGRAL NETWORK

We introduce a method of solving PDEs combining boundary integral equations and neural networks
by Lin et al. (2023b) briefly. Let Ω ⊂ Rd be a bounded domain, we consider the PDE:

Lu(x) = 0, (16)

L can be arbitrary operator, as long as its fundamental solution (in Rd) can be obtained (in fact, the
fundamental solution only depends on the operator and the fundamental solutions of most common
operators are already known). The PDE is defined in Ω or ΩC := Rd\Ω̄ and we consider the
Dirichlet type of boundary condition u|∂Ω = g. Other types of boundary conditions can be easily
handled in BINet with a small modification of the loss function.

The following theorem (Kellogg, 1953) in potential theory is the basis of BINet method.
Theorem 1. For any continuous function h defined on ∂Ω, the single layer potential is defined as

S[h](x) := −
∫
∂Ω

G0(x, y)h(y)dsy, (17)

and the double layer potential is defined as

D[h](x) := −
∫
∂Ω

∂G0(x, y)

∂ny
h(y)dsy, (18)

with ny denotes out normal of ∂Ω at y, G0(x, y) is the fundamental solution of equation 16. Then,
both single layer potential and double layer potential satisfy equation 16. And for all x0 ∈ ∂Ω, we
have

lim
x→x0

S[h](x) = S[h](x0), (19)

lim
x→x0±

D[h](x) = D[h](x0)∓
1

2
h(x0). (20)

where x → x−
0 and x → x+

0 mean converging in Ω and ΩC respectively.

From theorem 1, we can find that S[h] or D[h] satisfies PDE 16 for all continuous function h defined
on ∂Ω, so we just need to find the most appropriate ‘h’ to let the single or double potential satisfies
the boundary condition.

Thus, we can use a neural network N (y, θ) to estimate function h with the learning parameter θ,
and use the following loss function for training:

L(θ) =


||S[N (:, θ)](x)− g(x)||2∂Ω, single layer potential
||( 12I +D)[N (:, θ)](x)− g(x)||2∂Ω, double layer potential(Interior)
||(− 1

2I +D)[N (:, θ)](x)− g(x)||2∂Ω, double layer potential(Exterior)
(21)

where I is the identity operator, ‘Interior’ means the PDE is defined on a bounded domain while
‘Exterior’ means the PDE is defined on the complement of a bounded domain.

The BINet method offers several advantages. Firstly, it leverages the mathematical characteristics
of the equation’s solution. Secondly, it can address higher-dimensional problems and handle both
internal (Ω) and external (ΩC) regional issues, while preserving the unsmoothness of the solution
on the boundary. Thirdly, it avoids errors and instability resulting from high-order differentiation
of neural networks. Fourthly, it requires fewer sampling points and is easy to train, as only sample
points on the boundary are needed. Finally, it can be used to solve for the Green function, which is
challenging to obtain for general domains.

12
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A.2 BOUNDARY INTEGRAL-GREEN NETWORK

The Green’s function is a crucial tool in the analysis and solution of PDEs. However, obtaining
an analytical solution of the Green’s function for a general operator and domain is nearly impos-
sible due to its dependence on both the operator and the shape of the domain. Furthermore, the
variables involved in the Green’s function are often high-dimensional, making it difficult for tradi-
tional numerical methods to provide effective solutions. Despite these challenges, the development
of methods for obtaining the Green’s function for various operators and domains has remained an
active research area, as it can provide valuable insights into the behavior of solutions to PDEs and
facilitate the development of numerical methods for solving these equations. In this subsection, we
propose a method, boundary integral-Green network by Lin et al. (2023a) for computing the Green’s
function based on the BINet approach.

Let Ω ⊂ Rd be a bounded domain, we consider the PDE:{
Lu(x) = f(x) in Ω,

u(x) = g(x) on ∂Ω,
(22)

where L is a differential operator. To find the Green’s function G(x, y) of this equation, we firstly
define H(x, y) = G(x, y) − G0(x, y), where G0 is the fundamental solution of the operator L (in
space Rd). Note that the definition of Green’s function and its difference from the fundamental
solution can be found in Appendix B of this paper. Consider that G(x, y) vanishes when x goes to
∂Ω, we only care about the value of H(x, y) for (x, y) ∈ Ω\∂Ω× Ω. Then we can get the function
for H as following: {

LyH(x, y) = 0, ∀x ∈ Ω\∂Ω, y ∈ Ω,

H(x, y) = −G0(x, y), ∀x ∈ Ω\∂Ω, y ∈ ∂Ω.
(23)

One observation is that for each x ∈ Ω\∂Ω, H(x, ·) is a function with one variable in Ω ⊂ Rd,
then the BINet method can be using to find it. Therefore we can use the form of single or double
potential to approximate the solution H . That is,

H(x, y) ≈ S[h](x, y) := −
∫
∂Ω

G0(y, z)h(x, z)dsz, (24)

or

H(x, y) ≈ D[h](x, y) := −
∫
∂Ω

∂G0(y, z)

∂nz
h(x, z)dsz (25)

can be used to approximate the solution of equation 23. In this case, if we use a neural network
N (x, y; θ) to estimate function h(x, y)(x ∈ Ω\∂Ω, y ∈ ∂Ω), the loss function can be set as

L(θ) =


N∑
i=1

|S[N (:, θ)](xi, yi) +G0(xi, yi)|2, single layer potential

N∑
i=1

|D[N (:, θ)](xi, yi) +
1
2N (xi, yi; θ) +G0(xi, yi)|2, double layer potential

(26)

where {xi, yi}Nj=1 are N points randomly sampled in Ω\∂Ω × ∂Ω. After finding the most ‘appro-
priate’ function h through training, we can get the solution H and therefore the Green’s function G
by G = H +G0.

We are now able to find the Green’s function of an operator in a general domain as long as the
fundamental solution of the operator is known. This is not only an excellent achievement, but also
provides some algorithmic support for our later work on solving time-evolving PDEs.

B FUNDAMENTAL SOLUTION AND GREEN’S FUNCTION

In this part, we make some supplementary introductions to the fundamental solution and Green’s
function. Let Ω ⊂ Rd be a bounded domain, ΩC := Rd\Ω̄ and Ω∗ := Ω or ΩC . L is a differential
operator.

Definition 1. A function δ(x) is called a d-dimensional δ-function if δ(x) ≃
{
0, x ̸= 0⃗,

∞, x = 0⃗,
and

which is also constrained to satisfy the identity
∫
Rd δ(x)dx = 1. For all function f that is continuous

at a ∈ Rd we have
∫
Rd f(x)δ(x− a)dx = f(a).

13
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Definition 2. A function G0(x, y) is called the fundamental solution corresponding to equations
Lu(x) = 0 if G0(x, y) is symmetric about x and y and G0(x, y) satisfy LyG0(x, y) = δ(x − y),
where (x, y) ∈ Rd × Rd and Ly is the differential operator L which acts on component y.

Definition 3. A function G(x, y) is called the Green’s function corresponding to problem{
Lu(x) = f(x) in Ω∗,

u(x) = g(x) on ∂Ω∗,

if G(x, y) is a 2d-dimensional function satisfying{
LyG(x, y) = δ(x− y), ∀x, y ∈ Ω∗,

G(x, y) = 0, ∀x ∈ Ω∗, y ∈ ∂Ω∗.
.

In addition, if the type of boundary condition in the problem is changed, the boundary conditions
that Green’s function needed to satisfy must also be changed to the corresponding zero boundary
condition.

By the definition of fundamental solution and Green’s function, the differences between them is
clear and easy to understand. Fundamental solution is only depend on the operator while Green’s
function is depend both on the operator and the boundary condition.

C OPERATOR SPLITTING

Some knowledge about the operator splitting of ODEs will be given here. And it can be extended to
operator splitting of PDEs.

We focus our attention on the case of two linear operators. Let us consider the Cauchy problem :

∂U(t)

∂t
= AU(t) +BU(t), t ∈ [0, T ], U(0) = U0,

whereby, the initial function U0 is given and A and B are supposed to be linear operators in the
Banach-space X with A and B : X → X . Splitting methods assume that the mathematical problem
can be split into two or more terms (Omer et al., 2017). We denote by U(t) = e(A+B)tU0 is the
solution (Yazici, 2010) at the time t of the differential equation. One issue in computing the solution
U(t) is that it may not be feasible or extremely challenging to accurately evaluate the exponential
mapping. Consequently, numerical methods are frequently used to approximate the flow map EXP.

Firstly, we describe the first order operator splitting method, which is called Lie-Trotter splitting.
Lie-Trotter splitting is introduced as a method, which solves two subproblems sequentially on subin-
tervals [tn, tn+1], where n = 0, 1, ..., N − 1, t0 = 0 and tN = T . Assume that tn+1 − tn = τ
for all n.The Lie-Trotter’s scheme is that Un+1 = eAτeBτUn or Un+1 = eBτeAτUn, where
n = 0, 1, ..., N − 1, U0 := U0. And the splitting error is computed by

SELie−Trotter = I + τ(A+B) +
1

2
τ2(A+B)2

− (I + τB +
1

2
τ2B2)(I + τA+

1

2
τ2A2)

+O(τ3)

=
1

2
τ2(AB −BA) +O(τ3)

= O(τ2),

where I is the identical operator. This implies that the Lie-Trotter splitting is a second order ap-
proach for the local truncation error, then we call it as the first order splitting method for the global
error.

The Strang’s scheme is regarded as a second order splitting. Take the same notation as before, the
Strang’s scheme is that Un+1 = eB

τ
2 eAτeB

τ
2 Un or Un+1 = eA

τ
2 eBτeA

τ
2 Un. And the splitting
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error is computed by

SEStrang = I + τ(A+B) +
1

2
τ2(A+B)2

− (I +
τ

2
B +

1

8
τ2B2)(I + τA+

1

2
τ2A2)(I +

τ

2
B +

1

8
τ2B2)

+O(τ3)

= O(τ3),

where I is the identical operator. This implies that the Strang splitting is a third order approach for
the local truncation error, then we call it as the second order splitting method for the global error.

D ADDITIONAL NUMERICAL EXPERIMENTS

The Allen-Cahn equation is a type of nonlinear equation that is often used to test the accuracy and
stability of numerical methods. In other words, for a traditional numerical method, we hope that it
has the property of stability. However, our NEKM method does not have such concerns because it
does not discretize in space.

D.1 ALLEN-CAHN EQUATION IN THE RECTANGLE DOMAIN

In this subsection, we consider an Allen-Cahn equation in the rectangle domain as following:
ut = 0.1∆u+ 10(u− u3), x ∈ Ω = [− 1

2 ,
1
2 ]

2and t ∈ [0, 0.1]

u(x, 0) = tanh( |x|−0.3

0.1
√
2
) =: f, x ∈ Ω

u(x, t) = 1 =: g, x ∈ ∂Ω and t > 0

(27)

This equation has the form of equation 1 with L̃ = 0.1∆+ϕ and we can decompose it as L̃ = L+ϕ
with L = 0.1∆ and ϕ = 10(u − u3). Now, we can use NEKM of case 2 to solve it. Meanwhile,
we use PINNs to solve this equation and compared the solutions obtained by these two DNN-based
methods with the exact solution to obtain the magnitude of the errors. It is worth mentioning that we
used the forward Euler method with a very dense mesh and time and spatial step sizes that satisfied
the stability condition to solve this equation, and the solution obtained from this is taken as the exact
solution.

In NEKM, we choose τ = 0.01. To solve equation 12, we use NEKM of case 1. And we need
to get vn+1,2 (the result of ‘KF’ block) by BINet method. For this, we use the fully connected
neural network with 6 hidden layers and 150 neurons per layer with tanh activation functions. For
computing the loss function, we choose equidistant 3200 sample points on ∂Ω. To get vn+1,1 (the
result of ‘GF’ block) in this special case, we can use the two-dimensional fast Fourier transformation.
Then we can solve equation 12 by NEKM with case 1. Remaining work is to find the solution of
equation 11 and equation 13. If we can do this, the solution of this Allen-Cahn equation can be
obtained. These two equations can be reduced to the following form:

dy

dt
=

1

ϵ
(y − y3), t ∈ [tn, tn+1], y(tn) = yn, (28)

which we want to find the value of function y at t = tn+1. We can achieve our goal in following
ways. From equation 28 we can find that∫ yn+1

yn

dy

y − y3
=

∫ tn+1

tn

dt

ϵ
, (29)

where yn+1 := y(tn+1). Note that 1
y−y3 = 1

y − 1
2(y+1) − 1

2(y−1) is unintegrable on an interval
which contains −1, 0 or 1, we can conclude that yn and yn+1 must be both located in one of the
four intervals: (−∞,−1), (−1, 0), (0, 1), (1,∞). Equation 29 implies that

ln(
|y2|

|y2 − 1|
)

∣∣∣∣yn+1

yn

=
2(tn+1 − tn)

ϵ
. (30)
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Thus we can find the value of yn+1 by equation 30 that

yn+1 =
yn√

(yn)2 + (1− (yn)2)e−
2(tn+1−tn)

ϵ

. (31)

Now we obtain the exact solution of equation 28, therefore the equation 11 and 13 can be solved.
Thus we can find the numerical solution of equation 27 by NEKM since equation 11-13 are solvable.
Some results are shown in figure 8.

(a) predict solution. (b) exact solution.

Figure 8: Solution for the Allen-Cahn equation at time t = 0.1. These figures compare the solution
given by NEKM and the exact solution at time t = 0.1.

Also, we solve the Allen-Cahn equation using PINNs. We use the fully connected neural network
with 6 hidden layers and 100 neurons per layer with tanh activation functions. For computing the
loss function, we choose equidistant 400 sample points for the initial condition, equidistant 1000
sample points for the boundary condition and random 1800 samples for the PDE.

To compute the error, we uniformly set up 51∗51 sampling points in domain [− 1
2 ,

1
2 ]

2 and calculate
the function values of the predict solution by NEKM and the exact solution on these points at time
t = 0.01, 0.02, 0.03, 0.04, 0.05, respectively. The result is given by table 2 as following.

Table 2: L2 Errors given by NEKM and PINNs

NEKM PINNs NEKM PINNs
(absolute) (absolute) (relative) (relative)

t = 0.01 3.8034E − 3 1.2634E − 2 5.2215E − 3 1.7345E − 2
t = 0.02 5.3697E − 3 1.2648E − 2 7.3395E − 3 1.7289E − 2
t = 0.03 6.3527E − 3 1.1874E − 2 8.6544E − 3 1.6176E − 2
t = 0.04 7.1423E − 3 1.0653E − 2 9.5653E − 3 1.4470E − 2
t = 0.05 7.5646E − 3 9.1909E − 3 1.0245E − 2 1.2448E − 2

And we compute the errors of numerical solutions on Ω× [0, 0.1]. The absolute L2 errors of NEKM
and PINNs are 0.00717583 and 0.00870301, respectively. And the relative L2 errors of NEKM and
PINNs are 0.00973051 and 0.0118014, respectively. The results show that for this example, our
method is slightly better than PINNs method. Moreover, our method performs significantly better
than PINNs in the interval near the initial time. In fact, our method can solve PDEs with high
accuracy in more general domain, while PINNs cannot achieve this (we will provide an example
later).

In fact, the above example can be regarded as simulating the evolution of a circular interface with
certain rules given by the initial conditions to some extent (in fact, when ϵ tends to 0, the solution
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of the Allen-Cahn equation tends to the characteristic function whose interface evolves by motion
by mean curvature flow (Fischer et al., 2020)). Below, we modify the initial conditions in order to
simulate the evolution of a petal-shaped interface.

Consider this Allen-Cahn equation:
ut = 0.1∆u+ 10(u− u3), x ∈ Ω = [− 1

2 ,
1
2 ]

2and t ∈ [0, 0.1]

u(x, 0) = tanh(
4|x|−0.3 cos(6 arctan( y

x ))−1.2

0.1
√
2

), x ∈ Ω

u(x, t) = 1, x ∈ ∂Ω and t > 0

(32)

We select τ = 0.01 and solve the problem exactly as we did in the previous example, and some of
the results are shown below (figure 9, figure 10). It can be seen from the results that the petal-shaped
interface gradually evolves into a circular interface, which is consistent with the fact that the mean
curvature flow changes.

(a) u0 (b) u2 (c) u4

Figure 9: Predict solution for the Allen-Cahn equation. These figures show the predict solution of
Allen-Cahn equation given by NEKM at time t = 0, t = 0.02, t = 0.04

(a) u6 (b) u8 (c) u10

Figure 10: Predict solution for the Allen-Cahn equation. These figures show the predict solution of
Allen-Cahn equation given by NEKM at time t = 0.06, t = 0.08, t = 0.1

D.2 ALLEN-CAHN EQUATION IN THE DISK DOMAIN

In this subsection, we solve the Allen-Cahn equation on a disk domain using NEKM method and
show that PINNs did not perform well in this example, while our method still had good performance.
We consider an Allen-Cahn equation in a disk domain as following:

ut = 0.5∆u+ 2(u− u3), x ∈ Ω = 0.2B2and t ∈ [0, 0.1]

u(x, 0) = tanh(100
|x|−1.5 cos(6 arctan( y

x )−6

0.5
√
2

), x ∈ Ω

u(x, t) = 1, x ∈ ∂Ω and t > 0

(33)

where B2 is the 2-dimensional ball in R2.

In NEKM, we choose τ = 0.1. To solve equation 12, we use NEKM of case 1. And we need
to get vn+1,2 (the result of ‘KF’ block) by BINet method. For this, we use the fully connected
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(a) u0 (b) u1 (c) u2

Figure 11: Predict solution for the Allen-Cahn equation. These figures show the predict solution of
Allen-Cahn equation given by NEKM at time t = 0, t = 0.1, t = 0.2

Figure 12: Value of loss functions. This figure shows the value of loss function with number of
iterations under different methods or learning rate of Adam optimizer.

neural network with 6 hidden layers and 150 neurons per layer with tanh activation functions. For
computing the loss function, we choose equidistant 1600 sample points on ∂Ω. To get Green’s
function G by BI-GreenNet, we use the fully connected neural network with 6 hidden layers and
150 neurons per layer with tanh activation functions. For computing the loss function, we choose
equidistant 200 sample points {yi}200i=1 on ∂Ω. For every 500 epochs, 100 new x are randomly
generated. Then {xi}100i=1 and {yi}200i=1 form a set of sample points {(xi, yi)}20000i=1 . After gaining
G, vn+1,1 (the result of ‘GF’ block) can be obtained by equation 6. And equation 11 and 13 can
be solved analytically (with details in Appendix D). Thus we can obtain the numerical solution by
NEKM. Some of the results are shown below (figure 11).

We find the fact that PINNs did not perform well in this example. Specifically, we use the fully
connected neural network with 6 hidden layers and 100 neurons per layer with tanh activation
functions (in fact, we tried other sizes of networks, and it didn’t get any better). For computing the
loss function, we choose equidistant nearly 300 sample points for the initial condition, equidistant
4000 sample points for the boundary condition and random 20000 samples for the PDE (in fact, we
tried other sizes of sample sets, and it didn’t get any better). But we find that the loss function can
not converge to zero or a small positive number, as shown in Figure 12.
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Therefore the solution given by PINNs can not be considered a good numerical solution for equation
33. Some possible reasons for this are that in the disk domain, geometric characteristics such as
curvature and normal vector may affect the solution of the equation, and PINNs method can not
capture these information well. At the same time, other optimizers may bring better solutions to
PINNs method. However, our method is not subject to these limitations, and the loss function can
also converge well for the domain of general shape.

E A REVIEW OF PINNS

As we have compared our method with PINNs several times in Appendix D, we briefly introduce
the general framework of PINNs in this section. Consider the PDE

∂u
∂t = N [u], (x, t) ∈ Ω× [0, T ],

u(x, 0) = f(x), x ∈ Ω,

u(x, t) = g(x, t), (x, t) ∈ ∂Ω× [0, T ],

where N is an operator combined with differential and other operations and T is a positive number.
The main idea of the PINNs method by Raissi et al. (2019) is to use a neural network u(x, t; θ)
to approximate the solution u, where θ represents the trainable parameters in the neural network.
Then we can use the automatic differentiation tool to calculate the derivative of u(x, t; θ) and get
the value of ∂u

∂t and N [u] at arbitrary (x, t). Thus we can define the loss function as L(θ) =

||∂u(·;θ)∂t −N [u(·; θ)]||2Ω×[0,T ]+β1||u(·; θ)−f(·)||2Ω×{0}+β2||u(·; θ)−g(·; θ)||2∂Ω×[0,T ]. Here β1 and
β2 are two hyper-parameters. By minimizing the loss function L, PINNs will get the approximation
solution of the PDE. In addition, the computation of these L2 norms is accomplished through random
sampling over relevant domains.

F FUNDAMENTAL SOLUTION OF SOME OPERATORS

The fundamental solution for operator I − τ∆ is

G0(x, x
′) =

1

2πτ
K0(

|x− x′|√
τ

), (34)

where Kγ(x) is the modified Bessel function of the second kind of order γ. Note that the fundamen-
tal solution can be obtained by the fundamental solution of screened Poisson equation easily.

The fundamental solution for operator ∆s − kI(k > 0) with ∆s be the Laplacian on sphere is
(Tanios et al., 2019)

G0,k((θ, φ), (θ
′, φ′)) = − 1

4π

∞∑
l=0

2l + 1

l(l + 1) + k
Pl(cos(γ)), (35)

where cos(γ) = cos θ cos θ′ + sin θ sin θ′ cos(φ − φ′) and Pl(x) is the Legendre polynomial of
degree l. To estimate the value of this fundamental solution, we can choose l′ ∈ R+ such that
l′(l′ + 1) >> k and approximate G0,k according to (Tanios et al., 2019):

G0,k((θ, φ), (θ
′, φ′)) ≈− 1

4πk
− 1

4π

l′−1∑
l=1

[
2l + 1

l(l + 1) + k
− 2l + 1

l(l + 1)
]Pl(cos(γ))

+
1

4π
log(

e

2
(1− cos(γ))).

(36)

Thus the fundamental solution which we desired for operator I − τ∆s is G0 = − 1
τG0, 1τ

. This
fundamental solution is essentially the Green’s function over the entire spherical space.
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