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Abstract

Existing question answering (QA) techniques
are created mainly to answer questions asked
by humans. But in educational applications,
teachers and parents sometimes may not know
what questions they should ask best help
children develop their narrative understanding
abilities. We design an automated question-
answer generation (QAG) system for educa-
tion purposes: given a storybook at the kinder-
garten to eighth-grade level, our system can au-
tomatically produce QA pairs that are capable
of testing a variety of student comprehension
skills. Using a new QA dataset FAIRYTALEQA
that has 278 child-friendly storybooks with
10,580 QA pairs labeled by experts, we design
a novel QAG system architecture to generate
QA pairs. Automatic and human evaluations
show that our model outperforms state-of-the-
art QAG systems. On top of our QAG system,
we also build an interactive story-telling appli-
cation for future real-world deployment.

1 Introduction

There has been substantial progress in the de-
velopment of state-of-the-art (SOTA) question-
answering (QA) models in the natural language
processing community in recent years. Training
models for exceptional performances depend on
the availability of high-quality, large-scale read-
ing comprehension (RC) datasets. Such datasets
should contain questions that focus on a well-
defined construct (e.g., narrative comprehension)
and measure a full coverage of sub-skills within this
construct (e.g., reasoning causal relationship and
understanding emotion within narrative comprehen-
sion) using items of varying difficulty levels (e.g.,
inference making and information retrieval). How-
ever, many of the existing datasets are either col-
lected via crowd-sourcing (Rajpurkar et al., 2016;
Kocisky et al., 2018; Reddy et al., 2019), or using
automated question-answer pair (QA-pair) retriev-
ers (Nguyen et al., 2016; Joshi et al., 2017; Dunn

FamryTALEQA Dataset Source (Section)

Maie sighed. she knew well that her husband was right, but
she could not give up the idea of a cow. the buttermilk no
longer tasted as good as usual in the coffee;

they were students, on a boating excursion, and wanted to get
something to eat.’bring us a junket, good mother,” cried they
to Maie.’ah! if only i had such a thing!” sighed Maie.

Q: What did the three young men ask for?
® A: A junket.

(Shakeri et al., 2020)

Q: Why no more buttermilk for her husband to make?

: She could not give up the idea of a cow.

(Lewis et al., 2021)

Q: What did maie think of when she thought of butter-
milk?

° : Sweet cream and fresh butter.

Q: Why did the three young men want a junket?

® A: They wanted to get something to eat.

Table 1: A sample of FalryTaLEQA story as input and the
QA pairs generated by human education experts, 2-step
baseline model, PAQ baseline, and our QAG System.

et al., 2017; Kwiatkowski et al., 2019), thus risking
the quality and validity of labeled QA-pairs.

This becomes especially problematic when ap-
plying QA models in the education domains. While
existing QA models perform well in generating fac-
tually correct QA pairs, they fall short in generating
useful QA pairs for educational purposes. As RC a
complex skill vital for children’s achievement and
later success (Snyder et al., 2005), the commu-
nity desperately needs a large-scale dataset that can
support RC for education purposes. Furthermore,
automated QA-pairs Generation (QAG) has been
considered a promising approach to cost-efficiently
build large-scale learning and assessment systems.
Yet, existing RC datasets are not suitable for this
task due to the aforementioned limitations (Das
et al., 2021).



In this work, we target the lack of high-quality
RC datasets in the educational domain. We aim
to develop a QAG system to generate high-quality
QA-pairs, similar to a teacher or parent would ask
children when reading stories to them (Xu et al.,
2021). Our system is built on a novel dataset we
constructed in parallel, FAIRyTALEQA. This dataset
focuses on narrative comprehension for elementary
to middle school students and contains 10,580 QA-
pairs from 278 narrative text passages of classic
fairytales. FAIRYTALEQA is annotated by education
experts and includes well-defined and validated nar-
rative elements laid out in the education research
(Paris and Paris, 2003), making it an appealing
dataset for RC research in the education domain.

Our QAG system consists of a three-step
pipeline: (1) to extract candidate answers from
the given storybook passages through carefully de-
signed heuristics based on a pedagogical frame-
work; (2) to generate appropriate questions corre-
sponding to each of the extracted answers using a
state-of-the-art (SOTA) language model; and (3) to
rank top QA-pairs with a specific threshold for the
maximum amount of QA-pairs for each section.

We compare our QAG system with two existing
SOTA QAG systems: a 2-step baseline system
(Shakeri et al., 2020) fine-tuned on FAIRYTALEQA,
and the other is an end-to-end generation system
trained on a large-scale automatically generated
RC dataset (PAQ) (Lewis et al., 2021). We evaluate
the generated QA-pairs in terms of similarity by
Rouge-L precision score with different thresholds
on candidate QA-pair amounts and semantic as
well as syntactic correctness by human evaluation.
We demonstrate that our QAG system performs
better in both the automated evaluation and the
human evaluation.

We conclude the paper by demoing an interactive
story-telling application that built upon our QAG
system to exemplify the applicability of our system
in a real-world educational setting.

2 Related Work
2.1 QA Datasets

There exists a large number of datasets available
for narrative comprehension tasks. These datasets
were built upon different knowledge resources and
went through various QA-pair creating approaches.
For instance, some focus on informational texts
such as Wikipedia and website articles(Rajpurkar
et al. (2016), Nguyen et al. (2016), Dunn et al.

(2017), Kwiatkowski et al. (2019), Reddy et al.
(2019)). Prevalent QA-pair generating approaches
include crowd-sourcing (Rajpurkar et al., 2016;
Kocisky et al., 2018; Reddy et al., 2019), using
automated QA-pair retriever (Nguyen et al., 2016;
Joshi et al., 2017; Dunn et al., 2017; Kwiatkowski
et al., 2019), and etc. Datasets created by the ap-
proaches mentioned above are at risk of not con-
sistently controlling the quality and validity of QA
pairs due to the lack of well-defined annotation pro-
tocols specifically for the targeting audience and
scenarios. Despite many of these datasets involv-
ing large-scale QA pairs, recent research (Kocisky
et al., 2018) found that the QA pairs in many RC
datasets do not require models to understand the
underlying narrative aspects. Instead, models that
rely on shallow pattern matching or salience can
already perform very well.

NarrativeQA, for instance, (KocCisky et al., 2018)
is a large dataset with more than 46,000 human-
generated QA-pairs based on abstractive sum-
maries. Differing from most other RC datasets that
can be answerable by shallow heuristics, the Nar-
rativeQA dataset requires the readers to integrate
information about events and relations expressed
throughout the story content. Indeed, NarrativeQA
includes a significant amount of questions that fo-
cus on narrative events and the relationship among
events (Mou et al., 2021). One may expect that
NarrativeQA could also be used for QAG tasks.
In fact, a couple of recent works use this dataset
and train a network by combining a QG module
and a QA module with a reinforcement learning
approach(Tang et al., 2017). For example, Wang
et al. (2017) use the QA result to reward the QG
module then jointly train the two sub-systems. In
addition, Nema and Khapra (2018) also explore bet-
ter evaluation metrics for the QG system. However,
the NarrativeQA dataset is in a different domain
than the educational context of our focus. Thus the
domain adaptation difficulty is unknown.

2.2 QAG Task

A few years back, rule-based QAG systems (Heil-
man and Smith, 2009; Mostow and Chen, 2009;
Yao and Zhang, 2010; Lindberg et al., 2013; Labu-
tov et al., 2015) were prevalent, but the generated
QA suffered from the lack of variety. Neural-based
models for question generation tasks (Du et al.,
2017; Zhou et al., 2017; Dong et al., 2019; Scialom
et al., 2019) have been an emerging research theme



FAIRYTALEQA ‘ ‘

Train

Validation

Test

Dataset

|| 232 Books with 8548 QA-pairs || 23 Books with 1025 QA-pairs || 23 Books with 1007 QA-pairs

| Mean | S.D. | Min | Max || Mean | S.D. | Min | Max || Mean | S.D. | Min | Max
# section per story 14.4 8.8 2 60 16.5 10.0 4 43 15.8 10.8 2 55

# tokens per story 2073.9 | 1320.1 | 208 | 7035 || 2365.8 | 1646.5 | 406 | 5762 || 2228.6 | 1340.7 | 310 | 6287

# tokens per section 143.6 61.7 12 | 434 143.1 54.5 31 298 140.4 55.6 24 | 285
# questions per story 36.8 28.9 5 161 44.5 29.5 13 100 43.7 28.8 12 107
# questions per section 2.8 2.440 0 18 29 23 0 16 3.0 2.4 0 15
# tokens per question 10.2 32 3 27 10.9 32 4 24 10.5 3.1 3 25
# tokens per answer 7.1 6.0 1 69 7.7 6.3 1 70 6.8 5.2 1 44

Table 2: Core statistics of the FaryTaLEQA dataset, which has 278 books and 10580 QA-pairs.

in recent years.

In this paper, we use a recent work Shakeri
et al. (2020) as our baseline. They proposed a
two-step and two-pass QAG method that firstly
generate questions (QG), then concatenate the ques-
tions to the passage and generate the answers
in a second pass (QA). In addition, we include
the recently-published Probably-Asked Questions
(PAQ) (Lewis et al., 2021) work as a second base-
line. The PAQ system is an end-to-end QAG sys-
tem trained on the PAQ dataset, a very large-scale
QA dataset containing 65M automatically gener-
ated QA-pairs from Wikipedia. The primary is-
sue with deep-learning-based models in the tar-
geted children education application is that existing
datasets and models do not consider the specific
audience’s language preference and the educational
purposes (Hill et al., 2015; Yao et al., 2012).

Because both rule-based and neural-network-
based approaches have their limitations inherently,
in our work, we combine these two approaches to
balance both the controllability of what types of
QA pairs should be generated and the diversity of
the generated QA sequences.

3 FaryTALEQA Dataset

As previously mentioned, the general-purpose QA
datasets (e.g., SQuAD (Rajpurkar et al., 2016), MS
MARCO (Nguyen et al., 2016)) are unsuitable for
children education context, as they impose little
structure on what comprehension skills are tested
and heavily rely on crowd workers typically with
limited education domain knowledge. To solve
those issues and complement the lack of a high-
quality dataset resource for the education domain,
we developed a new RC dataset targeting students
from kindergarten to eighth grade.

We developed the annotation schema based on
an established framework for assessing reading
comprehension (Paris and Paris, 2003), together

with three experts in literacy education in our team.
This schema is designed to comprehensively cap-
ture seven aspects contributing to reading compre-
hension (see Appendix for example in each aspect):

Character ask test takers to identify the charac-
ter of the story or describe characteristics of
characters

Setting ask about a place or time where/when
story events take place and typically start with
"Where" or "When."

Feeling ask about the character’s emotional status
or reaction to certain events and are typically
worded as "How did/does/do ... feel"

Action ask characters’ behaviors or additional in-
formation about that behavior

Casual Relationship focus on two events that are
causally related where the prior events have to
causally lead to the latter event in the question.
This type of questions usually begins with
"Why" or "What made/makes."

Outcome Resolution ask for identifying out-
come events that are causally led to by the
prior event in the question. This type of
questions is usually worded as "What hap-
pened/happens/has happened. . . after..."

Prediction ask for the unknown outcome of a
focal event. This outcome is predictable based
on the existing information in the text

The QA-pair generation process on FAIRYTALEQA
was accomplished by five annotators, all of whom
have a B.A. in Education, Psychology, or Cognitive
Science and have substantial experience teaching
and assessing students’ reading skills. These anno-
tators were supervised by the education experts.

The annotators were instructed to develop QA
pairs that address all of the seven narrative ele-
ments described above. They were also asked to
create questions as if they were to assess elemen-
tary school students who have already read the com-
plete story, and all questions should be open-ended
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Figure 1: Distribution of the QA-pairs belongs to each of the
seven narrative element categories in the FAIRYTALEQA dataset.

"wh-" questions instead of "yes" or "no" questions.

A rigorous quality control protocol was imple-
mented. All annotators received training lasting for
weeks. In the training stage, they used the coding
template to generate questions for the same sto-
ries. They then discussed their coding with their
fellow annotators and the expert supervisors. After
the formal coding began, weekly meetings were
held to provide sufficient opportunities for review
and discussion. All QA-pairs were reviewed by
another annotator, and one-tenth were additionally
reviewed by the expert supervisors. This process
is to ensure that 1) the annotation guideline was
followed, 2) the style of questions generated by
coders was consistent, and 3) the questions focused
on key information to the narrative and the answers
to the questions were correct.

When the annotation task is accomplished, we
obtain a dataset containing 10,580 high-quality QA-
pairs from 278 books. We split the dataset into
train/validation/test splits with 232/23/23 books
and 8,548/1,025/1,007 QA pairs. The split is ran-
dom, but the statistical distributions in each split
are consistent. Table 2 shows core statistics of
the FAIRYTALEQA dataset in each split, and Figure 1
shows the distribution of seven types of annotations
for the QA pairs across the three splits.

4 Question Answer Generation System
Architecture

There are three sub-modules in our QA genera-
tion (QAG) pipeline: a heuristics-based answer
generation module (AG), followed by a BART-
based (Lewis et al., 2019) question generation
module (QG) module fine-tuned on FAIRYTALEQA
dataset, and a DistiIBERT-based(Sanh et al., 2019)
ranking module fine-tuned on FAIRYTALEQA dataset
to rank and select top N QA-pairs for each input
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Figure 2: QAG system design with four steps: rule-based
answer extraction, NN-based question generation, NN-based
ranking, and QA classification.

section. The complete QAG pipeline of our system
is shown in Figure 2.

4.1 Heuristics-based AG Module

Based on our observation of the FAIRYTALEQA
dataset, educational domain experts seem to have
uniform preferences over certain types of ques-
tion and answer pairs. This may be because these
experts take the young children’s learning objec-
tives into consideration — children’s learning ability
should be oriented toward specific types of answers
to maximize their learning outcome. That is why
educational experts rarely ask yes/no questions in
developing or assessing children’s reading com-
prehension. For automated QAG systems, we can
design the system to mimic human behaviors either
by defining heuristics rules for the answer extrac-
tion module or leaving the filtering step to the end
after the QA pairs are generated. However, the
latter approach may have inherent risks that the
training data could influence the types of answers
generated.

We decided to develop and apply the heuristic
rules to the answer extraction module. We observed
that some narrative elements such as characters,



setting, and feelings are mostly made up of name
entities and noun chunks, for instance, the charac-
ter name in a story, a particular place where the
story takes place, or a specific emotional feeling.
We then leverage the Spacy English model for Part-
of-speech tagging on the input content to extract
named entities and noun chunks as candidate an-
swers to cover these three types of narrative ele-
ments.

We further observed that the QA pairs created by
education experts around the action, causal relation-
ship, prediction, and outcome resolution categories
are all related to a particular action event in the
story. Thus, the answers to these four types of
questions are generally the description of the ac-
tion event. We realize that Propbank’s semantic
roles labeler toolkit is constructive for extracting
the action itself and the event description related
to the action. We then leverage this toolkit to ex-
tract the trigger verb as well as other dependency
nodes in the text content that can be put together
as a combination of subject, verb, and object and
use these as candidate answers for the latter four
categories.

Our answer extraction module can generate can-
didate answers that cover all 7 narrative elements
with the carefully designed heuristics.

4.2 BART-based QG Module

Following the answer extraction module that yields
candidate answers, we design a QG module which
takes a story passage and an answer as input, and
generates the corresponding question as output.
The QG task is basically a reversed QA task. Such
a QG model could be either transfer-learned from
another large QA dataset or fine-tuned on our FaIry-
TALEQA dataset. Mainstream QA datasets do cover
various types of questions in order to comprehen-
sively evaluate QA model’s reading comprehen-
sion ability; for instance, NarrativeQA (Kocisky
et al., 2018) is a large-scale QA corpus with ques-
tions that examine high-level abstractions to test
the model’s narrative understanding.

We choose NarrativeQA dataset as an alternative
option for fine-tuning our QG model because this
dataset requires human annotators to provide a di-
verse set of questions about characters, events, etc.,
which is similar to the types of questions that edu-
cation experts created for our FAIRYTALEQA dataset.
In addition, we leverage BART(Lewis et al., 2019)
as the backbone model because of its superior per-

QG Models Comparison for || Rouge-L
Our QAG System || Validation || Test
BART fine-tuned on
NarrativeQA H 0.424 H 0.442
BART fine-tuned on
FaRyiisOA H 0.527 H 0.527
BART fine-tuned on ‘ ‘ 0.508 ‘ ‘ 0.519

NarrativeQA + FAIRYTALEQA

Table 3: Comparison on FAlRyTALEQA dataset among QG
models fine-tuned with different settings for the QG module
of our QAG system.

formance on NarrativeQA according to the study
in (Mou et al., 2021).

We perform a QG task comparison to examine
the quality of questions generated for FAIRYTALEQA
dataset by one model fine-tuned on NarrativeQA,
one on FAIRYTALEQA, and the other on both the
NarrativeQA and FairyTaALEQA. We fine-tune each
model with different parameters and acquire the
one with the best performance on the validation
and test splits of FAIRYTALEQA dataset. Results
are shown in Table 3. We notice that the model
fine-tuned on FAIRYTALEQA alone outperforms the
other methods. We attribute this to the domain and
distribution differences between the two datasets.
That is why the model fine-tuned on both Narra-
tiveQA and FarYyTALEQA may be polluted by the
NarrativeQA training. The best-performing model
is selected for our QG module in the QAG pipeline.

4.3 DistilBERT-based Ranking Module

Our QAG system has generated all candidate QA-
pairs through the first two modules. However, we
do not know the quality between generated QA-
pairs by far, and it is unrealistic to send back all
the candidate QA-pairs to users in a real-world sce-
nario. Consequently, a ranking module is added to
rank and select the top candidate QA-pairs, where
the user is able to determine the upper limit of gen-
erated QA-pairs for each input text content. Here,
the ranking task can be viewed as a classification
task between the ground-truth QA-pairs created
by education experts and the generated QA-pairs
generated by our systems.

We put together QA-pairs generated with the first
two modules of our QAG system as well as ground-
truth QA-pairs from the train/validation/test splits
of FAlRYTALEQA dataset, forming new splits for the
ranking model, and fine-tuned on a pre-trained Dis-
tilBERT model. We test different input settings for
the ranking module, including the concatenation of



text content and answer only, as well as the con-
catenation of text content, question, and answer
in various orders. Both input settings can achieve
over 80% accuracy on the test split, while the input
setting of the concatenation of text content, ques-
tion, and answer can achieve F'1 = 86.7% with a
leading more than 5% over other settings. Thus,
we acquire the best performing ranking model for
the ranking module in our QAG system and allow
users to determine the amount of top N generated
QA-pairs to be outputted.

5 Evaluation

We provide one automated evaluation and one hu-
man evaluation for the QAG task. The input of
the QAG task is a section of the story (may have
multiple paragraphs), and the outputs are generated
QA pairs. Unlike QA or QG tasks that each input
corresponds to a single generated output no matter
what model is used, the QAG task does not have a
fixed number of QA-pairs to be generated for each
section. Besides, various QAG systems will gen-
erate different amounts of QA-pairs for the same
input content. Therefore, we carefully define an
evaluation metric that is able to examine the qual-
ity of generated QA-pairs over a different amount
of candidate QA-pairs. The comparison is on the
validation and test splits of FAIRYTALEQA.

5.1 Automated Evaluation of QAG Task

5.1.1 Baseline QAG Systems

We select a SOTA QAG system that uses a two-step
generation approach (Shakeri et al., 2020) as one
baseline system (referred as 2-Step Baseline).
In the first step, it feeds a story content to a QG
model to generate questions; then, it concatenates
each question to the content passage and generates
a corresponding answer through a QA model in the
second pass. The quality of generated questions
not only relies on the quality of the training data for
the QG and QA models but also is not guaranteed
to be semantically or syntactically correct because
of the nature of neural-based models.

We replicate this work by fine-tuning a QG
model and a QA model on FalryTALEQA dataset
with the same procedures that help us select the
best model for our QG module. We use pre-trained
BART just like ours as the backbone model to en-
sure different model architectures do not influence
the evaluation results. Unlike our QG module that
takes both an answer and text content as the in-

QA Models for Rouge-L
g

2-Step Baseline || Validation || Test
BART fine-tuned on

NarrativeQA H 0.475 H 0.492
BART fine-tuned on

FAIRYTALEQA H 0.533 H 0.536
BART fine-tuned on H 0.584 H 0.601

NarrativeQA + FAIRYTALEQA

Table 4: Comparison on FairyTaLEQA dataset among QA
models fine-tuned with different settings for the 2-Step
Baseline system.

put, their QG model only takes the text content as
input. Thus, we are not able to evaluate the QG
model solely for this baseline. We replicate the
fine-tuning parameters for our QG module to fine-
tune the baseline QG model. For the selection of
QA model used in the 2-Step Baseline, similar
to the QG experiments we present in Table 3, we
fine-tune a pre-trained BART on each of the three
settings: NarrativeQA only, FAIRYTALEQA only, and
both datasets. According to Table 4, the model that
fine-tuned on both NarrativeQA and FAIRYTALEQA
datasets performs much better than the other set-
tings and outperforms the model that fine-tuned
on FARYTALEQA only by at least 6%. We lever-
age the best performing QA model for the 2-Step
Baseline system.

In addition, we also include the recently pub-
lished Probably-Asked Questions (PAQ) work as a
second baseline system (Lewis et al., 2021). PAQ
dataset is a semi-structured, very large scale Knowl-
edge Base of 65M QA-pairs. PAQ system is an end-
to-end QA-pair generation system that is made up
of four modules: Passage Scoring, Answer Extrac-
tion, Question Generation and Filtering Generated
QA-pairs. The PAQ system is trained on the PAQ
dataset. It is worth pointing out that during the
end-to-end generation process, their filtering mod-
ule requires loading the complete PAQ corpus into
memory for passage retrieval, which leads us to
an out-of-memory issue even with more than 50G
RAM. ! In comparison, our QAG system requires
less than half of RAM in the fine-tuning process.

5.1.2 Evaluation Metrics

Since the target of QAG task is to generate QA-
pairs that are most similar to the ground-truth QA-
pairs given the same text content, we concatenate
the question and answer to calculate the Rouge-L

'we do not use the filtering module for PAQ system in the

evaluation because of unable to solve the memory issue with
their provided code.



precision score for every single QA-pair evalua-
tion. However, the amount of QA-pairs generated
by various systems is different. It is unfair and in-
appropriate to directly compare all the generated
QA-pairs from different systems. Moreover, we
would like to see how QAG systems perform with
different thresholds on candidate QA-pair amounts.
In other words, we are looking at ranking metrics
that given an upper bound N as the maximum num-
ber of QA-pairs can be generated per section, how
similar the generated QA-pairs are to the ground-
truth QA-pairs.

Generally, there are three different ranking met-
rics: Mean Reciprocal Rank (MRR), Mean Average
Precision (MAP), and Normalized Discounted Cu-
mulative Gain (NDCG). While MRR is only good
to evaluate a single best item from the candidate
list and NDCG requires complete rank ratings for
each item, neither metric is appropriate in our case.
As a result, We decide to use MAP@N, where
N € [1,3,5,10], as our evaluation metric for the
QAG generation task. Furthermore, since the aver-
age amount of ground-truth answers is close to 3
per section in FAIRYTALEQA dataset (Table 2), we
expect the MAP@3 is the most similar to the ac-
tual use case, and we provide four N to describe
the comparison results and trends for QAG systems
on the FAIRYTALEQA.

Here is the detailed evaluation process on
MAP@N: for each ground-truth QA-pair, we find
the highest Rouge-L precision score on the concate-
nation of generated question and answer, among
top N generated QA-pairs from the same story sec-
tion. Then we average over all ground-truth QA-
pairs to get the MAP@N score. This evaluation
metric evaluates the QAG system’s performance
on different candidate levels and is achievable even
there is no ranking module in the system. For our
QAG system, we just need to filter top N QA-
pairs from our ranking module; for the 2-Step
Baseline and the PAQ baseline system, we simply
adjust a fopN parameter in the configuration.

5.1.3 Evaluation Results

Table 5 presents the evaluation results of our sys-
tem and two SOTA baseline systems in terms of
MAP@N, N € [1,3,5,10]. We observe our system
outperforms both the 2-Step baseline system
and PAQ system in all settings with significantly
better Rouge-L precision performance on both the
validation and test splits of FAIRYTALEQA dataset.
According to the evaluation results, the 2-Step

|| MAP@N with Rouge-L Precision on Q+A

QAG
Systems || N=10 || N=5 || N=3 || N=1
o 0.620 0.543 0.485 0.340
urs 0.596 0.523 0.452 0.310
2-Step 0.443 0.370 0.322 0.225
Baseline || 0.422 0.353 0.305 0216
PAQ 0.504 0.436 0.387 0.288
0.485 0.424 0.378 0273

Table 5: Results of QAG task by our system and two baseline
systems. Top numbers are for validation split and bottom
numbers are for test split.

baseline system suffers from the inherent lack
of quality control of neural models over both gen-
erated answers and questions. We notice that the
ranking module in our QAG system is an essential
component of the system in locating the best candi-
date QA-pairs across different limits of candidate
QA-pair amounts. The more candidate QA-pairs
allowed being selected for each section, the bet-
ter our system performs compared to the other two
baseline systems. Still, the Rouge-L score lacks the
ability to evaluate the syntactic and semantic qual-
ity of generated QA-pairs. As a result, we further
conduct a human evaluation to provide qualitative
interpretations.

5.2 Human Evaluation of QA Generation

We recruited five human participants (N = 5) to
conduct a human evaluation to evaluate further our
model generated QA quality against the ground-
truth and the baseline (only against PAQ system as
it outperforms the 2-Step Baseline).

In each trial, participants read a storybook sec-
tion and multiple candidate QA pairs for the same
section: three generated by the baseline PAQ sys-
tem, three generated by our system (top-3), and the
others were the ground-truth. Participants did not
know which model each QA pair was from. The
participant was asked to rate the QA pairs along

three dimensions using a five-point Likert-scale.
o Readability: The generated QA pair is in read-

able English grammar and words.
e Question Relevancy: The generated question

is relevant to the storybook section.
o Answer Relevancy: The generated answer is

relevant to the question.

We first randomly selected 7 books and further
randomly selected 10 sections out of these 7 books
(70 QA pairs). Each participant was asked to rate
these same 70 QA pairs to establish coding con-
sistency. The intercoder reliability score (Krip-
pendoft’s alpha (Krippendorff, 2011)) among five



participants along the four dimensions are between
0.73 and 0.79, which indicates an acceptable level
of consistency.

Then, we randomly selected 10 books (5 from
test and 5 from validation splits), and for each book,
we randomly selected 4 sections. Each section, on
average, has 9 QA-pairs (3 from each model). We
assigned each section randomly to two coders. In
sum, each coder coded 4 books (i.e. 16 sections and
roughly 140 QA-pairs), and in total 722 QA-pairs
were rated.

We conducted ¢-fests to compare each model’s
performance. The result shows that for the Read-
ability dimension, our model (avg=4.71, s.d.=0.70)
performed significantly better than the PAQ model
(avg=4.08, s.d.=1.13, 1(477) = 7.33, p < .01), but
was not as good as the ground-truth (avg=4.95,
s.d.=0.28, 1(479) = —4.85, p < .01).

For the Question Relevancy dimension, ground-
truth also has the best rating (avg=4.92, s.d.=0.33),
which was significantly better than the other two
models. Our model (avg=4.39, s.d.=1.15) comes
in second and outperforms baseline (avg=4.18,
s.d.=1.22, 1(477) = 1.98,p < .05). The result
suggests that questions generated by our model can
generate more relevant to the story plot than those
generated by the baseline model.

For the Answer Relevancy dimension, in which
we consider how well the generated answer can
answer the generated question, the ground-truth
(avg=4.83,5.d.=0.57) significant outperformed two
models again. Our model (avg=3.99, s.d.=1.51)
outperformed PAQ baseline model (avg=3.90,
s.d.=1.62, t(477) = 0.58, p = .56), but the result is
not significant.

All results show our model has above-average
(>3) ratings, which suggests it reaches an accept-
able user satisfaction along all three dimensions.

5.3 Question Answer Generation in an
Interactive Storytelling Application

To exemplify the real-world application of our
QAG system, we developed an interactive story-
telling application built upon our QAG system.
This system is designed to facilitate the language
and cognition development of pre-school children
via interactive QA activities during a storybook
reading session. For example, as children move on
to a new storybook page, the back-end QAG sys-
tem will generate questions for the current section.
Furthermore, to optimize child engagement in the

Question Pane Chatbot Pane

Q1

Who did something they ~

(=

really shouldn't have?

The three bears v
Follow-up question to Q1
What did the bears ~ 4
destroy?

Their mother's beautiful blue
seashell

Q2

What did the bears v 4

Figure 3: The QA panel of our interactive storytelling appli-
cation built upon our QAG system. The full user interface is
shown in Appendix B.

QA session, the QAG system also generates follow-
up questions for each answered question. A con-
versational chatbot interacts with children, reads
the story, facilitates questioning-and-answering via
speech. The system can also keep track of child
performance for the parents.

A preliminary user study with 12 pairs of par-
ents and children between the ages of 3-8 suggests
that this application powered by our QAG system
can successfully maintain engaging conversations
with children about the story content. In addition,
both parents and children found the system useful,
enjoyable, and easy to use. Further evaluation and
deployment of this interactive storytelling system
are underway.

6 Conclusion and Future Work

In this work, We explore the question-answer pair
generation task (QAG) in an education context
for pre-school children. With a newly-constructed
expert-annotated QA dataset with children-oriented
fairytale storybooks, we further implement a QA
generation pipeline which, as observed in human
and automated evaluation, effectively supports our
objective of automatically generating high-quality
questions and answers at scale. To examine the
model’s applicability in the real world, we further
build an interactive conversational storybook read-
ing system that can surface the QAG results to chil-
dren via speech-based interaction. Our work lays
a solid foundation for the promising future of us-
ing Al to automate educational question answering
tasks.
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‘ ‘ Train ‘ ‘ Validation ‘ ‘ Test

Category
H Count ‘ Percentage H Count ‘ Percentage H Count ‘ Percentage

Character 962 0.112 107 0.104 103 0.102
Causal Relationship 2368 0.277 294 0.286 278 0.276
Action 2694 0.315 333 0.324 315 0.312
Setting 523 0.061 45 0.043 62 0.061
Feeling 824 0.096 94 0.091 106 0.105
Prediction 366 0.0428 55 0.053 65 0.064
Outcome Resolution 811 0.094 97 0.094 78 0.077

Table 6: The number of QA-pairs belongs to each of the seven narrative element categories in the FAiryTalEQA dataset, inspired
by (Paris and Paris, 2003).

- (2] =
.g Question Panel Chatbot Panel
Q1
One day, when their mother Who did something they ~ 3
was out, the three bears did really shouldn't have?
something they really The three bears v | X
shouldn't have, and with a ‘
. N Follow-up question to Q1
crash, their mother's What did the bears “ e
beautiful blue seashell lay destroy?
scattered in pieces across the Their mother's beautiful blue
floor seashell.
v X
2 Q2
What did the bears v 3
Figure 4: The user interface of our down-streaming interactive storytelling system.
A Distribution of FAIRYyTALEQA answering a ‘parent’ question, children can go fur-

annotations on 7 narrative elements ther to answer a follow-up question or try out other

‘parent’ questions.
Table 6 shows the distribution of QA-pair anno-

tations on 7 essential narrative elements that are
defined in (Paris and Paris, 2003) of FAIRYTALEQA
dataset. The distribution of narrative elements is
consistent across train/validation/test splits.

B User Interface of down-streaming
application

Figure 4 is a screenshot of the interactive story-
telling system interface for the down-streaming
task of our QAG system in a real-world use sce-
nario. Children can listen to the automatic story
reading and try to answer the plot-relevant ques-
tions generated by the QAG system. They can an-
swer the question via a microphone, and the system
will judge the correctness of their answer. After
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