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ABSTRACT
We consider a decision aggregation problem with two experts who

eachmake a binary recommendation after observing a private signal

about an unknown binaryworld state. An agent, who does not know

the joint information structure between signals and states, sees the

experts’ recommendations and aims to match the action with the

true state. Under the scenario, we study whether supplemented

additionally with second-order information (each expert’s forecast

on the other’s recommendation) could enable a better aggregation.

We adopt a minimax regret framework to evaluate the aggrega-

tor’s performance, by comparing it to an omniscient benchmark

that knows the joint information structure. With general informa-

tion structures, we show that second-order information provides

no benefit – no aggregator can improve over a trivial aggregator,

which always follows the first expert’s recommendation. However,

positive results emerge when we assume experts’ signals are condi-

tionally independent given the world state. When the aggregator is

deterministic, we present a robust aggregator that leverages second-

order information, which can significantly outperform counterparts

without it. Second, when two experts are homogeneous, by adding

a non-degenerate assumption on the signals, we demonstrate that

random aggregators using second-order information can surpass

optimal ones without it. In the remaining settings, the second-order

information is not beneficial. We also extend the above results to

the setting when the aggregator’s utility function is more general.
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1 INTRODUCTION
Two marketing experts at a company are providing advice on

whether to launch a new product now or delay the launch to next
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year. The unknown binary world state is whether the market has

a high demand for the product now or a low demand currently.

Each expert can recommend “launch now” or “delay launch” as the

optimal action. If the action matches the true demand (launch now

when high demand, or delay when low demand), the utility of the

company is +1. If mismatched, the utility is −1.

The agent takes the experts’ recommendations into consideration

and outputs an aggregated decision. If both experts recommend the

same action, the agent can follow this consensus recommendation.

When they suggest opposite actions, the aggregator may follow the

expert who has superior past accuracy. However, in the one-shot

setting, the aggregator would fall into a dilemma without access to

performance history. Like the above motivating example, similar

dilemmas universally exist in other scenarios, e.g., when a patient

faces different diagnoses from two doctors, when an investor faces

diverse opinions on a startup company, and when an editor faces

conflicting recommendations from two referees.

Now, let us ask each expert to provide a prediction about their

peer’s recommendation, called the second-order setting. Back to

our motivating example, for instance, the first expert recommends

“launch now” and predicts her peer recommends “launch now” with

a probability of 0.4, and the second expert recommends “delay

launch” and predicts her peer recommends “launch now” with a

probability of 0.2. Our question is – by having each expert addition-
ally provide a prediction about their peer’s recommendation, can we
better aggregate their recommendations?

A series of works have demonstrated the benefit of the addi-

tional second-order information in the information aggregation

problem. The most closed setting is considered by Prelec et al. [24],

proving that second-order information enhances aggregation given

a sufficiently large group size. However, the value of second-order

information remains less explored for smaller expert groups.

In particular, prior analyses considered settings where second-

order information identifies the true world state, even absent prior

data. However, with only two experts, the information often cannot

unambiguously determine the state. In such a case, we adopt a ro-

bust aggregation paradigm to evaluate the aggregator performance

against an omniscient benchmark. The paradigm is introduced by

Arieli et al. [1]. The omniscient agent observes the experts’ pri-

vate signals and knows the true joint distribution between signals

and states. This allows a perfect aggregation to output the optimal

recommendation. In contrast, we focus on aggregators who only

know the family of possible information structures, not the exact

structure itself. The goal is to identify an aggregation rule with min-

imum regret compared to the omniscient benchmark. Here, regret

is defined as the worst-case difference between the benchmark’s

expected utility and the aggregator’s expected utility among all

information structures.

Under the robust aggregation paradigm, we will identify the op-

timal aggregator that only uses the experts’ first-order recommen-

dations; and the optimal aggregator that uses both the first-order

1
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recommendations and second-order predictions. By comparing

the regret achieved by the optimal aggregators with and without

second-order predictions, we can quantify the value of the addi-

tional higher-order information for robust aggregation.

1.1 Summary of Results
As indicated by the motivating example, our primary focus lies in

the scenario where two experts are asked to provide recommenda-

tions for binary actions after observing a binary signal, with the

agent aiming to align the action with a binary world state.

General information structures. We initially make no assumption

on the underlying information structure, allowing for the possi-

bility of a strong conditional correlation between the signals ob-

served by the two experts. In this context, we present a negative

result, demonstrating that no random aggregator can ensure a re-

gret below 0.5, even when equipped with second-order information

(Theorem 3.1). Further, this regret can be guaranteed by a trivial

aggregator that consistently follows the first expert’s recommen-

dation (Theorem 3.3). Consequently, the second-order information

does not provide any assistance in constructing a robust aggregator

under these circumstances.

Conditionally independent information structures. Subsequently,
we narrow our focus to conditionally independent information

structures to reveal the power of second-order information. Here,

conditionally independent information structures mean that two

experts’ signals are independent conditioning on the world state.

We start with no additional assumptions, allowing for heteroge-

neous experts. We then consider homogeneous experts, meaning

that two experts have an identical marginal signal distribution.

Building on this, we further assume non-degenerate signals, i.e.,

experts recommend different actions after seeing distinct signals.

On the aggregator side, we consider two kinds: (1) deterministic

aggregators that output a fixed action, and (2) random aggregators

that output a random action according to a probability distribution

over actions.

Two key positive results emerge. First, for deterministic aggrega-

tors, significant improvements occur in the general conditionally in-

dependent setting. Second, for random aggregators, we demonstrate

that second-order information enables lower regret guarantees un-

der the assumptions of homogeneous experts with non-degenerate

signals. The remainder of the results are negative, i.e., second-order

information cannot enhance the robustness of the aggregator. All

results are presented in Table 1. We now discuss these results in

more detail.

1. Heterogeneous experts.We first consider the general sce-

nario where two experts can be heterogeneous. In this context,

with respect to deterministic aggregators, we present a positive

result. We construct an aggregator that adheres to the more “in-

formative” expert when two experts’ recommendations split. For

a better understanding, the more “informative” expert has better

accuracy in predicting the other’s recommendation
1
. We show that

such an aggregator guarantees a regret of 1/3 ≈ 0.3333, which is

1
Here accuracy is measured by the distance between the prediction and recommen-

dation. For instance, predicting 0.7 is more accurate than predicting 0.6 for actual

recommended action 1.

the most robust deterministic aggregator with second-order infor-

mation (Theorems 4.3 and 4.4). Furthermore, it is essential to note

that no aggregator can guarantee a regret lower than 0.5 without

second-order information. This highlights the substantial assistance

offered by second-order information (Theorem 4.1).

However, considering random strategies, second-order informa-

tion proves to be redundant in terms of robustness. In particular,

no aggregator equipped with second-order information can ensure

a regret of less than 0.25 (Theorem 4.5); while such a regret can

also be achieved by a simple aggregator that uniformly chooses an

action in cases of different recommendations (Theorem 4.6).

To summarize, when facing heterogeneous experts, under the

robust aggregation paradigm, (1) when the aggregator is deter-

ministic, second-order information can significantly enhance its

decision-making capabilities; (2) when the aggregator can be ran-

dom, second-order information is not beneficial to the regret.

2. Homogeneous experts.We also investigate the scenarios

where two experts are homogeneous. We show that without fur-

ther assumption, neither deterministic aggregators (Theorems 5.2

and 5.4) nor random aggregators (Theorems 5.5 and 5.6) can derive

benefits from second-order information. This is due to a special case

where both experts always recommend the same action, rendering

the second-order information useless. We show that such a case

is the worst one, and could lead to a tight regret lower bound of

3 − 2

√
2 ≈ 0.1716.

3. Homogeneous experts with non-degenerate signals.To avoid
the above special case, we focus on the information structureswhere

experts will recommend different actions when observing different

signals. In this setting, we encounter a negative outcome consider-

ing deterministic strategies: no aggregator with second-order infor-

mation can surpass the performance of the follow-the-first-expert

aggregator, which guarantees a regret of 3 − 2

√
2 (Theorem 5.4 and

Corollary 6.2). Notably, when facing homogeneous experts, this ag-

gregator is equivalent to the uniform aggregator, which uniformly

chooses an action when two recommendations conflict.

However, when considering random aggregators, we provide two

aggregators leveraging second-order information that give better

performance. The first aggregator follows a similar principle to the

robust deterministic aggregator when dealing with heterogeneous

experts, i.e., granting more weight to the expert with more accurate

predictions. This aggregator guarantees a regret of 0.1682 (Theo-

rem 6.10). The second aggregator, derived from the online learning

algorithm proposed by Guo et al. [11], guarantees an even lower re-

gret of 0.1673 (Theorem 6.11). Both of these aggregators outperform

the uniform aggregator with a regret of 3 − 2

√
2 ≈ 0.1716, which is

already optimal without second-order information (Theorem 6.5).

This positive result aligns with the findings in Prelec et al. [24],

which highlights that second-order information can enable the ag-

gregator to achieve no regret when confronted with infinite experts.

In our investigation, we extend this positive outcome to the case of

two experts. We also establish a lower bound of 1/6 ≈ 0.1667 for

aggregators with second-order information (Theorem 6.7).

Extension: general utility functions with homogeneous experts.
In Section 7 and Appendix A, we also extend the above findings

for homogeneous experts to encompass general utility functions,

where the agent’s objective goes beyond aligning actions with

2
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Table 1: An overview of our main results.

Regret lower/upper bound
*

Deterministic Helps? Random Helps?

Heterogeneous

1st
†

0.5
Yes

0.25

No

2nd
†

0.3333
‡

0.25

Homogeneous

1st 0.1716
‡

No

0.1716

No

2nd 0.1716 0.1716

Homogeneous & 1st 0.1716

No

0.1716

Yes

Non-degenerate 2nd 0.1716 [0.1667, 0.1673]‡

*
When the entry is a single value, it means the lower/upper bound coincides at the value; when the entry is an

interval, the endpoints of the interval respectively represent the lower/upper bound.

†
1st: only using first-order recommendations, 2nd: also using second-order predictions.

‡
0.3333 = 1/3, 0.1716 = 3 − 2

√
2, 0.1667 = 1/6, 0.1673 is a numerically rounded estimate.

states. We first perform a reduction to allow us to focus solely on

the ratio of the utility gap between adopting two actions when the

state is 0 and when the state is 1. We observe that the results for

random aggregators mirror those in the previous setting. Without

further assumptions, the previous negative outcome still holds

when both experts always advocate an identical action, resulting

in high regret for all aggregators. However, when we introduce the

non-degenerate signal assumption, we demonstrate that second-

order information enhances aggregators’ robustness with different

ratios. These findings underscore the significance of second-order

information for a wide range of utility functions.

1.2 Related Work
Our work focuses on decision aggregation, a subset of the broader

field of information aggregation. A significant portion of informa-

tion aggregation literature focuses on forecast aggregation. This

body of work explores various methodologies, including simple

techniques like averaging [8], median averaging [14], and their

respective modifications [5, 17, 25]. These studies showcase the

efficacy of straightforward aggregation rules, such as averaging or

random dictating [3, 8, 10, 20, 28], mirroring some of our findings.

Furthermore, there exists a body of literature on decision aggrega-

tion, such as De Oliveira et al. [9], Arieli et al. [3], and Prelec et al.

[24], which closely align with our work.

The most closely related paper is Prelec et al. [24], as it also

examines the role of second-order information in decision aggrega-

tion. The key distinction from our setting is their focus on infinite,

homogeneous experts. Leveraging second-order information, they

develop an aggregator that identifies the true world state, i.e., has no

regret compared to the omniscient agent. In contrast, we focus on

two heterogeneous experts, representing a small expert group. We

demonstrate that for such settings, regret is unavoidable even with

second-order information. Further, we characterize cases where

second-order information does not help reduce regret. Our regret

analysis and findings on the limitations of small heterogeneous

groups add new insights into decision aggregation with second-

order information.

We adopt a regret-based minimax paradigm in our analysis.

While De Oliveira et al. [9] also employ a minimax approach, they

use a loss-based framework and show the optimal aggregator sim-

ply follows the best expert. In contrast, we evaluate aggregator

performance in comparison to an omniscient benchmark using a

regret formulation. This regret-based robust paradigm follows the

approach of Arieli et al. [1], which studied forecast aggregation

under Blackwell-ordered and conditionally independent structures.

Additional works employing the regret-based approach include

Babichenko and Garber [4], which explores partial-evidence infor-

mation structures within a repeated game context, and Guo et al.

[11], which proposes an algorithmic framework for robust forecast

aggregation.

Our model focuses on the setting where the aggregator does

not have access to the exact information structure. Many other

works also consider settings with ambiguity but differ in the knowl-

edge they assume the aggregator possesses. For instance, both

De Oliveira et al. [9] and Arieli et al. [3] assume that the aggregator

possesses knowledge of the marginal distribution of each expert’s

signal and aim to enhance the robustness of correlations based on

this information. This consideration is also prevalent in [6, 12, 18].

In contrast, our work assumes that the aggregator is ignorant about

the full information structure and solely has access to the experts’

outputs and the set to which the information structure belongs.

This approach aligns with Arieli et al. [1], Kong [15], and Prelec

et al. [24]. Moreover, Arieli et al. [2] characterize the set of identifi-

able information structures and introduce a scheme that uniquely

identifies the state of nature in finite cases.

We study whether second-order information improves the per-

formance of the decision aggregator. A substantial body of literature

also explores the benefit of second-order information. Prelec [23]

started the exploration and introduced a framework wherein agents

provide both their answers and predictions for a single multi-choice

question. Building upon this foundation, subsequent works have

delved into the design of aggregators utilizing second-order infor-

mation. Among these, the “surprisingly popular” approach, initially

introduced by Prelec et al. [24] and subsequently developed by re-

searchers such as Palley and Soll [22], Palley and Satopää [21], and

Chen et al. [7], have garnered significant attention.

Furthermore, Kong [15] employs second-order and even higher-

order information in forecast aggregation, particularly in scenar-

ios featuring two experts who are either Blackwell-ordered or re-

ceive signals that are conditionally independent and identically

distributed. Wang et al. [29], Martinie et al. [19], and Wilkening

et al. [30] have designed prediction-aided forecast aggregators and

3
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conducted experimental analyses to showcase their effectiveness

and potential in real-world applications.

In addition to decision aggregation and forecast aggregation,

the utilization of second-order information finds application in

many other domains. For instance, Kong et al. [16] focus on open-

response questions and ask agents what they think other people

will answer. They use the information to rank the answers without

any prior knowledge. Also, Hosseini et al. [13] and Schoenebeck

and Tao [27] employ a similar framework to rank a predefined set

of candidates. In the context of election forecasting, Rothschild and

Wolfers [26] utilize voters’ expectations regarding other people’s

votes to provide more accurate predictions of election outcomes.

2 PROBLEM STATEMENT
A company is deciding whether to launch a new product now (ac-

tion 1) or delay it until next year (action 0). There are two marketing

experts, expert 1 and expert 2, providing recommendations to the

company’s CEO (the agent). There are two possible world states

about the current demand, high (state 1) and low (state 0), and

we use 𝜔 ∈ Ω = {0, 1} to denote the unknown true state. Let

𝑎 ∈ 𝐴 = {0, 1} denote the action adopted by the CEO. If the action

matches the true demand (launch now with high demand or delay

with low demand), the CEO’s utility is +1. Otherwise, the CEO’s

utility is −1.

Each expert 𝑖 ∈ {1, 2} receives a private signal 𝑆𝑖 ∈ 𝑆 = {𝐿,𝐻 }
about the demand, where an 𝐿 signal implies a lower likelihood of

the high demand state than an 𝐻 signal. The realization of 𝑆𝑖 is 𝑠𝑖 .

An information structure 𝜋 ∈ Δ(Ω×𝑆2) is a joint distribution of the
state and two private signals 𝑆1, 𝑆2, which encodes the correlation

between the true state and private signals. Here, Δ(·) stands for the
set of all distributions on the support. The information structure

is shared by both experts. Thus, the prior of the world state 𝜇 =

𝜋 (𝜔 = 1) ∈ [0, 1] is also known to both experts. For simplicity, we

rewrite the key parameters of any specific information structure in

the rest of this paper. Let

𝑘1 B 𝜋 (𝑆1 = 𝐿 | 𝜔 = 1), 𝑙1 B 𝜋 (𝑆1 = 𝐿 | 𝜔 = 0);
𝑘2 B 𝜋 (𝑆2 = 𝐿 | 𝜔 = 1), 𝑙2 B 𝜋 (𝑆2 = 𝐿 | 𝜔 = 0).

denote the signal probabilities and the posteriors are written as

𝑏1𝐿 B 𝜋 (𝜔 = 1 | 𝑆1 = 𝐿) ≤ 𝑏1𝐻 B 𝜋 (𝜔 = 1 | 𝑆1 = 𝐻 );
𝑏2𝐿 B 𝜋 (𝜔 = 1 | 𝑆2 = 𝐿) ≤ 𝑏2𝐻 B 𝜋 (𝜔 = 1 | 𝑆2 = 𝐻 ).

Here, 𝜋 (𝑆1 = 𝐿 | 𝜔 = 1) stands for the probability that 𝑆1 = 𝐿

conditioning on 𝜔 = 1. Similar meanings hold for similar notations.

Note that 𝑏1𝐿 ≤ 𝑏1𝐻 and 𝑏2𝐿 ≤ 𝑏2𝐻 hold since an 𝐿 signal indicates

a lower likelihood of the high demand state 1.

The experts observe their private signals and compute posteriors

on the demand state. They recommend “launch now” (action 1) if

the posterior on the high demand ≥ 0.5 and “delay launch” (action 0)

otherwise. We assume that experts report truthfully. Such incentive

compatibility can be guaranteed by rewarding the experts later

with the revelation of the true state.

The CEO aims to aggregate the expert recommendations into

an optimal product launch decision but lacks knowledge of the

underlying information structure. Formally, the CEO observes the

recommendations 𝑎1, 𝑎2 ∈ 𝐴 = {0, 1} from the two marketing

experts. The CEO’s aggregator outputs a final decision, which may

be deterministic (denoted by 𝑓 𝑑 : 𝐴2 → 𝐴) or randomized (denoted

by 𝑓 𝑟 : 𝐴2 → Δ(𝐴)). Here Δ means its output is a random action

following a probability distribution.

Benchmark and regret. We compare the aggregator to an om-

niscient agent who knows the true information structure 𝜋 and

observes the realized signals 𝑠1, 𝑠2. The benchmark’s output is

𝑎∗ (𝑠1, 𝑠2, 𝜋) B 𝜙 (𝜋 (𝜔 = 1 | 𝑆1 = 𝑠1, 𝑆2 = 𝑠2)),

where 𝜙 (𝑏) B 1{𝑏 ≥ 0.5}. 1{·} is the indicator which is valued 1

when the inner condition is true and 0 otherwise.

The loss of any aggregator regarding information structure 𝜋

is defined by the benchmark’s expected utility subtracted by the

aggregator’s expected utility:

𝐿(𝑓 , 𝜋) B E
[
1{𝑎∗ (𝑠1, 𝑠2, 𝜋) = 𝜔} − 1{𝑓 (𝑎1 (𝑠1), 𝑎2 (𝑠2)) = 𝜔}

]
.

Here, the expectation is taken on the world state 𝜔 , experts’

private signal realizations 𝑠1, 𝑠2, and the randomness of the aggre-

gator’s output, if it is random.

Second-order information. Each expert, denoted as 𝑖 , is also asked

to provide a prediction, 𝑝𝑖 ∈ [0, 1], for the probability that the other
expert recommends action 1. This is represented as follows:

𝑝1 B E𝑠1
[𝜙 (𝑏2) = 1 | 𝑆1 = 𝑠1]

=
∑︁
𝑠2

𝜋 (𝑆2 = 𝑠2 | 𝑆1 = 𝑠1)𝜙 (𝜋 (𝜔 = 1 | 𝑆2 = 𝑠2)),

and 𝑝2 is defined analogously. The CEO aims to find an aggregator

that can effectively incorporate this additional second-order infor-

mation. Such an aggregator is denoted as 𝑓 : 𝐴2 × [0, 1]2 → Δ(𝐴)
or 𝐴. We distinguish between deterministic aggregators 𝑓 𝑑 with

deterministic outputs, and randomized aggregators 𝑓 𝑟 that output

probability distributions over actions.

Given the information structure 𝜋 , the loss of any aggregator

equipped with second-order information is defined as follows:

𝐿(𝑓 , 𝜋) B E
[
1{𝑎∗ (𝑠1, 𝑠2, 𝜋) = 𝜔} − 1{𝑓 (𝑎1, 𝑎2, 𝑝1, 𝑝2) = 𝜔}

]
.

Here,𝑎1, 𝑎2, 𝑝1, 𝑝2 are abbreviations for𝑎1 (𝑠1), 𝑎2 (𝑠2), 𝑝1 (𝑠1), 𝑝2 (𝑠1),
respectively. Again, the expectation is taken on the state 𝜔 , experts’

private signal realizations 𝑠1, 𝑠2, and the randomness of the aggre-

gator’s output, if it is random.

Robust aggregation. As the CEO lacks knowledge of the exact

information structure, her goal is to design an aggregator that per-

forms well across all possible information structures within the

family 𝑃 . To model such robustness, we define the regret of a deter-
ministic aggregator 𝑓 as the worst-case loss across all information

structures in 𝑃 :

𝐿𝑃 (𝑓 ) B max

𝜋∈𝑃
𝐿(𝑓 , 𝜋).

This work considers different sets of information structures to

capture various real-world scenarios. For each of these information

structure family 𝑃 , our objective is to identify the best aggregators

𝑓 , both with and without second-order information, that minimize

the regret 𝐿𝑃 (𝑓 ). We denote the set of all deterministic aggregators

without second-order information as 𝐹+1, and the set of determin-

istic aggregators with second-order information as 𝐹+2. Formally,
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we address the following optimization problems:

min

𝑓 𝑑 ∈𝐹+1

𝐿𝑃 (𝑓 𝑑 ) = min

𝑓 𝑑 ∈𝐹+1

max

𝜋∈𝑃
𝐿(𝑓 𝑑 , 𝜋),

min

𝑓 𝑑 ∈𝐹+2

𝐿𝑃 (𝑓 𝑑 ) = min

𝑓 𝑑 ∈𝐹+2

max

𝜋∈𝑃
𝐿(𝑓 𝑑 , 𝜋),

min

𝑓 𝑟 ∈Δ(𝐹+1 )
𝐿𝑃 (𝑓 𝑟 ) = min

𝑓 𝑟 ∈Δ(𝐹+1 )
max

𝜋∈𝑃
𝐿(𝑓 𝑟 , 𝜋),

min

𝑓 𝑟 ∈Δ(𝐹+2 )
𝐿𝑃 (𝑓 𝑟 ) = min

𝑓 𝑟 ∈Δ(𝐹+2 )
max

𝜋∈𝑃
𝐿(𝑓 𝑟 , 𝜋) .

We further study whether the inclusion of second-order infor-

mation leads to a strict decrease in regret for the agent. In other

words, we examine for different family 𝑃 whether the following

two values < 0:

min

𝑓 𝑑 ∈𝐹+2

𝐿𝑃 (𝑓 𝑑 ) − min

𝑓 𝑑 ∈𝐹+1

𝐿𝑃 (𝑓 𝑑 ),

min

𝑓 𝑟 ∈Δ(𝐹+2 )
𝐿𝑃 (𝑓 𝑟 ) − min

𝑓 𝑟 ∈Δ(𝐹+1 )
𝐿𝑃 (𝑓 𝑟 ).

3 WARM-UP: GENERAL INFORMATION
STRUCTURES

As a warm-up, this section examines the information structure

family ALL, which contains all information structures that encode

the correlation between the state and two signals. Missing proofs

of this section can be found in Appendix B. We start by presenting

a universal lower bound.

Theorem 3.1. For every random aggregator 𝑓 𝑟 (𝑎1, 𝑎2, 𝑝1, 𝑝2) ∈
Δ(𝐹+2), 𝐿ALL (𝑓 𝑟 ) ≥ 0.5.

To prove the above lower bound, we adapt Yao’s principle [31]

to our setting, establishing a connection between the expected

regret of any random aggregator and the best aggregator for any

distribution over information structures. The lemma below will be

invoked repeatedly in the subsequent sections.

Lemma 3.2 (Yao’s principle [31]). In any aggregator family 𝐹 and
information structure family 𝑃 , for any random aggregator 𝑓 𝑟 ∈ Δ(𝐹 )
and any distribution 𝐷 ∈ Δ(𝑃),

min

𝑓 𝑑 ∈𝐹
E𝜋∼𝐷 [𝐿(𝑓 𝑑 , 𝜋)] ≤ max

𝜋∈𝑃
E𝑓 𝑑∼𝑓 𝑟 [𝐿(𝑓

𝑑 , 𝜋)] .

We now present a deterministic aggregator in 𝐹+1 that achieves

for ALL the lowest regret among all aggregators in Δ(𝐹+2), which
we refer to as the follow-the-first-expert aggregator.

The follow-the-first-expert aggregator. The aggregator is charac-
terized by unconditionally adhering to the recommended action

of expert 1, irrespective of expert 2’s advice. This aggregator can

be mathematically expressed as 𝑓𝑓 𝑡 𝑓 𝑒 (𝑎1, 𝑎2) = 𝑎1. We have the

following regret guarantee for 𝑓𝑓 𝑡 𝑓 𝑒 .

Theorem 3.3. 𝐿ALL (𝑓𝑓 𝑡 𝑓 𝑒 ) = 0.5.

Since 𝑓𝑓 𝑡 𝑓 𝑒 is optimal among all aggregators in Δ(𝐹+2) and is

itself in 𝐹+1, we conclude that the agent cannot reach a lower regret

when two experts have conditional correlations even by using a

random strategy or incorporating second-order information. We

therefore turn our focus to conditionally independent information

structures in the following sections.

4 HETEROGENEOUS EXPERTS
We now come to consider conditionally independent information

structures andmake no additional assumptions on experts, allowing

them to be heterogeneous. Specifically, a conditionally independent

information structure ensures that two experts’ signals are inde-

pendent given the state. The set of all conditionally independent

information structures is referred to as CI. Missing proofs of this

section can be found in Appendix C.

4.1 Deterministic Aggregators
We first establish the following lower bound for deterministic ag-

gregators.

Theorem 4.1. For every deterministic aggregator 𝑓 𝑑 (𝑎1, 𝑎2) ∈ 𝐹+1,
𝐿CI (𝑓 𝑑 ) ≥ 0.5.

We now revisit the follow-the-first-expert aggregator introduced

in Section 3. Since CI ⊂ ALL, as a corollary of Theorems 3.3 and 4.1,

within CI, this aggregator is still the optimal among all deterministic

aggregators.

Corollary 4.2. 𝐿CI (𝑓𝑓 𝑡 𝑓 𝑒 ) = 0.5.

We proceed to establish a lower bound for deterministic aggrega-

tors equipped with second-order information, which notably falls

far below the lower bound for deterministic aggregators lacking

second-order information.

Theorem4.3. For every deterministic aggregator 𝑓 𝑑 (𝑎1, 𝑎2, 𝑝1, 𝑝2) ∈
𝐹+2, 𝐿CI (𝑓 𝑑 ) ≥ 1/3 ≈ 0.3333.

To further establish the effect of second-order information in

this setting, we now introduce a robust “threshold aggregator".

Remarkably, within CI, 𝑓𝑡ℎ𝑟 attains the lowest regret among all

deterministic aggregators in 𝐹+2. This observation underscores the

potential of prediction knowledge in enabling an agent without

randomness to achieve a lower regret in CI.

The threshold aggregator. This aggregator follows experts’ rec-
ommendations if the experts agree. When the experts disagree, it

compares the sum of their predictions to 1. If the predictions sum

to less than 1, it chooses action 1. Otherwise, it chooses action 0.

Concretely, we have

𝑓𝑡ℎ𝑟 (𝑎1, 𝑎2, 𝑝1, 𝑝2) =


𝑎1 𝑎1 = 𝑎2

1 𝑎1 ≠ 𝑎2, 𝑝1 + 𝑝2 ≤ 1

0 𝑎1 ≠ 𝑎2, 𝑝1 + 𝑝2 > 1

.

The aggregator tends to trust the expert who makes a more

accurate prediction. From another perspective, it is equivalent to

the “surprisingly popular” approach proposed by Prelec et al. [24].

When 𝑝1 + 𝑝2 ≤ 1, the answer 1 is more popular than predicted.

Conversely, when 𝑝1 + 𝑝2 > 1, the answer 0 is the surprisingly

popular one. We demonstrate that the threshold aggregator has a

regret of 1/3.

Theorem 4.4. 𝐿CI (𝑓𝑡ℎ𝑟 ) = 1/3.

In summary, the threshold aggregator resolves the experts’ dis-

agreement based on who can predict the other more accurately.
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While there still exists a gap compared with the omniscient bench-

mark, using second-order information already significantly im-

proves the aggregator’s performance versus relying solely on raw

recommendations.

4.2 Random Aggregators
For random aggregators, we first establish that it is impossible

to ensure a regret below 0.25 even when utilizing second-order

information.

Theorem 4.5. For every random aggregator 𝑓 𝑟 (𝑎1, 𝑎2, 𝑝1, 𝑝2) ∈
Δ(𝐹+2), 𝐿CI (𝑓 𝑟 ) ≥ 0.25.

We now introduce a random aggregator that does not require

predictive information yet still guarantees tight regret. We refer

to the aggregator as the uniform aggregator. It can be seen as a

random version of the follow-the-first-expert aggregator.

The uniform aggregator. The uniform aggregator outputs the

recommendations of experts when they agree; when they disagree,

the aggregator uniformly selects an action. In other words, the

uniform aggregator can be expressed as

𝑓𝑢𝑛𝑖 (𝑎1, 𝑎2) =
{
𝑎1 𝑎1 = 𝑎2

0.5 𝑎1 ≠ 𝑎2

.

Here, when 𝑓𝑢𝑛𝑖 outputs 0.5, it means choosing action 1 with proba-

bility 0.5. A similar interpretation also holds for random aggregators

to be introduced later.

Theorem 4.6. 𝐿CI (𝑓𝑢𝑛𝑖 ) = 0.25.

5 HOMOGENEOUS EXPERTS
In the above results for random aggregators, an important reason

why the predictions are useless is that, in the worst cases, they do

not assist the agent in distinguishing the omniscient expert from

the ignorant one, thus the aggregator can only choose the uniform

strategy at best. However, the benchmark, aided by the information

structure, is always able to identify the more informed expert. As a

result, there exists a substantial utility gap between the agent and

the benchmark, irrespective of the agent possessing knowledge of

the prediction.

In this section, we assume that the two experts are homogeneous,

which means their marginal signal distribution is the same. Intu-

itively, the knowledge of prediction may help the agent identify the

representative signal that includes the information of the real state.

Formally, we take the following assumption in this section.

Assumption 5.1 (Homogeneous experts). The two experts are ho-
mogeneous. In other words, 𝑘1 = 𝑘2 = 𝑘 , 𝑙1 = 𝑙2 = 𝑙 , 𝑏1𝐿 = 𝑏2𝐿 = 𝑏𝐿
and 𝑏1𝐻 = 𝑏2𝐻 = 𝑏𝐻 .

We then focus on the set of all conditionally independent infor-

mation structures with homogeneous experts, which is referred to

as HOI. All missing proofs of this section are deferred to Appendix D.

5.1 Deterministic Aggregators
To begin, we establish a lower bound for deterministic aggregators,

demonstrating that no deterministic aggregator in 𝐹+2 can achieve

a regret less than 3 − 2

√
2 ≈ 0.1716.

Theorem5.2. For every deterministic aggregator 𝑓 𝑑 (𝑎1, 𝑎2, 𝑝1, 𝑝2) ∈
𝐹+2, 𝐿HOI (𝑓 𝑑 ) ≥ 3 − 2

√
2.

Interestingly, the threshold aggregator, which is optimal with

heterogeneous experts, achieves suboptimal performance in the

homogeneous setting, still giving a regret of 1/3.

Theorem 5.3. 𝐿HOI (𝑓𝑡ℎ𝑟 ) = 1/3.

Nevertheless, the follow-the-first-expert aggregator can guar-

antee a lower regret. Moreover, 𝑓𝑓 𝑡 𝑓 𝑒 achieves the lowest regret

among all deterministic aggregators in 𝐹+2 regarding HOI. This
also indicates that knowledge of prediction cannot help the agent

without randomness attain a lower regret in HOI.

Theorem 5.4. 𝐿HOI (𝑓𝑓 𝑡 𝑓 𝑒 ) = 3 − 2

√
2.

5.2 Random Aggregators
For random aggregators utilizing second-order information, we

first show that their regret lower bound in HOI is 3 − 2

√
2.

Theorem 5.5. For every random aggregator 𝑓 𝑟 (𝑎1, 𝑎2, 𝑝1, 𝑝2) ∈
Δ(𝐹+2), 𝐿HOI (𝑓 𝑟 ) ≥ 3 − 2

√
2.

As an intuition of the proof, we provide an information structure

in which the aggregator always observes the input (1, 1, 1, 1), which
means the best strategy is to adopt action 1 all the time. However,

when two signals are both 𝐿, the benchmark’s posterior is less than

1. Therefore, no aggregator can avoid such a difference, leading to

an unavoidable regret of 3 − 2

√
2.

We then show that the uniform aggregator is optimal with a tight

regret of 3−2

√
2.We notice here that since experts are homogeneous,

the uniform aggregator is equivalent to the follow-the-first-expert-

aggregator.

Theorem 5.6. 𝐿HOI (𝑓𝑢𝑛𝑖 ) = 3 − 2

√
2.

Thus, surprisingly, the second-order information offers no help

under the robust paradigm even if we assume experts are homo-

geneous. This motivates an additional natural assumption that we

will introduce in the following section.

6 HOMOGENEOUS EXPERTS WITH
NON-DEGENERATE SIGNALS

According to the proof of Theorem 5.5, when experts’ recommended

actions do not vary with their observed signals, the predictions

contain no useful information and thus cannot aid the agent in

achieving lower regret. In this section, alongside assuming expert

homogeneity, we further assume the experts will recommend dif-

ferent actions when observing different signals, specifically that

𝑏𝐿 < 1/2 ≤ 𝑏𝐻 .

Assumption 6.1 (Homogeneous experts with non-degenerate sig-

nals). Two experts are homogeneous. Also, they recommend different
actions when observing different signals. In other words, 𝑏𝐿 < 1/2 ≤
𝑏𝐻 .

This section studies the set of all possible conditionally indepen-

dent information structures satisfying Assumption 6.1, denoted by

NHI. Missing proofs of this section can be found in Appendix E.
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6.1 Deterministic Aggregators
For deterministic aggregators, we notice that all results we establish

in Section 5 still work for the information structure family NHI,
with no changes in the proof. To summarize, we have the following

corollaries.

Corollary 6.2. For every deterministic aggregator 𝑓 𝑑 (𝑎1, 𝑎2, 𝑝1, 𝑝2) ∈
𝐹+2, 𝐿NHI (𝑓 𝑑 ) ≥ 3 − 2

√
2 ≈ 0.1716.

Corollary 6.3. 𝐿NHI (𝑓𝑡ℎ𝑟 ) = 1/3.

Corollary 6.4. 𝐿NHI (𝑓𝑓 𝑡 𝑓 𝑒 ) = 3 − 2

√
2.

6.2 Random Aggregators
Wefirst establish the lower bound for random aggregators inΔ(𝐹+1).
As with HOI, no random aggregator without second-order infor-

mation can guarantee a regret less than 3 − 2

√
2 for the worst case

over NHI.

Theorem 6.5. For every random aggregator 𝑓 𝑟 (𝑎1, 𝑎2) ∈ Δ(𝐹+1),
𝐿NHI (𝑓 𝑟 ) ≥ 3 − 2

√
2.

Since the uniform aggregator guarantees a regret of 3 − 2

√
2 for

any information structure in HOI by Theorem 5.6, it guarantees

at least this regret against all structures in NHI ⊂ HOI. Thus, the
aggregator is also optimal in this setting.

Corollary 6.6. 𝐿NHI (𝑓𝑢𝑛𝑖 ) = 3 − 2

√
2.

We then come to consider aggregators utilizing second-order in-

formation, starting by establishing a lower bound, which is slightly

smaller than that for random aggregators without second-order

information.

Theorem 6.7. For every random aggregator 𝑓 𝑟 (𝑎1, 𝑎2, 𝑝1, 𝑝2) ∈
Δ(𝐹+2), 𝐿NHI (𝑓 𝑟 ) ≥ 1/6 ≈ 0.1667.

To reduce the search space, we now study the characteristics

of a robust random aggregator in Δ(𝐹+2), aiming to achieve a low

regret regarding information structures in NHI. First, we present a
lemma showing that when two experts split in recommendation,

the expert with recommendation 1 always has a no less prediction

value than the other expert.

Lemma 6.8. Suppose 𝑎1 = 1 and 𝑎2 = 0, then 𝑝1 ≥ 𝑝2.

Hence, it suffices for us to consider the scenario that 𝑝1 ≥ 𝑝2

when 𝑎1 = 1 and 𝑎2 = 0. To add to this, we also have the following

results:

Proposition 6.9. There exists a random aggregator 𝑓 𝑟 that achieves
the lowest regret among all random aggregators in Δ(𝐹+2) regarding
NHI that satisfies the following for any 𝑎1, 𝑎2 ∈ {0, 1}, 𝑝1, 𝑝2, 𝑝 ∈
[0, 1]:

(a) 𝑓 𝑟 (1, 1, 𝑝1, 𝑝2) = 1 and 𝑓 𝑟 (0, 0, 𝑝1, 𝑝2) = 0.
(b) 𝑓 𝑟 (𝑎1, 𝑎2, 𝑝1, 𝑝2) = 𝑓 𝑟 (𝑎2, 𝑎1, 𝑝2, 𝑝1).
(c) 𝑓 𝑟 (𝑎1, 𝑎2, 𝑝1, 𝑝2) + 𝑓 𝑟 (1 − 𝑎1, 1 − 𝑎2, 1 − 𝑝1, 1 − 𝑝2) = 1.
(d) when 𝑎1 ≠ 𝑎2, 𝑓 𝑟 (𝑎1, 𝑎2, 𝑝, 1 − 𝑝) = 0.5.

The intuition behind (a) is that when the experts’ recommen-

dations agree, the agent straightforwardly takes that action. This

follows directly from the information structure definition. (b) means

that the agent treats the two experts equally. (c) shows the equiva-

lence of the two states. At last, (d) indicates that when two experts’

predictions deviate from each other’s true recommendations by the

same amount, the aggregator shows no inclination toward either

action. These three properties are proved by constructing another

aggregator for any optimal one with the same regret guarantee,

and then linearly combining them.

We now introduce a random aggregator, referred to as the “bipo-

lar radial aggregator”, that satisfies the criteria in Proposition 6.9.

Moreover, 𝑓𝑏𝑖𝑟 attains a lower regret over NHI compared to random

aggregators without second-order information. This shows that

predictive knowledge can help agents achieve better performance.

The bipolar radial aggregator. This aggregator follows the recom-

mendation when the experts agree. When recommendations differ,

it treats the experts equally and chooses based on how much their

predictions deviate. Specifically, it fixes a center point (0.6, 0.4) on
the 𝑝1-𝑝2 graph, outputs 0.5 around this center, and moves toward

the extremes as the distance increases. This aggregator tends to

trust the expert who predicts the other’s action more accurately.

Formally, when 𝑎1 = 1, 𝑎2 = 0, the aggregator is:

𝑓𝑏𝑖𝑟 (1, 0, 𝑝1, 𝑝2) =
min{1, (𝑝1 − 0.6)2 + (𝑝2 − 0.4)2 + 0.5}, 𝑝1 + 𝑝2 < 0.98

max{0, 0.5 − (𝑝1 − 0.6)2 − (𝑝2 − 0.4)2}, 𝑝1 + 𝑝2 > 1.02

0.5, otherwise

These parameters are set via experimentation. The case that

𝑎1 = 0, 𝑎2 = 1 is symmetric. We show the contour graph of the

aggregator in the case of 𝑎1 = 1, 𝑎2 = 0 in Figure 1(a).

Theorem 6.10. 𝐿NHI (𝑓𝑏𝑖𝑟 ) ≈ 0.1682.

Theorem 6.10 leaves a gap between the upper and lower bound

in the context of worst-case scenarios within NHI. Although clos-

ing this gap is challenging, we can enhance the upper bound by

employing a more intricate aggregator derived from the algorithm

introduced by Guo et al. [11], which views robust aggregation as

a zero-sum game between nature and the aggregator and enables

online learning techniques to solve the game effectively.

The aggregator from the online learning algorithm. As suggested
by Proposition 6.9, this aggregator follows experts’ recommenda-

tion when they agree. When they disagree, the aggregator treats

the two experts equally and selects an action based on their predic-

tions. Specifically, the algorithm learns an aggregator on discretized

points (𝑝1, 𝑝2) where 𝑝1 and 𝑝2 are multiples of 0.1, and uses linear

interpolation to give the output at other points. We present a con-

tour graph of the algorithmic aggregator when 𝑎1 = 1 and 𝑎2 = 0

in Figure 1(b).

Theorem 6.11. 𝐿NHI (𝑓𝑎𝑙𝑔) ≈ 0.1673.

The bipolar radial aggregator in Figure 1(a) provides an intu-

itive and symmetrical way to weigh expert recommendations based

on prediction accuracy and satisfies Proposition 6.9. The algorith-

mic aggregator in Figure 1(b) always favors action 0 in conflicts,

which may seem unintuitive. However, its regret guarantee can

be mirrored by an aggregator always favoring action 1 instead.

Specifically, according to Proposition 6.9 and the linearity of the
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(a) The bipolar radial ag-

gregator.

(b) The algorithmic ag-

gregator.

(c) The mirror of the algo-

rithmic aggregator.

Figure 1: Contour graphs of different aggregators 𝑓 (1, 0, 𝑝1, 𝑝2)
when the first expert recommends action 1 and the second
expert recommends action 0. Colder to hotter shades rep-
resent the range of 𝑓 (1, 0, 𝑝1, 𝑝2) from 0 to 1. 𝑓 (0, 1, 𝑝1, 𝑝2) =

𝑓 (1, 0, 𝑝2, 𝑝1). The region where 𝑝1 < 𝑝2 is not shown in the
plot. This is because 𝑝1 < 𝑝2 is impossible under the assump-
tion of homogeneous experts, as proved in Lemma 6.8. In
practice, if we obtain reports 𝑝1 < 𝑝2, we simply pick an ac-
tion uniformly at random.

loss function, defining 𝑓 ◦
𝑎𝑙𝑔

as the mirror that flips predictions and

outputs 𝑓 ◦
𝑎𝑙𝑔

(𝑎1, 𝑎2, 𝑝1, 𝑝2) = 1 − 𝑓𝑎𝑙𝑔 (1 − 𝑎2, 1 − 𝑎1, 1 − 𝑝2, 1 − 𝑝1)
guarantees the same regret 0.1673. We present the contour graph

of this aggregator when 𝑎1 = 1 and 𝑎2 = 0 in Figure 1(c). Therefore,

to have a low regret, we can either favor action 0 or favor action

1 when the experts disagree, as long as the tendency varies with

the predictions. Furthermore, we can observe a common pattern:

medium values at the center and extreme values on both sides.

These unexpected findings illustrate the intricacy of second-order

information’s role and complexity in small expert groups.

7 EXTENSION: GENERAL UTILITY
FUNCTIONS WITH HOMOGENEOUS
EXPERTS

This section extends the setting to general utility functions. We no

longer assume that the agent’s goal is to match the action with the

correct state. Instead, we consider a more general scenario where

the agent’s utility is determined by both the state and the action

taken, captured by a utility function 𝑢 : 𝐴 × Ω → 𝑅.

Same as the original setting, the two experts will each recom-

mend their preferred action 𝑎1, 𝑎2 according to the utility function

and provide prediction 𝑝1, 𝑝2 about the probability of the other ex-

pert recommending action 1. We further assume these two experts

are homogeneous (Assumption 5.1). We still explore two layers of

information: one where the agent can observe both recommended

actions and predictions, and the other where the agent can only

observe the recommended actions.

We also assume that 𝑢 (0, 0) > 𝑢 (1, 0) and 𝑢 (1, 1) > 𝑢 (0, 1),
otherwise one action is dominated by another and the problem

is trivial. Let the utility gap of two actions when the state is 0 be

Δ𝑢0 B 𝑢 (0, 0) − 𝑢 (1, 0) and the gap when the state is 1 be Δ𝑢1 B
𝑢 (1, 1) − 𝑢 (0, 1). Also, we introduce their ratio as 𝑡 B Δ𝑢1/Δ𝑢0.

Apparently, 𝑡 = 1 in our original setting.

Note that the recommended action is still a threshold function

of the posterior, parameterized by 𝑡 , that is

𝑎𝑖 = 𝜙𝑡 (𝑏𝑖 ) = 1
{
𝑏𝑖 ≥

𝑢 (0, 0) − 𝑢 (1, 0)
𝑢 (0, 0) − 𝑢 (1, 0) + 𝑢 (1, 1) − 𝑢 (0, 1)

}
= 1

{
𝑏𝑖 ≥

1

𝑡 + 1

}
.

The action of the benchmark when observing signals (𝑠1, 𝑠2)
regarding information structure 𝜋 should be 𝑎∗ B 𝜙𝑡 (𝜋 (𝜔 = 1 |
𝑆1 = 𝑠1, 𝑆2 = 𝑠2)).

We focus on random aggregators. The regret of any random ag-

gregator 𝑓 𝑟 with second-order information regarding information

structure 𝜋 can be defined as

𝐿(𝑓 𝑟 , 𝜋,𝑢) B E𝜋,𝑓 𝑟 ( ·) [𝑢 (𝑎∗, 𝜔) − 𝑢 (𝑓 𝑟 (𝑎1, 𝑎2, 𝑝1, 𝑝2), 𝜔)] .
The regret of any random aggregator without second-order infor-

mation is similar:

𝐿(𝑓 𝑟 , 𝜋,𝑢) B E𝜋,𝑓 𝑟 ( ·) [𝑢 (𝑎∗, 𝜔) − 𝑢 (𝑓 𝑟 (𝑎1, 𝑎2), 𝜔)] .
Here the randomness comes from the information structure 𝜋 and

the output of random aggregator 𝑓 𝑟 .

Building upon the preceding results, we start by establishing

negative outcomes for possibly degenerate signals. We then focus

on non-degenerate signals as Section 6 and introduce robust aggre-

gators with second-order information, tailored to different utility

ratios, demonstrating that second-order information empowers the

agent to achieve lower regret across many utility functions. Due to

the space limit, we defer the details to Appendix A.

8 CONCLUSION AND DISCUSSION
In this work, we study the benefit of second-order information in

decision aggregation with two experts. Specifically, we investigate

binary actions, binary states, and binary signals, examining the

optimal deterministic and random aggregators, both with and with-

out second-order information. Our research provides insight into

the crucial question about the effectiveness of second-order infor-

mation in mitigating regret, with various underlying assumptions.

Furthermore, we extend our findings to encompass more general

utility functions, thereby broadening our results’ applicability scope.

Future research directions of this work include conducting real-

world experiments, exploring the scenario with more experts, and

considering more complex signal settings.
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A DETAILS IN SECTION 7 – GENERAL UTILITY FUNCTIONS WITH HOMOGENEOUS EXPERTS
We follow the framework in Section 7. Now, we consider a special utility function that satisfies 𝑢𝑡 (0, 1) = 𝑢𝑡 (1, 0) = 0, 𝑢𝑡 (0, 0) = 1, and

𝑢𝑡 (1, 1) = 𝑡 , and define the regret function facing this utility function:

𝐿𝑡 (𝑓 𝑟 , 𝜋) B E𝜋,𝑓 𝑟 ( ·) [𝑢𝑡 (𝑎∗, 𝜔) − 𝑢𝑡 (𝑓 𝑟 (𝑎1, 𝑎2, 𝑝1, 𝑝2), 𝜔)] .
𝐿𝑡 (𝑓 𝑟 , 𝜋) B E𝜋,𝑓 𝑟 ( ·) [𝑢𝑡 (𝑎∗, 𝜔) − 𝑢𝑡 (𝑓 𝑟 (𝑎1, 𝑎2), 𝜔)] .

We then show that for all general utility functions with the utility gap ratio 𝑡 , the problem is identical to the one with utility function 𝑢𝑡 .

Proposition A.1. For any utility function 𝑢 with the utility gap Δ𝑢1,Δ𝑢0 and ratio 𝑡 , 𝐿(𝑓 𝑟 , 𝜋,𝑢) = Δ𝑢0 · 𝐿𝑡 (𝑓 𝑟 , 𝜋) holds for any random
aggregator 𝑓 𝑟 and information structure 𝜋 .

Therefore, we only consider the utility functions of this special utility family in the rest of this section. Under the utility function 𝑢𝑡 , the

regret of random aggregator 𝑓 𝑟 regarding information structure family 𝑃 is defined as:

𝐿𝑡𝑃 (𝑓
𝑟 ) B max

𝜋∈𝑃
𝐿𝑡 (𝑓 𝑟 , 𝜋) .

As suggested, we focus on random aggregators in this part. Missing proofs of this section can be found in Appendix F.

A.1 A Negative Result: Predictions are Useless in General
We begin by presenting the lower bound for the regret of any random aggregator equipped with second-order information. Notably, the

expressions differ slightly depending on whether 𝑡 is greater than 1 or less than 1.

Theorem A.2. For any 𝑡 ≥ 1 and random aggregator 𝑓 𝑟 (𝑎1, 𝑎2, 𝑝1, 𝑝2) ∈ Δ(𝐹+2), 𝐿𝑡HOI (𝑓
𝑟 ) ≥ (

√︁
1 + 1/𝑡 −

√︁
1/𝑡)2.

Theorem A.3. For any 𝑡 ≤ 1 and random aggregator 𝑓 𝑟 (𝑎1, 𝑎2, 𝑝1, 𝑝2) ∈ Δ(𝐹+2), 𝐿𝑡HOI (𝑓
𝑟 ) ≥ (

√
𝑡 + 𝑡2 − 𝑡)2.

The proofs of Theorems A.2 and A.3 can be easily extended from the proof of Theorem 5.5, so we omit them here and defer them to

Appendices F.2 and F.3.

The prob-𝑝 aggregator. The prob-𝑝 aggregator follows the recommendations of experts when they agree. In cases where they disagree, the

aggregator selects action 1 with probability 𝑝 and action 0 with probability 1 − 𝑝 . In mathematical terms, the prob-𝑝 aggregator can be

expressed as

𝑓𝑝 (𝑎1, 𝑎2) =
{
𝑎1 𝑎1 = 𝑎2

𝑝 𝑎1 ≠ 𝑎2

.

Also, this aggregator can be seen as a generalization of the uniform aggregator (𝑝 = 0.5) we introduced earlier. We have the following two

positive results.

Theorem A.4. For any 𝑡 ≥ 1, and 𝑝 ∈ [0.5, (
√︁

1 + 1/𝑡 −
√︁

1/𝑡)2/(2(
√
𝑡 + 𝑡2 − 𝑡)2)], 𝐿𝑡HOI (𝑓𝑝 ) = (

√︁
1 + 1/𝑡 −

√︁
1/𝑡)2.

Theorem A.5. For any 𝑡 ≤ 1, and 𝑝 ∈ [1 − (
√
𝑡 + 𝑡2 − 𝑡)2/(2(

√︁
1 + 1/𝑡 −

√︁
1/𝑡)2), 0.5], 𝐿𝑡HOI (𝑓𝑝 ) = (

√
𝑡 + 𝑡2 − 𝑡)2.

The techniques used to analyze the aggregator’s regret in Theorems A.4 and A.5 parallel those employed in the proof of Theorem 5.6.

These are deferred to Appendices F.4 and F.5. We also notice from the above two theorems that the uniform aggregator (𝑝 = 0.5) guarantees
the lowest regret among aggregators without second-order information for any utility function.

A.2 Non-Degenerate Signals: Predictions are Useful
Similarly, following the exploration in Section 6, we now extend our analysis to encompass non-degenerate signals. We begin by establishing

a lower bound for random aggregators lacking second-order information.

Theorem A.6. For every random aggregator 𝑓 𝑟 (𝑎1, 𝑎2) ∈ Δ(𝐹+1),

𝐿NHI (𝑓 𝑟 ) ≥
2

(√︁
1 + 1/𝑡 −

√︁
1/𝑡

)
2

(
√
𝑡 + 𝑡2 − 𝑡)2

(
√
𝑡 + 𝑡2 − 𝑡)2 +

(√︁
1 + 1/𝑡 −

√︁
1/𝑡

)
2
.

We proceed to demonstrate that for any utility function, there exists a specific value of 𝑝 such that the prob-𝑝 aggregator attains the

lowest regret among all aggregators without second-order information in NHI.

Theorem A.7. For any 𝑡 ,

𝐿𝑡NHI (𝑓𝑝 ) =
2

(√︁
1 + 1/𝑡 −

√︁
1/𝑡

)
2

(
√
𝑡 + 𝑡2 − 𝑡)2

(
√
𝑡 + 𝑡2 − 𝑡)2 +

(√︁
1 + 1/𝑡 −

√︁
1/𝑡

)
2
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(a) Aggregator for ratio 0.1 (b) Aggregator for ratio 0.2 (c) Aggregator for ratio 0.5

(d) Aggregator for ratio 2 (e) Aggregator for ratio 5 (f) Aggregator for ratio 10

Figure 2: Contour graphs of different aggregators for general utility functions when the first expert recommends 1 and the
second expert recommends 0. Colder to hotter shades represent the range of 𝑓 (1, 0, 𝑝1, 𝑝2) from 0 to 1. 𝑓 (0, 1, 𝑝1, 𝑝2) = 𝑓 (1, 0, 𝑝2, 𝑝1).

Table 2: Comparison between the regrets of the best aggregators without second-order information and our aggregators with
second-order information.

Ratio

Regret of aggregators

In Theorem A.7 In Figure 2

0.1 0.0330 0.0233

0.2 0.0591 0.0432

0.5 0.1152 0.0956

1 0.1716 0.1673

2 0.2304 0.1927

5 0.2954 0.2157

10 0.3300 0.2293

for

𝑝 =

(√︁
1 + 1/𝑡 −

√︁
1/𝑡

)
2

(
√
𝑡 + 𝑡2 − 𝑡)2 +

(√︁
1 + 1/𝑡 −

√︁
1/𝑡

)
2
.

Regarding aggregators with second-order information, we demonstrate that they are capable of achieving a lower regret, akin to the

scenario of 𝑡 = 1. On this side, we present a series of aggregators derived from the online learning algorithm discussed in Guo et al. [11] for

varying 𝑡 in Figure 2. To analyze their regrets, we use the same method as we prove Theorem 6.11 and present the results in Table 2. Here,

note that Lemma 6.8 and Proposition 6.9(a)(b) still work for general functions; thus we only draw the upper-left triangle cases with 𝑎1 = 1,

𝑎2 = 0, and 𝑝1 ≥ 𝑝2. The case of 𝑓 (0, 1, 𝑝1, 𝑝2) with 𝑝2 ≥ 𝑝1 is symmetric.

Our findings reveal that, across all six ratios, aggregators utilizing second-order information exhibit significant improvements over the best

aggregators without this additional information. Furthermore, similar to the aggregator for ratio 1 in Figure 1(b), their output distribution

still spans the range between 0 and a value below 1, and this upper bound increases as the ratio grows. Additionally, the point with the
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highest output value gradually moves from the center toward the edge that corresponds to the expert with less prediction accuracy when

recommending 0.

We should also notice that when 𝑡 ≥ 1, the regret of any aggregator facing the ratio 𝑡 instance is 𝑡 times the regret of its mirror (defined in

Section 6) facing the ratio 1/𝑡 instance. Therefore, by Proposition A.1 given any robust aggregator against ratio 𝑡 , we can naturally construct

a robust aggregator against the ratio 1/𝑡 . These aggregators collectively highlight the potential of second-order information in reducing

regret in worst-case scenarios within NHI.

B MISSING PROOFS IN SECTION 3
B.1 Proof of Theorem 3.1
By Lemma 3.2, to bound the expected regret of any random aggregator in Δ(𝐹+2), it suffices to analyze the expected regret of the deterministic

aggregator in 𝐹+2 relative to the same benchmark, where information structures are drawn from a carefully selected distribution. We now

give a distribution 𝐷 ∈ Δ(ALL) over two information structures, regarding which any aggregator in 𝐹+2 cannot achieve a regret below 1/2.

These two information structures are as follows:

𝜇1 = 1/2 𝜋1 (𝑠1, 𝑠2 | 𝜔 = 1) 𝜋1 (𝑠1, 𝑠2 | 𝜔 = 0)
(𝐿, 𝐿) 0 1/2 + 𝜖

(𝐿,𝐻 ) 1/2 − 𝜖 0

(𝐻, 𝐿) 1/2 − 𝜖 0

(𝐻,𝐻 ) 2𝜖 1/2 − 𝜖

𝜇2 = 1/2 𝜋2 (𝑠1, 𝑠2 | 𝜔 = 1) 𝜋2 (𝑠1, 𝑠2 | 𝜔 = 0)
(𝐿, 𝐿) 1/2 − 𝜖 2𝜖

(𝐿,𝐻 ) 0 1/2 − 𝜖

(𝐻, 𝐿) 0 1/2 − 𝜖

(𝐻,𝐻 ) 1/2 + 𝜖 0

Note that each of them has a marginal distribution

𝜇 =
1

2

, 𝜋 (𝑠 = 𝐿 | 𝜔 = 1) = 1

2

− 𝜖, 𝜋 (𝑠 = 𝐻 | 𝜔 = 0) = 1

2

+ 𝜖.

Therefore, when observing signal 𝐿, the expert will recommend action 0; when observing signal 𝐻 , the expert will recommend action 1. In

the following discussion, we consider 𝜖 as a small positive number less than 1/2.

In the first information structure, two experts always see the same signal when the real state is 0, which means (𝐻,𝐻 ) happens with
probability 1/2 − 𝜖 and (𝐿, 𝐿) happens with probability 1/2 + 𝜖 . When the real state is 1, two experts see different signals most of the time. In

detail, (𝐻, 𝐿), (𝐿,𝐻 ) each happens with probability 1/2 − 𝜖 and (𝐻,𝐻 ) happens with probability 2𝜖 .

In the second information structure, (𝐻,𝐻 ) happens with probability 1/2 + 𝜖 , and (𝐿, 𝐿) happens with probability 1/2 − 𝜖 when the real

state is 1. When the real state is 0, (𝐻, 𝐿), (𝐿, 𝐻 ) each happens with probability 1/2 − 𝜖 , and (𝐿, 𝐿) happens with probability 2𝜖 .

Notice that inputs (1, 0, 1/2 + 𝜖, 1/2 − 𝜖) and (0, 1, 1/2 − 𝜖, 1/2 + 𝜖) each happens with probability 1/4 − 𝜖/2 in both information structures.

However, the real state behind these inputs is 1 in the first information structure but 0 in the second. Also, inputs (1, 1, 1/2 + 𝜖, 1/2 + 𝜖) and
(0, 0, 1/2 − 𝜖, 1/2 − 𝜖) are with real state 0 most of the time in the first information structure and with real state 1 most of the time in the

second one.

Now consider the distribution that the real information structure can be the first or the second one with equal probability. The optimal

aggregator in 𝐹+2 is independent of the specific outputs generated by (1, 0, 1/2 + 𝜖, 1/2 − 𝜖) and (0, 1, 1/2 − 𝜖, 1/2 + 𝜖). Also, the optimal

aggregator outputs 1 for (1, 1, 1/2 + 𝜖, 1/2 + 𝜖) and outputs 0 for (1, 1, 1/2 + 𝜖, 1/2 + 𝜖). However, the benchmark can always identify the more

possible state according to the knowledge of the real information structure. Thus, the relative regret of any aggregator in 𝐹+2 regarding this

distribution of information structures is at least

1

2

× 2 × ( 1

4

− 𝜖

2

) × (1 − 0) + 2 × 1

2

× ( 1

4

− 𝜖

2

− 𝜖

2

) × (1 − 0) = 1

2

− 3𝜖

2

.

Since 𝜖 can be arbitrarily small, the theorem holds.

B.2 Proof of Theorem 3.3
Since the first expert’s probability of recommending a bad action is min{𝜇, 1 − 𝜇} without additional information, and this probability

decreases when the signal provides useful state information, the aggregator’s regret from always following the first expert is bounded above

by min{𝜇, 1 − 𝜇} ≤ 1/2. Combining this with the lower bound from Theorem 3.1 establishes that 𝐿ALL (𝑓𝑓 𝑡 𝑓 𝑒 ) = 1/2.

C MISSING PROOFS IN SECTION 4
C.1 Proof of Theorem 4.1
We now present two information structures in CI and demonstrate that for any deterministic aggregator in 𝐹+1, there exists an input that

will inevitably result in a regret of 0.5 for one of these information structures, regardless of the output of the deterministic aggregator for

that input. These two information structures are as follows:

12
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𝜇1 = 0.5 + 𝜖 𝜋1 (𝑠 = 𝐿 | 𝜔 = 1) 𝜋1 (𝑠 = 𝐿 | 𝜔 = 0)
Expert 1 0.5 0.5

Expert 2 0 1

𝜇2 = 0.5 − 𝜖 𝜋2 (𝑠 = 𝐿 | 𝜔 = 1) 𝜋2 (𝑠 = 𝐿 | 𝜔 = 0)
Expert 1 0 1

Expert 2 0.5 0.5

For the first information structure, we set (𝜇, 𝑘1, 𝑘2, 𝑙1, 𝑙2) = (0.5+𝜖, 0.5, 0, 0.5, 1), and the posterior is (𝑏1𝐿, 𝑏2𝐿, 𝑏1𝐻 , 𝑏2𝐻 ) = (0.5+𝜖, 0, 0.5+
𝜖, 1). Here, we suppose 𝜖 is a small positive number less than 0.5. In this information structure, the first expert has no information beyond the

prior, and thus will always recommend action 1 regardless of the observed signal. On the other hand, the second expert possesses complete

knowledge of the true state.

The second information structure is symmetric to the first one, with (𝜇, 𝑘1, 𝑘2, 𝑙1, 𝑙2) = (0.5−𝜖, 0, 0.5, 1, 0.5) and posterior (𝑏1𝐿, 𝑏2𝐿, 𝑏1𝐻 , 𝑏2𝐻 ) =
(0, 0.5 − 𝜖, 1, 0.5 − 𝜖). In this scenario, the first expert is omniscient, while the second expert has no information beyond the prior and always

recommends action 0.

Notice that the input (1, 0) happens with probability 0.5 − 𝜖 in both information structures. However, the real state is 1 in the first

information structure and 0 in the second one with input (1, 0). Also, the benchmark always knows the real state from the knowledge of

information structure. Therefore, whatever the deterministic aggregator outputs for this input, it always causes a regret of 0.5 − 𝜖 regarding

one of the information structures. Since 𝜖 can be arbitrarily small, we derive the theorem.

C.2 Proof of Theorem 4.3
We, again, present two information structures in CI and demonstrate that for any deterministic aggregator in 𝐹+2, there exists an input that

will inevitably result in a regret of 1/3 for one of these information structures.

𝜇1 = (1 + 2𝜖)/(3 + 2𝜖) 𝜋1 (𝑠 = 𝐿 | 𝜔 = 1) 𝜋1 (𝑠 = 𝐿 | 𝜔 = 0)
Expert 1 0 0.5 + 𝜖

Expert 2 0 1

𝜇2 = 2/(3 + 2𝜖) 𝜋2 (𝑠 = 𝐿 | 𝜔 = 1) 𝜋2 (𝑠 = 𝐿 | 𝜔 = 0)
Expert 1 0 1

Expert 2 0.5 − 𝜖 1

For the first information structure, we set (𝜇, 𝑘1, 𝑘2, 𝑙1, 𝑙2) = ((1 + 2𝜖)/(3 + 2𝜖), 0, 0, 0.5 + 𝜖, 1), and the posterior is (𝑏1𝐿, 𝑏2𝐿, 𝑏1𝐻 , 𝑏2𝐻 ) =
(0, 0, 0.5 + 𝜖, 1). We suppose 𝜖 → 0

+
. In this information structure, when observing signal 𝐿, the first expert possesses complete certainty

regarding the state. However, for small 𝜖 , its level of certainty diminishes significantly when observing signal 𝐻 . On the other hand, the

second expert is omniscient.

We construct a symmetric one for the second information structure to the first. Now (𝜇, 𝑘1, 𝑘2, 𝑙1, 𝑙2) = (2/(3 + 2𝜖), 0, 0.5 − 𝜖, 1, 1), which
leads to the posterior (𝑏1𝐿, 𝑏2𝐿, 𝑏1𝐻 , 𝑏2𝐻 ) = (0.5 − 𝜖, 0, 1, 1). In this information structure, however, the first expert is always sure about the

state. On the other hand, the second expert possesses complete certainty regarding the state when the realized signal is 𝐻 . However, for

small 𝜖 , its level of certainty diminishes significantly when observing signal 𝐿.

Notice that the input (1, 0, 0.5 + 𝜖, 0.5 − 𝜖) happens with (1 − 2𝜖)/(3 + 2𝜖) in both information structures. However, the real state is 0 in

the first information structure and 1 in the second one. Also, the benchmark always knows the real state by identifying the omniscient

expert. Therefore, whatever the deterministic aggregator outputs for this input, there should be a regret of (1 − 2𝜖)/(3 + 2𝜖) regarding one of
the information structures. We finish the proof of the theorem when 𝜖 → 0

+
.

C.3 Proof of Theorem 4.4
Before proving the theorem, we give a lemma to demonstrate specific numeric relationships for information structure parameters, contributing

to the proof’s brevity.

Lemma C.1. For any information structure in CI, 𝑘𝑖 ≤ 𝑙𝑖 for 𝑖 = 1, 2.

Proof of Lemma C.1. To prove the lemma, we first recall the key parameters of an information structure as follows:

𝜇 = 𝜋 (𝜔 = 1);
𝑘1 = 𝜋 (𝑆1 = 𝐿 | 𝜔 = 1), 𝑙1 = 𝜋 (𝑆1 = 𝐿 | 𝜔 = 0);
𝑘2 = 𝜋 (𝑆2 = 𝐿 | 𝜔 = 1), 𝑙2 = 𝜋 (𝑆2 = 𝐿 | 𝜔 = 0) .

Now, by our notations, 𝜋 (𝜔 = 1 | 𝑆𝑖 = 𝐿) ≤ 𝜇 ≤ 𝜋 (𝜔 = 1 | 𝑆𝑖 = 𝐻 ) for both 𝑖 = 1, 2. Under the above notations, that is to say

𝜇𝑘𝑖

𝜇𝑘𝑖 + (1 − 𝜇)𝑙𝑖
≤ 𝜇 ≤ 𝜇 (1 − 𝑘𝑖 )

𝜇 (1 − 𝑘𝑖 ) + (1 − 𝜇) (1 − 𝑙𝑖 )
⇐⇒ 𝑘𝑖 ≤ 𝑙𝑖 , ∀𝑖 = 1, 2.

□

We come back to our proof. Recall the definition of regret for any information structure 𝜋 :

𝐿(𝑓 , 𝜋) =
∑︁

𝜔∈Ω,𝑠1,𝑠2∈𝑆
𝜋 (𝜔, 𝑠1, 𝑠2) (𝑢 (𝜙 (𝜋 (𝜔 = 1 | 𝑠1, 𝑠2)), 𝜔) − 𝑓 (𝑎1 (𝑠1), 𝑎2 (𝑠2), 𝑝1 (𝑠1), 𝑝2 (𝑠2))𝑢 (1, 𝜔)

− (1 − 𝑓 (𝑎1 (𝑠1), 𝑎2 (𝑠2), 𝑝1 (𝑠1), 𝑝2 (𝑠2)))𝑢 (0, 𝜔)).
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To compute the maximum regret of 𝑓𝑡ℎ𝑟 , we now consider all possible seven different cases of 𝜋 . Here, notice that 𝑘1 ≤ 𝑙1 and 𝑘2 ≤ 𝑙2
hold due to Lemma C.1. In each of the cases, the corresponding program with strictly bounded Lipschitz continuity is solved by Wolfram

Mathematica. This is the same for other positive results with similar proof.

Case 1: 𝜇𝑘1 > (1 − 𝜇)𝑙1, 𝜇𝑘2 > (1 − 𝜇)𝑙2. In this case, we have 𝑎𝑖 (𝑠) = 1 for all 𝑖 = 1, 2 and 𝑠 = 𝐿, 𝐻 , and the aggregator always chooses

action 1. Meanwhile, we notice in this case that

𝜋 (𝜔 = 1 | 𝑆1 = 𝐿, 𝑆2 = 𝐻 ) = 𝜇𝑘1 (1 − 𝑘2)
𝜇𝑘1 (1 − 𝑘2) + (1 − 𝜇)𝑙1 (1 − 𝑙2)

≥ 1

2

,

𝜋 (𝜔 = 1 | 𝑆1 = 𝐻, 𝑆2 = 𝐿) = 𝜇 (1 − 𝑘1)𝑘2

𝜇 (1 − 𝑘1)𝑘2 + (1 − 𝜇) (1 − 𝑙1)𝑙2
≥ 1

2

,

𝜋 (𝜔 = 1 | 𝑆1 = 𝐻, 𝑆2 = 𝐻 ) = 𝜇 (1 − 𝑘1) (1 − 𝑘2)
𝜇 (1 − 𝑘1) (1 − 𝑘2) + (1 − 𝜇) (1 − 𝑙1) (1 − 𝑙2)

≥ 1

2

.

Therefore, the only possible difference between the threshold aggregator and the benchmark is under the condition that 𝑆1 = 𝑆2 = 𝐿, and the

regret is bounded by the following program:

max −𝜇𝑘1𝑘2 + (1 − 𝜇)𝑙1𝑙2,
s.t. 𝜇𝑘1𝑘2 ≤ (1 − 𝜇)𝑙1𝑙2,

𝜇𝑘1 ≥ (1 − 𝜇)𝑙1, 𝜇𝑘2 ≥ (1 − 𝜇)𝑙2,
0 ≤ 𝑘1 ≤ 𝑙1 ≤ 1, 0 ≤ 𝑘2 ≤ 𝑙2 ≤ 1, 0 ≤ 𝜇 ≤ 1.

And the optimum of the above is 3 − 2

√
2 ≈ 0.1716, which is reached when 𝜇 =

√
2/2, 𝑘1 = 𝑘2 =

√
2 − 1, 𝑙1 = 𝑙2 = 1.

Case 2: 𝜇 (1 − 𝑘1) < (1 − 𝜇) (1 − 𝑙1), 𝜇 (1 − 𝑘2) < (1 − 𝜇) (1 − 𝑙2). This case is equivalent to Case 1 by substituting 𝜇 with 1 − 𝜇 and 𝑘𝑖 with

1 − 𝑙𝑖 for 𝑖 = 1, 2. Thus, they have the same optimum 3 − 2

√
2.

Case 3: 𝜇𝑘1 ≤ (1 − 𝜇)𝑙1, 𝜇 (1 − 𝑘1) ≥ (1 − 𝜇) (1 − 𝑙1), 𝜇 (1 − 𝑘2) < (1 − 𝜇) (1 − 𝑙2). In this case, we have 𝑎1 (𝐿) = 0, 𝑎1 (𝐻 ) = 1, and

𝑎2 (𝐿) = 𝑎2 (𝐻 ) = 0. We also observe that

𝜋 (𝜔 = 1 | 𝑆1 = 𝐿, 𝑆2 = 𝐿) = 𝜇𝑘1𝑘2

𝜇𝑘1𝑘2 + (1 − 𝜇)𝑙1𝑙2
≤ 1

2

.

𝜋 (𝜔 = 1 | 𝑆1 = 𝐿, 𝑆2 = 𝐻 ) = 𝜇𝑘1 (1 − 𝑘2)
𝜇𝑘1 (1 − 𝑘2) + (1 − 𝜇)𝑙1 (1 − 𝑙2)

≤ 1

2

.

Thus, the threshold aggregator matches the benchmark when 𝑆1 = 𝐿. On the other hand, when 𝑆1 = 𝐻 , there is a split between two experts,

with peer predictions 𝑝1 = 0, 𝑝2 < 1. Hence, our threshold aggregator would choose action 1. We further have

𝜋 (𝜔 = 1 | 𝑆1 = 𝐻, 𝑆2 = 𝐻 ) = 𝜇 (1 − 𝑘1) (1 − 𝑘2)
𝜇 (1 − 𝑘1) (1 − 𝑘2) + (1 − 𝜇) (1 − 𝑙1) (1 − 𝑙2)

≥ 1

2

,

As a result, the regret only comes from the circumstance that 𝑆1 = 𝐻, 𝑆2 = 𝐿, and the regret is bounded by the following program:

max −𝜇 (1 − 𝑘1)𝑘2 + (1 − 𝜇) (1 − 𝑙1)𝑙2,
s.t. 𝜇 (1 − 𝑘1)𝑘2 ≤ (1 − 𝜇) (1 − 𝑙1)𝑙2,

𝜇𝑘1 ≤ (1 − 𝜇)𝑙1, 𝜇 (1 − 𝑘1) ≥ (1 − 𝜇) (1 − 𝑙1), 𝜇 (1 − 𝑘2) ≤ (1 − 𝜇) (1 − 𝑙2),
0 ≤ 𝑘1 ≤ 𝑙1 ≤ 1, 0 ≤ 𝑘2 ≤ 𝑙2 ≤ 1, 0 ≤ 𝜇 ≤ 1.

The above program has a maximum value of 3 − 2

√
2 when 𝜇 = 1 −

√
2/2, 𝑘1 = 𝑘2 = 0, 𝑙1 = 𝑙2 = 2 −

√
2.

Case 4: 𝜇𝑘1 ≤ (1 − 𝜇)𝑙1, 𝜇 (1 − 𝑘1) ≥ (1 − 𝜇) (1 − 𝑙1), 𝜇𝑘2 > (1 − 𝜇)𝑙2. This case is equivalent to Case 3 only by substituting 𝜇 with 1 − 𝜇, 𝑘𝑖

with 1 − 𝑙𝑖 for 𝑖 = 1, 2, and they have the same optimum 3 − 2

√
2.

Case 5: 𝜇 (1 − 𝑘1) < (1 − 𝜇) (1 − 𝑙1), 𝜇𝑘2 ≤ (1 − 𝜇)𝑙2, 𝜇 (1 − 𝑘2) ≥ (1 − 𝜇) (1 − 𝑙2). This case is equivalent to Case 3 by swapping the order

of two experts, and we omit it.

Case 6: 𝜇𝑘1 > (1 − 𝜇)𝑙1, 𝜇𝑘2 ≤ (1 − 𝜇)𝑙2, 𝜇 (1 − 𝑘2) ≥ (1 − 𝜇) (1 − 𝑙2). This case is equivalent to Case 4 by swapping the order of two

experts, and we omit it.
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Case 7: 𝜇𝑘1 ≤ (1 − 𝜇)𝑙1, 𝜇 (1 − 𝑘1) ≥ (1 − 𝜇) (1 − 𝑙1), 𝜇𝑘2 ≤ (1 − 𝜇)𝑙2, 𝜇 (1 − 𝑘2) ≥ (1 − 𝜇) (1 − 𝑙2). This case is the most complex one. We

have 𝑎1 (𝐿) = 𝑎2 (𝐿) = 0 and 𝑎1 (𝐻 ) = 𝑎2 (𝐻 ) = 1. Meanwhile,

𝜋 (𝜔 = 1 | 𝑆1 = 𝐿, 𝑆2 = 𝐿) = 𝜇𝑘1𝑘2

𝜇𝑘1𝑘2 + (1 − 𝜇)𝑙1𝑙2
≤ 1

2

,

𝜋 (𝜔 = 1 | 𝑆1 = 𝐻, 𝑆2 = 𝐻 ) = 𝜇 (1 − 𝑘1) (1 − 𝑘2)
𝜇 (1 − 𝑘1) (1 − 𝑘2) + (1 − 𝜇) (1 − 𝑙1) (1 − 𝑙2)

≥ 1

2

.

Therefore, it is guaranteed that the threshold aggregator is identical to the benchmark when 𝑆1 = 𝑆2. We now consider the case when 𝑆1 ≠ 𝑆2,

i.e., there is a split between the two experts. We now formalize their predictions:

𝑝+
1
B 𝜋 (𝑎2 = 1 | 𝑆1 = 𝐿) = 𝜋 (𝑆2 = 𝐻 | 𝑆1 = 𝐿) = 𝜇𝑘1 (1 − 𝑘2) + (1 − 𝜇)𝑙1 (1 − 𝑙2)

𝜇𝑘1 + (1 − 𝜇)𝑙1
,

𝑝−
1
B 𝜋 (𝑎2 = 1 | 𝑆1 = 𝐻 ) = 𝜇 (1 − 𝑘1) (1 − 𝑘2) + (1 − 𝜇) (1 − 𝑙1) (1 − 𝑙2)

𝜇 (1 − 𝑘1) + (1 − 𝜇) (1 − 𝑙1)
,

𝑝+
2
B 𝜋 (𝑎1 = 1 | 𝑆2 = 𝐻 ) = 𝜇 (1 − 𝑘1) (1 − 𝑘2) + (1 − 𝜇) (1 − 𝑙1) (1 − 𝑙2)

𝜇 (1 − 𝑘2) + (1 − 𝜇) (1 − 𝑙2)
,

𝑝−
2
B 𝜋 (𝑎1 = 1 | 𝑆2 = 𝐿) = 𝜇 (1 − 𝑘1)𝑘2 + (1 − 𝜇) (1 − 𝑙1)𝑙2

𝜇𝑘2 + (1 − 𝜇)𝑙2
.

Now, when 𝑝+
1
+ 𝑝+

2
> 1 and 𝑝−

1
+ 𝑝−

2
> 1 both hold, the threshold aggregator outputs action 0 when two experts split, and the regret is

bounded in this sub-case by

max (𝜇𝑘1 (1 − 𝑘2) − (1 − 𝜇)𝑙1 (1 − 𝑙2))+ + (𝜇 (1 − 𝑘1)𝑘2 − (1 − 𝜇) (1 − 𝑙1)𝑙2)+,
s.t. 𝑝+

1
+ 𝑝+

2
≥ 1, 𝑝−

1
+ 𝑝−

2
≥ 1,

𝜇𝑘1 ≤ (1 − 𝜇)𝑙1, 𝜇 (1 − 𝑘1) ≥ (1 − 𝜇) (1 − 𝑙1),
𝜇𝑘2 ≤ (1 − 𝜇)𝑙2, 𝜇 (1 − 𝑘2) ≥ (1 − 𝜇) (1 − 𝑙2),
0 ≤ 𝑘1 ≤ 𝑙1 ≤ 1, 0 ≤ 𝑘2 ≤ 𝑙2 ≤ 1, 0 ≤ 𝜇 ≤ 1.

The above reaches the optimum of 1/3 when 𝜇 = 2/3, 𝑘1 = 0, 𝑘2 = 0.5, 𝑙1 = 𝑙2 = 1 or 𝜇 = 3/4, 𝑘1 = 𝑘2 = 1/3, 𝑙1 = 𝑙2 = 1.

Conversely, when 𝑝+
1
+ 𝑝+

2
≤ 1 and 𝑝−

1
+ 𝑝−

2
≤ 1 both hold, the threshold aggregator outputs action 1 with split decisions, and the regret is

bounded by

max (−𝜇𝑘1 (1 − 𝑘2) + (1 − 𝜇)𝑙1 (1 − 𝑙2))+ + (−𝜇 (1 − 𝑘1)𝑘2 + (1 − 𝜇) (1 − 𝑙1)𝑙2)+,
s.t. 𝑝+

1
+ 𝑝+

2
≤ 1, 𝑝−

1
+ 𝑝−

2
≤ 1,

𝜇𝑘1 ≤ (1 − 𝜇)𝑙1, 𝜇 (1 − 𝑘1) ≥ (1 − 𝜇) (1 − 𝑙1),
𝜇𝑘2 ≤ (1 − 𝜇)𝑙2, 𝜇 (1 − 𝑘2) ≥ (1 − 𝜇) (1 − 𝑙2),
0 ≤ 𝑘1 ≤ 𝑙1 ≤ 1, 0 ≤ 𝑘2 ≤ 𝑙2 ≤ 1, 0 ≤ 𝜇 ≤ 1.

This program has a maximum of 1/3 when 𝜇 = 1/4, 𝑘1 = 𝑘2 = 0, 𝑙1 = 𝑙2 = 2/3 or 𝜇 = 1/3, 𝑘1 = 𝑘2 = 0, 𝑙1 = 1, 𝑙2 = 0.5.

For the rest cases, we derive by symbolic computation that:

𝑝+
1
+ 𝑝+

2
− 1 =

(𝜇𝑘1 (1 − 𝑘2) + (1 − 𝜇)𝑙1 (1 − 𝑙2)) ((1 − 𝑙1 − 𝑙2) (1 − 𝜇) + (1 − 𝑘1 − 𝑘2)𝜇)
(𝜇𝑘1 + (1 − 𝜇)𝑙1) (𝜇 (1 − 𝑘2) + (1 − 𝜇) (1 − 𝑙2))

,

𝑝−
1
+ 𝑝−

2
− 1 =

(𝜇 (1 − 𝑘1)𝑘2 + (1 − 𝜇) (1 − 𝑙1)𝑙2) ((1 − 𝑙1 − 𝑙2) (1 − 𝜇) + (1 − 𝑘1 − 𝑘2)𝜇)
(𝜇 (1 − 𝑘1) + (1 − 𝜇) (1 − 𝑙1)) (𝜇𝑘2 + (1 − 𝜇)𝑙2)

.

Thus, we know that (𝑝+
1
+ 𝑝+

2
− 1) (𝑝−

1
+ 𝑝−

2
− 1) ≥ 0, and we are only left with the cases that 𝑝+

1
+ 𝑝+

2
= 1, 𝑝−

1
+ 𝑝−

2
> 1 and

𝑝+
1
+ 𝑝+

2
> 1, 𝑝−

1
+ 𝑝−

2
= 1, which are symmetric. We consider the first case, under which our algorithm outputs action 1 when 𝑆1 = 𝐿 and

𝑆2 = 𝐻 , and outputs action 0 when 𝑆1 = 𝐻 and 𝑆2 = 𝐿. We have

𝑝+
1
+ 𝑝+

2
= 1 ⇐⇒ (𝑙1 (1 − 𝑙2) (1 − 𝜇) + 𝑘1 (1 − 𝑘2)𝜇) ((1 − 𝑙1 − 𝑙2) (1 − 𝜇) + (1 − 𝑘1 − 𝑘2)𝜇) = 0.

Now that 0 < 𝜇 < 1, we have 𝑙1 > 0 and 𝑘2 < 1, and there are two remaining possibilities:
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1. 𝑘1 = 0, 𝑙2 = 1. In this case, the program’s upper bound becomes:

max (𝜇𝑘2 − (1 − 𝜇) (1 − 𝑙1))+,
s.t. 𝑝−

1
+ 𝑝−

2
≥ 1,

𝜇 ≥ (1 − 𝜇) (1 − 𝑙1), 𝜇𝑘2 ≤ 1 − 𝜇,

0 ≤ 𝑙1 ≤ 1, 0 ≤ 𝑘2 ≤ 1, 0 ≤ 𝜇 ≤ 1.

And the optimum value is 1/3, reached at 𝜇 = 2/3, 𝑘2 = 0.5, 𝑙1 = 1.

2. (1 − 𝑙1 − 𝑙2) (1 − 𝜇) + (1 − 𝑘1 − 𝑘2)𝜇 = 0. Under this condition, we achieve that 𝑝−
1
+ 𝑝−

2
= 1 holds as well, which is a contradiction.

Thus, we conclude for Case 7 that the maximum regret is 1/3.

Synthesizing all 7 cases, we achieve that 𝐿(𝑓𝑡ℎ𝑟 ) ≤ 1/3. Combining with the lower bound in Theorem 4.3, we finish the proof of

𝐿(𝑓𝑡ℎ𝑟 ) = 1/3.

C.4 Proof of Theorem 4.5
We also prove by Lemma 3.2. To bound the expected regret of any random aggregator in Δ(𝐹+2), it suffices to analyze the expected regret

of the deterministic aggregator in 𝐹+2 relative to the same benchmark, where information structures are drawn from a carefully selected

distribution.

We then give a distribution 𝐷 ∈ Δ(CI) over two conditionally independent information structures, regarding which any aggregator in 𝐹+2

cannot achieve a regret below 1/4.

𝜇1 = 0.5 𝜋1 (𝑠 = 𝐿 | 𝜔 = 1) 𝜋1 (𝑠 = 𝐿 | 𝜔 = 0)
Expert 1 0 1

Expert 2 0.5 − 𝜖 0.5 + 𝜖

𝜇2 = 0.5 𝜋2 (𝑠 = 𝐿 | 𝜔 = 1) 𝜋2 (𝑠 = 𝐿 | 𝜔 = 0)
Expert 1 0.5 − 𝜖 0.5 + 𝜖

Expert 2 0 1

The first information structure has parameters (𝜇, 𝑘1, 𝑘2, 𝑙1, 𝑙2) = (0.5, 0, 0.5 − 𝜖, 1, 0.5 + 𝜖) and leads to the posterior (𝑏1𝐿, 𝑏2𝐿, 𝑏1𝐻 , 𝑏2𝐻 ) =
(0, 0.5 − 𝜖, 1, 0.5 + 𝜖). Again, we suppose 𝜖 is a small positive number that is less than 0.5. In this information structure, the first expert is

omniscient since it can determine the real state completely from the signal it received, while the second expert is nearly ignorant when 𝜖 is

close to 0.

The second information structure is symmetric with the first information structure, with (𝜇, 𝑘1, 𝑘2, 𝑙1, 𝑙2) = (0.5, 0.5 − 𝜖, 0, 0.5 + 𝜖, 1) and
posteriors (𝑏1𝐿, 𝑏2𝐿, 𝑏1𝐻 , 𝑏2𝐻 ) = (0.5 − 𝜖, 0, 0.5 + 𝜖, 1). In this information structure, the first expert is nearly ignorant when 𝜖 is close to 0,

and the second expert is omniscient.

Now consider the distribution that the real information can be the first or the second one with equal probability, which means the

more informed expert is chosen to be expert 1 or expert 2 with equal probability. Consider the case when two experts receive different

signals. When (𝑠1, 𝑠2) = (𝐿, 𝐻 ), the agent always observes the input (𝑎1, 𝑎2, 𝑝1, 𝑝2) = (0, 1, 0.5 − 𝜖, 0.5 + 𝜖) regardless of the real information

structure; and when (𝑠1, 𝑠2) = (𝐻, 𝐿), the agent always observes (𝑎1, 𝑎2, 𝑝1, 𝑝2) = (1, 0, 0.5 + 𝜖, 0.5 − 𝜖). Since the agent does not know who

the omniscient expert is, The optimal aggregator in 𝐹+2 is independent of the specific outputs generated by these inputs. However, the

benchmark can always identify the omniscient expert according to the knowledge of the real information structure. Thus, the relative regret

of any aggregator in 𝐹+2 regarding this distribution of information structures is at least

2 × 1

2

× 1

2

× ( 1

2

− 𝜖) × (1 − 0) = 1

4

− 𝜖.

Since 𝜖 can be arbitrarily small, any aggregator in 𝐹+2 cannot guarantee a regret of less than 0.25 regarding this distribution of information

structures, which implies the theorem.

C.5 Proof of Theorem 4.6
Similar to the proof of Theorem 4.4, to compute the maximum loss of 𝑓𝑢𝑛𝑖 , we now consider all seven possible different cases of 𝜋 .

Case 1: 𝜇𝑘1 > (1 − 𝜇)𝑙1, 𝜇𝑘2 > (1 − 𝜇)𝑙2. In this case, we have 𝑎𝑖 (𝑠) = 1 for all 𝑖 = 1, 2 and 𝑠 = 𝐿, 𝐻 , and the uniform aggregator always

chooses action 1. Meanwhile, we notice in this case that

𝜋 (𝜔 = 1 | 𝑆1 = 𝐿, 𝑆2 = 𝐻 ) = 𝜇𝑘1 (1 − 𝑘2)
𝜇𝑘1 (1 − 𝑘2) + (1 − 𝜇)𝑙1 (1 − 𝑙2)

≥ 1

2

,

𝜋 (𝜔 = 1 | 𝑆1 = 𝐻, 𝑆2 = 𝐿) = 𝜇 (1 − 𝑘1)𝑘2

𝜇 (1 − 𝑘1)𝑘2 + (1 − 𝜇) (1 − 𝑙1)𝑙2
≥ 1

2

,

𝜋 (𝜔 = 1 | 𝑆1 = 𝐻, 𝑆2 = 𝐻 ) = 𝜇 (1 − 𝑘1) (1 − 𝑘2)
𝜇 (1 − 𝑘1) (1 − 𝑘2) + (1 − 𝜇) (1 − 𝑙1) (1 − 𝑙2)

≥ 1

2

.
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Therefore, the only possible difference between the uniform aggregator and the benchmark is under the condition that 𝑆1 = 𝑆2 = 𝐿, and the

regret is bounded by the following program:

max −𝜇𝑘1𝑘2 + (1 − 𝜇)𝑙1𝑙2,
s.t. 𝜇𝑘1𝑘2 ≤ (1 − 𝜇)𝑙1𝑙2,

𝜇𝑘1 ≥ (1 − 𝜇)𝑙1, 𝜇𝑘2 ≥ (1 − 𝜇)𝑙2,
0 ≤ 𝑘1 ≤ 𝑙1 ≤ 1, 0 ≤ 𝑘2 ≤ 𝑙2 ≤ 1, 0 ≤ 𝜇 ≤ 1.

And the optimum of the above is 3 − 2

√
2 ≈ 0.1716, which is reached when 𝜇 =

√
2/2, 𝑘1 = 𝑘2 =

√
2 − 1, 𝑙1 = 𝑙2 = 1.

Case 2: 𝜇 (1 − 𝑘1) < (1 − 𝜇) (1 − 𝑙1), 𝜇 (1 − 𝑘2) < (1 − 𝜇) (1 − 𝑙2). This case is equivalent to Case 1 by substituting 𝜇 with 1 − 𝜇 and 𝑘𝑖 with

1 − 𝑙𝑖 for 𝑖 = 1, 2. Thus, they have the same optimum 3 − 2

√
2.

Case 3: 𝜇𝑘1 ≤ (1 − 𝜇)𝑙1, 𝜇 (1 − 𝑘1) ≥ (1 − 𝜇) (1 − 𝑙1), 𝜇 (1 − 𝑘2) < (1 − 𝜇) (1 − 𝑙2). In this case, we have 𝑎1 (𝐿) = 0, 𝑎1 (𝐻 ) = 1, and

𝑎2 (𝐿) = 𝑎2 (𝐻 ) = 0. We also observe that

𝜋 (𝜔 = 1 | 𝑆1 = 𝐿, 𝑆2 = 𝐿) = 𝜇𝑘1𝑘2

𝜇𝑘1𝑘2 + (1 − 𝜇)𝑙1𝑙2
≤ 1

2

,

𝜋 (𝜔 = 1 | 𝑆1 = 𝐿, 𝑆2 = 𝐻 ) = 𝜇𝑘1 (1 − 𝑘2)
𝜇𝑘1 (1 − 𝑘2) + (1 − 𝜇)𝑙1 (1 − 𝑙2)

≤ 1

2

.

Thus, the uniform aggregator matches the benchmark when 𝑆1 = 𝐿. On the other hand, when 𝑆1 = 𝐻 , there is a split between two experts.

Hence, our uniform aggregator would choose action 0.5. We further have

𝜋 (𝜔 = 1 | 𝑆1 = 𝐻, 𝑆2 = 𝐻 ) = 𝜇 (1 − 𝑘1) (1 − 𝑘2)
𝜇 (1 − 𝑘1) (1 − 𝑘2) + (1 − 𝜇) (1 − 𝑙1) (1 − 𝑙2)

≥ 1

2

,

As a result, the benchmark will adopt action 1 when 𝑆1 = 𝐻, 𝑆2 = 𝐻 . But the action of benchmark when 𝑆1 = 𝐻, 𝑆2 = 𝐿 is unsure. The regret

is bounded by the following program:

max

1

2

|𝜇 (1 − 𝑘1)𝑘2 − (1 − 𝜇) (1 − 𝑙1)𝑙2 | +
1

2

(𝜇 (1 − 𝑘1) (1 − 𝑘2) − (1 − 𝜇) (1 − 𝑙1) (1 − 𝑙2)),

𝜇𝑘1 ≤ (1 − 𝜇)𝑙1, 𝜇 (1 − 𝑘1) ≥ (1 − 𝜇) (1 − 𝑙1), 𝜇 (1 − 𝑘2) ≤ (1 − 𝜇) (1 − 𝑙2),
0 ≤ 𝑘1 ≤ 𝑙1 ≤ 1, 0 ≤ 𝑘2 ≤ 𝑙2 ≤ 1, 0 ≤ 𝜇 ≤ 1.

The above program has a maximum value of 0.25 when 𝜇 = 0.5, 𝑘1 = 0, 𝑘2 = 0.5, 𝑙1 = 1 and 𝑙2 = 0.5.

Case 4: 𝜇𝑘1 ≤ (1 − 𝜇)𝑙1, 𝜇 (1 − 𝑘1) ≥ (1 − 𝜇) (1 − 𝑙1), 𝜇𝑘2 > (1 − 𝜇)𝑙2. This case is equivalent to Case 3 by substituting 𝜇 with 1 − 𝜇 and 𝑘𝑖
with 1 − 𝑙𝑖 for 𝑖 = 1, 2, and they have the same optimum 1/4.

Case 5: 𝜇 (1 − 𝑘1) < (1 − 𝜇) (1 − 𝑙1), 𝜇𝑘2 ≤ (1 − 𝜇)𝑙2, 𝜇 (1 − 𝑘2) ≥ (1 − 𝜇) (1 − 𝑙2). This case is equivalent to Case 3 by swapping the order

of two experts, and we omit it.

Case 6: 𝜇𝑘1 > (1 − 𝜇)𝑙1, 𝜇𝑘2 ≤ (1 − 𝜇)𝑙2, 𝜇 (1 − 𝑘2) ≥ (1 − 𝜇) (1 − 𝑙2). This case is equivalent to Case 4 by swapping the order of two

experts, and we omit it.

Case 7: 𝜇𝑘1 ≤ (1 − 𝜇)𝑙1, 𝜇 (1 − 𝑘1) ≥ (1 − 𝜇) (1 − 𝑙1), 𝜇𝑘2 ≤ (1 − 𝜇)𝑙2, 𝜇 (1 − 𝑘2) ≥ (1 − 𝜇) (1 − 𝑙2). We have 𝑎1 (𝐿) = 𝑎2 (𝐿) = 0 and

𝑎1 (𝐻 ) = 𝑎2 (𝐻 ) = 1. Meanwhile,

𝜋 (𝜔 = 1 | 𝑆1 = 𝐿, 𝑆2 = 𝐿) = 𝜇𝑘1𝑘2

𝜇𝑘1𝑘2 + (1 − 𝜇)𝑙1𝑙2
≤ 1

2

,

𝜋 (𝜔 = 1 | 𝑆1 = 𝐻, 𝑆2 = 𝐻 ) = 𝜇 (1 − 𝑘1) (1 − 𝑘2)
𝜇 (1 − 𝑘1) (1 − 𝑘2) + (1 − 𝜇) (1 − 𝑙1) (1 − 𝑙2)

≥ 1

2

.

Thus, the uniform aggregator agrees with the benchmark when 𝑆1 = 𝑆2. On the other hand, when 𝑆1 ≠ 𝑆2, there is a split between two

experts. Hence, our uniform aggregator will adopt action 0.5. Also, the action of the benchmark is unsure. The following program bounds

the regret:

max

1

2

|𝜇 (1 − 𝑘1)𝑘2 − (1 − 𝜇) (1 − 𝑙1)𝑙2 | +
1

2

|𝜇𝑘1 (1 − 𝑘2) − (1 − 𝜇)𝑙1 (1 − 𝑙2) |,

𝜇𝑘1 ≤ (1 − 𝜇)𝑙1, 𝜇 (1 − 𝑘1) ≥ (1 − 𝜇) (1 − 𝑙1)
𝜇𝑘2 ≤ (1 − 𝜇)𝑙2, 𝜇 (1 − 𝑘2) ≥ (1 − 𝜇) (1 − 𝑙2),
0 ≤ 𝑘1 ≤ 𝑙1 ≤ 1, 0 ≤ 𝑘2 ≤ 𝑙2 ≤ 1, 0 ≤ 𝜇 ≤ 1.

The above program has a maximum value of 0.25 when 𝜇 = 0.5, 𝑘1 = 0.5, 𝑘2 = 0, 𝑙1 = 0.5, 𝑙2 = 1.

Synthesizing all 7 cases, we achieve that 𝐿(𝑓𝑢𝑛𝑖 ) ≤ 0.25. Combining with Theorem 4.5, we finish the proof of 𝐿(𝑓𝑢𝑛𝑖 ) = 0.25.
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D MISSING PROOFS IN SECTION 5
D.1 Proof of Theorem 5.2
We now give two carefully selected information structures in HOI and demonstrate that no deterministic aggregator in 𝐹+2 can guarantee a

regret less than 3 − 2

√
2 regarding both information structures.

𝜇1 = 1 −
√

2/2 𝜋1 (𝑠 = 𝐿 | 𝜔 = 1) 𝜋1 (𝑠 = 𝐿 | 𝜔 = 0)

Experts 0 2 −
√

2

𝜇2 =
√

2/2 𝜋2 (𝑠 = 𝐿 | 𝜔 = 1) 𝜋2 (𝑠 = 𝐿 | 𝜔 = 0)

Experts 3

√
2 − 4 2

√
2 − 2

For the first information structure, we set (𝜇, 𝑘, 𝑙) = (1 −
√

2/2, 0, 2 −
√

2), which leads to the posterior (𝑏𝐿, 𝑏𝐻 ) = (0, 1/2). In this

information structure, both experts demonstrate absolute certainty in determining the state when they observe the signal 𝐿. However, when

they observe the signal 𝐻 , neither expert exhibits a preference or inclination towards either state. Therefore, they will recommend action 0

when observing 𝐿 and action 1 when observing 𝐻 .

For the second information structure, we let (𝜇, 𝑘, 𝑙) = (
√

2/2, 3
√

2 − 4, 2
√

2 − 2), leading to the posterior (𝑏𝐿, 𝑏𝐻 ) = (
√

2 − 1,
√

2 − 1/2). In
this information structure, both experts hold partial knowledge about the state. Also, they will recommend action 0 when observing 𝐿 and

action 1 when observing 𝐻 .

Notice that inputs (1, 0,
√

2/2,
√

2 − 1) and (0, 1,
√

2 − 1,
√

2/2) appear under both information structures. However, in the first information

structure, these inputs only occur when the real state is 1, and each happens with probability 3 − 2

√
2. In the second information structure,

with probability 17

√
2 − 24, each input happens with the real state 0. Also, with probability 27 − 19

√
2, each input happens with the real state

1. Therefore, if the deterministic aggregator outputs 0 for both inputs, it will cause a regret of 102 − 72

√
2 ≈ 0.1766 ≥ 3 − 2

√
2 ≈ 0.1716 in the

second information structure. If it outputs 1 for both inputs, it will cause a regret of 6 − 4

√
2 ≈ 0.3431 in the first information structure. If it

outputs 1 for one of the inputs and 0 for another, it will cause a regret of 3 − 2

√
2. Therefore, no deterministic aggregator can guarantee a

regret of less than 3 − 2

√
2 regarding both information structures above, which implies the theorem.

D.2 Proof of Theorem 5.4
Since the experts are homogeneous, the follow-the-first-expert is equivalent to the uniform aggregator regarding any information structure

in HOI. Therefore, 𝐿HOI (𝑓𝑓 𝑡 𝑓 𝑒 ) = 3 − 2

√
2 by Theorem 5.6.

D.3 Proof of Theorem 5.5
We here give a special information structure in HOI, regarding which any aggregator in Δ(𝐹+2) cannot achieve a regret below 3− 2

√
2, which

implies the lower bound.

𝜇1 =
√

2/2 𝜋1 (𝑠 = 𝐿 | 𝜔 = 1) 𝜋1 (𝑠 = 𝐿 | 𝜔 = 0)

Experts

√
2 − 1 1

For the information structure, we set (𝜇, 𝑘, 𝑙) = (
√

2/2,
√

2 − 1, 1), which leads to the posterior (𝑏𝐿, 𝑏𝐻 ) = (1/2, 1). In this information

structure, two experts always recommend action 1 regardless of the realized signal.

Thus, the agent always observes the input (1, 1, 1, 1) and can only give the same action output regardless of the realized signal. Since the

prior is larger than 1/2, the optimal aggregator in Δ(𝐹+2) should output 1 for this input. However, when (𝑠1, 𝑠2) = (𝐿, 𝐿), the benchmark will

adopt the action 0, which leads to the relative regret of any aggregator in Δ(𝐹+2) regarding this information structure at least

(1 −
√

2

2

) × (1 − 0) +
√

2

2

× (
√

2 − 1)2 × (0 − 1) = 3 − 2

√
2,

which implies the theorem.

D.4 Proof of Theorem 5.6
Similar to previous proofs, to compute the maximum regret of 𝑓𝑢𝑛𝑖 , we now consider all possible three different cases of 𝜋 . Again, we recall

that 𝑘1 ≤ 𝑙1 and 𝑘2 ≤ 𝑙2 hold by Lemma C.1.
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Case 1: 𝜇𝑘 > (1 − 𝜇)𝑙 . In this case, we have 𝑎𝑖 (𝑠) = 1 for all 𝑖 = 1, 2 and 𝑠 = 𝐿, 𝐻 . The uniform aggregator always chooses action 1. Also,

we can obtain

𝜋 (𝜔 = 1 | 𝑆1 = 𝐿, 𝑆2 = 𝐻 ) = 𝜇𝑘 (1 − 𝑘)
𝜇𝑘 (1 − 𝑘) + (1 − 𝜇)𝑙 (1 − 𝑙) ≥ 1

2

,

𝜋 (𝜔 = 1 | 𝑆1 = 𝐻, 𝑆2 = 𝐿) = 𝜇 (1 − 𝑘)𝑘
𝜇 (1 − 𝑘)𝑘 + (1 − 𝜇) (1 − 𝑙)𝑙 ≥ 1

2

,

𝜋 (𝜔 = 1 | 𝑆1 = 𝐻, 𝑆2 = 𝐻 ) = 𝜇 (1 − 𝑘) (1 − 𝑘)
𝜇 (1 − 𝑘) (1 − 𝑘) + (1 − 𝜇) (1 − 𝑙) (1 − 𝑙) ≥ 1

2

.

Therefore, the only possible difference between the uniform aggregator and the benchmark is under the condition that 𝑆1 = 𝑆2 = 𝐿, and the

regret is bounded by the following program:

max −𝜇𝑘2 + (1 − 𝜇)𝑙2,
s.t. 𝜇𝑘2 ≤ (1 − 𝜇)𝑙2, 𝜇𝑘 ≥ (1 − 𝜇)𝑙

0 ≤ 𝑘 ≤ 𝑙 ≤ 1, 0 ≤ 𝜇 ≤ 1.

And the optimum of the above is 3 − 2

√
2 ≈ 0.1716, which is reached when 𝜇 =

√
2/2, 𝑘 =

√
2 − 1, 𝑙 = 1.

Case 2: 𝜇 (1 − 𝑘) < (1 − 𝜇) (1 − 𝑙). This case is equivalent to Case 1 by substituting 𝜇 with 1 − 𝜇 and 𝑘 with 1 − 𝑙 . Thus they have the same

optimum 3 − 2

√
2.

Case 3: 𝜇𝑘 ≤ (1 − 𝜇)𝑙, 𝜇 (1 − 𝑘) ≥ (1 − 𝜇) (1 − 𝑙). We have 𝑎1 (𝐿) = 𝑎2 (𝐿) = 0 and 𝑎1 (𝐻 ) = 𝑎2 (𝐻 ) = 1. Meanwhile,

𝜋 (𝜔 = 1 | 𝑆1 = 𝐿, 𝑆2 = 𝐿) = 𝜇𝑘2

𝜇𝑘2 + (1 − 𝜇)𝑙2
≤ 1

2

,

𝜋 (𝜔 = 1 | 𝑆1 = 𝐻, 𝑆2 = 𝐻 ) = 𝜇 (1 − 𝑘)2

𝜇 (1 − 𝑘)2 + (1 − 𝜇) (1 − 𝑙)2
≥ 1

2

.

Thus, the uniform aggregator agrees with the benchmark when 𝑆1 = 𝑆2. On the other hand, when 𝑆1 ≠ 𝑆2, there is a split between two

experts. Hence, our uniform aggregator will adopt action 0.5. Also, the action of the benchmark is unsure. The following program bounds

the regret:

max |𝜇 (1 − 𝑘)𝑘 − (1 − 𝜇) (1 − 𝑙)𝑙 |,
𝜇𝑘 ≤ (1 − 𝜇)𝑙, 𝜇 (1 − 𝑘) ≥ (1 − 𝜇) (1 − 𝑙)

0 ≤ 𝑘 ≤ 𝑙 ≤ 1, 0 ≤ 𝜇 ≤ 1.

The above program has a maximum value of 3 − 2

√
2 when 𝜇 =

√
2/2, 𝑘 =

√
2 − 1, 𝑙 = 1.

Synthesizing all three cases, we achieve that 𝐿(𝑓𝑢𝑛𝑖 ) ≤ 3 − 2

√
2. Combining with Theorem 5.5, we finish the proof of 𝐿(𝑓𝑢𝑛𝑖 ) = 3 − 2

√
2.

E MISSING PROOFS IN SECTION 6
E.1 Proof of Theorem 6.5
By Lemma 3.2, to bound the expected regret of any random aggregator in Δ(𝐹+1), it suffices to analyze the expected regret of aggregators in

𝐹+1 relative to the same benchmark, where information structures are drawn from a carefully selected distribution.

We then give a distribution 𝐷 ∈ Δ(NHI) over two information structures in NHI, regarding which any aggregator in 𝐹+1 cannot achieve a

regret below 3 − 2

√
2 ≈ 0.1716.

𝜇1 =
√

2/2 𝜋1 (𝑠 = 𝐿 | 𝜔 = 1) 𝜋1 (𝑠 = 𝐿 | 𝜔 = 0)

Experts

√
2 − 1 − 𝜖 1

𝜇2 = 1 −
√

2/2 𝜋2 (𝑠 = 𝐿 | 𝜔 = 1) 𝜋2 (𝑠 = 𝐿 | 𝜔 = 0)

Experts 0 2 −
√

2 + 𝜖

For the first information structure, we set (𝜇, 𝑘, 𝑙) = (
√

2/2,
√

2 − 1 − 𝜖, 1), which leads to the posterior (𝑏𝐿, 𝑏𝐻 ) = ((2 −
√

2 −
√

2𝜖)/(4 −
2

√
2 −

√
2𝜖), 1). 𝜖 is a small positive number that is less than

√
2 − 1. Experts are sure about the state under this information structure when

observing signal 𝐻 . However, when observing signal 𝐿, they are uncertain about the state when 𝜖 is close to 0.

We then construct the second information structure, which is symmetric with the first one. Specifically, we take (𝜇, 𝑘, 𝑙) = (1−
√

2/2, 0, 2−√
2 + 𝜖) and (𝑏𝐿, 𝑏𝐻 ) = (0, (2 −

√
2)/(4 − 2

√
2 −

√
2𝜖)). Experts completely know the state in this information structure when observing

signal 𝐿; while when observing signal 𝐻 , the two states are indistinguishable when 𝜖 is close to 0.

Now consider the distribution that the real information can be the first or the second one with equal probability, which means the more

informed signal is 𝐿 or 𝐻 with equal probability. Consider the case when two experts receive different signals. When (𝑠1, 𝑠2) = (𝐿, 𝐻 ), the
agent always observes the input (𝑎1, 𝑎2) = (0, 1) regardless of the real information structure; vice versa for (𝑠1, 𝑠2) = (𝐻, 𝐿). Since the agent
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does not know which the more informed signal is, the optimal aggregator in 𝐹+1 is independent of the specific outputs generated by these

inputs. However, the benchmark can always identify the more informed signal according to the knowledge of the real information structure.

Thus, the relative regret of any aggregator in 𝐹+1 against this distribution of information structures is at least

1

2

× 2 ×
√

2

2

× (
√

2 − 1 − 𝜖) × (2 −
√

2 + 𝜖) × (1 − 0) = 3 − 2

√
2 − ( 3

√
2

2

− 2)𝜖 −
√

2

2

𝜖2 .

Since 𝜖 can be arbitrarily small, no aggregator in 𝐹+1 can guarantee a lower regret than 3 − 2

√
2 regarding this distribution of information

structures. This finishes the proof.

E.2 Proof of Theorem 6.7
Again, we use Lemma 3.2, and now give a distribution 𝐷 ∈ Δ(NHI) over two information structures in NHI, regarding which any aggregator

in 𝐹+1 cannot achieve a regret below 1/6 ≈ 0.1667.

𝜇1 = 3/4 − 𝜖 𝜋1 (𝑠 = 𝐿 | 𝜔 = 1) 𝜋1 (𝑠 = 𝐿 | 𝜔 = 0)
Experts 1/3 − 8𝜖/(9 − 12𝜖) 1

𝜇2 = 1/4 + 𝜖 𝜋2 (𝑠 = 𝐿 | 𝜔 = 1) 𝜋2 (𝑠 = 𝐿 | 𝜔 = 0)
Experts 0 2/3 + 8𝜖/(9 − 12𝜖)

For the first information structure, we set (𝜇, 𝑘, 𝑙) = (3/4 − 𝜖, 1/3 − 8𝜖/(9 − 12𝜖), 1), which leads to the posterior (𝑏𝐿, 𝑏𝐻 ) = ((3 − 4𝜖 −
8(3𝜖 − 4𝜖2)/(3 − 4𝜖))/(6 + 8𝜖 − 8(3𝜖 − 4𝜖2)/(3 − 4𝜖)), 1). 𝜖 < 1/4. In this information structure, the experts know exactly the state when

observing signal 𝐻 . However, when observing signal 𝐿, it is hard for them to clarify the state when 𝜖 is close to 0.

The second information structure is symmetric with the first one. We take (𝜇, 𝑘, 𝑙) = (1/4 + 𝜖, 0, 2/3 + 8𝜖/(9 − 12𝜖)) and (𝑏𝐿, 𝑏𝐻 ) =

(0, (3 + 12𝜖)/(6 + 8𝜖 − 8(3𝜖 − 4𝜖2)/(3 − 4𝜖))). In this information structure, the experts are clear about the state when observing signal 𝐿.

However, when observing signal 𝐻 , they are uncertain about the state when 𝜖 is close to 0.

Now consider the distribution that the real information can be the first or the second one with equal probability, i.e., the more informed

signal is 𝐿 or 𝐻 with equal probability. Consider the case when two experts receive different signals. When (𝑠1, 𝑠2) = (𝐿, 𝐻 ), the agent
always observes the input (𝑎1, 𝑎2) = (0, 1, 1/3 − 8𝜖/(9 − 12𝜖), 2/3 + 8𝜖/(9 − 12𝜖)) regardless of the real information structure. Instead,

when (𝑠1, 𝑠2) = (𝐻, 𝐿), the agent always observes the input (𝑎1, 𝑎2) = (1, 0, 2/3 + 8𝜖/(9 − 12𝜖), 1/3 − 8𝜖/(9 − 12𝜖)). Similar to the proof of

Theorem 6.5, since the agent does not know which the more informed signal is, the optimal aggregator in 𝐹+2 is independent of the specific

outputs generated by these inputs. However, the benchmark can always identify the more informed signal according to the knowledge of the

real information structure. Consequently, the relative regret of any aggregator in 𝐹+2 against this distribution of information structures is at

least

1

2

× 2 × ( 3

4

− 𝜖) × ( 1

3

− 8𝜖

9 − 12𝜖
) × ( 2

3

+ 8𝜖

9 − 12𝜖
) × (1 − 0) = 1

6

− 2𝜖

9

− 18𝜖 − 32𝜖2

9(3 − 4𝜖)2
.

Since 𝜖 can be arbitrarily small, no aggregator in 𝐹+2 can guarantee a lower regret than 1/6 ≈ 0.1667 by Lemma 3.2.

E.3 Proof of Lemma 6.8
Notice that the prediction of the expert who recommends action 0 is

𝜇𝑘 (1 − 𝑘) + (1 − 𝜇)𝑙 (1 − 𝑙)
𝜇𝑘 + (1 − 𝜇)𝑙 ,

which is referred to as 𝑝0
. On the other hand, the prediction of the expert who recommends action 1 is

𝜇 (1 − 𝑘)2 + (1 − 𝜇) (1 − 𝑙)2

𝜇 (1 − 𝑘) + (1 − 𝜇) (1 − 𝑙) ,

which is referred to as 𝑝1
. Thus, 𝑝1 ≥ 𝑝0

naturally holds, and the equality happens when 𝑘 = 𝑙 .

E.4 Proof of Proposition 6.9
For proof of (a), by Lemma C.1, 𝑘 ≤ 𝑙 holds. For every information structure in NHI, we have 𝑎1 (𝐻 ) = 𝑎2 (𝐻 ) = 1 and 𝑎1 (𝐿) = 𝑎2 (𝐿) = 0,

which implies 𝜇𝑘 < (1 − 𝜇)𝑙 and 𝜇 (1 − 𝑘) ≥ (1 − 𝜇) (1 − 𝑙). Therefore, 𝜇𝑘2 < (1 − 𝜇)𝑙2 and 𝜇 (1 − 𝑘)2 ≥ (1 − 𝜇) (1 − 𝑙)2
holds. When

𝑎1 = 𝑎2 = 1, two experts must observe signal 𝐻 , and the benchmark will obtain a posterior higher than 1/2. In this way, the best strategy for

the aggregator is to adopt action 1. The proof is similar when 𝑎1 = 𝑎2 = 0.

For proof of (b), we notice that there must exist a random aggregator 𝑓 that achieves the lowest regret and satisfies (a), and from there,

construct another random strategy aggregator 𝑓 ′: 𝑓 ′ (𝑎1, 𝑎2, 𝑝1, 𝑝2) = 𝑓 (𝑎2, 𝑎1, 𝑝2, 𝑝1) for any input (𝑎1, 𝑎2, 𝑝1, 𝑝2). Since two experts are
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homogeneous, we have

𝐿(𝑓 , 𝜋) =
∑︁

𝜔,𝑠1,𝑠2

𝜋 (𝜔, 𝑠1, 𝑠2) (𝑢 (𝜙 (𝜋 (𝜔 = 1 | 𝑠1, 𝑠2)), 𝜔) − 𝑓 (𝑎1 (𝑠1), 𝑎2 (𝑠2), 𝑝1 (𝑠1), 𝑝2 (𝑠2))𝑢 (1, 𝜔)

− (1 − 𝑓 (𝑎1 (𝑠1), 𝑎2 (𝑠2), 𝑝1 (𝑠1), 𝑝2 (𝑠2))𝑢 (0, 𝜔))

=
∑︁

𝜔,𝑠1,𝑠2

𝜋 (𝜔, 𝑠2, 𝑠1) (𝑢 (𝜙 (𝜋 (𝜔 = 1 | 𝑠2, 𝑠1)), 𝜔) − 𝑓 (𝑎1 (𝑠1), 𝑎2 (𝑠2), 𝑝1 (𝑠1), 𝑝2 (𝑠2))𝑢 (1, 𝜔)

− (1 − 𝑓 (𝑎1 (𝑠1), 𝑎2 (𝑠2), 𝑝1 (𝑠1), 𝑝2 (𝑠2))𝑢 (0, 𝜔))

=
∑︁

𝜔,𝑠1,𝑠2

𝜋 (𝜔, 𝑠2, 𝑠1) (𝑢 (𝜙 (𝜋 (𝜔 = 1 | 𝑠2, 𝑠1)), 𝜔) − 𝑓 ′ (𝑎1 (𝑠2), 𝑎2 (𝑠1), 𝑝1 (𝑠2), 𝑝2 (𝑠1))𝑢 (1, 𝜔)

− (1 − 𝑓 ′ (𝑎1 (𝑠2), 𝑎2 (𝑠1), 𝑝1 (𝑠2), 𝑝2 (𝑠1))𝑢 (0, 𝜔))
= 𝐿(𝑓 ′, 𝜋) .

Therefore, 𝑓 and 𝑓 ′ achieve the same regret regarding any information structure, which implies 𝑓 ′ is also the best random aggregator.

Further, notice that the loss function is linear of 𝑓 , thus

𝐿

(
𝑓 + 𝑓 ′

2

, 𝜋

)
=

1

2

𝐿(𝑓 , 𝜋) + 1

2

𝐿(𝑓 ′, 𝜋),

which implies (𝑓 + 𝑓 ′)/2 also achieves the lowest regret. Since (𝑓 + 𝑓 ′)/2 satisfies (b), we finish the proof of (b).

For proof of (c), now that there must exist a random aggregator 𝑓 that achieves the lowest regret and satisfies (a) and (b), we construct

another random strategy aggregator 𝑓 ◦: 𝑓 ◦ (𝑎1, 𝑎2, 𝑝1, 𝑝2) = 1− 𝑓 (1−𝑎1, 1−𝑎2, 1−𝑝1, 1−𝑝2) = 1− 𝑓 (1−𝑎2, 1−𝑎1, 1−𝑝2, 1−𝑝1) for any input
(𝑎1, 𝑎2, 𝑝1, 𝑝2). Also, for any information structure 𝜋 , we can construct information structure 𝜋◦ by substituting 𝜇, 𝑘, 𝑙 with 1 − 𝜇, 1 − 𝑙, 1 − 𝑘 .

We obtain

𝐿(𝑓 , 𝜋) =
∑︁

𝜔,𝑠1,𝑠2

𝜋 (𝜔, 𝑠1, 𝑠2) (𝑢 (𝜙 (𝜋 (𝜔 = 1 | 𝑠1, 𝑠2)), 𝜔) − 𝑓 (𝑎1 (𝑠1), 𝑎2 (𝑠2), 𝑝1 (𝑠1), 𝑝2 (𝑠2))𝑢 (1, 𝜔)

− (1 − 𝑓 (𝑎1 (𝑠1), 𝑎2 (𝑠2), 𝑝1 (𝑠1), 𝑝2 (𝑠2))𝑢 (0, 𝜔))

=
∑︁

𝜔,𝑠1,𝑠2

𝜋◦ (1 − 𝜔, 𝑠1, 𝑠2) (𝑢 (𝜙 (𝜋 (𝜔 = 1 | 𝑠1, 𝑠2)), 1 − 𝜔) − 𝑓 ◦ (𝑎1 (𝑠1), 𝑎2 (𝑠2), 𝑝1 (𝑠1), 𝑝2 (𝑠2))𝑢 (1, 1 − 𝜔)

− (1 − 𝑓 ◦ (𝑎1 (𝑠1), 𝑎2 (𝑠2), 𝑝1 (𝑠1), 𝑝2 (𝑠2))𝑢 (0, 1 − 𝜔))
= 𝐿(𝑓 ◦, 𝜋◦),

where 𝑠 represents the complement signal of 𝑠 . Therefore, 𝑓 and 𝑓 ◦ achieve the same regret, which implies 𝑓 ◦ also attains the lowest regret.

Thus,

𝐿

(
𝑓 + 𝑓 ◦

2

, 𝜋

)
=

1

2

𝐿(𝑓 , 𝜋) + 1

2

𝐿(𝑓 ◦, 𝜋),

which implies (𝑓 + 𝑓 ◦)/2 is also the optimal random aggregator. Since (𝑓 + 𝑓 ◦)/2 satisfies (c), we finish the proof of (c).

At last, (d) holds naturally by (b) and (c).

E.5 Proof of Theorem 6.10
To compute the maximum regret of 𝑓𝑏𝑖𝑟 , we now consider all possible cases of 𝜋 under the conditions. Here, besides the conditions that

𝑘1 ≤ 𝑙1 and 𝑘2 ≤ 𝑙2 as given by Lemma C.1, from the definition of NHI, we also know that 𝜇𝑘 < (1 − 𝜇)𝑙 and 𝜇 (1 − 𝑘) ≥ (1 − 𝜇) (1 − 𝑙).
Further, when 𝑆1 = 𝑆2 = 𝐿, two experts both recommend action 0, so our aggregator adopts action 0, which is the same as the benchmark.

When 𝑆1 = 𝑆2 = 𝐻 , the aggregator and the benchmark both take action 1. Therefore, no regret will be caused when 𝑆1 = 𝑆2.

When two experts observe different signals and recommend different actions, it is without loss of generality to assume that 𝑎1 = 1, 𝑎2 = 0

due to the symmetry of the aggregator and information structures. Therefore, we have

𝑝1 =
𝜇 (1 − 𝑘)2 + (1 − 𝜇) (1 − 𝑙)2

𝜇 (1 − 𝑘) + (1 − 𝜇) (1 − 𝑙) , 𝑝2 =
𝜇𝑘 (1 − 𝑘) + (1 − 𝜇)𝑙 (1 − 𝑙)

𝜇𝑘 + (1 − 𝜇)𝑙 .

and 𝑝1 ≥ 𝑝2 always holds.
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Case 1: 𝑝1 + 𝑝2 < 0.98. The aggregator outputs min{1, (𝑝1 − 0.6)2 + (𝑝2 − 0.4)2 + 0.5} in this case; however, the benchmark’s output is

unsure. Therefore, the regret is bounded by the two programs below:

max ((1 − 𝜇)𝑙 (1 − 𝑙) − 𝜇𝑘 (1 − 𝑘)) min{1, (𝑝1 − 0.6)2 + (𝑝2 − 0.4)2 + 0.5},
s.t. 𝜇𝑘 (1 − 𝑘) ≤ (1 − 𝜇)𝑙 (1 − 𝑙), 𝜇𝑘 ≤ (1 − 𝜇)𝑙, 𝜇 (1 − 𝑘) ≥ (1 − 𝜇) (1 − 𝑙)

0 ≤ 𝑘 ≤ 𝑙 ≤ 1, 0 ≤ 𝜇 ≤ 1,

𝑝1 + 𝑝2 ≤ 0.98.

max (𝜇𝑘 (1 − 𝑘) − (1 − 𝜇)𝑙 (1 − 𝑙)) (1 − min{1, (𝑝1 − 0.6)2 + (𝑝2 − 0.4)2 + 0.5}),

s.t. 𝜇𝑘 (1 − 𝑘) ≥ (1 − 𝜇)𝑙 (1 − 𝑙), 𝜇𝑘 ≤ (1 − 𝜇)𝑙, 𝜇 (1 − 𝑘) ≥ (1 − 𝜇) (1 − 𝑙)
0 ≤ 𝑘 ≤ 𝑙 ≤ 1, 0 ≤ 𝜇 ≤ 1,

𝑝1 + 𝑝2 ≤ 0.98.

The first program achieves the maximized value of 0.08407 when 𝜇 = 0.2424, 𝑘 = 0, 𝑙 = 0.68. The second program achieves the maximized

value of 0.08402 when 𝜇 = 0.7175, 𝑘 = 0.3938, 𝑙 = 1. Therefore, the maximum regret in this case is 0.0841.

Case 2: 𝑝1 + 𝑝2 > 1.02. The aggregator outputs max{0, 0.5 − (𝑝1 − 0.6)2 − (𝑝2 − 0.4)2 + 0.5} in this case, however the benchmark’s output

is unsure. Therefore, the regret is bounded by the two programs below:

max ((1 − 𝜇)𝑙 (1 − 𝑙) − 𝜇𝑘 (1 − 𝑘)) max{0, 0.5 − (𝑝1 − 0.6)2 − (𝑝2 − 0.4)2},
s.t. 𝜇𝑘 (1 − 𝑘) ≤ (1 − 𝜇)𝑙 (1 − 𝑙), 𝜇𝑘 ≤ (1 − 𝜇)𝑙, 𝜇 (1 − 𝑘) ≥ (1 − 𝜇) (1 − 𝑙)

0 ≤ 𝑘 ≤ 𝑙 ≤ 1, 0 ≤ 𝜇 ≤ 1,

𝑝1 + 𝑝2 ≥ 1.02.

max (𝜇𝑘 (1 − 𝑘) − (1 − 𝜇)𝑙 (1 − 𝑙)) (1 − max{0, 0.5 − (𝑝1 − 0.6)2 − (𝑝2 − 0.4)2}),

s.t. 𝜇𝑘 (1 − 𝑘) ≥ (1 − 𝜇)𝑙 (1 − 𝑙), 𝜇𝑘 ≤ (1 − 𝜇)𝑙, 𝜇 (1 − 𝑘) ≥ (1 − 𝜇) (1 − 𝑙)
0 ≤ 𝑘 ≤ 𝑙 ≤ 1, 0 ≤ 𝜇 ≤ 1,

𝑝1 + 𝑝2 ≥ 1.02.

The first program achieves the maximized value of 0.08402 when 𝜇 = 0.2825, 𝑘 = 0, 𝑙 = 0.6062. The second program achieves the maximized

value of 0.08078 when 𝜇 = 0.7575, 𝑘 = 0.32, 𝑙 = 1. Therefore, the maximum regret in this case is 0.08402.

Case 3: 0.98 ≤ 𝑝1 + 𝑝2 ≤ 1.02. In this case, the aggregator outputs 0.5; however, the benchmark’s output is unsure. Therefore, the regret is

bounded by the two programs below:

max 0.5((1 − 𝜇)𝑙 (1 − 𝑙) − 𝜇𝑘 (1 − 𝑘)),
s.t. 𝜇𝑘 (1 − 𝑘) ≤ (1 − 𝜇)𝑙 (1 − 𝑙), 𝜇𝑘 ≤ (1 − 𝜇)𝑙, 𝜇 (1 − 𝑘) ≥ (1 − 𝜇) (1 − 𝑙)

0 ≤ 𝑘 ≤ 𝑙 ≤ 1, 0 ≤ 𝜇 ≤ 1,

0.98 ≤ 𝑝1 + 𝑝2 ≤ 1.02.

max 0.5(𝜇𝑘 (1 − 𝑘) − (1 − 𝜇)𝑙 (1 − 𝑙)),

s.t. 𝜇𝑘 (1 − 𝑘) ≥ (1 − 𝜇)𝑙 (1 − 𝑙), 𝜇𝑘 ≤ (1 − 𝜇)𝑙, 𝜇 (1 − 𝑘) ≥ (1 − 𝜇) (1 − 𝑙)
0 ≤ 𝑘 ≤ 𝑙 ≤ 1, 0 ≤ 𝜇 ≤ 1,

0.98 ≤ 𝑝1 + 𝑝2 ≤ 1.02.

The first program achieves the maximized value of 0.08409 when 𝜇 = 0.2574, 𝑘 = 0, 𝑙 = 0.6533. The second program achieves the maximized

value of 0.08409 when 𝜇 = 0.7426, 𝑘 = 0.3467, 𝑙 = 1. Therefore, the maximum regret in this case is 0.08409.

Synthesizing all three cases, we obtain that 𝐿NHI (𝑓𝑏𝑖𝑟 ) ≤ 2 × 0.0841 = 0.1682. Also, when 𝜇 = 0.7426, 𝑘 = 0.3467, 𝑙 = 1, the regret of the

aggregator regarding this information structure is 0.1682, which implies the result.

E.6 Proof of Theorem 6.11
To compute the maximum regret of 𝑓𝑎𝑙𝑔 , we now consider all possible cases of 𝜋 , under the conditions as pointed out by the proof of

Theorem 6.10. Further, it suffices to consider the scenario with 𝑎1 = 1, 𝑎2 = 0.
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We now divide all possible predictions into 100 intervals: {(𝑝1, 𝑝2) : 𝑙𝑏1 <= 𝑝1 <= 𝑙𝑏1 + 0.1, 𝑙𝑏2 <= 𝑝2 <= 𝑙𝑏2} for all 𝑙𝑏1, 𝑙𝑏2 ∈
{0, 0.1, 0.2, · · · , 0.9}. For each interval, the aggregator is linear, with

𝑓 (1, 0, 𝑙𝑏1 + 𝛿1, 𝑙𝑏2 + 𝛿2) = 𝛿1𝛿2 𝑓 (1, 0, 𝑙𝑏1 + 0.1, 𝑙𝑏2 + 0.1) + 𝛿1 (1 − 𝛿2) 𝑓 (1, 0, 𝑙𝑏1 + 0.1, 𝑙𝑏2)
+(1 − 𝛿1)𝛿2 𝑓 (1, 0, 𝑙𝑏1, 𝑙𝑏2 + 0.1) + (1 − 𝛿1) (1 − 𝛿2) 𝑓 (0, 1, 𝑙𝑏1, 𝑙𝑏2) .

Here, 𝑓 (1, 0, 𝑙𝑏1 + 0.1, 𝑙𝑏2 + 0.1), 𝑓 (1, 0, 𝑙𝑏1 + 0.1, 𝑙𝑏2), 𝑓 (1, 0, 𝑙𝑏1, 𝑙𝑏2 + 0.1) and 𝑓 (1, 0, 𝑙𝑏1, 𝑙𝑏2) are obtained by the algorithm in advance.

Therefore, the maximum regret in this interval can be bounded by two programs

max 𝑓 (1, 0, 𝑝1, 𝑝2) ((1 − 𝜇)𝑙 (1 − 𝑙) − 𝜇𝑘 (1 − 𝑘)),
s.t. 𝜇𝑘 (1 − 𝑘) ≤ (1 − 𝜇)𝑙 (1 − 𝑙), 𝜇𝑘 ≤ (1 − 𝜇)𝑙, 𝜇 (1 − 𝑘) ≥ (1 − 𝜇) (1 − 𝑙)

0 ≤ 𝑘 ≤ 𝑙 ≤ 1, 0 ≤ 𝜇 ≤ 1,

𝑙𝑏1 ≤ 𝑝1 ≤ 𝑙𝑏1 + 0.1, 𝑙𝑏2 ≤ 𝑝2 ≤ 𝑙𝑏2 + 0.1.

max (1 − 𝑓 (1, 0, 𝑝1, 𝑝2) (𝜇𝑘 (1 − 𝑘) − (1 − 𝜇)𝑙 (1 − 𝑙)),

s.t. 𝜇𝑘 (1 − 𝑘) ≥ (1 − 𝜇)𝑙 (1 − 𝑙), 𝜇𝑘 ≤ (1 − 𝜇)𝑙, 𝜇 (1 − 𝑘) ≥ (1 − 𝜇) (1 − 𝑙)
0 ≤ 𝑘 ≤ 𝑙 ≤ 1, 0 ≤ 𝜇 ≤ 1,

𝑙𝑏1 ≤ 𝑝1 ≤ 𝑙𝑏1 + 0.1, 𝑙𝑏2 ≤ 𝑝2 ≤ 𝑙𝑏2 + 0.1.

By symmetry, the regret of the aggregator can then be bounded by two times the maximum value of all the programs, which is 0.1673

when 𝜇 = 0.763, 𝑘 = 0.3106, 𝑙 = 1, given by Wolfram Mathematica.

F MISSING PROOFS IN APPENDIX A
F.1 Proof of Proposition A.1
Since 𝜙𝑡 is only decided by 𝑡 , 𝑎1, 𝑎2, 𝑝1, 𝑝2 should be the same for every 𝑠1, 𝑠2 when considering 𝜋 , which implies 𝐿(𝑓 𝑟 , 𝜋,𝑢) = Δ𝑢0 · 𝐿𝑡 (𝑓 𝑟 , 𝜋).

F.2 Proof of Theorem A.2
We here give a special information structure in HOI, regarding which any aggregator in Δ(𝐹+2) cannot achieve a regret below (

√︁
1 + 1/𝑡 −√︁

1/𝑡)2
, which implies the lower bound.

𝜇1 =
√︁

1/𝑡+1 𝜋1 (𝑠 = 𝐿 | 𝜔 = 1) 𝜋1 (𝑠 = 𝐿 | 𝜔 = 0)

Experts (
√
𝑡 + 1 − 1)/𝑡 1

For the information structure, we set (𝜇, 𝑘, 𝑙) = (
√︁

1/𝑡+1,

√
𝑡+1−1

𝑡 , 1), which leads to the posterior (𝑏𝐿, 𝑏𝐻 ) = (1/(𝑡 +1), 1). In this information

structure, two experts always recommend action 1 regardless of the realized signal.

Therefore, the agent always observes the input (1, 1, 1, 1) and can only give the same action output regardless of the realized signal.

Since the prior is larger than 1/(𝑡 + 1), the optimal aggregator in Δ(𝐹+2) should output 1 for this input. However, when (𝑠1, 𝑠2) = (𝐿, 𝐿), the
benchmark will adopt the action 0, which leads to the relative regret of any aggregator in Δ(𝐹+2) regarding this information structure at least

(1 − 1

√
𝑡 + 1

) × (1 − 0) + 1

√
𝑡 + 1

×
(√

𝑡 + 1 − 1

𝑡

)2

× (0 − 𝑡) =
(√︂

1 + 1

𝑡
−

√︂
1

𝑡

)
2

.

This implies the theorem.

F.3 Proof of Theorem A.3
Similarly, we give a special information structure in HOI, regardingwhich any aggregator inΔ(𝐹+2) cannot achieve a regret below (

√
𝑡 + 𝑡2−𝑡)2

,

which implies the lower bound.

𝜇1 = 1 −
√︁
𝑡/𝑡+1 𝜋1 (𝑠 = 𝐿 | 𝜔 = 1) 𝜋1 (𝑠 = 𝐿 | 𝜔 = 0)

experts 0 1 −
√
𝑡 (
√
𝑡 + 1 −

√
𝑡) − 𝜖

For the information structure, we set

(𝜇, 𝑘, 𝑙) =
(
1 −

√︁
𝑡/𝑡+1, 0, 1 − 𝑡 (

√
𝑡 + 1 −

√
𝑡)

√
𝑡

− 𝜖

)
,

which leads to the posterior

(𝑏𝐿, 𝑏𝐻 ) =
(
0,

√
𝑡 + 1 −

√
𝑡

(𝑡 + 1) (
√
𝑡 + 1 −

√
𝑡) +

√
𝑡𝜖

)
.
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𝜖 here is a small positive number less than 1 −
√
𝑡 (
√
𝑡 + 1 −

√
𝑡). In this information structure, two experts always recommend action 0

regardless of the realized signal.

Therefore, the agent always observes the input (0, 0, 0, 0) and can only give the same action output regardless of the realized signal. Since

the prior is smaller than 1/(𝑡 + 1), the optimal aggregator in Δ(𝐹+2) should output 0 for this input. However, when (𝑠1, 𝑠2) = (𝐻,𝐻 ), the
benchmark will adopt the action 1, which leads to the relative regret of any aggregator in Δ(𝐹+2) regarding this information structure at least

(1 − 𝑡
√
𝑡 + 1

) × (𝑡 − 0) + 𝑡
√
𝑡 + 1

×
(
𝑡 (
√
𝑡 + 1 −

√
𝑡)

√
𝑡

+ 𝜖

)2

× (0 − 1) = (
√︁
𝑡 + 𝑡2 − 𝑡)2 − 2𝑡

√
𝑡 + 1(

√︁
𝑡2 + 𝑡 − 1)𝜖 − 𝑡

√
𝑡 + 1

𝜖2 .

Since 𝜖 can be arbitrarily small, no aggregator in Δ(𝐹+2) can guarantee a lower regret than (
√
𝑡 + 𝑡2 − 𝑡)2

, which implies the theorem.

F.4 Proof of Theorem A.4
To compute the maximum regret of 𝑓𝑝 , we now consider all possible three different cases of 𝜋 , under the conditions 𝑘1 ≤ 𝑙1 and 𝑘2 ≤ 𝑙2
given by Lemma C.1.

Case 1: 𝑡𝜇𝑘 > (1 − 𝜇)𝑙 . In this case, we have 𝑎𝑖 (𝑠) = 1 for all 𝑖 = 1, 2 and 𝑠 = 𝐿,𝐻 . The aggregator always chooses action 1. Also, we can

obtain

𝜋 (𝜔 = 1 | 𝑆1 = 𝐿, 𝑆2 = 𝐻 ) = 𝜇𝑘 (1 − 𝑘)
𝜇𝑘 (1 − 𝑘) + (1 − 𝜇)𝑙 (1 − 𝑙) ≥ 1

𝑡 + 1

,

𝜋 (𝜔 = 1 | 𝑆1 = 𝐻, 𝑆2 = 𝐿) = 𝜇 (1 − 𝑘)𝑘
𝜇 (1 − 𝑘)𝑘 + (1 − 𝜇) (1 − 𝑙)𝑙 ≥ 1

𝑡 + 1

,

𝜋 (𝜔 = 1 | 𝑆1 = 𝐻, 𝑆2 = 𝐻 ) = 𝜇 (1 − 𝑘) (1 − 𝑘)
𝜇 (1 − 𝑘) (1 − 𝑘) + (1 − 𝜇) (1 − 𝑙) (1 − 𝑙) ≥ 1

𝑡 + 1

.

Therefore, the only possible difference between the aggregator and the benchmark is under the condition that 𝑆1 = 𝑆2 = 𝐿, and the regret is

bounded by the following program:

max −𝑡𝜇𝑘2 + (1 − 𝜇)𝑙2,
s.t. 𝑡 𝜇𝑘2 ≤ (1 − 𝜇)𝑙2, 𝑡 𝜇𝑘 ≥ (1 − 𝜇)𝑙

0 ≤ 𝑘 ≤ 𝑙 ≤ 1, 0 ≤ 𝜇 ≤ 1.

We can bound the maximum value of the program as follows:

−𝑡𝜇𝑘2 + (1 − 𝜇)𝑙2 ≤ 𝑙2
(
1 − 𝜇 − (1 − 𝜇)2

𝑡𝜇

)
≤ 1 − 𝜇 − (1 − 𝜇)2

𝑡𝜇

= 1 + 2

𝑡
− (1 + 1

𝑡
)𝜇 − 1

𝑡𝜇

≤ 1 + 2

𝑡
− 2

√︂
1

𝑡
( 1

𝑡
+ 1),

which takes equality at 𝜇 =
√︁

1/𝑡+1, 𝑘 =

√
𝑡+1−1

𝑡 , 𝑙 = 1. Since the above value satisfies the constraints, the optimum of the above program is

(
√︁

1 + 1/𝑡 −
√︁

1/𝑡)2
.

Case 2: 𝑡𝜇 (1 − 𝑘) < (1 − 𝜇) (1 − 𝑙). Similarly, the regret is bounded by the following program:

max 𝑡𝜇 (1 − 𝑘)2 − (1 − 𝜇) (1 − 𝑙)2,

s.t. 𝑡 𝜇 (1 − 𝑘)2 ≥ (1 − 𝜇) (1 − 𝑙)2, 𝑡 𝜇 (1 − 𝑘) ≤ (1 − 𝜇) (1 − 𝑙)
0 ≤ 𝑘 ≤ 𝑙 ≤ 1, 0 ≤ 𝜇 ≤ 1.

We bound the maximum value of the program similarly as the above and obtain that the maximum value is (
√
𝑡 + 𝑡2 − 𝑡)2

when

𝜇 = 1 −
√︁
𝑡/1+𝑡, 𝑘 = 0, 𝑙 = 1 − 𝑡 (

√
𝑡+1−

√
𝑡 )√

𝑡
.
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Case 3: 𝑡𝜇𝑘 ≤ (1 − 𝜇)𝑙, 𝑡 𝜇 (1 − 𝑘) ≥ (1 − 𝜇) (1 − 𝑙). We have 𝑎1 (𝐿) = 𝑎2 (𝐿) = 0 and 𝑎1 (𝐻 ) = 𝑎2 (𝐻 ) = 1. Meanwhile,

𝜋 (𝜔 = 1 | 𝑆1 = 𝐿, 𝑆2 = 𝐿) = 𝜇𝑘2

𝜇𝑘2 + (1 − 𝜇)𝑙2
≤ 1

𝑡 + 1

,

𝜋 (𝜔 = 1 | 𝑆1 = 𝐻, 𝑆2 = 𝐻 ) = 𝜇 (1 − 𝑘)2

𝜇 (1 − 𝑘)2 + (1 − 𝜇) (1 − 𝑙)2
≥ 1

𝑡 + 1

.

Thus, the aggregator agrees with the benchmark when 𝑆1 = 𝑆2. On the other hand, when 𝑆1 ≠ 𝑆2, there is a split between two experts. Hence,

our prob-𝑝 aggregator will adopt action 𝑝 . Also, the action of the benchmark is unsure. The following two programs bound the regret:

max 2 (𝑡𝜇 (1 − 𝑘)𝑘 − (1 − 𝜇) (1 − 𝑙)𝑙) (1 − 𝑓 ),
s.t. 𝑡 𝜇𝑘 (1 − 𝑘) ≥ (1 − 𝜇)𝑙 (1 − 𝑙),

𝑡 𝜇𝑘 ≤ (1 − 𝜇)𝑙, 𝑡 𝜇 (1 − 𝑘) ≥ (1 − 𝜇) (1 − 𝑙),
0 ≤ 𝑘 ≤ 𝑙 ≤ 1, 0 ≤ 𝜇 ≤ 1.

and

max 2 (−𝑡𝜇 (1 − 𝑘)𝑘 + (1 − 𝜇) (1 − 𝑙)𝑙) 𝑓 ,
s.t. 𝑡 𝜇𝑘 (1 − 𝑘) ≤ (1 − 𝜇)𝑙 (1 − 𝑙),

𝑡 𝜇𝑘 ≤ (1 − 𝜇)𝑙, 𝑡 𝜇 (1 − 𝑘) ≥ (1 − 𝜇) (1 − 𝑙),
0 ≤ 𝑘 ≤ 𝑙 ≤ 1, 0 ≤ 𝜇 ≤ 1.

For the first program, we bound the maximum value as follows:

2(𝑡𝜇𝑘 (1 − 𝑘) − (1 − 𝜇)𝑙 (1 − 𝑙)) (1 − 𝑝) ≤ 2𝑡𝜇𝑘 (1 − 𝑘) (1 − 𝑝)

≤ 2𝑡𝑘 (1 − 𝑘) 1

𝑡𝑘 + 1

(1 − 𝑝)

= 2(1 − 𝑝)
(
−𝑘 + (1 + 1

𝑡
) −

1 + 1

𝑡

𝑡𝑘 + 1

)
≤ 2(1 − 𝑝)

(√︂
1 + 1

𝑡
−

√︂
1

𝑡

)
2

,

which takes equality at 𝜇 =
√︁

1/𝑡+1, 𝑘 =

√
1+𝑡−1

𝑡 , 𝑙 = 1. Since the above value satisfies the constraints, the optimum of the above program is

2(1 − 𝑝)
(√︁

1 + 1/𝑡 −
√︁

1/𝑡
)

2

.

Similarly, the maximum value of the second program is 2𝑝 (
√
𝑡 + 𝑡2 − 𝑡)2

when 𝜇 = 1 −
√︁
𝑡/1+𝑡, 𝑘 = 0, 𝑙 = 1 − 𝑡 (

√
𝑡+1−

√
𝑡 )√

𝑡
.

We also have that

(√︁
1 + 1/𝑡 −

√︁
1/𝑡

)
2

≥ (
√
𝑡 + 𝑡2 − 𝑡)2

for any 𝑡 ≥ 1 and

(√︁
1 + 1/𝑡 −

√︁
1/𝑡

)
2

≤ (
√
𝑡 + 𝑡2 − 𝑡)2

for any 𝑡 ≤ 1. Synthesizing all

three cases, we achieve that 𝐿(𝑓𝑝 ) ≤
(√︁

1 + 1/𝑡 −
√︁

1/𝑡
)

2

for any 𝑝 ∈
0.5,

(√
1+1/𝑡−

√
1/𝑡

)
2

2(
√
𝑡+𝑡2−𝑡 )2

 . Combining with Theorem A.2, we finish the proof.

F.5 Proof of Theorem A.5
Similar to the proof in Theorem A.4, the problem can be divided into three cases, and the solution is the same as above. Synthesizing all three

cases, we achieve that 𝐿𝑡HOI (𝑓𝑝 ) ≤ (
√
𝑡 + 𝑡2 − 𝑡)2

for any 𝑝 ∈
1 − (

√
𝑡+𝑡2−𝑡 )2

2

(√
1+1/𝑡−

√
1/𝑡

)
2
, 0.5

 . Combining with Theorem A.3, we finish the proof.

F.6 Proof of Theorem A.6
By Lemma 3.2, we now give a distribution 𝐷 ∈ Δ(NHI) over two information structures in NHI, regarding which any aggregator in 𝐹+1

cannot achieve a regret below

2

(√
1+1/𝑡−

√
1/𝑡

)
2

(
√
𝑡+𝑡2−𝑡 )2

(
√
𝑡+𝑡2−𝑡 )2+

(√
1+1/𝑡−

√
1/𝑡

)
2
.

𝜇1 =
√︁

1/𝑡+1 𝜋1 (𝑠 = 𝐿 | 𝜔 = 1) 𝜋1 (𝑠 = 𝐿 | 𝜔 = 0)

Experts (
√
𝑡 + 1 − 1)/𝑡 − 𝜖 1
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𝜇2 = 1 −
√︁
𝑡/𝑡+1 𝜋2 (𝑠 = 𝐿 | 𝜔 = 1) 𝜋2 (𝑠 = 𝐿 | 𝜔 = 0)

Experts 0 1 −
√
𝑡 (
√
𝑡 + 1 −

√
𝑡)

For the first information structure, we set (𝜇, 𝑘, 𝑙) = (
√︁

1/𝑡+1,

√
𝑡+1−1

𝑡 − 𝜖, 1), which leads to the posterior (𝑏𝐿, 𝑏𝐻 ) = (
√
𝑡+1−1−𝑡𝜖

(𝑡+1) (
√
𝑡+1−1)−𝑡𝜖

, 1).

𝜖 can be any small positive number that is less than

√
𝑡+1−1

𝑡 . Experts are sure about the state in this information structure when observing

signal 𝐻 . However, when observing signal 𝐿, it is nearly uncertain which action is better.

We then construct the second information structure symmetric with the first one: (𝜇, 𝑘, 𝑙) = (1 −
√︁
𝑡/𝑡+1, 0, 1 − 𝑡 (

√
𝑡+1−

√
𝑡 )√

𝑡
) and (𝑏𝐿, 𝑏𝐻 ) =

(0, 1/𝑡+1). Similarly, here, experts know exactly the state when observing signal 𝐿. Nevertheless, when observing signal 𝐻 , it is nearly

uncertain which action is better.

Now consider the distribution that the real information is the first one with the probability of

(
√
𝑡 + 𝑡2 − 𝑡)2

(
√
𝑡 + 𝑡2 − 𝑡)2 +

(√︃
1 + 1

𝑡 −
√︃

1

𝑡

)
2

− 𝜖2 − (1 − 2(
√
𝑡+1−1)
𝑡 )𝜖

and the second one with the probability of (√︃
1 + 1

𝑡 −
√︃

1

𝑡

)
2

− 𝜖2 − (1 − 2(
√
𝑡+1−1)
𝑡 )𝜖

(
√
𝑡 + 𝑡2 − 𝑡)2 +

(√︃
1 + 1

𝑡 −
√︃

1

𝑡

)
2

− 𝜖2 − (1 − 2(
√
𝑡+1−1)
𝑡 )𝜖

.

Consider the case when two experts receive different signals. When (𝑠1, 𝑠2) = (𝐿, 𝐻 ), the agent always observes the input (𝑎1, 𝑎2) = (0, 1)
regardless of the real information structure. When (𝑠1, 𝑠2) = 𝐻, 𝐿, the agent always observes the input (𝑎1, 𝑎2) = (1, 0) regardless of the
real information structure. Since the agent doesn’t know which the more informed signal is, the optimal aggregator in 𝐹+1 is independent

of the specific outputs generated by these inputs. However, the benchmark can always identify the more informed signal according to

the knowledge of the real information structure. Thus, the relative regret of any aggregator in 𝐹+1 against this distribution of information

structures is at least (√︃
1 + 1

𝑡 −
√︃

1

𝑡

)
2

− 𝜖2 − (1 − 2(
√
𝑡+1−1)
𝑡 )𝜖

(
√
𝑡 + 𝑡2 − 𝑡)2 +

(√︃
1 + 1

𝑡 −
√︃

1

𝑡

)
2

− 𝜖2 − (1 − 2(
√
𝑡+1−1)
𝑡 )𝜖

×2 ×
√︂

𝑡

𝑡 + 1

× (1 − 𝑡 (
√
𝑡 + 1 −

√
𝑡)

√
𝑡

) × 𝑡 (
√
𝑡 + 1 −

√
𝑡)

√
𝑡

× (1 − 0)

Since 𝜖 can be arbitrarily small, no aggregator in 𝐹+1 can guarantee a lower regret than

2

(√︃
1 + 1

𝑡 −
√︃

1

𝑡

)
2

(
√
𝑡 + 𝑡2 − 𝑡)2

(
√
𝑡 + 𝑡2 − 𝑡)2 +

(√︃
1 + 1

𝑡 −
√︃

1

𝑡

)
2

regarding this distribution of information structures. This implies the theorem.

F.7 Proof of Theorem A.7
According to Case 3 in proof in Theorem A.4, we achieve that

𝐿𝑡NHI (𝑓𝑝 ) ≤
2

(√︃
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𝑡 −
√︃

1

𝑡

)
2

(
√
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(
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(√︃
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𝑡 −
√︃

1

𝑡

)
2

for

𝑝 =

(√︃
1 + 1

𝑡 −
√︃

1

𝑡

)
2

(
√
𝑡 + 𝑡2 − 𝑡)2 +

(√︃
1 + 1

𝑡 −
√︃

1

𝑡

)
2
.
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Combining with Theorem A.6, we finish the proof.

27


	Abstract
	1 Introduction
	1.1 Summary of Results
	1.2 Related Work

	2 Problem Statement
	3 Warm-up: General Information Structures
	4 Heterogeneous Experts
	4.1 Deterministic Aggregators
	4.2 Random Aggregators

	5 Homogeneous Experts
	5.1 Deterministic Aggregators
	5.2 Random Aggregators

	6 Homogeneous Experts with Non-Degenerate Signals
	6.1 Deterministic Aggregators
	6.2 Random Aggregators

	7 Extension: General Utility Functions with Homogeneous Experts
	8 Conclusion and Discussion
	References
	A Details in Section 7 – General Utility Functions with Homogeneous Experts
	A.1 A Negative Result: Predictions are Useless in General
	A.2 Non-Degenerate Signals: Predictions are Useful

	B Missing Proofs in Section 3
	B.1 Proof of Theorem 3.1
	B.2 Proof of Theorem 3.3

	C Missing Proofs in Section 4
	C.1 Proof of Theorem 4.1
	C.2 Proof of Theorem 4.3
	C.3 Proof of Theorem 4.4
	C.4 Proof of Theorem 4.5
	C.5 Proof of Theorem 4.6

	D Missing Proofs in Section 5
	D.1 Proof of Theorem 5.2
	D.2 Proof of Theorem 5.4
	D.3 Proof of Theorem 5.5
	D.4 Proof of Theorem 5.6

	E Missing Proofs in Section 6
	E.1 Proof of Theorem 6.5
	E.2 Proof of Theorem 6.7
	E.3 Proof of Lemma 6.8
	E.4 Proof of Proposition 6.9
	E.5 Proof of Theorem 6.10
	E.6 Proof of Theorem 6.11

	F Missing Proofs in Appendix A
	F.1 Proof of Proposition A.1
	F.2 Proof of Theorem A.2
	F.3 Proof of Theorem A.3
	F.4 Proof of Theorem A.4
	F.5 Proof of Theorem A.5
	F.6 Proof of Theorem A.6
	F.7 Proof of Theorem A.7


