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Abstract

In this work, we study the generalization of deep learning functions in relation to
the convex hull of their training sets. A trained image classifier basically partitions
its domain via decision boundaries, and assigns a class to each of those partitions.
The location of decision boundaries inside the convex hull of training set can be
investigated in relation to the training samples. However, our analysis shows that
in standard image classification datasets, most testing images are considerably
outside that convex hull. Therefore, the performance of a trained model partially
depends on how its decision boundaries are extended outside the convex hull of its
training data. From this perspective, over-parameterization of deep learning models
may be considered a necessity for shaping the extension of decision boundaries.
At the same time, over-parameterization should be accompanied by a specific
training regime, in order to yield a model that not only fits the training set, but
also its decision boundaries extend desirably outside the convex hull. To illustrate
this, we investigate the decision boundaries of a neural network, with various
degrees of over-parameterization, inside and outside the convex hull of its training
set. Moreover, we use a polynomial decision boundary to study the necessity of
over-parameterization and the influence of training regime in shaping its extensions
outside the convex hull of training set.

1 Introduction

A deep learning image classifier is a mathematical function that maps images to classes, i.e., a deep
learning function [Strang, 2019]. These models/functions have shown to be exceptionally useful in
real-world applications. However, generalization of these functions is considered a mystery by deep
learning researchers [Arora et al., 2019]. These models have orders of magnitude more parameters
than their training samples [Belkin et al., 2019, Neyshabur et al., 2019], and they can achieve perfect
accuracy on their training sets, even when the training images are randomly labeled, or the contents
of images are replaced with random noise [Zhang et al., 2017]. The training loss function of these
models has infinite number of minimizers, where only a small subset of those minimizers generalize
well [Neyshabur et al., 2017a]. If one succeeds in picking a good minimizer of training loss, the model
can classify the testing images correctly, nevertheless, for any correctly classified image, there are
infinite number of images that look the same, but models will classify them incorrectly (phenomenon
known as adversarial vulnerability) [Papernot et al., 2016, Shafahi et al., 2019, Tsipras et al., 2019].
Here, we study some geometric properties of standard training and testing sets to provide new insights
about what a model can learn from its training data, and how it can generalize.

Specifically, we study the convex hulls of image classification datasets (both in the pixel space and in
the wavelet space), and show that most of testing images fall outside the convex hull of training sets,
with various distances from the hull. We investigate the perturbations required to bring the testing
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images to the surface of convex hull and observe that the directions to convex hulls contain valuable
information about images, corresponding to distinctive features in them. We also see that reaching
the convex hull significantly affects the contents of images. Therefore, the performance of a trained
model partially depends on how well it can extrapolate. We investigate this extrapolation in relation
to the over-parameterization of neural networks and the influence of training regimes in shaping the
extensions of decision boundaries.

2 Geometry of testing data w.r.t the convex hull of training sets

First, we show that for standard datasets: MNIST [LeCun et al., 1998] and CIFAR-10 [Krizhevsky,
2009], most of their testing data are outside the convex hull of their training sets. We denote the
convex hull of a training set byHtr.

To verify whether an image/data point is inside its correspondingHtr or not, we can simply try to
fit a hyper-plane separating the point and the training set. If we find such hyper-plane, the point is
outside the convex hull, and vice versa. This is basically a linear regression problem and there are
many efficient and fast methods to perform it, e.g., [Goldstein et al., 2015]. For the MNIST dataset,
we see that about 95.1% of testing images are outside the Htr, in the pixel space. For CIFAR-10,
that percentage is more than 99.9%. When we transform the images with wavelets (an operation
analogous to convolutional neural nets), these percentages almost remain the same.

We can now investigate the testing data outside theHtr, to see how far they are located from it. For
every testing image, xte

i , that is outside theHtr, we would like to find the closest point to it on the
Htr, and we denote that point by xHi . We are interested to know the direction of the shortest vector
that can bring the testing image toHtr. We are also interested in how far the testing images are from
theHtr.

2.1 How far are testing images from theHtr?

The point on the Htr, closest to a point outside it, is the solution to a well defined optimization
problem, consisting of a linear least squares objective function and linear constraints. The objective
function seeks to minimize the distance between xte

i and xHi , while the linear constraints ensure that
xHi ∈ Htr. We note that there are approximation algorithms to solve this problem, e.g., [Blum et al.,
2019]. Here, we solve the problem, numerically, using the gradient projection algorithm described by
[Nocedal and Wright, 2006, Chapter 16]. Figure 1 shows the histogram of distance to Htr for the
testing images of the above datasets.

(a) MNIST (pixel space) (b) CIFAR-10 (pixel space)

Figure 1: Variations of distance toHtr for testing images that fall outsideHtr.

To get a better sense of how far these distances are, consider theHtrof CIFAR-10 dataset. Its diameter,
the largest distance between any pair of vertices inHtr, is 13,621 (measured by Frobenius norm in
pixel space). On the other hand, the distance of farthest testing image from the Htris about 3,500
(about 27% of the diameter ofHtr). Moreover, the average distance between pairs of images in the
training set of CIFAR-10 is 4,838, while the closest pair of images are only 701 apart.

Hence, the distance of testing data toHtris not negligible and we cannot dismiss it as a small noise.
However, it is not very large either. Overall, we can say that in order to classify most of the testing
images in the above datasets, a model has to extrapolate, to some moderate degree, outside itsHtr.
In Appendix A, we discuss the convex hull of random points in high-dimensional space.
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2.2 Directions toHtrand the information they contain

For each image that is outside the Htr, there is some minimum perturbation that would bring that
image to theHtr. Figures 2 and 3 show the perturbation for some images in the testing set of CIFAR-
10 and MNIST that can bring them to their correspondingHtr. We note that due to our approximation
method, there is no guarantee that images in the middle column are exactly the minimum required
perturbation, but we expect it to be sufficiently close to that minimum.

(original) - = (onHtr)

(original) - = (onHtr)

(original) - = (onHtr)

Figure 2: Perturbation (close to minimum) that can bring a testing image toHtrof all classes. (left
image) original testing image from CIFAR-10, (middle image) what should be removed from the
original image, (right image) the resulting image on the Htr. These directions contain valuable
information about the objects depicted in the images.
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Figure 3: Perturbation that can bring a testing image of MNIST on theHtr.
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The perturbations required to bring testing images to the Htrspecifically relate to the objects of
interest depicted in images and they appear to impact the images significantly. Therefore, the
extrapolation required to classify those images can be considered significant, too.

2.3 Images that form the surface closest to the outside image

The image on the surface ofHtr, closest to an image, xte
i , outside theHtr, is a convex combination

of some training images. We call those training images as the support for xte
i . In our experiments, the

number of support images for each testing image is only a few. For example, the image on the second
row of Figure 2 has only 26 support images in the training set. Figure 4 shows 10 of those 26 images
with their corresponding coefficients in the convex combination.

Htr

−−→ = 0.1129 + 0.1032 + 0.0878 + 0.0704 + 0.0630

+ 0.0536 + 0.0533 + 0.0529 + 0.0516 + 0.0427 + . . .

Figure 4: Projection of a testing image to theHtr, and the convex combination of images in training
set that create the projected image. There are 26 training images used in the convex combination, but
we have shown 10 of those with the largest coefficients.

2.4 Related work about geometry of data and deep learning

To the best of our knowledge, convex hulls of training sets are not commonly considered in deep
learning studies, especially the ones focused on their generalization. Recently, Yousefzadeh and
Huang [2020] reported that in the wavelet space, distance of testing images to the convex hull for
each training class can predict the label for more than 98.5% of MNIST testing data. Previously,
Haffner [2002] considered the convex hull of MNIST data for Support Vector Machines. Similarly,
Vincent and Bengio [2002] considered the convex hulls for K-Nearest Neighbor (KNN) algorithms.
However, those methods do not generalize to deep learning functions.

Some researchers have studied other geometrical aspects of deep learning models, e.g., [Cohen
et al., 2020, Fawzi et al., 2018, Cooper, 2018, Kanbak et al., 2018, Neyshabur et al., 2017b]. To our
knowledge, those studies do not investigate the generalization of deep neural networks in relation to
the convex hull of training sets. Most recently, Xu et al. [2020] studied the extrapolation behavior
of ReLU perceptrons and concluded that such models cannot extrapolate most non-linear tasks.
However, they do not connect their analysis to the fact that a considerable portion of testing samples
of standard image datasets fall outside the convex hull of their training sets.

3 Learning outside the convex hull: A polynomial decision boundary
In the previous section, we showed that most of the testing data of MNIST and almost all of the
testing data of CIFAR-10 are outside the convex hull of their corresponding training sets, while the
distance to theHtr has noticeable variations, resembling a normal distribution. Hence, a trained deep
learning model somehow manages to define its decision boundaries accurately enough outside the
boundaries of what it has observed during training. But how does a model achieve that, or more
precisely, how do we manage to train a model such that its decision boundaries have the desirable
form outside theHtr?

Since we are interested in the generalization of image classifiers, and the pixel space is a bounded
space, we consider the domain to be bounded, while the Htr occupies some portion of it. Testing
data can be inside and outside theHtr, but always inside the bounded domain.

Let’s now use a polynomial decision boundary as an example to gain some intuitive insights.1
Figure 7a shows two point sets colored in blue and red, each set belonging to a class. These sets are

1This choice seem appropriate since many recent studies on generalization of deep learning consider the
regression models that interpolate, e.g. [Belkin et al., 2018b,a, 2019, Liang et al., 2020, Verma et al., 2019,
Kileel et al., 2019, Savarese et al., 2019], but those studies do not consider the convex hull of training sets.
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non-linearly separable, because they have no overlap. If we use the polynomial

y = 10−5(x+ 20)(x+ 17)(x+ 10)(x+ 5)(x)(x− 2)(x− 9), (1)

as our decision boundary, we achieve perfect accuracy in separating these two sets, as shown in
Figure 7b.

(a) (b)

Figure 5: (a) Training data with 2 classes, colored with blue and red. (b) Non-linear separation of 2
classes with a polynomial of degree 7.

Figure 6: Shape of the polynomial decision boundary in our bounded domain, inside and outside the
convex hull of its training data.

Now that we have obtained this polynomial, i.e., decision boundary, we would be interested to know
how it generalizes to unseen data. Let’s assume that our bounded domain is defined by the limits
shown in Figure 6 which also shows how our decision boundary generalizes outside theHtr. If our
polynomial can correctly separate and label our testing data, we would say that our polynomial is
generalizing well, and vice versa. But, what is reasonable to expect from the testing data? In what
regions of the domain should we be hopeful that our polynomial can generalize? What if the domain
is much larger than theHtr? Is the extension of our polynomial on both sides reasonable enough?

Clearly, the answer to the above questions can be different inside and outside the Htr. Inside the
Htr, if the unseen data has a similar label distribution as the training set, we can be hopeful that our
decision boundary will generalize well. However, outside theHtr is uncharted territory and hence,
there will be less hope/confidence about the generalization of our decision boundary, especially when
we go far outside theHtr.

Now, let’s assume that from some prior knowledge, we know that the decision boundary in Figure 7
is the unique decision boundary that perfectly classifies the testing data. In such case, the decision
boundary defined by equation (1) and shown in Figure 6 will generalize poorly outside the Htr,
despite the fact that it perfectly fits the training data.

How can we incorporate that prior knowledge into the decision boundary defined by equation (1) and
reshape it to the decision boundary in Figure 7, so that it can generalize well both inside and outside
the Htr? How can we change the shape of our polynomial outside the Htr, while maintaining its
current shape inside the Htr? Clearly, we should add to the degree of our polynomial, or in other
words, we should over-parameterize it. The necessity of over-parameterization for achieving that
goal for our polynomial decision boundary can be rigorously shown using the orthogonal system of
Legendre polynomials [Ascher and Greif, 2011].

From this perspective, over-parameterization is necessary, but it is not sufficient for good generaliza-
tion, because for an over-parameterized polynomial (i.e., decision boundary), there will be infinite
number of solutions that can fit the training data, but each of them would have a different shape
outside theHtr. In fact, an over-parameterized polynomial can have the same shape as the polynomial
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(a) Possible extension of polynomial decision
boundary in the over-parameterized regime.

(b) Resulting division of domain between the
two classes, defined by red and blue bounds.

Figure 7: Consider the decision boundary depicted in (a) and assume that the distribution of testing
data is such that the red and blue bounded regions in (b) are densely filled with red and blue data
points, respectively. It follows that the decision boundary in Figure 6 generalizes poorly for testing
points outside theHtr, despite the fact that it perfectly fits the training data.

in Figure 6. But, how can we pick the decision boundary that fits the data and also generalizes well
outside theHtr?

In the over-parameterized regime, the key to finding the desirable decision boundary is the optimiza-
tion process, i.e., the training regime. In other words, different training regimes would lead us to
decision boundaries that all perfectly fit the training set, but each has a different shape outside the
Htr. This highlights that the over-parameterization and the training regime work in tandem to shape
the extensions of our decision boundary.

4 Output of deep learning functions outside theirHtr

In this section, we investigate a 2-layer neural network with ReLU activation functions. We train the
model with various number of neurons on the data from previous section as depicted in Figure 7b.
We then investigate the output of the trained models inside and outside of the Htr, as shown in
Figures 8-10. In these figures, the black trapezoid depicts theHtr. The colors red and blue correspond
to our 2 classes.

(a) model with 2 neurons (b) model with 5 neurons (c) model with 10 neurons

Figure 8: Variations of model output inside and outside the Htr, for under-parameterized models.
Feed-forward ReLU networks with 2,5, and 10 neurons do not have enough capacity to perfectly fit
the training set. As we increase the number of neurons from 2 to 10, the model fits the training data
better, while it starts to have more variations outside theHtr. In this under-parameterized regime, we
cannot minimize the training loss to zero, but each time that we train a model, we can achieve the
same non-zero training loss for it, leading to the same model.

Because of the non-convexity of the loss function, the loss may have numerous minimizers, however,
when the model is under-parameterized, as in Figure 8, none of those minimizers would make the
loss zero. Finding the same minimizer of training loss is equivalent to obtaining the same trained
model, hence unlike the over-parameterized setting, the training regime is focused on finding the
global minimizer of the training loss, i.e., finding the best shape for the decision boundary inside the
convex hull.

As we increase the number of neurons with increments of 2, we see the model with 30 neurons can
perfectly separate the 2 classes in our training set. Figure 9 shows the output of 3 different 30-neuron
models that are trained with different training regimes.
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(a) model with 30 neurons (b) model with 30 neurons (c) model with 30 neurons

Figure 9: The case where the model has just about enough capacity to fit the training set. We see that
based on the training regime, we can get slightly different decision boundaries inside the hull, all of
which perfectly separate the 2 classes. The shape of decision boundaries outside the hull can also
vary based on the training regime.

Finally, we consider models that are highly over-parameterized. In this regime, there are infinite
number of parameter configurations that minimize the training loss to zero, which is equivalent to
developing the decision boundaries that perfectly separate our two classes.

(a) model with 50 neurons (b) model with 100 neurons (c) model with 200 neurons

Figure 10: As we increase the degree of over-parameterization, from 50 neurons to 200, the number
of disjoint decision boundaries increase, inside and outside the hull.

The above observations seem to explain why we need over-parameterized models for deep learning
and also explain why the generalization of deep learning models are so susceptible to different
training regimes. Appendix B provides further discussion.

5 Conclusion and future work

We showed that most of testing data for some standard image classification models lie outside the
convex hull of training sets, both in pixel space and in wavelet space. Therefore, the generalization of
a deep network partially relies on its capability to extrapolate outside the boundaries of the data it
has seen during training. Based on this observation, the significant number of studies that focus on
interpolation regimes seem to be insufficient to explain the generalization of deep networks.

From this perspective, over-parameterization of models may be considered a necessity to desirably
form the extension of decision boundaries outside the convex hull of data. This can be proven for
polynomial regression models using the orthogonal system of Legendre polynomials. Moreover, we
showed that the training regime can significantly affect the shape of decision boundaries outside the
convex hulls, affecting the accuracy of a model in its extrapolation. We investigated a 2-layer ReLU
network and a polynomial decision boundary to demonstrate these ideas.

In future work, we plan to more closely analyze the effect of over-parameterization and training
regimes on the shape of decision boundaries outside the convex hulls, and investigate how that affects
the generalization. We also plan to study how sensitive the classifications of standard trained models
are w.r.t the minimum perturbations that would bring testing images on the surface ofHtr.

Projecting all testing samples to the surface ofHtrand investigating whether a model can learn to clas-
sify them would provide insights on how far we can rely on interpolation, and over-parameterization
is still necessary in that setting.
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Studying the convex hulls of internal representations of the data in a trained network is another
direction that can be pursued. Such analysis can be performed, separately for each class in the dataset.
It has been speculated that a given image classification dataset lies on a lower dimensional manifold
and such manifold is what a deep learning model learns from the data. Study of convex hulls might
provide insights about such manifold and also about the distribution of training and testing sets.

Finally, measuring the volume of the convex hulls of training and testing sets, their overlap, and also
the volume of the domain that remains unoccupied may be insightful.

Acknowledgments and Disclosure of Funding

R.Y. thanks Yaim Cooper for helpful discussions. R.Y. was supported by a fellowship from the
Department of Veteran Affairs. The views expressed in this manuscript are those of the author and
do not necessarily reflect the position or policy of the Department of Veterans Affairs or the United
States government.

References
Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix factorization. In

Advances in Neural Information Processing Systems, pages 7413–7424, 2019.

Uri M Ascher and Chen Greif. A first course on numerical methods. SIAM, 2011.

Mikhail Belkin, Daniel J Hsu, and Partha Mitra. Overfitting or perfect fitting? Risk bounds for classification and
regression rules that interpolate. In Advances in neural information processing systems, pages 2300–2311,
2018a.

Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to understand kernel
learning. In International Conference on Machine Learning, pages 541–549, 2018b.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning practice and
the classical bias–variance trade-off. Proceedings of the National Academy of Sciences, 116(32):15849–15854,
2019.

Avrim Blum, Sariel Har-Peled, and Benjamin Raichel. Sparse approximation via generating point sets. ACM
Transactions on Algorithms (TALG), 15(3):1–16, 2019.

Uri Cohen, SueYeon Chung, Daniel D Lee, and Haim Sompolinsky. Separability and geometry of object
manifolds in deep neural networks. Nature communications, 11(1):1–13, 2020.

Yaim Cooper. The loss landscape of overparameterized neural networks. arXiv preprint arXiv:1804.10200,
2018.

Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard, and Stefano Soatto. Empirical study of the
topology and geometry of deep networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3762–3770, 2018.

Martin Fink, John Hershberger, Nirman Kumar, and Subhash Suri. Hyperplane separability and convexity of
probabilistic point sets. In 32nd International Symposium on Computational Geometry (SoCG 2016). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

Tom Goldstein, Min Li, and Xiaoming Yuan. Adaptive primal-dual splitting methods for statistical learning and
image processing. In Advances in Neural Information Processing Systems, pages 2089–2097, 2015.

Patrick Haffner. Escaping the convex hull with extrapolated vector machines. In Advances in Neural Information
Processing Systems, pages 753–760, 2002.

Irene Hueter. Limit theorems for the convex hull of random points in higher dimensions. Transactions of the
American Mathematical Society, 351(11):4337–4363, 1999.

Can Kanbak, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Geometric robustness of deep networks:
Analysis and improvement. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4441–4449, 2018.

Joe Kileel, Matthew Trager, and Joan Bruna. On the expressive power of deep polynomial neural networks. In
Advances in Neural Information Processing Systems, pages 10310–10319, 2019.

8



Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Tengyuan Liang, Alexander Rakhlin, et al. Just interpolate: Kernel “ridgeless” regression can generalize. Annals
of Statistics, 48(3):1329–1347, 2020.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring generalization in deep
learning. In Advances in Neural Information Processing Systems, pages 5947–5956, 2017a.

Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, and Nathan Srebro. Geometry of optimization and
implicit regularization in deep learning. arXiv preprint arXiv:1705.03071, 2017b.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. Towards understanding
the role of over-parametrization in generalization of neural networks. In International Conference on Learning
Representations, 2019.

Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer, New York, 2nd edition, 2006. ISBN
9780387400655.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram Swami.
The limitations of deep learning in adversarial settings. In 2016 IEEE European symposium on security and
privacy (EuroS&P), pages 372–387. IEEE, 2016.

Pedro Savarese, Itay Evron, Daniel Soudry, and Nathan Srebro. How do infinite width bounded norm networks
look in function space? In Conference on Learning Theory, pages 2667–2690, 2019.

Ali Shafahi, W Ronny Huang, Christoph Studer, Soheil Feizi, and Tom Goldstein. Are adversarial examples
inevitable? In International Conference on Learning Representations, 2019.

Gilbert Strang. Linear Algebra and Learning from Data. Wellesley-Cambridge Press, 2019.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry. Robustness
may be at odds with accuracy. In International Conference on Learning Representations, 2019.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz, and Yoshua
Bengio. Manifold mixup: Better representations by interpolating hidden states. In International Conference
on Machine Learning, pages 6438–6447. PMLR, 2019.

Pascal Vincent and Yoshua Bengio. K-local hyperplane and convex distance nearest neighbor algorithms. In
Advances in neural information processing systems, pages 985–992, 2002.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka. How neural
networks extrapolate: From feedforward to graph neural networks. arXiv preprint arXiv:2009.11848, 2020.

Roozbeh Yousefzadeh and Furong Huang. Using wavelets and spectral methods to study patterns in image-
classification datasets. arXiv preprint arXiv:2006.09879, 2020.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning
requires rethinking generalization. In International Conference on Learning Representations, 2017.

9



A The case of random data in high-dimensional space

The question may arise that what happens if we have random data points in the same high-dimensional
space. Would the data points still fall outside theHtr? Would the distance toHtrbe the same? The
answers are yes and no, respectively.

To gain some insights, let’s consider the CIFAR-10 datasets. We can randomly shuffle all the pixel
values in all the images of training and testing sets. In such case, the shuffled testing data would still
fall outside theHtrof shuffled data. But, their distance toHtrwould be orders of magnitude larger.

Alternatively, if we generate random points in the same domain as the pixel space of CIFAR-10, (i.e.,
domain 3,072 dimensions bounded between 0 and 255), again, the testing data will be outside the
Htr.2 This time, the distance toHtrwould be much larger even compared to the case of shuffling the
pixel values.

Therefore, we can conclude that with such number of training samples in such high-dimensional
domains, one can expect the testing samples to be outside their Htr. However, the distance to the
convex hulls are much closer for our image datasets, compared to random data points, because for
each testing image, xte

i , there are a group of training images that form a surface on theHtr, and that
surface is much closer to xte

i , compared to the surface that a set of random data points can create.

B Extrapolation and interpolation in tandem

Earlier, we reported that the extent of extrapolation, for the CIFAR-10 dataset, is about 27% of the
diameter of itsHtr. We also reported that almost all the testing samples are outside theHtr. Based on
these observations, we can say that the task of classifying the testing set of CIFAR-10 is extrapolation.
But, how does the interpolation affect our ability to extrapolate? We can explain this using the
decision boundaries of the models.

For image classification, our domain is a d-dimensional hyper-cube, because pixel values are bounded.
d is the number of pixels. The convex hull of training set,Htr, is a shape with ≤ d dimension, and
sits somewhere in that hyper-cube. For CIFAR-10 dataset,Htrhas exactly d dimensions. The testing
samples sit around theHtr, like a mist, not too far, and not too close toHtr. The distance of testing
samples fromHtrranges between 1%-27% of its diameter, with average value of 10%.

As we mentioned earlier, a classification function/model partitions its domain and assigns a class
to each of the partitions. The partitions are defined by decision boundaries, and so is the model.
Basically, the training process partitions the shapeHtrby defining a finite set of decision boundaries
inside it. We can define this process as interpolation, especially if we are only concerned about the
location of decision boundaries in Htr. Some of the decision boundaries defined in this process
will reach the surface ofHtrand extend outside it. Theses decision boundaries and their extensions
outside the hull are the ones that a model relies upon in order to classify the images outside the hull.

Because the testing images are not too far outside the hull, the space to shape the extensions of
decision boundaries is limited. Therefore, the locations where the decision boundaries reach the
surface of Htris of great importance. Overall, interpolation and extrapolation work in tandem to
shape the decision boundaries and the functional performance of image classification models.

Going back to the hyper-cube, during the training, the shape ofHtris partitioned with some nonlinear
surfaces (decision boundaries), and some of those surfaces extend outside the Htr. The locations
where the decision boundaries reach the surface ofHtrand their extension outside theHtris critical
in how the model classifies the testing images that are sitting around theHtr.

2This relates to the limit theorems for the convex hull of random points in higher dimensions [Hueter, 1999]
and also to studies on separability and distribution of random points [Fink et al., 2016].
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