
Benchmarking Structural Inference Methods for
Interacting Dynamical Systems with Synthetic Data

Aoran Wang 1∗ Tsz Pan Tong 1∗ Andrzej Mizera 2 Jun Pang 1

1 University of Luxembourg 2 IDEAS-NCBR & University of Warsaw
{aoran.wang, tszpan.tong, jun.pang}@uni.lu andrzej.mizera@ideas-ncbr.pl

Abstract

Understanding complex dynamical systems begins with identifying their topologi-
cal structures, which expose the organization of the systems. This requires robust
structural inference methods that can deduce structure from observed behavior.
However, existing methods are often domain-specific and lack a standardized, ob-
jective comparison framework. We address this gap by benchmarking 13 structural
inference methods from various disciplines on simulations representing two types
of dynamics and 11 interaction graph models, supplemented by a biological ex-
perimental dataset to mirror real-world application. We evaluated the methods for
accuracy, scalability, robustness, and sensitivity to graph properties. Our findings
indicate that deep learning methods excel with multi-dimensional data, while clas-
sical statistics and information theory based approaches are notably accurate and
robust. Additionally, performance correlates positively with the graph’s average
shortest path length. This benchmark should aid researchers in selecting suitable
methods for their specific needs and stimulate further methodological innovation.
Project website: https://structinfer.github.io/.

1 Introduction

Dynamical systems pervade various domains, from gravitational interactions among galaxies to
intricate chemical reactions. A common characteristic of these systems is their representation as
interaction graphs, where nodes symbolize agents, edges depict interactions, and the adjacency matrix
encapsulates the underlying structure. Examples of inherent interaction graphs are found in physical
systems [61, 42, 111], multi-agent systems [15, 62], and biological systems [102, 85]. Understanding
the structure of these interaction graphs is crucial as it enhances predictability and manipulability of
dynamical systems, despite the complexity of the task [28].

Often, only observable node attributes within a specific timeframe are available, partially or fully
obscuring the interaction graph’s underlying structure amid dynamic complexities. This necessitates
an approach to uncover the hidden structure of dynamical systems through observable features,
leading to the concept of structural inference. Here, the compilation of observed features over time,
termed a trajectory, is crucial for understanding dynamical systems. Unraveling the graph’s structure
simplifies interaction modeling, especially when the graph dimensions and interactions are known
and time-independent.

Structural inference, rooted in statistics, has evolved significantly within the Bayesian network
framework, prompting numerous algorithm proposals [70, 100, 101, 89, 25]. Notable advancements,
such as in genome sequencing [93], have enabled the study of gene expression and regulatory
mechanisms, fostering various structural inference methods for gene regulatory networks (GRNs) [71,

∗Equal first contributions

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

https://structinfer.github.io/

33, 52, 46, 2, 72, 80]. Conversely, recent deep learning approaches focus primarily on general
dynamical systems [58, 108, 112, 68, 19, 106].

Existing methods are often evaluated on distinct datasets and specific graph types, each tailored to
different research domains with unique underlying assumptions. To address this fragmentation, we
developed the Dataset for Structural Inference (DoSI), featuring a variety of interaction graphs and
dynamical transition functions. We then established a unified and impartial benchmark to evaluate a
broad range of techniques across diverse domains. This benchmark assesses established and cutting-
edge methods using over 213,445 trajectories from both the meticulously curated DoSI and real-life
biological datasets. These datasets include both one-dimensional and multi-dimensional trajectories,
further enriched with varying levels of Gaussian noise to simulate real-world conditions.

This pioneering benchmark, requiring over 706,800 CPU hours and 263,400 GPU hours, allows
us to rigorously evaluate the accuracy, scalability, robustness, and data efficiency of these methods.
Our findings reveal that classical statistic methods are scalable and reliable across various datasets,
information theory-based methods are notably robust, and deep learning methods excel in handling
multi-dimensional features. This comprehensive evaluation offers valuable insights and sets the stage
for future advancements in structural inference research. In summary, the contributions are:
• We developed the Dataset for Structural Inference, a versatile dataset featuring a range of interaction

graphs and dynamical functions to facilitate broad applicability in structural inference research.
• The study introduces a unified and impartial benchmark that evaluates 13 structural inference

methods using over 213,445 trajectories from synthetic and real-life datasets, encompassing both
one-dimensional and multi-dimensional data.

• The benchmark provides comprehensive insights, revealing that classical statistical methods excel
in scalability, information theory-based methods in robustness, and deep learning methods in
handling complex multi-dimensional features.

• The findings from this extensive evaluation not only enhance our understanding of different
structural inference approaches but also set the groundwork for future innovations to tackle dynamic
and noisy systems.

2 Preliminaries
In this section, we delve into the intricacies of structural inference of dynamical systems. We
conceptualize a dynamical system as a directed underlying interaction graph, wherein the system’s
agents translate to nodes, and the directed interactions among these agents manifest as edges in
the graph. Denoted as G = (V, E), the directed graph consists of V , the feature set of n nodes
represented by {Vi, 1 ≤ i ≤ n}, and E , the set of edges. The temporal evolution of nodes’ features is
encapsulated in trajectories: V = {V 0, V 1, . . . , V T }, spanning T + 1 time steps, with V t signifying
the feature set of all n nodes at time step t: V t = {V t

0 , V
t
1 , . . . , V

t
n}. The feature vector at time t for

node i, denoted as V t
i ∈ Rn, 1 ≤ t ≤ T , is n-dimensional.

In our assumptions, the nodes are observed in their entirety, and E remains immutable during the
observation. From E , we derive an asymmetric adjacency matrix denoted as A ∈ Rn×n. Within A,
each element aij ∈ 0, 1 indicates the presence (aij = 1) or absence (aij = 0) of an edge from node
i to node j. An alternative representation for the graph structure is an edge list, where each entry
[i, j] in the list signifies a directed edge originating from node i and terminating at node j. Given
the node features observed over a time interval in V , the primary focus of this paper centers on the
challenge of structural inference. This challenge involves the unsupervised reconstruction of either
the asymmetric adjacency matrix A or the edge list that encapsulates the underlying interaction graph.
It is important to note that this problem is distinct from link prediction tasks, where connections are
at least partially observable [115, 41].

3 Methods for structural inference

3.1 Methods based on classical statistics

Statistical methods prioritize inference accuracy and uncertainty. Its results are interpreted conserva-
tively, making it widely applicable across diverse scenarios:
⋆ ppcor [57]: ppcor method computes semi-partial correlations between pairs of nodes, quantifying

the specific portion of variance attributed to the correlation between two nodes while accounting for
the influence of other nodes. This computation draws on both Pearson and Spearman correlations.

2

⋆ TIGRESS [46]: Contrasting with other structural inference methods, which remove redundant
edges from predicted edges, TIGRESS focuses on feature selection by iteratively adding more
nodes to predict the target node using least angle regression and bootstrapping.

3.2 Methods based on information theory

Mutual information (MI) is a probabilistic measure of dependency described by the equation:
I(X;Y) = H(X) +H(Y)−H(X,Y), where X,Y are random variables, H(·) and H(·, ·) are the
entropy and joint entropy, respectively. MI possesses the ability to capture nonlinear interactions [31],
rendering it widely used in various fields including neuroscience [83, 55], bioinformatics [116], and
machine learning [10]. However, despite direct interactions, indirect interactions and data noise can
introduce complexity and challenges. Different methods were proposed to tackle this problem:
⋆ ARACNe [71]: ARACNe is a popular method for GRN inference. The algorithm is initiated by

calculating pairwise MI and subsequently employing the Data Processing Inequality principle to
eliminate indirect interactions. This principle posits that the MI between two nodes connected by
an indirect interaction should not surpass the MI of either node connected directly to a third node.

⋆ CLR [33]: Similar to ARACNe, CLR employs pairwise MI but differs in the interpretation of
calculated MI. CLR relies on assuming a background noise distribution for MI and subsequently
identifies interactions as MI outliers after both row- and column-wise standardization.

⋆ PIDC [17]: Partial Information Decomposition (PID) [110] undertakes the decomposition of MI
into redundant, synergistic, and unique information. PIDC adopts the concept of PID to GRN
inference and interprets aggregated unique information as the strength of gene interaction.

⋆ Scribe [86]: Scribe utilizes Restricted Directed Information [87] and its variants [88] to quantify
causality within the structure by considering the influence of confounding factors.

3.3 Methods based on tree algorithms

The decision tree is a powerful supervised method that divides the feature space into subspaces and
uses linear regressions within each. Despite its versatility across data types [76], decision trees can
overfit, prompting strategies like boosting and bagging. Examples include AdaBoost [34], random
forests [47], extremely randomized trees [38], XGBoost [20], and LightGBM [56]. Yet, applying
tree-based methods directly to structural inference is constrained by the unsupervised task nature.
GENIE3 [52], using random forests, addresses this, succeeding in modeling GRNs. GENIE3 models
gene dynamics using other genes’ behavior, revealing how supervised methods can aid structural
inference.
⋆ dynGENIE3 [50]: dynGENIE3 extends GENIE3 by concentrating on the temporal aspect, em-

ploying ordinary differential equations (ODEs) to model time series dynamics. In this approach, a
random forest is employed for each gene to capture the derivatives within the time series.

⋆ XGBGRN [69]: XGBGRN aligns with the principles of dynGENIE3, though it diverges in its
choice of algorithm. Specifically, XGBGRN leverages XGBoost, in place of random forests, to
model the derivatives of the time series data.

3.4 Methods based on deep learning

Contemporary structural inference methods [58, 68, 19, 106] leverage the information bottleneck (IB)
principle [99, 98, 94] and variational autoencoders (VAEs), a form of variational IB approximation [3].
As outlined in [106], these VAE-based methods solve: Z = argminZ I(Z;V t,A)− u · I(Z;V t+1),
where Z is the latent feature space, V t represents node features at time t, A is the adjacency matrix,
and u is the Lagrangian multiplier. This approach extracts the dynamical system’s structure through
VAE sampling. Extensions to this framework [78, 120] incorporate architectural designs in graph
neural networks and diffusion models to better suit data characteristics. Moreover, neural networks
enable handling both one-dimensional and multi-dimensional features, unlike earlier non-deep
learning methods focused on one-dimensional features. Prominent deep learning structural inference
methods encompass:
⋆ NRI [58]: NRI stands as a pioneering method that employs a VAE for structure inference. Its

encoder integrates node-to-edge and edge-to-node processes to collect node features and acquire
edge features. In this context, NRI assumes a fixed fully connected A within the encoder.

3

⋆ ACD [68]: ACD introduces a probabilistic approach to amortized causal discovery to learn the
causal graph from time series. This method also addresses latent confounding issues by predicting
an additional variable and implementing structural bias.

⋆ MPM [19]: MPM, distinct from typical message-passing approaches, utilizes relational interaction
in the encoder and spatio-temporal message-passing in the decoder. This alteration comprehensively
captures relationships and enhances the grasp of dynamical rules.

⋆ iSIDG [106]: iSIDG diverges from other VAE-based methods by iteratively updating A based on
direction information deduced from the adjacency matrix. Its goal centers on inferring the authentic
interaction graph by removing indirect edges that contribute to confusion.

⋆ RCSI [107]: RCSI, a variant of iSIDG, incorporates reservoir computing units that concentrate
on time series prediction, enabling the VAE to prioritize structure inference. This modification
significantly reduced the number and length of trajectories required for training.

3.5 More related works

Besides the methods previously discussed, fNRI decomposes the inferred interaction graph into a
multiplex graph, with each layer signifying a distinct interaction type [108]. MetaNRI employs
modular meta-learning to implicitly encode time invariance and contextually infer relationships [4].
In the adjacent field of causal structural discovery, many methods necessitate interventional data or
rely on strong assumptions that may not be suitable for our settings [121, 27, 16, 40, 114, 53, 113,
13, 21]. Recent approaches like LOCS [59] and Aether [60] offer structural inference techniques for
hybrid dynamical systems, while Graph-Switching Dynamical Systems [64] and Amortized Equation
Discovery [65] target systems with switching dynamics. Methods like REDSDS [5] and recurrent
SLDS [63] also contribute to the growing pool of structural inference techniques by focusing on
systems with latent switching behavior. As we are updating the benchmark with more recent papers,
we will include these methods in the near future. While this paper does not exhaust all methods, such
as [117, 23], we recommend that researchers use our datasets to benchmark their approaches.

Other benchmarks for structural inference. This study is, to our knowledge, the first to introduce
a unified, objective, and reproducible benchmark for structural inference in interacting dynamical
systems. Prior benchmarks have been domain-specific, addressing areas such as GRNs in single-cell
data [9, 84, 119], gene co-expression networks [22, 77], map inference algorithms [14, 1, 18],
chemical reaction networks [67, 11], and functional connectivity [24, 66]. Although benchmarks in
causal discovery exist [6, 74], they operate under different assumptions. Notably, the closest related
work [122] primarily focuses on time-series forecasting. Our benchmark distinguishes itself by
offering a comprehensive, cross-domain framework that advances structural inference methodologies
and enables meaningful comparisons across diverse approaches.

4 Datasets for benchmarking

While domain-specific datasets like Boolean models and miRNA-target genes datasets exist for
structural inference [84, 22], they are often too specialized, limited in size, or challenging to interpret.
This highlights a significant gap for a unified, interpretable dataset in the field. To address this, we
developed the Dataset for Structural Inference (DoSI), which involves 1) creating interaction graphs
and 2) simulating dynamical systems, detailed in subsequent sections. Additionally, we incorporated a
real-world biological dataset to not only demonstrate the practical applicability of structural inference
methods but also to highlight the dataset’s limitations.

4.1 Underlying interaction graphs of DoSI

Our primary goal is to use synthetic data to evaluate structural inference methods, taking into account
the diversity in structure and characteristics of underlying interaction graphs. We referenced existing
literature [8, 7, 32] to gather properties from 11 types of real-world graphs, including brain networks
(BN), chemical reaction networks in the atmosphere (CRNA), food webs (FW), gene coexpression
networks (GCN), gene regulatory networks (GRN), intercellular networks (IN), landscape networks
(LN), man-made organic reaction networks (MMO), reaction networks inside living organisms
(RNLO), social networks (SN), and vascular networks (VN). These graphs’ properties—such as
clustering coefficient C, average shortest path length d, the power-law exponent of the degree

4

distribution γ, average degree ⟨k⟩, density δ, and if available, the power-law exponent of the in-/out-
degree distribution γin and γout -are detailed in Table 1 in the Appendix.

This table shows significant variability in graph properties, underscoring the importance of mimicking
this diversity in our synthetic graph generation to effectively evaluate structural inference methods.
The size of these graphs, ranging from 15 to 250 nodes, also influences method performance. Tailored
creation pipelines for different graph types, based on these properties and structural biases from
literature [58, 19, 68, 106], are further discussed in Appendix B.1.

4.2 Dynamical systems

In DoSI, we use the generated graphs as interaction graphs to simulate dynamical systems, where
node features evolve over time and are influenced by both the interaction graph and the dynamic
function. The interaction graph determines which nodes interact, and the dynamic function quantifies
these interactions’ impact. We utilize two common simulations, “Springs" and “NetSims" [19, 58,
68, 106, 108], to generate trajectories. We detail the functionality of these simulations, modifications
for our purposes, and the generation of trajectories with varying Gaussian noise levels. Additionally,
we prepare an experimental biological dataset to evaluate the effects of noise and imperfections in
data collection. The method of preparing this dataset through trajectory reconstruction is detailed as
well. For further information on the dynamical simulations, please see Appendix B.2 and B.4.

Springs simulation. Inspired by prior work [58], we simulate the motion of spring-connected
particles within a 2D box. Particles (nodes) are interconnected by springs (edges) adhering to Hooke’s
law. We use interaction graphs to set up these connections and generate trajectories with various
initial conditions. The dynamics are governed by a second-order ODE, simplified here for clarity:

mi · x′′
i (t) =

∑
j∈Ni

−k ·
(
xi(t)− xj(t)

)
, (1)

where each node’s mass mi is assumed to be 1, and the spring constant k is also set to 1. Ni refers
to the set of neighboring nodes with directed connections to node i. We integrate this equation to
compute x′

i(t) and subsequently xi(t) for each time step. The sampled values of x′
i(t) and xi(t) form

the 4D node features. We produce trajectories with 49 time steps for training and validation, and 100
for testing, resulting in 8,000 training, 2,000 validation, and 2,000 test trajectories per graph.

NetSims simulation. This simulation models brain activity data using nodes that represent brain
regions, and edges that define interactions based on prior interaction graphs [95]. The dynamics
follow a first-order ODE:

x′
i(t) = σ ·

∑
j∈Ni

xj(t)− σ · xi(t) + C · ui, (2)

where σ controls temporal smoothing and is set to 0.1 [95], and C, the interaction weight, is zero
to minimize noise. The 1D node features at each time step are formed using the sampled xi(t). We
generate trajectories under conditions similar to those of the Springs simulation.

To this end, our benchmark includes two types of dynamical systems modeled by first-order ODEs
(NetSims) and second-order ODEs (Springs), covering a broad spectrum of real-world phenomena
from motion dynamics to single-cell behavior. Additionally, with the inclusion of ’Charged Particles’
detailed in Appendix 6.4, we address systems influenced by quadratic dependencies like electrostatic
and gravitational forces, further expanding the applicability of our benchmark. Each dynamical
system chosen aims to represent a comprehensive category of real-world systems.

Addition of Gaussian noise. Furthermore, to assess the performance of the structural inference
methods under noisy conditions, we add Gaussian noise at various levels to the generated trajectories.
The node features with added noises ṽti can be summarized as: ṽti = vti + ζ · 0.02 ·∆, where ζ ∼
N (0, 1), vti is the original feature vector of node i at time t, and ∆ is the noise level. The noise levels
range from 1 to 5 to all the original trajectories.

EMT dataset. To compare model performance between synthetic and real-world data, we ap-
plied benchmarking models on a single-cell RNA sequencing (scRNA-seq) dataset from an epithe-
lial–mesenchymal transition (EMT) study, originally collected by Cook and Vanderhyden [26] and
processed by Sha et al. [92]. This dataset includes 3,133 cells and 3,000 genes, sampled across 5

5

BN CRNA FW GCN GRN IN LN MMO RNLO SN VN

NRI 98.99 73.19 76.07 91.03 90.15 88.56 90.46 85.07 78.96 81.36 93.37

ACD 99.46 73.95 75.72 92.81 89.04 87.88 91.07 91.14 86.15 80.76 91.52

MPM 99.64 73.15 75.74 90.57 89.29 88.77 91.15 90.48 84.73 79.29 88.97

iSIDG 99.69 74.57 76.31 92.30 90.26 89.47 90.66 90.63 84.16 81.40 93.42

RCSI 99.45 75.06 76.08 92.07 91.79 90.51 91.00 91.49 84.96 82.86 94.38

Springs

NetSims

Rank: Low High

ppcor 98.11 90.28 74.80 97.99 88.57 96.38 90.15 98.29 98.21 94.26 98.38

TIGRESS 96.50 72.20 58.51 84.55 84.38 87.68 89.43 99.96 99.95 79.80 99.54

ARACNe 96.79 77.33 63.26 93.30 70.18 85.69 76.67 95.39 96.05 80.37 98.03

CLR 97.17 84.50 68.08 96.43 75.88 90.51 95.00 98.12 97.99 87.71 98.38

PIDC 93.01 78.66 60.89 92.73 62.70 85.31 90.58 66.76 68.79 86.17 87.25

Scribe 62.32 52.28 52.49 49.39 46.08 51.63 53.76 38.12 38.10 52.23 55.36

dynGENIE3 97.61 51.93 49.63 48.65 59.21 61.66 54.81 27.40 30.34 54.60 96.33

XGBGRN 100.00 87.01 64.83 95.42 82.96 99.63 97.26 69.34 78.43 99.56 98.83

NRI 87.46 49.80 49.03 49.40 62.29 58.16 54.02 62.12 65.02 52.39 75.89

ACD 89.92 49.57 50.31 46.46 66.64 57.60 56.77 63.38 59.55 54.56 70.85

MPM 93.50 50.38 51.99 58.83 66.71 59.35 54.58 63.58 63.00 55.37 76.44

iSIDG 93.63 50.85 51.41 53.05 61.66 58.59 55.85 63.60 63.10 56.63 77.94

RCSI 94.44 50.77 52.35 54.32 65.83 57.66 57.87 64.08 62.64 57.93 79.54

(a) Average AUROC values (in %) of investigated structural inference
methods on noise-free trajectories, clustered by the type of interaction
graphs and the type of simulations.

𝑪 𝒅 γ 𝒌 𝜹 γ𝒊𝒏 γ𝒐𝒖𝒕

NRI

ACD

MPM

iSIDG

RCSI

Springs

NetSims

Correlation:

ppcor

TIGRESS

ARACNe

CLR

PIDC

Scribe

dynGENIE3

XGBGRN

NRI

ACD

MPM

iSIDG

RCSI

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

(b) Correlations between the
AUROC results of structural in-
ference methods and the prop-
erties of the graphs.

Figure 1: Results of investigated methods clustered by the type of interaction graphs and the
correlations with the graph properties.

time points in 7 days. Using the STRING database [97], we identified the interaction network of
the top 50 high-variance genes, serving as the ground-truth GRN. After removing isolated compo-
nents, the network was reduced to 36 nodes with 103 edges. Trajectories were reconstructed using
Waddington-OT [91] and interpolation methods, resulting in 577 trajectories of 22 time steps each.
Detailed dataset construction information is available in Appendix B.4.

5 Benchmarking setup

To compare the structural inference methods in a unified, objective, and reproducible manner across
different domains, we design three sets of experiments:
1. Evaluation on original Trajectories: This assesses methods using original, noise-free trajectories

to understand how the properties of the underlying interaction graph affect inference results.
2. Scalability analysis: Following initial evaluations, this experiment tests the scalability of methods

by analyzing their performance with varying computational resources and graph sizes.
3. Evaluation on noisy trajectories: Methods are tested against trajectories with different levels of

Gaussian noise to determine their robustness.
Additionally, we explore the data efficiency of these methods by evaluating their performance on
shorter trajectories, with results detailed in Appendix D.3. Note that methods based on classical
statistics, information theory, and tree algorithms are evaluated only with one-dimensional trajectories
due to compatibility issues with multi-dimensional features.

For performance metrics, we use the Area Under the Receiver Operating Characteristic curve
(AUROC), which measures inference accuracy and the ability to distinguish true from false edges
in the interaction graph. We ensure robust evaluation by averaging results from three runs of each
method on labeled trajectory sets and performing an additional run on the set with the lowest AUROC
value. AUROC is chosen over other metrics like accuracy, F1 score, and Hamming distance due
to its effectiveness in handling imbalanced datasets and providing a comprehensive performance
assessment at various thresholds (see Appendix D.4 for more on metric selection).

Additionally, we introduce the “Charged Particles” dataset, which simulates multi-dimensional
trajectories governed by Coulomb force, tailored for deep learning models due to its complexity.
This dataset contrasts with the Springs simulation’s Hooke’s law dynamics by featuring sophisticated
ejection and entanglement dynamics (see Appendix 6.4 for details and benchmarking results). We
also evaluate the performance of structural inference methods on the EMT dataset, a single-cell RNA
sequencing dataset, with findings discussed in Appendix D.5.

6

6 Benchmarking results

6.1 Benchmarking over different interaction graphs

To evaluate the structural inference methods discussed in Sections 3.1 - 3.4, we conducted tests on
trajectories generated using all 11 types of underlying interaction graphs described in Section 4.1.
These tests included both types of simulations and were executed without any added noise. Despite
using Tesla V100 GPU cards and facing computational limits, we successfully processed graphs up
to 100 nodes, with a total of 706,816 CPU hours and 263,473 GPU hours.

Appendix C details the implementation of each method, including computational resources and
hyperparameter optimization. Additionally, this section presents a clustering analysis of the AUROC
results by interaction graph type and simulation, displaying average AUROC values in Fig. 1a and
providing detailed data in Appendix D.1. Fig. 1b presents a heatmap showing correlations between
the methods’ average AUROC values and the properties of the interaction graphs, using terminologies
from Section 4.1.

Deep learning methods like NRI and ACD exhibit superior performance on multi-dimensional data,
which is especially evident when comparing the Springs and NetSims simulations. For example, NRI
shows a 46.35% higher AUROC on gene coexpression networks, and ACD shows a 34.30% increase
on landscape networks, as seen in Fig. 1a. These results highlight that multi-dimensional features
provide a wealth of information, enhancing the effectiveness of these methods in structural inference
by leveraging the complex interrelationships between different feature dimensions. Conversely,
classical statistical methods such as ppcor and TIGRESS demonstrate remarkable consistency across
various graph types, maintaining medium to high ranks across datasets. Their stable performance,
illustrated in Fig. 1a, underscores their robustness and adaptability, making them reliable choices for
scenarios where interaction graph structures do not match more complex or specialized models.

The correlation between the performance of structural inference methods and the properties of
interaction graphs, as shown in Fig. 1b, reveals key insights. Generally, there is a positive correlation
with the average shortest path length and a negative correlation with the average degree of the
graphs. This indicates that methods perform better on sparser graphs with longer path lengths, where
the simpler connections likely enhance method effectiveness. In contrast, denser graphs with high
connectivity and shorter path lengths reduce performance, possibly due to increased complexity and
noise, which can mask the underlying structures these methods seek to discern.

6.2 Benchmarking over scalability
n15 n30 n50 n100

NRI 93.42 86.39 85.37 80.52

ACD 92.07 88.66 83.91 81.36

MPM 94.26 87.63 82.93 81.18

iSIDG 94.62 88.36 85.68 81.37

RCSI 94.80 89.25 85.73 82.82

Springs

NetSims

Rank: Low High

ppcor 93.22 93.59 93.30 92.51

TIGRESS 89.11 87.61 86.15 83.49

ARACNe 85.71 85.27 84.95 83.36

CLR 90.27 91.19 90.54 87.91

PIDC 76.73 77.63 79.50 83.54

Scribe 52.47 51.10 49.30 47.76

dynGENIE3 54.92 56.90 56.51 61.55

XGBGRN 90.47 91.89 89.15 82.40

NRI 65.73 61.06 57.46 56.85

ACD 65.21 58.81 58.60 57.27

MPM 70.70 67.06 61.83 58.69

iSIDG 68.18 61.88 61.06 58.43

RCSI 69.12 64.48 61.52 58.48

Figure 2: Average AUROC values
(in %) of structural inference meth-
ods on noise-free trajectories, clus-
tered by the number of nodes in
graphs and the type of simulations.

Using the raw results from Section 6.1, we conducted a clus-
tering analysis based on the number of nodes in the interaction
graphs to assess the scalability of the structural inference meth-
ods. The outcomes of this analysis are displayed in Fig. 2.

The performance of the majority of the methods tends to deteri-
orate as the dynamical systems increase in size, as demonstrated
by a consistent trend in Fig. 2. Notably, PIDC and dynGENIE3
show improved inference results for larger systems, suggesting
that these methods can effectively utilize the increased informa-
tion available in larger graphs. This indicates that while larger
systems provide more data, extracting and leveraging this in-
formation efficiently remains critical for enhancing method
performance.

Deep learning methods show a significant sensitivity to graph
size compared to classical statistical methods. The smallest
decrease in AUROC among deep learning methods is 7.94%, in
stark contrast to classical methods like ppcor, which only shows
a 0.71% decrease when comparing graphs with 100 nodes to
those with 15 nodes. This illustrates the scalability challenges
for deep learning methods, despite their versatility in handling
diverse feature types.

7

Moreover, classical statistical methods such as ppcor and TIGRESS prove to be highly scalable,
maintaining stable performance across various graph sizes. Their consistent performance across
different node counts, combined with their robustness across diverse interaction graphs, underscores
their reliability among the evaluated structural inference methods.

6.3 Benchmarking over robustness

The robustness of structural inference methods is crucial for real-world applications, where data often
contain noise. To evaluate this robustness, we generated noisy trajectories using NS_BN with varying
levels of Gaussian noise. The differences in AUROC values between noisy and noise-free data,
denoted as ∆AUROC, along with their standard deviations, are summarized in Fig. 3 and detailed in
Appendix D.3.

N1 N2 N3 N4 N5
Levels of Gaussian Noise

−40

−30

−20

−10

0

ΔA
UR

OC
 (%

)

ppcor
TIGRESS
ARACNe
CLR
PIDC
Scribe
dynGENIE3
XGBGRN
NRI
ACD
MPM
iSIDG
RCSI

Figure 3: Performance drops (in %) on BN tra-
jectories with different levels of added Gaus-
sian noise.

Methods based on classical statistics and information
theory, such as TIGRESS, CLR and PIDC, demon-
strate resilience against various levels of Gaussian
noise, maintaining performance levels despite noise
presence. This suggests that their capacity to ex-
tract latent information through correlations or mu-
tual information between node pairs effectively com-
pensates for noise perturbations. These findings are
promising for the future design of robust structural
inference methods.

Conversely, tree-based and deep learning methods
exhibit distinct sensitivities to Gaussian noise. Tree-
based methods show variability in both the average
AUROC and standard deviations, indicating a fluc-
tuation in performance with increasing noise levels.

Deep learning methods, while maintaining consistently low standard deviations, exhibit a decline in
average performance under noisy conditions. This pattern suggests that deep learning methods may
struggle to differentiate between noise effects and genuine data perturbations, leading to decreased
performance as noise levels increase.

6.4 Benchmarking with Charged Particles

We observed that the two dynamic simulations do not encompass a prevalent type of real-world
dynamical system characterized by quadratic dependencies. To address this gap, we introduce a
third simulation of dynamical systems, grounded in the Coulomb force interactions among charged
particles, and we have named it the "Charged Particles" simulation.

Simulation of Charged Particles. We simulate the movement of charged particles within a 2D
enclosure, where nodes represent particles and edges symbolize the Coulomb forces acting between
pairs of particles. Unlike the Springs and NetSims simulations, the Charged Particles simulation
entails a unique approach: all nodes are interconnected, and none of the 11 types of generated
underlying interaction graphs are employed. Consequently, every pair of nodes interacts, even if the
interaction might be weak when the nodes are distant. These interactions involve either attraction
or repulsion. Drawing inspiration from [58] and following a concept akin to the Springs simulation,
our simulation involves N particles (point masses) located within a 2D enclosure and subject to no
external forces. The parameter N is chosen from the set 15, 30, 50, 100. The simulation accounts for
elastic collisions with the boundary of the enclosure. The particles carry charges qi ∈ ±q, sampled
uniformly at random. The inter-particle interactions are governed by Coulomb forces, defined as
Fij(t) = C · sign(qi · qj) · 1

∥xi(t)−xj(t)∥2 , with a constant C set to 1. Here, Fij(t) denotes the force
exerted on particle i by particle j at time t, and xi(t) represents the 2D location vector of particle i at
time t. So the adjacency matrix A in this simulation is formed as a matrix with each element aij in
it as either +1 or −1, where aij = +1 stands for repelling between node i and j, while aij = −1
stands for attracting between node i and j. The dynamics of the Charged Particles simulation are

8

encapsulated in an ODE characterized by quadratic dependencies on particle locations, expressed as:

mi · x′′
i (t) =

∑
j∈Ni

C · sign(qi · qj) ·
1

∥xi(t)− xj(t)∥2
, (3)

Here, mi represents the mass of node i, assumed to be 1 for simplicity. Ni refers to the set of
neighboring nodes with connections to node i. Here it represents all nodes in the system. The
equation is integrated to compute x′

i(t), and subsequently, xi(t) is determined for each time step.
These calculated values of x′

i(t) and xi(t) collectively constitute the 4D node features at each time
point. Initially, the positions are drawn from a Gaussian distribution N (0, 0.5), while the initial
velocities, represented as 2D vectors, are randomly generated with a norm of 0.5. With these initial
positions and velocities in the 2D plane, trajectories are simulated using the solutions to Eq. 3.
The simulation employs leapfrog integration with a small time step size of 0.001 seconds, and the
trajectories are sampled at intervals of 100 minor time steps. As a result, the feature representation of
each node at each time step consists of a 4D vector encompassing 2D positions and 2D velocities.

The simulation’s design ensures that the next value of a particle’s feature depends on its present
value and interactions with other particles. Utilizing a set of initial positions and velocities, we
generate trajectories for the current interacting dynamical system, encapsulating the feature vectors
of all particles within the designated time frame. Specifically, trajectories comprising 49 time points
(obtained through integration over 4,900 minor time steps) are generated for training and validation
purposes. For testing, trajectories with 100 time steps are generated, aligning with the requirements
in [58, 106]. To ensure robustness, a total of 8,000 trajectories are generated for training, along with
2,000 for validation and 2,000 for testing. This process is repeated thrice, yielding three sets of
trajectories with the same node count but distinct initializations.

Implementation of Structural Inference Methods. For methods reliant on deep learning, we
maintain uniform settings akin to those utilized for the Springs simulation trajectories. Furthermore,
we configure the parameter "edge_types" to a value of two, aligning with the requirement to infer
the two distinct edges corresponding to aij = ±1. However, it’s crucial to note that the remaining
methods are tailored explicitly for structural inference tasks involving trajectories featuring one-
dimensional attributes. Regrettably, their respective literature lacks both theoretical and practical
guidelines pertaining to adapting these methods for trajectories characterized by multi-dimensional
attributes. Additionally, these methods inherently lack the capability to deduce multiple edge types,
thereby restricting their applicability in this context. Consequently, the deep learning structural
inference methods were exclusively employed for the analysis of the Charged Particles dataset.

n15 n30 n50 n100

NRI 72.14 71.66 68.98 64.35

ACD 74.36 73.42 71.20 67.45

MPM 75.10 74.89 72.04 67.82

iSIDG 75.67 75.02 73.12 69.37

RCSI 75.80 74.11 72.04 66.75

Charged
Particles

Rank: Low High

Figure 4: AUROC values (in %) of deep learn-
ing structural inference methods on Charged
Particles trajectories.

Results. Figure 4 provides a comprehensive sum-
mary of the average AUROC values and standard de-
viations for each method across various node counts
within the graph. A comparison of these results with
those from the Springs dataset reveals that while all
methods continue to successfully infer the structure
of the underlying interaction graphs, their perfor-
mance is relatively diminished in this case. The rea-
son lies in the increased complexity of the task, as the
methods are now required to infer two distinct edge
types, which inherently poses a greater challenge.
Moreover, it is noteworthy that the performance of

all methods is influenced by the number of nodes present within the graph, corroborating with
Section 6.2. The sensitivity to node count underscores the intricate interplay between the size of the
graph and the efficacy of the methods. In light of the presented data, it becomes evident that the
feasibility of deep learning methods in the structural inference of dynamical systems governed by
quadratic dependencies on locations is empirically substantiated.

7 Conclusion

In this study, we benchmarked 13 structural inference methods using trajectories from two types of
dynamical simulations and various underlying interaction graphs, assessing their performance in the

9

presence of noise, varying trajectory lengths, and real-world scenarios. Our findings highlight several
key insights:

• Leveraging correlations: Methods like ppcor and TIGRESS, based on classical statistics, excel in
stability and accuracy, effectively leveraging time-series correlations between nodes to enhance
structural inference. These methods are robust against noisy and short trajectories, illustrating their
efficacy in challenging data conditions.

• Importance of dimensionality: Deep learning methods outperform in multi-dimensional settings,
underscoring the value of diverse, multi-dimensional data in capturing complex node dynamics
and improving inference accuracy. In contrast, classical methods are preferable when only one-
dimensional data is available.

• Performance on sparse graphs: All evaluated methods yield better results with trajectories from
sparse and less connected graphs, suggesting potential for developing techniques to estimate graph
properties without prior knowledge.

• Leveraging mutual information against noise: Information theory-based methods like PIDC and
Scribe demonstrate robustness against Gaussian noise, leveraging mutual information metrics to
mitigate noise effects and inform robust algorithm design.

Despite these insights, the study’s limitations include reliance on static graph assumptions and a
focus on a limited set of methods. For a detailed discussion of these limitations, see Appendix E.

Updating Plan. n the near future, we plan to update the benchmark by incorporating results from
additional methods, including recurrent SLDS [63], LOCS [59], REDSDS [5], Aether [60], SDS [64]
and AMORE [65]. We will also stay attentive to the latest advancements in structural inference and
continually integrate new methods into the benchmark. We encourage researchers in the field to
benchmark their methods using the DoSI dataset to further advance this area of research.

Outlook. The findings underscore the value of leveraging correlations and mutual information in
structural inference. Future research could explore innovative methods that apply these principles
across both one-dimensional and multi-dimensional feature trajectories, potentially using neural
networks to learn feature representations and perform advanced correlation and mutual information
analyses. These approaches could extend the scope of structural inference to more complex and
dynamic systems, making them more applicable to real-world scenarios.

In addition, developing and evaluating structural inference methods for systems with evolving
structures should be a key focus. Many real-world dynamical systems, such as biological networks,
social systems, and technological infrastructures, exhibit dynamic topologies where nodes and
edges change over time. Capturing these evolving structures is crucial for accurately modeling and
understanding such systems.

Another important direction is bridging the gap between simulated and real-world data by incorporat-
ing partial observations and various types of noise. This would help address the challenges posed by
limited real-world data and create more realistic simulations, ultimately enhancing the applicability
and robustness of structural inference methods in practice.

As we continue to benchmark structural inference methods that meet our criteria, we encourage
researchers to utilize the Dataset for Structural Inference (DoSI) to evaluate their methods or to
contact us for benchmarking. We are open to new approaches and are eager to advance research in
structural inference.

Acknowledgements

The generation, collection, and storage of the dataset used in this work are under the project BSIMDS,
which is supported by a collaboration project between the High-Performance Computing Team of the
University of Luxembourg (ULHPC) and Amazon Web Services (AWS). The experiments presented
in this paper were carried out using the HPC facilities of the University of Luxembourg [103] (see
hpc.uni.lu). Besides that, authors Tsz Pan Tong and Jun Pang acknowledge financial support
of the Institute for Advanced Studies of the University of Luxembourg through an Audacity Grant
(AUDACITY-2021).

10

http://hpc.uni.lu

References
[1] M. Ahmed, S. Karagiorgou, D. Pfoser, and C. Wenk. A comparison and evaluation of map

construction algorithms using vehicle tracking data. GeoInformatica, 19:601–632, 2015.

[2] S. Aibar, C. B. González-Blas, T. Moerman, V. A. Huynh-Thu, H. Imrichova, G. Hulselmans,
F. Rambow, J.-C. Marine, P. Geurts, J. Aerts, et al. SCENIC: single-cell regulatory network
inference and clustering. Nature Methods, 14(11):1083–1086, 2017.

[3] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy. Deep variational information bottleneck.
In Proceedings of the 5th International Conference on Learning Representations (ICLR), 2017.

[4] F. Alet, E. Weng, T. Lozano-Pérez, and L. P. Kaelbling. Neural relational inference with fast
modular meta-learning. In Advances in Neural Information Processing Systems 32 (NeurIPS),
2019.

[5] A. F. Ansari, K. Benidis, R. Kurle, A. C. Turkmen, H. Soh, A. Smola, B. Wang, and
T. Januschowski. Deep explicit duration switching models for time series. In Advances
in Neural Information Processing Systems 34 (NeurIPS), 2021.

[6] C. K. Assaad, E. Devijver, and E. Gaussier. Survey and evaluation of causal discovery methods
for time series. Journal of Artificial Intelligence Research, 73:767–819, 2022.

[7] A.-L. Barabási. Network science. Philosophical Transactions of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences, 371(1987):20120375, 2013.

[8] B. Barzel, A. Sharma, and A.-L. Barabási. Graph theory properties of cellular networks.
Handbook of Systems Biology: Concepts and Insights, pages 177–193, 2012.

[9] P. Bellot, C. Olsen, P. Salembier, A. Oliveras-Vergés, and P. E. Meyer. NetBenchmark: a
bioconductor package for reproducible benchmarks of gene regulatory network inference.
BMC Bioinformatics, 16:1–15, 2015.

[10] M. Bennasar, Y. Hicks, and R. Setchi. Feature selection using joint mutual information
maximisation. Expert Systems with Applications, 42(22):8520–8532, 2015.

[11] M. Bentriou. Statistical Inference and Verification of Chemical Reaction Networks. PhD thesis,
Université Paris-Saclay, 2021.

[12] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical
computing. SIAM review, 59(1):65–98, 2017.

[13] R. Bhattacharya, T. Nagarajan, D. Malinsky, and I. Shpitser. Differentiable causal discovery
under unmeasured confounding. In Proceedings of the 24th International Conference on
Artificial Intelligence and Statistics (AISTATS), pages 2314–2322. PMLR, 2021.

[14] J. Biagioni and J. Eriksson. Inferring road maps from global positioning system traces: Survey
and comparative evaluation. Transportation Research Record, 2291(1):61–71, 2012.

[15] G. Brasó and L. Leal-Taixé. Learning a neural solver for multiple object tracking. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6247–6257, 2020.

[16] A. Breskin, S. R. Cole, and M. G. Hudgens. A practical example demonstrating the utility of
single-world intervention graphs. Epidemiology, 29(3):e20, 2018.

[17] T. E. Chan, M. P. Stumpf, and A. C. Babtie. Gene regulatory network inference from single-cell
data using multivariate information measures. Cell Systems, 5(3):251–267, 2017.

[18] P. Chao, W. Hua, R. Mao, J. Xu, and X. Zhou. A survey and quantitative study on map
inference algorithms from GPS trajectories. IEEE Transactions on Knowledge and Data
Engineering, 34(1):15–28, 2022.

[19] S. Chen, J. Wang, and G. Li. Neural relational inference with efficient message passing
mechanisms. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI),
pages 7055–7063, 2021.

[20] T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the
22nd ACM International Conference on Knowledge Discovery and Data Mining (KDD), pages
785–794. ACM, 2016.

11

[21] Y. Cheng, R. Yang, T. Xiao, Z. Li, J. Suo, K. He, and Q. Dai. CUTS: neural causal discovery
from irregular time-series data. In Proceedings of the 11th International Conference on
Learning Representations (ICLR), 2023.

[22] M. Ö. Cingiz, G. Biricik, and B. Diri. The performance comparison of gene co-expression
networks of breast and prostate cancer using different selection criteria. Interdisciplinary
Sciences: Computational Life Sciences, 13(3):500–510, 2021.

[23] A. Cini, D. Zambon, and C. Alippi. Sparse graph learning from spatiotemporal time series.
Journal of Machine Learning Research, 24(242):1–36, 2023.

[24] R. Ciric, D. H. Wolf, J. D. Power, D. R. Roalf, G. L. Baum, K. Ruparel, R. T. Shinohara,
M. A. Elliott, S. B. Eickhoff, C. Davatzikos, et al. Benchmarking of participant-level confound
regression strategies for the control of motion artifact in studies of functional connectivity.
Neuroimage, 154:174–187, 2017.

[25] D. Colombo, M. H. Maathuis, et al. Order-independent constraint-based causal structure
learning. Journal of Machine Learning Research, 15(1):3741–3782, 2014.

[26] D. P. Cook and B. C. Vanderhyden. Context specificity of the EMT transcriptional response.
Nature Communications, 11(1):2142, 2020.

[27] B. Cummins, T. Gedeon, and K. Spendlove. On the efficacy of state space reconstruction
methods in determining causality. SIAM Journal on Applied Dynamical Systems, 14(1):
335–381, 2015.

[28] A. Das and I. R. Fiete. Systematic errors in connectivity inferred from activity in strongly
recurrent networks. Nature Neuroscience, 23(10):1286–1296, Oct 2020.

[29] W. de Nooy. Social Network Analysis, Graph Theoretical Approaches to, page 8231–8245.
Springer, 2009.

[30] A. Deshpande, L.-F. Chu, R. Stewart, and A. Gitter. Network inference with granger causality
ensembles on single-cell transcriptomics. Cell Reports, 38(6):110333, 2022.

[31] A. Dionisio, R. Menezes, and D. A. Mendes. Mutual information: a measure of dependency
for nonlinear time series. Physica A: Statistical Mechanics and its Applications, 344(1-2):
326–329, 2004.

[32] E. Estrada. The Structure of Complex Networks: Theory and Applications. Oxford University
Press, 10 2011. ISBN 9780199591756.

[33] J. J. Faith, B. Hayete, J. T. Thaden, I. Mogno, J. Wierzbowski, G. Cottarel, S. Kasif, J. J. Collins,
and T. S. Gardner. Large-scale mapping and validation of Escherichia coli transcriptional
regulation from a compendium of expression profiles. PLoS Biology, 5(1):e8, 2007.

[34] Y. Freund and R. E. Schapire. A desicion-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55:119–139, 1997.

[35] K. J. Friston, L. Harrison, and W. Penny. Dynamic causal modelling. Neuroimage, 19(4):
1273–1302, 2003.

[36] F. N. Fritsch and J. Butland. A method for constructing local monotone piecewise cubic
interpolants. SIAM Journal on Scientific Computing, 5(2):300–304, 1984.

[37] T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan, H. Wallach, H. D. Iii, and K. Crawford.
Datasheets for datasets. Communications of the ACM, 64(12):86–92, 2021.

[38] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine Learning, 63:
3–42, 2006.

[39] Y. Gong, G. Liu, Y. Xue, R. Li, and L. Meng. A survey on dataset quality in machine learning.
Inf. Softw. Technol., 162:107268, 2023.

[40] J. Gu, F. Fu, and Q. Zhou. Penalized estimation of directed acyclic graphs from discrete data.
Statistics and Computing, 29(1):161–176, 2019.

[41] Z. Guo, W. Shiao, S. Zhang, Y. Liu, N. V. Chawla, N. Shah, and T. Zhao. Linkless link
prediction via relational distillation. In Proceedings of the 40th International Conference on
Machine Learning (ICML), pages 12012–12033. PMLR, 2023.

[42] S. Ha and H. Jeong. Unraveling hidden interactions in complex systems with deep learning.
Scientific Reports, 11(1):1–13, 2021.

12

[43] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics, and
function using NetworkX. In Proceedings of the 7th Python in Science Conference, pages 11 –
15, 2008.

[44] F. K. Hamey, S. Nestorowa, S. J. Kinston, D. G. Kent, N. K. Wilson, and B. Göttgens.
Reconstructing blood stem cell regulatory network models from single-cell molecular profiles.
Proceedings of the National Academy of Sciences, 114(23):5822–5829, 2017.

[45] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk,
M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant. Array programming with
NumPy. Nature, 585(7825):357–362, 2020.

[46] A.-C. Haury, F. Mordelet, P. Vera-Licona, and J.-P. Vert. TIGRESS: trustful inference of gene
regulation using stability selection. BMC Systems Biology, 6(1):1–17, 2012.

[47] T. K. Ho. Random decision forests. In Proceedings of 3rd International Conference on
Document Analysis and Recognition (ICDAR), pages 278–282. IEEE, 1995.

[48] W. Huang, G. Wan, M. Ye, and B. Du. Federated graph semantic and structural learning. In
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence
(IJCAI), pages 3830–3838, 2023.

[49] W. Huber, V. J. Carey, R. Gentleman, S. Anders, M. Carlson, B. S. Carvalho, H. C. Bravo,
S. Davis, L. Gatto, T. Girke, R. Gottardo, F. Hahne, K. D. Hansen, R. A. Irizarry, M. Lawrence,
M. I. Love, J. MacDonald, V. Obenchain, A. K. Ole’s, H. Pag‘es, A. Reyes, P. Shannon, G. K.
Smyth, D. Tenenbaum, L. Waldron, and M. Morgan. Orchestrating high-throughput genomic
analysis with Bioconductor. Nature Methods, 12(2):115–121, 2015.

[50] V. A. Huynh-Thu and P. Geurts. dynGENIE3: dynamical GENIE3 for the inference of gene
networks from time series expression data. Scientific Reports, 8(1):3384, 2018.

[51] V. A. Huynh-Thu and G. Sanguinetti. Combining tree-based and dynamical systems for the
inference of gene regulatory networks. Bioinformatics, 31(10):1614–1622, 2015.

[52] V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, and P. Geurts. Inferring regulatory networks from
expression data using tree-based methods. PloS One, 5(9):e12776, 2010.

[53] A. Jaber, M. Kocaoglu, K. Shanmugam, and E. Bareinboim. Causal discovery from soft
interventions with unknown targets: Characterization and learning. In Advances in Neural
Information Processing Systems 33 (NeurIPS), 2020.

[54] C. Jansen, R. N. Ramirez, N. C. El-Ali, D. Gomez-Cabrero, J. Tegner, M. Merkenschlager,
A. Conesa, and A. Mortazavi. Building gene regulatory networks from scATAC-seq and
scRNA-seq using linked self organizing maps. PLoS computational biology, 15(11):e1006555,
2019.

[55] J. Jeong, J. C. Gore, and B. S. Peterson. Mutual information analysis of the EEG in patients
with Alzheimer’s disease. Clinical Neurophysiology, 112(5):827–835, 2001.

[56] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. LightGBM: A
highly efficient gradient boosting decision tree. In Advances in Neural Information Processing
Systems 30 (NIPS), 2017.

[57] S. Kim. ppcor: an R package for a fast calculation to semi-partial correlation coefficients.
Communications for Statistical Applications and Methods, 22(6):665, 2015.

[58] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel. Neural relational inference for
interacting systems. In Proceedings of the 35th International Conference on Machine Learning
(ICML), pages 2688–2697. PMLR, 2018.

[59] M. Kofinas, N. S. Nagaraja, and E. Gavves. Roto-translated local coordinate frames for
interacting dynamical systems. In Advances in Neural Information Processing Systems 34
(NeurIPS), 2021.

[60] M. Kofinas, E. J. Bekkers, N. S. Nagaraja, and E. Gavves. Latent Field Discovery in Interacting
Dynamical Systems with Neural Fields. In Advances in Neural Information Processing Systems
36 (NeurIPS), 2023.

13

[61] J. Kwapień and S. Drożdż. Physical approach to complex systems. Physics Reports, 515(3):
115–226, 2012.

[62] J. Li, H. Ma, Z. Zhang, J. Li, and M. Tomizuka. Spatio-temporal graph dual-attention network
for multi-agent prediction and tracking. IEEE Transactions on Intelligent Transportation
Systems, 23(8):10556–10569, 2022.

[63] S. W. Linderman*, M. J. Johnson*, A. C. Miller, R. P. Adams, D. M. Blei, and L. Paninski.
Bayesian learning and inference in recurrent switching linear dynamical systems. In Proceed-
ings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS),
pages 914–922. PMLR, 2017.

[64] Y. Liu, S. Magliacane, M. Kofinas, and E. Gavves. Graph switching dynamical systems.
In Proceedings of the 40th International Conference on Machine Learning (ICML), pages
21867–21883. PMLR, 2023.

[65] Y. Liu, S. Magliacane, M. Kofinas, and S. Gavves. Amortized equation discovery in hybrid
dynamical systems. In Forty-first International Conference on Machine Learning, ICML 2024.
PMLR, 2024.

[66] Z.-Q. Liu, R. F. Betzel, and B. Misic. Benchmarking functional connectivity by the structure
and geometry of the human brain. Network Neuroscience, 6(4):937–949, 2022.

[67] P. Loskot, K. Atitey, and L. Mihaylova. Comprehensive review of models and methods for
inferences in bio-chemical reaction networks. Frontiers in Genetics, 10, 2019.

[68] S. Löwe, D. Madras, R. Z. Shilling, and M. Welling. Amortized causal discovery: Learning
to infer causal graphs from time-series data. In Proceedings of the 1st Conference on Causal
Learning and Reasoning (CLeaR), pages 509–525. PMLR, 2022.

[69] B. Ma, M. Fang, and X. Jiao. Inference of gene regulatory networks based on nonlinear
ordinary differential equations. Bioinformatics, 36(19):4885–4893, 2020.

[70] D. Margaritis. Learning Bayesian network model structure from data. Technical report,
Carnegie-Mellon University, School of Computer Science, 2003.

[71] A. A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. D. Favera, and
A. Califano. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a
mammalian cellular context. BMC Bioinformatics, 7:1–15, 2006.

[72] H. Matsumoto, H. Kiryu, C. Furusawa, M. S. Ko, S. B. Ko, N. Gouda, T. Hayashi, and
I. Nikaido. SCODE: an efficient regulatory network inference algorithm from single-cell
RNA-seq during differentiation. Bioinformatics, 33(15):2314–2321, 2017.

[73] H. Matsumoto, H. Kiryu, C. Furusawa, M. S. H. Ko, S. B. H. Ko, N. Gouda, T. Hayashi,
and I. Nikaido. SCODE: an efficient regulatory network inference algorithm from single-cell
RNA-Seq during differentiation. Bioinformatics, 33(15):2314–2321, 2017.

[74] G. Menegozzo, D. Dall’Alba, and P. Fiorini. Cipcad-bench: Continuous industrial process
datasets for benchmarking causal discovery methods. In 2022 IEEE 18th International
Conference on Automation Science and Engineering (CASE), pages 2124–2131, 2022.

[75] P. E. Meyer, F. Lafitte, and G. Bontempi. minet: A R/Bioconductor package for inferring large
transcriptional networks using mutual information. BMC bioinformatics, 9:1–10, 2008.

[76] J. R. Otukei and T. Blaschke. Land cover change assessment using decision trees, support
vector machines and maximum likelihood classification algorithms. International Journal of
Applied Earth Observation and Geoinformation, 12:S27–S31, 2010.

[77] K. Ovens, B. F. Eames, and I. McQuillan. Comparative analyses of gene co-expression
networks: Implementations and applications in the study of evolution. Frontiers in Genetics,
12, 2021. ISSN 1664-8021.

[78] L. Pan, C. Shi, and I. Dokmanic. A graph dynamics prior for relational inference. In
Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI), volume 38, pages
14508–14516, 2024.

[79] N. Papili Gao, S. M. M. Ud-Dean, O. Gandrillon, and R. Gunawan. SINCERITIES: inferring
gene regulatory networks from time-stamped single cell transcriptional expression profiles.
Bioinformatics, 34(2):258–266, 2017.

14

[80] N. Papili Gao, S. M. Ud-Dean, O. Gandrillon, and R. Gunawan. SINCERITIES: inferring
gene regulatory networks from time-stamped single cell transcriptional expression profiles.
Bioinformatics, 34(2):258–266, 2018.

[81] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information Processing
Systems 32 (NeurIPS), 2019.

[82] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[83] E. Pereda, R. Q. Quiroga, and J. Bhattacharya. Nonlinear multivariate analysis of neurophysio-
logical signals. Progress in Neurobiology, 77(1-2):1–37, 2005.

[84] A. Pratapa, A. Jalihal, J. Law, A. Bharadwaj, and T. Murali. Benchmarking algorithms for
gene regulatory network inference from single-cell transcriptomic data. Nature Methods, 17:
1–8, 02 2020.

[85] A. Pratapa, A. P. Jalihal, J. N. Law, A. Bharadwaj, and T. Murali. Benchmarking algorithms
for gene regulatory network inference from single-cell transcriptomic data. Nature Methods,
17(2):147–154, 2020.

[86] X. Qiu, A. Rahimzamani, L. Wang, B. Ren, Q. Mao, T. Durham, J. L. McFaline-Figueroa,
L. Saunders, C. Trapnell, and S. Kannan. Inferring causal gene regulatory networks from
coupled single-cell expression dynamics using Scribe. Cell Systems, 10(3):265–274, 2020.

[87] A. Rahimzamani and S. Kannan. Network inference using directed information: The deter-
ministic limit. In 2016 54th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pages 156–163. IEEE, 2016.

[88] A. Rahimzamani and S. Kannan. Potential conditional mutual information: Estimators and
properties. In 2017 55th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pages 1228–1235. IEEE, 2017.

[89] S. J. Russell. Artificial intelligence a modern approach. Pearson Education, Inc., 2010.

[90] M. Sanchez-Castillo, D. Blanco, I. M. Tienda-Luna, M. C. Carrion, and Y. Huang. A Bayesian
framework for the inference of gene regulatory networks from time and pseudo-time series
data. Bioinformatics, 34(6):964–970, 2017.

[91] G. Schiebinger, J. Shu, M. Tabaka, B. Cleary, V. Subramanian, A. Solomon, J. Gould, S. Liu,
S. Lin, P. Berube, L. Lee, J. Chen, J. Brumbaugh, P. Rigollet, K. Hochedlinger, R. Jaenisch,
A. Regev, and E. S. Lander. Optimal-transport analysis of single-cell gene expression identifies
developmental trajectories in reprogramming. Cell, 176(4):928–943.e22, 2019.

[92] Y. Sha, Y. Qiu, P. Zhou, and Q. Nie. Reconstructing growth and dynamic trajectories from
single-cell transcriptomics data. Nature Machine Intelligence, 6(1):25–39, 2024.

[93] J. Shendure, G. J. Porreca, N. B. Reppas, X. Lin, J. P. McCutcheon, A. M. Rosenbaum, M. D.
Wang, K. Zhang, R. D. Mitra, and G. M. Church. Accurate multiplex polony sequencing of an
evolved bacterial genome. Science, 309(5741):1728–1732, 2005.

[94] R. Shwartz-Ziv and N. Tishby. Opening the black box of deep neural networks via information.
arXiv preprint arXiv:1703.00810, 2017.

[95] S. M. Smith, K. L. Miller, G. Salimi-Khorshidi, M. Webster, C. F. Beckmann, T. E. Nichols,
J. D. Ramsey, and M. W. Woolrich. Network modelling methods for FMRI. Neuroimage, 54
(2):875–891, 2011.

[96] J. H. Steele. Food webs. In Encyclopedia of Ocean Sciences, pages 596–603. Academic Press,
2009.

[97] D. Szklarczyk, R. Kirsch, M. Koutrouli, K. Nastou, F. Mehryary, R. Hachilif, A. L. Gable,
T. Fang, N. Doncheva, S. Pyysalo, P. Bork, L. J. Jensen, and C. von Mering. The STRING
database in 2023: protein–protein association networks and functional enrichment analyses for
any sequenced genome of interest. Nucleic Acids Research, 51(D1):D638–D646, 2022.

15

[98] N. Tishby and N. Zaslavsky. Deep learning and the information bottleneck principle. In
Proceedings of 2015 IEEE Information Theory Workshop (ITW), pages 1–5. IEEE, 2015.

[99] N. Tishby, F. Pereira, and W. Biale. The information bottleneck method. In Proceedings of
the 37th Annual Allerton Conference on Communication, Control, and Computing (Allerton),
pages 368–377. IEEE, 1999.

[100] I. Tsamardinos, C. F. Aliferis, A. R. Statnikov, and E. Statnikov. Algorithms for large
scale Markov Blanket discovery. In Proceedings of the 16th International Florida Artificial
Intelligence Research Society Conference (FLAIRS), pages 376–380, 2003.

[101] I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing Bayesian network
structure learning algorithm. Machine Learning, 65:31–78, 2006.

[102] M. Tsubaki, K. Tomii, and J. Sese. Compound–protein interaction prediction with end-to-end
learning of neural networks for graphs and sequences. Bioinformatics, 35(2):309–318, 2019.

[103] S. Varrette, H. Cartiaux, S. Peter, E. Kieffer, T. Valette, and A. Olloh. Management of an
Academic HPC & Research Computing Facility: The ULHPC Experience 2.0. In Proc. of
the 6th ACM High Performance Computing and Cluster Technologies Conf. (HPCCT 2022),
Fuzhou, China, July 2022. Association for Computing Machinery (ACM). ISBN 978-1-4503-
9664-6.

[104] I. Virshup, S. Rybakov, F. J. Theis, P. Angerer, and F. A. Wolf. anndata: Annotated data.
BioRxiv, pages 2021–12, 2021.

[105] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,
N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,
C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020.

[106] A. Wang and J. Pang. Iterative structural inference of directed graphs. In Advances in Neural
Information Processing Systems 35 (NeurIPS), 2022.

[107] A. Wang, T. P. Tong, and J. Pang. Effective and efficient structural inference with reservoir
computing. In Proceedings of the 40th International Conference on Machine Learning (ICML),
volume 202, pages 36391–36410. PMLR, 2023.

[108] E. Webb, B. Day, H. Andres-Terre, and P. Lió. Factorised neural relational inference for
multi-interaction systems. arXiv preprints arXiv:1905.08721, 2019.

[109] Wes McKinney. Data Structures for Statistical Computing in Python. In Proceedings of the
9th Python in Science Conference, pages 56 – 61, 2010.

[110] P. L. Williams and R. D. Beer. Nonnegative decomposition of multivariate information. arXiv
preprint arXiv:1004.2515, 2010.

[111] H. Wu, Y. Liang, W. Xiong, Z. Zhou, W. Huang, S. Wang, and K. Wang. Earthfarsser: Versatile
spatio-temporal dynamical systems modeling in one model. In Proceedings of the 38th AAAI
Conference on Artificial Intelligence (AAAI), pages 15906–15914, 2024.

[112] T. Wu, T. Breuel, M. Skuhersky, and J. Kautz. Discovering nonlinear relations with minimum
predictive information regularization. arXiv preprint arXiv:2001.01885, 2020.

[113] M. Yang, F. Liu, Z. Chen, X. Shen, J. Hao, and J. Wang. Causalvae: Disentangled representa-
tion learning via neural structural causal models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 9593–9602. Computer Vision
Foundation / IEEE, 2021.

[114] C. Zhang, B. Chen, and J. Pearl. A simultaneous discover-identify approach to causal inference
in linear models. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI),
pages 10318–10325, 2020.

[115] M. Zhang and Y. Chen. Link prediction based on graph neural networks. In Advances in
Neural Information Processing Systems 31 (NeurIPS), 2018.

[116] X. Zhang, X.-M. Zhao, K. He, L. Lu, Y. Cao, J. Liu, J.-K. Hao, Z.-P. Liu, and L. Chen.
Inferring gene regulatory networks from gene expression data by path consistency algorithm
based on conditional mutual information. Bioinformatics, 28(1):98–104, 2012.

16

[117] X. Zhang, M. Zeman, T. Tsiligkaridis, and M. Zitnik. Graph-guided network for irregularly
sampled multivariate time series. In Proceedings of the 10th International Conference on
Learning Representations (ICLR), 2022.

[118] J. Zhao, Y. Zhou, X. Zhang, and L. Chen. Part mutual information for quantifying direct
associations in networks. Proceedings of the National Academy of Sciences, 113(18):5130–
5135, 2016.

[119] M. Zhao, W. He, J. Tang, Q. Zou, and F. Guo. A comprehensive overview and critical
evaluation of gene regulatory network inference technologies. Briefings in Bioinformatics, 22
(5):bbab009, 2021.

[120] S. Zheng, Z. Li, K. Fujiwara, and G. Tanaka. Diffusion model for relational inference. arXiv
preprint arXiv:2401.16755, 2024.

[121] Q. Zhou. Multi-domain sampling with applications to structural inference of Bayesian net-
works. Journal of the American Statistical Association, 106(496):1317–1330, 2011.

[122] D. Zügner, F.-X. Aubet, V. G. Satorras, T. Januschowski, S. Günnemann, and J. Gasthaus. A
study of joint graph inference and forecasting. arXiv preprint arXiv:2109.04979, 2021.

17

Appendix of Benchmarking Structural Inference
Methods for Interacting Dynamical Systems

with Synthetic Data

A Dataset documentation

Here, we provide documentation for our dataset in the common datasheets format [37].

A.1 Motivation

Q1 For what purpose was the dataset created? Was there a specific task in mind? Was there
a specific gap that needed to be filled? Please provide a description.

We produced the dataset to evaluate the structural inference methods mentioned in
this work. To the best of our knowledge, it is the first dataset that includes the trajectories
based on eleven different types of underlying interacting graph structures. Furthermore,
it is also the first dataset that provides trajectories of both one-dimensional and multi-
dimensional features for structural inference. Comprehensive evaluation of the performance
of structural inference methods originating from different research disciplines requires
an objective and unified dataset containing both trajectories of different dimensions and
trajectories based on different underlying interacting graphs. Our goal was to create a
dataset that could be utilized for this purpose.

Q2 Who created the dataset (for example, which team, research group) and on behalf of
which entity (for example, company, institution, organization)?

The dataset was a joint effort by three authors: Aoran Wang, Tsz Pan Tong, and
Jun Pang. The authors are researchers affiliated with the Department of Computer Science
at the University of Luxembourg. Jun Pang is also affiliated with the Institute for Advanced
Studies (IAS) of the University of Luxembourg.

Q3 Who funded the creation of the dataset? If there is an associated grant, please provide the
name of the grantor and the grant name and number.

The generation, collection, and storage of the dataset used in this work are under
the project BSIMDS, which is supported by a collaboration project between the High-
Performance Computing Team of the University of Luxembourg (ULHPC) and Amazon
Web Services (AWS). The experiments presented in this paper were carried out using
the HPC facilities of the University of Luxembourg [103] (see hpc.uni.lu). Besides
that, authors Tsz Pan Tong and Jun Pang acknowledge financial support of the Institute
for Advanced Studies of the University of Luxembourg through an Audacity Grant
(AUDACITY-2021).

Q4 Any other comments?

No.

18

http://hpc.uni.lu

A.2 Composition

Q5 What do the instances that comprise the dataset represent (for example, documents,
photos, people, countries)? Are there multiple types of instances (for example, movies,
users, and ratings; people and interactions between them; nodes and edges)? Please provide
a description.

The instances represent time-series features of nodes (trajectories) in a period of
time, and the corresponding ground-truth interaction graph. The instances are all .npy files.
Each time-series feature of nodes was produced by the simulation of dynamical systems
with the simulation code included in the GitHub repository.

Q6 How many instances are there in total (of each type, if appropriate)?

The dataset has a total of 20,858 .npy files.

Q7 Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set? If the dataset is a sample, then what is the larger set? Is the
sample representative of the larger set (for example, geographic coverage)? Is the sample
representative of the larger set (e.g., geographic coverage)? If so, please describe how this
representativeness was validated/verified. If it is not representative of the larger set, please
describe why not (e.g., to cover a more diverse range of instances, because instances were
withheld or unavailable).

The dataset contains all possible instances.

Q8 What data does each instance consist of? "Raw" data (for example, unprocessed text or
images) or features? In either case, please provide a description.

The instance consists of synthetic "Raw" data of node features in a time period
and the underlying ground-truth interaction graphs. The instance also contains one set of
processed EMT dataset and its suggested underlying GRN. All are in .npy format.
The composition of the whole dataset consists of twelve folders representing eleven types of
underlying interacting graphs and the EMT dataset.
The folder for the EMT dataset, emt36_grn_network, contains the following files:

– Trajectory for training: traj_EMT50cc36_wot_interpolated_by_pchip_22t.npy
– Reference GRN: edges_EMT36.npy

The folders for eleven types of underlying interacting graphs are:

– brain_networks,
– chemical_reaction_networks_in_atmosphere,
– food_webs,
– gene_coexpression_networks,
– gene_regulatory_networks,
– intercellular_networks,
– landscape_networks,
– man-made_organic_reaction_networks,
– reaction_networks_inside_living_organism,
– social_networks,
– vascular_networks.

Each of these folders has a subfolder named either directed or undirected, which
contains the trajectories for either directed graphs or undirected graphs based on the type of
the graphs. Then in these subfolders, the data can be divided into two groups based on the
type of dynamical simulations: Springs or NetSims. So every subfolder only contains the
data generated by either simulation:

19

– Generated by Springs simulation. (The subfolder is named as springs.) For instance,
for a graph of K nodes and noted as the R-th repetition of its group, the instances in the
same subfolder which belong to this simulation are:

* Trajectories for training:
loc_train_springsKrR.npy, vel_train_springsKrR.npy,

* Groundtruth graphs for training:
edges_train_springsKrR.npy,

* Trajectories for validation:
loc_valid_springsKrR.npy, vel_valid_springsKrR.npy,

* Groundtruth graphs for validation:
edges_valid_springsKrR.npy,

* Trajectories for test:
loc_test_springsKrR.npy, vel_test_springsKrR.npy,

* Groundtruth graphs for test:
edges_test_springsKrR.npy.

– Generated by NetSims simulation. (The subfolder is named as netsims.) For instance,
for a graph of K nodes and noted as the R-th repetition of its group, the instances in the
same subfolder which belong to this simulation are:

* Trajectories for training:
bold_train_netsimsKrR.npy,

* Groundtruth graphs for training:
edges_train_netsimsKrR.npy,

* Trajectories for training:
bold_valid_netsimsKrR.npy,

* Groundtruth graphs for training:
edges_valid_netsimsKrR.npy,

* Trajectories for test:
bold_test_netsimsKrR.npy,

* Groundtruth graphs for test:
edges_test_netsimsKrR.npy.

For trajectories with L level of Gaussian noise, they are marked with additional subscripts
_nL at the end of its corresponding noise-free trajectories (before .npy).

Q9 Is there a label or target associated with each instance? If so, please provide a description.

Each instance has a corresponding ground-truth interaction graph that is used to
generate the set of trajectories.

Q10 Is any information missing from individual instances? If so, please provide a description.

No.

Q11 Are relationships between individual instances made explicit (for example, users’
movie ratings, social network links)? If so, please describe how these relationships are
made explicit.

We divided the files into groups on the basis of the type of underlying interacting
graph, and subsequently on the dynamic functions of the trajectories generation.

Q12 Are there recommended data splits (for example, training, development/validation,
testing)? If so, please provide a description of these splits, explaining the rationale behind
them.

We have already split the data into training sets, validation sets, and testing sets
with ratios of 8: 2: 2 based on the counts of trajectories. All of them are open to audiences.

20

Q13 Are there any errors, sources of noise, or redundancies in the dataset? If so, please
provide a description.

Yes, besides the generated raw trajectories, we also provided noisy trajectories.
The noisy trajectories are the raw ones added with Gaussian noises of different levels. For
example, the files with xx_n5.npy are the noisy trajectories obtained from xx.npy with 5
levels of additive Gaussian noise. The noises were only added to the trajectories, not the
ground-truth interaction graphs.

Q14 Is the dataset self-contained, or does it link to or otherwise rely on external resources
(for example, websites, tweets, other datasets)? If it links to or relies on external
resources, a) are there guarantees that they will exist, and remain constant, over time; b) are
there official archival versions of the complete dataset (i.e., including the external resources
as they existed at the time the dataset was created); c) are there any restrictions (e.g.,
licenses, fees) associated with any of the external resources that might apply to a future
user? Please provide descriptions of all external resources and any restrictions associated
with them, as well as links or other access points, as appropriate.

Yes, the dataset is self-contained.

Q15 Does the dataset contain data that might be considered confidential (for example,
data that is protected by legal privilege or by doctor-patient confidentiality, data that
includes the content of individuals’ non-public communications)? If so, please provide a
description.

We allow free distribution of the dataset.

Q16 Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? If so, please describe why.

No.

A.3 Collection process

Q17 How was the data associated with each instance acquired? Was the data directly
observable (for example, raw text, movie ratings), reported by subjects (for example, survey
responses), or indirectly inferred/derived from other data (for example, part-of-speech tags,
model-based guesses for age or language)? If the data was reported by subjects or indirectly
inferred/derived from other data, was the data validated/verified? If so, please describe how.

We first generated ground-truth interaction graphs following the sampled ranges of
properties of eleven types of real-world graphs, which include: brain networks, chemical
reaction networks in the atmosphere, food webs, gene coexpression networks, gene
regulatory networks, intercellular networks, landscape networks, man-made organic reaction
networks, reaction networks inside living organism, social networks, and vascular networks.
Among these, the graphs from gene coexpression networks and landscape networks are
undirected, while the rest are directed. We generated the graphs with different counts of
nodes: 15, 30, 50, 100, 150, 200, and 250. And we generated graphs of each size with
3 repetitions while ensuring that the three were not identical. In total, we generated 231
ground truth interacting graphs.
Then we ran simulations based on the generated ground truth interaction graphs. There were
two types of dynamic simulations, "Springs" and "NetSims". Every ground truth interaction
graph joined the simulation and in total, we obtained 462 sets of trajectories.
After that, we created another set of trajectories with the addition of Gaussian noises. The
Gaussian noises were added to the generated trajectories with 5 different amplifying levels.
In total, we generated 2310 sets of trajectories with Gaussian noises.

21

Q18 What mechanisms or procedures were used to collect the data (for example, hardware
apparatuses or sensors, manual human curation, software programs, software APIs)?
How were these mechanisms or procedures validated?

The whole data generation process was run on Amazon EC2 C7g.2xlarge instances,
which are powered by AWS Graviton3 processors, and are provided to the University
of Luxembourg as a part of the collaboration. We first ran a Python script for graph
generation, over 32 vCPUs of C7g.2xlarge instances, and with 128 GB RAM. Then we fed
the generated graphs to the Python script for dynamic simulations with the same hardware
settings. The generated graphs were validated by manual inspection and post-processed with
the computation of statistics on the degrees, connectivity, number of self-loops, clustering
coefficients, and average shortest paths.

Q19 If the dataset is a sample from a larger set, what was the sampling strategy (for
example, deterministic, probabilistic with specific sampling probabilities)?

No. The dataset is not a sample from a larger set.

Q20 Who was involved in the data collection process (for example, students, crowdworkers,
contractors) and how were they compensated (for example, how much were crowd-
workers paid)?

No crowdworkers were used in the curation of the dataset. One of the authors of
this paper, Aoran Wang, was involved in the data collection process.

Q21 Over what timeframe was the data collected? Does this timeframe match the creation
timeframe of the data associated with the instances (for example, recent crawl of old
news articles)? If not, please describe the timeframe in which the data associated with the
instances was created.

The data was collected in the period from December 15, 2022 to March 3, 2023.

Q22 Were any ethical review processes conducted (for example, by an institutional review
board)? If so, please provide a description of these review processes, including the
outcomes, as well as a link or other access point to any supporting documentation.

No, such processes were unnecessary in our case.

Q23 Does the dataset relate to people? If not, you may skip the remaining questions in this
section.

No.

A.4 Preprocessing/Cleaning/Labeling

Q24 Was any preprocessing/cleaning/labeling of the data done (for example, discretization
or bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of
instances, processing of missing values)? If so, please provide a description. If not, you
may skip the remainder of the questions in this section.

We conducted preprocessing only on the EMT dataset, and the details of the pre-
processing can be found in Appendix B.4.

Q25 Was the “raw" data saved in addition to the preprocessed/cleaned/labeled data (for
example, to support unanticipated future uses)? If so, please provide a link or other
access point to the “raw" file.

22

The “raw" data was not saved together with the preprocessed data. The “raw" data is avail-
able in https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147405,
and the EMT data processed by Sha et al. [92] is available in https://github.com/
yutongo/TIGON/tree/19d6648195a47b4d2a2d5025b440d37cf0ac9a17/EMT_data.
Our EMT dataset was built based on the data provided by Sha et al., and the postprocessing
script is available in our code repository.

Q26 Is the software that was used to preprocess/clean/label the data available? If so, please
provide a link or other access point.

Starting with the EMT dataset provided by Sha et al., the following software are
needed to reproduce our EMT dataset:

– Anndata [104]: https://github.com/scverse/anndata
– NetworkX [43]: https://networkx.org/
– NumPy [45]: https://numpy.org/
– pandas [109]: https://pandas.pydata.org/
– Requests: https://requests.readthedocs.io/en/latest/
– SciPy [105]: https://scipy.org/
– wot [91]: https://broadinstitute.github.io/wot/

Q27 Any other comments?

No.

A.5 Uses

Q28 Has the dataset been used for any tasks already?

No. The dataset has not been used for any tasks yet.

Q29 Is there a repository that links to any or all papers or systems that use the dataset? If
so, please provide a link or other access point.

No. The dataset has not been used for any tasks yet.

Q30 What (other) tasks could the dataset be used for?

The dataset could be used for time-series prediction and possibly the task of graph
completeness.

Q31 Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses? For example, is there
anything that a future user might need to know to avoid uses that could result in unfair
treatment of individuals or groups (e.g., stereotyping, quality of service issues) or other
undesirable harms (e.g., financial harms, legal risks) If so, please provide a description. Is
there anything a future user could do to mitigate these undesirable harms?

We do not think the composition of the dataset or the way it was collected or pre-
processed/cleaned/labeled could impact future uses.

Q32 Are there tasks for which the dataset should not be used? If so, please provide a
description.

Due to the known biases of the dataset, under no circumstance should any meth-
ods be put into production using the dataset as is. It is neither safe nor responsible. As
it stands, the dataset should be solely used for research purposes in its uncurated state.
Likewise, this dataset should not be used to aid in military or surveillance tasks.

23

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147405
https://github.com/yutongo/TIGON/tree/19d6648195a47b4d2a2d5025b440d37cf0ac9a17/EMT_data
https://github.com/yutongo/TIGON/tree/19d6648195a47b4d2a2d5025b440d37cf0ac9a17/EMT_data
https://github.com/scverse/anndata
https://networkx.org/
https://numpy.org/
https://pandas.pydata.org/
https://requests.readthedocs.io/en/latest/
https://scipy.org/
https://broadinstitute.github.io/wot/

Q33 Any other comments?

No.

A.6 Distribution

Q34 Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? If so, please
provide a description.

Yes, the dataset will be open-source.

Q35 How will the dataset be distributed (e.g., tarball on website, API, GitHub)? Does the
dataset have a digital object identifier (DOI)?

The data will be available through the website of this benchmark (https:
//structinfer.github.io/download/). For the large subsets such as the ones
with more than 100 nodes, please contact the authors and the authors will provide a link to
download them.

Q36 When will the dataset be distributed?

May 31, 2023 and onward.

Q37 Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? If so, please describe this license
and/or ToU, and provide a link or other access point to, or otherwise reproduce, any relevant
licensing terms or ToU, as well as any fees associated with these restrictions.

CC-BY-4.0

Q38 Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? If so, please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any relevant licensing terms, as well as any fees
associated with these restrictions.

No.

Q39 Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? If so, please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any supporting documentation.

No.

Q40 Any other comments?

We managed to upload the part of DoSI that are essential for the reproduction of
the results in this benchmark paper. However, as the total size of the DoSI exceeds 7.8 TB,
we are communicating with our grant provider on the publishing of the remaining dataset.
At the moment, the website contains the subsets with no more than 100 nodes. For the
subsets with more than 100 nodes, please contact authors and the authors will provide a link
to access the data.

A.7 Maintenance

Q41 Who will be supporting/hosting/maintaining the dataset?

24

https://structinfer.github.io/download/
https://structinfer.github.io/download/

The research group SaToSS at the University of Luxembourg hosts the dataset.
The authors of this paper will also support and maintain the dataset.

Q42 How can the owner/curator/manager of the dataset be contacted (e.g., email address)?

Contact the authors at aoran.wang@uni.lu, or tszpan.tong@uni.lu.

Q43 Is there an erratum? If so, please provide a link or other access point.

There is no erratum for our initial release. Errata will be documented as future re-
leases on the dataset website.

Q44 Will the dataset be updated (e.g., to correct labeling errors, add new instances,
delete instances)? If so, please describe how often, by whom, and how updates will be
communicated to users (e.g., mailing list, GitHub)?

We are planning to extend the dataset to ensure benchmark results with the highest
statistical credibility. Such updates will be rare, as they involve subjective evaluation — a
time-consuming task that requires extensive preparation. Also, we understand the problems
that consumers can face during updates. But after updates become public, they will receive
notification primarily through the mailing list, and all the new information will be on the
benchmark website.

Q45 If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were individuals in question told that their data
would be retained for a fixed period of time and then deleted)? If so, please describe
these limits and explain how they will be enforced.

No, the dataset does not relate to people.

Q46 Will older versions of the dataset continue to be supported/hosted/maintained? If so,
please describe how. If not, please describe how its obsolescence will be communicated to
users.

We will continue to support the older versions as long as we have enough funds.

Q47 If others want to extend/augment/build on/contribute to the dataset, is there a
mechanism for them to do so? If so, please provide a description. Will these contributions
be validated/verified? If so, please describe how. If not, why not? Is there a process for com-
municating/distributing these contributions to other users? If so, please provide a description.

We encourage everyone to share their ideas on extending our dataset to cover more
compression cases and provide more reliable results. Our method of subjective quality
evaluation, however, is set; we recommend researchers contact us by aoran.wang@uni.lu,
or tszpan.tong@uni.lu to coordinate subjective quality evaluation.

Q48 Any other comments?

No.

B Further details of datasets

In this section, we provide more details about the datasets used in this work. We first describe
the generation of DoSI dataset, and then provide details on EMT dataset. The generation of DoSI
dataset consists of two steps: (1) generating underlying interaction graphs based on the properties of
real-world graphs (Appendix B.1 and (2) simulating the dynamical systems (Appendix B.2). Besides,
we provide the quality evaluation of DoSI in Appendix B.3.

25

aoran.wang@uni.lu
tszpan.tong@uni.lu
aoran.wang@uni.lu
tszpan.tong@uni.lu

B.1 Underlying interaction graphs

The sampled properties of each type of graph are summarised in Table 1. Some values are missing
because they were not reported in the literature [8, 7, 32]. In the next paragraphs, we briefly describe

Table 1: Sampled properties of 11 types of real-world graphs.

Graphs Properties

C d γ ⟨k⟩ δ γout

BN - - - [1.8, 2.0] [0.002, 0.25] -
CRNA [0.25, 0.62] [1.5, 2.8] - - [0.02, 0.32] -

FW - [1.5, 2.5] - - - -
GCN [0.05, 0.45] [2.5, 5.2] [1.2, 2.4] - - -
GRN [0.08, 0.25] [1.7, 4.0] - - - -

IN - [2.0, 3.4] - - - -
LN [0.6, 0.8] - - - - -

MMO - - - [2.0, 3.6] - [1.5, 2.6]
RNLO - - - [2.1, 3.0] - -

SN [0.09, 0.20] [2.0, 4.2] - - [0.095, 0.15] -
VN - - [3.7, 3.8] [1.5, 2.2] - -

the generation of the underlying interaction graphs and the corresponding implementation. Each
paragraph will discuss the generation and implementation of each type of underlying interaction
graph, respectively. We use N to denote the number of nodes.

Brain Networks (BN). BNs are the networks that represent the connectivity of brain regions,
which can be determined by anatomical tracts or by functional associations [32]. In addition to the
collected properties presented in Table 1, the structure of brain networks also shows a remarkable
hierarchical structure. Therefore, we generate the directed BN graphs of the total number of nodes
equal to N by first creating a set of growing networks, each with 5 nodes. Then, we randomly connect
the growing networks to obtain a connected graph. The pipeline is implemented with the Python
Package NetworkX [43]. Specifically, we use the gn_graph function for growing network creation
and the k_edge_augmentation function for connecting growing networks. Since there are many
hyperparameters in the pipeline, we create a search space for these parameters and record the first
three graphs whose properties are within the range of the ones in Table 1.

Chemical Reaction Networks in the Atmosphere (CRNA). A CRNA models the complex network
of reaction transformations in the atmosphere of planets. There is a link from chemical i to chemical j
if the former is a reactant and the latter is a product in at least one chemical reaction. CRNAs exhibit
both small-worldness and randomness [32]. In this work, the directed CRNA graphs are generated
by using the directed Erdös-Rényi graph generator of NetworkX [43]: erdos_renyi_graph. The
argument n of the function is set to the total number of nodes N , and the argument p is set to a
value from the search space [0.05, 0.75]. During the search, we record the first three graphs whose
properties are in the ranges shown in Table 1.

Food Webs (FW). FWs are networks that describe the ‘networks of feeding interactions among
diverse co-occurring species in a particular habitat’ [96]. It is widely accepted that ‘empirical food
webs’ display exponential or uniform degree distributions. Therefore, in this work, the directed FW
graphs are generated using a two-step procedure. We first sample the in-/out-degree sequences from
an exponential function (random.exponential from Python library NumPy [45]) with different
scales. The scales are computed by dividing N by a hyperparameter from a search space. Then
the in-/out-degree sequences are given to the directed configuration model generator of NetworkX:
directed_configuration_model. During the search, we record the first three graphs whose
properties are within the range shown in Table 1.

Gene Coexpression Networks (GCN). Two genes that have similar expression profiles are likely
to have similar functions. Gene coexpression networks are built by calculating a similarity score
for each pair of genes. The nodes of the networks represent the genes, and two genes are linked if

26

their similarity is above a certain threshold. GCNs are characterized by both ‘small-worldness’ and
‘scale-freeness’ features [32]. The undirected GCN graphs in this work are generated with three steps.
We first sample the sequence of node degrees from utils.powerlaw_sequence of NetworkX.
The argument exponent is a hyperparameter with value from the search space [1.4, 2.8]. Then,
the sequence is given to configuration_model of NetworkX to generate a graph. However, the
generated graph might have multiple disconnected components. We use the k_edge_augmentation
function of NetworkX to connect the components with the argument k as another hyperparameter
from the search space [1, 10]. During the search, we record the first three graphs whose properties are
within the ranges shown in Table 1.

Gene Regulatory Networks (GRN). GRN is another type of gene network in which the connections
are between transcription factors and the genes that they regulate. In this work, the directed GRN
graphs are generated by an open-source Python package: https://github.com/zhivkoplias/
network_generation_algo. The package implements a graph generation algorithm with boosted
feed-forward loop motif, which is known to be important for network dynamics. We change the
final_size argument in the script to match N . Since there is a random process incorporated in the
generation process, we run the script several times until we obtain three graphs whose properties fall
in the ranges shown in Table 1.

Intercellular Networks (IN). IN was studied to describe the topological organization produced by
the spatial relationship among cells in different tissues. In this work, we follow the setup-principle
of probabilistic cell graphs [32], where a link between two cells is established with a probability
function of the Euclidean distance between them. In this work, we follow a simplified process. The
directed IN graphs are generated by calling the directed Erdős-Rényi graph generator of NetworkX:
erdos_renyi_graph. The argument n of the function is set to the total count of nodes N , and the
argument p is set to a value from the search space [0.05, 0.75]. During the search, we record the first
three graphs for each whose properties fall in the ranges shown in Table 1.

Landscape Networks (LN). LNs are used to model the interconnectivity among the spatial pattern
of scattered habitat patches in the landscape. They are similar to the random geometric networks [32].
In this work, the undirected LN graphs are generated using the geographical_threshold_graph
function of NetworkX. The argument theta is set to a value computed with the multiplication of
N and a hyperparameter, which is selected from the search space [0.5, 2.0]. During the search, we
record the first three graphs whose properties are within the range shown in Table 1.

Man-made Organic Reaction Networks (MMO). A chemical reaction transforms one or more
reactants into one or more products. A chemical i is linked to a chemical j if they are a reactant and
a product, respectively, in any chemical reaction. It is observed that the in-degree and out-degree
of the molecules follow power-law distributions [32]. We use the scale_free_graph generator of
NetworkX to generate directed MMO graphs based on this property. We set alpha, beta, delta_in,
and delta_out as hyperparameters with search spaces of [0.01, 0.97], [0.01, 0.98], [0.01, 0.4], and
[0, 0.15], respectively. We calculate gamma by 1 − alpha − beta. We convert the raw graphs to
directed graphs using the DiGraph function. We select the first three directed graphs that match the
properties in Table 1.

Reaction Networks inside Living Organisms (RNLO). The RNLO graphs and MMO graphs
have many similar properties, because they are both chemical reaction networks. We generate the
directed RNLO graphs using the same pipeline as MMO, but with different property ranges presented
in Table 1.

Social Networks (SN). An SN is conceptualized as a graph, that is, a set of vertices (or nodes,
units, points) representing social actors and a set of lines representing one or more social relations
among them [29]. We use the gnp_random_graph generator of NetworkX to generate directed SN
graphs. We set p as a hyperparameter with a search space of [0.01, 0.99]. We select the first three
directed graphs that match the properties in Table 1.

Vascular Networks (VN). A VN is a graph where nodes represent the junctions of channels and
edges represent the connections between them. VNs have power-law degree distributions [32]. We

27

https://github.com/zhivkoplias/network_generation_algo
https://github.com/zhivkoplias/network_generation_algo

generate directed VN graphs by first creating a tree with a power-law degree distribution using the
random_powerlaw_tree generator of NetworkX, where we set gamma as a hyperparameter with a
search space of [1.5, 4.9]. We then convert the trees to directed graphs using the DiGraph function.
We select the first three directed graphs that match the properties in Table 1.

We summarize the properties of the underlying interaction graphs mentioned in this work in Tables 2
- 12. The graphs are aligned in accordance with the type of graphs they belong to. The names of the
graphs are represented as “number of nodes in the graph" + “repetition number". For example, the
second repetition of the graph with 15 nodes is represented as 15r2. In the tables, # Nodes denotes
the number of nodes in the graph, # Edges denotes the number of edges in the graph, C is the average
clustering coefficient, d is the average shortest path length, γ is the power-law exponent of the degree
distribution, ⟨k⟩ is the average node degree, δ is the density, and γin and γout are the power-law
exponents of the in-degree/out-degree distributions, respectively. Among these metrics, # Nodes, #
Edges, C, d, and δ are calculated by built-in functions of NetworkX. ⟨k⟩ is calculated by averaging
over all node degrees in the graph, which is obtained by calling .degree with NetworkX. The power-
law exponents are calculated by fitting the corresponding degree sequences with powerlaw.Fit
of Python package powerlaw, then by outputting the .powerlaw.alpha variables of the obtained
distributions. It is worth mentioning that some exponents are missing, where powerlaw could not
find a suitable powerlaw function to fit or where the sampled degree sequence is too short for fitting.
As shown in Tables 2 - 12, the properties of the graphs vary significantly, and the investigation of
to which extent the different underlying graphs influence the performance of structural inference
methods is worth studying.

Table 2: Properties of underlying interaction graphs of brain networks.

Name Properties

Nodes # Edges C d γ ⟨k⟩ δ γin γout

15r1 15 14 0.0 2.88 3.43 1.87 0.07 2.09 -
15r2 15 14 0.0 2.99 3.32 1.87 0.07 6.87 -
15r3 15 14 0.0 2.95 3.43 1.87 0.07 6.87 -

30r1 30 29 0.0 4.51 4.43 1.93 0.03 3.04 41.40
30r2 30 29 0.0 4.09 3.35 1.93 0.03 14.44 41.40
30r3 30 29 0.0 4.27 3.16 1.93 0.03 2.81 41.40

50r1 50 49 0.0 5.90 5.96 1.96 0.02 4.91 34.90
50r2 50 49 0.0 5.71 3.19 1.96 0.02 3.73 34.90
50r3 50 49 0.0 6.01 3.01 1.96 0.02 5.05 34.90

100r1 100 99 0.0 9.13 3.07 1.98 0.01 2.60 35.26
100r2 100 99 0.0 9.05 3.11 1.98 0.01 2.72 35.26
100r3 100 99 0.0 9.11 3.07 1.98 0.01 16.68 35.26

150r1 150 149 0.0 12.56 3.04 1.99 0.007 4.55 26.43
150r2 150 149 0.0 12.75 13.63 1.99 0.007 11.44 26.43
150r3 150 149 0.0 12.76 8.77 1.99 0.007 5.56 26.43

200r1 200 199 0.0 16.07 11.74 1.99 0.005 5.29 28.27
200r2 200 199 0.0 15.96 2.99 1.99 0.005 8.15 28.27
200r3 200 199 0.0 15.98 2.96 1.99 0.005 8.15 28.27

250r1 250 249 0.0 19.37 24.77 1.992 0.004 21.91 29.49
250r2 250 249 0.0 19.21 3.06 1.992 0.004 19.82 29.49
250r3 250 249 0.0 19.31 2.99 1.992 0.004 7.39 29.49

The corresponding code for graph generation can be found at https://github.com/wang422003/
Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/
tree/main/src/graphs. The corresponding scripts for the generation of each graph type are
summarized in Table 13.

28

https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/graphs
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/graphs
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/graphs

Table 3: Properties of underlying interaction graphs of chemical reaction networks in the atmosphere.

Name Properties

Nodes # Edges C d γ ⟨k⟩ δ γin γout

15r1 15 40 0.26 2.78 3.02 5.33 0.19 4.57 2.29
15r2 15 46 0.25 2.22 12.00 6.13 0.22 6.84 5.17
15r3 15 54 0.26 2.00 4.82 7.2 0.26 4.76 28.42

30r1 30 208 0.26 1.90 5.77 13.87 0.24 7.29 9.57
30r2 30 205 0.26 1.93 5.82 13.67 0.24 4.70 4.87
30r3 30 203 0.25 1.97 7.52 13.53 0.23 11.27 4.24

50r1 50 591 0.25 1.80 15.90 23.64 0.24 10.63 9.77
50r2 50 611 0.25 1.79 11.16 24.44 0.25 7.67 11.19
50r3 50 605 0.25 1.79 11.07 24.2 0.25 8.52 17.02

100r1 100 2,510 0.26 1.75 14.90 50.2 0.25 10.54 14.50
100r2 100 2,485 0.25 1.75 33.90 49.7 0.25 7.21 195.98
100r3 100 2,527 0.25 1.75 16.34 50.54 0.26 21.52 11.60

150r1 150 5,729 0.26 1.74 22.89 76.39 0.26 19.25 19.53
150r2 150 5,804 0.26 1.74 15.83 77.39 0.26 28.46 12.55
150r3 150 5,614 0.25 1.75 17.12 74.85 0.26 17.11 20.10

200r1 200 10,108 0.25 1.75 38.65 101.08 0.25 17.15 21.61
200r2 200 10,337 0.26 1.74 66.57 103.37 0.26 31.54 284.48
200r3 200 10,254 0.26 1.74 26.23 102.54 0.26 17.98 48.32

250r1 250 15,944 0.26 1.74 40.62 127.55 0.26 22.35 26.00
250r2 250 16,119 0.26 1.74 28.17 128.95 0.26 19.57 22.78
250r3 250 15,938 0.26 1.74 56.66 127.50 0.26 24.15 20.49

Table 4: Properties of underlying interaction graphs of food webs.

Name Properties

Nodes # Edges C d γ ⟨k⟩ δ γin γout

15r1 15 96 0.51 1.69 3.73 20.13 0.46 29.47 48.46
15r2 15 100 0.49 1.72 7.02 20.4 0.48 20.61 1.87
15r3 15 88 0.58 1.73 23.76 17.6 0.42 2.40 20.93

30r1 30 404 0.51 1.57 12.22 41.27 0.46 98.48 117.97
30r2 30 309 1.42 1.86 12.24 33.27 0.36 16.15 13.28
30r3 30 329 0.47 1.86 3.25 36.53 0.38 10.47 3.93

50r1 50 1,084 0.51 1.61 4.18 68.6 0.44 19.66 18.47
50r2 50 1,005 0.52 1.73 23.17 65.24 0.41 19.41 29.10
50r3 50 1,081 0.50 1.60 32.83 68.2 0.44 85.54 34.72

100r1 100 4,161 0.50 1.63 61.69 134.96 0.42 58.86 35.41
100r2 100 3,978 0.50 1.67 29.08 127.26 0.40 35.08 25.24
100r3 100 4,092 0.48 1.62 3.92 129.96 0.41 64.89 53.87

150r1 150 8,658 0.48 1.67 51.93 181.85 0.39 35.03 21.72
150r2 150 9,355 0.4 1.60 24.08 196.67 0.42 102.89 55.11
150r3 150 8,924 0.48 1.65 89.06 188.59 0.40 78.48 138.23

200r1 200 16,885 0.50 1.60 73.29 268.35 0.42 45.44 57.85
200r2 200 17,279 0.51 1.58 80.59 274.72 0.43 65.31 55.84
200r3 200 15,069 0.49 1.65 43.84 243.89 0.38 86.15 40.40

250r1 250 23,669 0.46 1.63 86.40 300.02 0.38 58.10 22.70
250r2 250 25,569 0.49 1.62 91.49 327.32 0.41 89.91 55.57
250r3 250 24,596 0.48 1.63 3.59 315.344 0.40 56.17 54.21

29

Table 5: Properties of underlying interaction graphs of gene coexpression networks.

Name Properties

Nodes # Edges C d γ ⟨k⟩ δ

15r1 15 22 0.069 2.55 2.18 2.93 0.21
15r2 15 22 0.069 2.55 2.18 2.93 0.21
15r3 15 23 0.24 2.50 2.28 3.07 0.22

30r1 30 60 0.21 2.66 1.98 4.0 0.14
30r2 30 53 0.16 2.58 2.19 3.53 0.12
30r3 30 54 0.15 2.77 2.12 3.6 0.12

50r1 50 128 0.26 2.56 2.20 5.12 0.10
50r2 50 160 0.28 2.52 1.77 6.4 0.13
50r3 50 112 0.30 2.55 2.05 4.48 0.09

100r1 100 342 0.28 2.63 1.78 6.84 0.07
100r2 100 364 0.33 2.61 1.80 7.28 0.074
100r3 100 364 0.34 2.61 1.80 7.28 0.073

150r1 150 729 0.35 2.51 2.01 9.72 0.065
150r2 150 729 0.34 2.51 2.01 9.72 0.065
150r3 150 670 0.33 2.70 1.84 8.93 0.06

200r1 200 1,018 0.34 2.55 1.79 10.18 0.05
200r2 200 1,018 0.34 2.55 1.78 10.18 0.05
200r3 200 1,041 0.34 2.54 2.04 10.42 0.05

250r1 250 1,596 0.35 2.54 1.80 12.77 0.05
250r2 250 1,596 0.35 2.54 1.80 12.77 0.05
250r3 250 1,627 0.35 2.53 1.90 13.02 0.05

Table 6: Properties of underlying interaction graphs of gene regulatory networks.

Name Properties

Nodes # Edges C d γ ⟨k⟩ δ γin γout

15r1 15 32 0.26 2.02 3.43 4.27 0.15 5.38 6.10
15r2 15 32 0.26 2.02 3.64 4.27 0.15 14.44 4.04
15r3 15 38 0.25 1.78 5.47 5.07 0.18 3.36 2.74

30r1 30 84 0.17 2.11 3.38 5.6 0.10 5.58 3.19
30r2 30 76 0.21 2.23 4.00 5.07 0.09 14.04 2.84
30r3 30 80 0.20 2.20 4.51 5.33 0.09 5.71 3.26

50r1 50 132 0.13 2.49 4.03 5.28 0.05 7.60 3.12
50r2 50 136 0.13 2.60 3.61 5.44 0.06 4.61 3.65
50r3 50 133 0.17 2.37 4.14 5.32 0.05 9.13 3.09

100r1 100 273 0.17 2.38 3.67 5.46 0.03 3.88 3.31
100r2 100 273 0.19 2.45 3.37 5.46 0.03 3.20 3.96
100r3 100 267 0.13 2.60 3.67 5.34 0.03 3.13 3.00

150r1 150 421 0.13 2.54 3.83 5.61 0.02 3.36 3.15
150r2 150 394 0.09 3.74 3.54 5.25 0.18 4.65 3.15
150r3 150 407 0.12 2.57 3.45 5.43 0.018 4.29 2.92

200r1 200 538 0.19 2.54 3.31 5.38 0.01 6.68 2.66
200r2 200 561 0.16 2.57 3.58 5.61 0.014 5.50 3.26
200r3 200 548 0.088 2.80 3.52 5.48 0.014 7.78 2.79

250r1 250 698 0.20 2.52 2.87 5.58 0.011 6.22 3.22
250r2 250 687 0.16 2.59 3.57 5.50 0.011 5.19 3.17
250r3 250 693 0.18 2.54 3.56 5.54 0.011 4.30 3.39

30

Table 7: Properties of underlying interaction graphs of intercellular networks.

Name Properties

Nodes # Edges C d γ ⟨k⟩ δ γin γout

15r1 15 24 0.066 2.57 15.32 3.2 0.11 13.33 6.05
15r2 15 27 0.15 2.12 11.73 3.6 0.13 4.45 2.35
15r3 15 25 0.13 2.21 5.27 3.33 0.12 6.32 8.40

30r1 30 42 0.0 3.22 12.10 2.8 0.048 11.92 8.53
30r2 30 52 0.050 2.74 8.79 3.47 0.060 14.90 8.37
30r3 30 106 0.12 2.59 19.01 7.07 12.18 5.23 5.59

50r1 50 122 0.041 2.59 27.89 4.88 0.050 10.54 6.20
50r2 50 136 0.045 2.50 11.00 5.44 0.056 39.39 8.59
50r3 50 110 0.062 2.73 22.02 4.4 0.045 13.92 41.33

100r1 100 511 0.057 2.99 9.97 10.22 0.052 25.92 7.46
100r2 100 500 0.049 2.25 8.89 10.0 0.051 9.92 13.84
100r3 100 464 0.050 2.31 10.73 9.28 0.047 16.17 22.80

150r1 150 1,173 0.052 2.08 10.90 15.64 0.052 49.92 7.30
150r2 150 1,103 0.049 2.72 7.65 14.71 0.049 6.82 9.19
150r3 150 1,117 0.048 2.69 12.75 14.89 0.050 20.21 8.80

200r1 200 2,023 0.052 2.54 18.64 20.23 0.051 7.19 7.68
200r2 200 1,924 0.048 2.58 23.10 19.24 0.048 14.98 10.42
200r3 200 2,004 0.052 2.55 21.82 20.04 0.050 10.32 5.11

250r1 250 3,121 0.049 2.46 9.03 24.97 0.050 10.09 13.40
250r2 250 3,144 0.050 2.46 18.56 25.15 0.051 10.79 8.13
250r3 250 3,101 0.050 2.47 8.19 24.81 0.050 39.61 7.07

Table 8: Properties of underlying interaction graphs of landscape networks.

Name Properties

Nodes # Edges C d γ ⟨k⟩ δ

15r1 15 46 0.72 1.71 4.72 6.0 0.44
15r2 15 61 0.85 1.42 5.60 8.13 0.58
15r3 15 52 0.78 1.54 5.28 6.93 0.50

30r1 30 103 0.69 2.27 4.95 6.8 0.24
30r2 30 144 0.72 1.83 28.31 9.6 0.33
30r3 30 136 0.76 1.79 4.57 9.07 0.31

50r1 50 254 0.71 2.12 4.01 10.16 0.21
50r2 50 251 0.71 2.29 5.10 10.04 0.20
50r3 50 222 0.74 2.21 5.96 8.88 0.18

100r1 100 542 0.70 3.03 4.52 10.82 0.11
100r2 100 453 0.68 3.39 4.03 9.06 0.092
100r3 100 423 0.72 3.74 8.02 8.46 0.085

150r1 150 784 0.67 3.71 5.23 10.43 0.070
150r2 150 824 0.69 3.53 5.06 10.99 0.074
150r3 150 806 0.67 3.41 5.80 10.75 0.072

200r1 200 1,162 0.71 4.04 6.04 11.61 0.058
200r2 200 1,025 0.68 4.22 4.17 10.24 0.052
200r3 200 1,019 0.69 4.33 5.23 10.19 0.051

250r1 250 1,492 0.67 4.03 3.74 11.92 0.048
250r2 250 1,217 0.66 4.69 5.62 9.73 0.039
250r3 250 1,409 0.67 4.59 4.80 11.26 0.045

31

Table 9: Properties of underlying interaction graphs of man-made organic reaction networks.

Name Properties

Nodes # Edges C d γ ⟨k⟩ δ γin γout

15r1 15 15 0.067 1.86 4.73 2.0 0.071 - 2.17
15r2 15 15 0.045 1.96 4.44 2.0 0.071 - 1.94
15r3 15 15 0.044 1.96 4.44 2.0 0.070 - 1.94

30r1 30 30 0.002 2.43 5.36 2.0 0.034 - 2.27
30r2 30 30 0.0028 2.28 5.62 2.0 0.034 - 2.59
30r3 30 30 0.017 2.22 6.08 2.0 0.034 - 1.60

50r1 50 50 0.0035 2.29 7.92 2.0 0.020 - 1.65
50r2 50 50 0.00037 2.50 6.99 2.0 0.020 - 2.58
50r3 50 50 0.0018 2.36 7.60 2.0 0.020 - 1.77

100r1 100 100 9.37 2.40 11.26 2.0 0.010 - 2.57
100r2 100 100 7.29 2.48 10.96 2.0 0.010 - 2.35
100r3 100 100 0.00026 2.36 11.71 2.0 0.010 - 1.80

150r1 150 150 5.36 2.63 12.68 2.0 0.0067 - 1.74
150r2 150 150 2.81 2.71 11.47 2.0 0.0067 - 2.14
150r3 150 150 0.00016 2.58 11.52 2.0 0.0067 - 1.58

200r1 200 200 3.59e-5 2.46 15.75 2.0 0.0050 - 1.97
200r2 200 200 0.0025 2.30 14.31 2.0 0.0050 - 1.66
200r3 200 200 2.44e-5 2.43 13.67 2.0 0.0050 - 1.63

250r1 250 250 7.24e-5 3.00 9.33 2.0 0.0040 - 1.75
250r2 250 250 8.52e-6 2.58 12.95 2.0 0.0040 - 1.88
250r3 250 250 2.95e-6 2.89 10.30 2.0 0.0040 - 1.79

Table 10: Properties of underlying interaction graphs of reaction networks inside living organisms.

Name Properties

Nodes # Edges C d γ ⟨k⟩ δ γin γout

15r1 15 16 0.049 2.21 3.47 2.13 0.076 22.64 3.01
15r2 15 15 0.0071 2.30 3.81 2.0 0.071 - 5.77
15r3 15 15 0.037 2.11 4.19 2.0 0.071 - 1.81

30r1 30 30 0.0073 2.15 6.06 2.0 0.034 - 1.94
30r2 30 30 0.0032 2.36 5.52 2.0 0.034 - 2.04
30r3 30 30 0.0021 2.39 5.41 2.0 0.034 - 2.33

50r1 50 50 0.00058 2.45 7.16 2.0 0.020 71.69 2.22
50r2 50 50 0.010 2.28 8.25 2.0 0.020 - 2.78
50r3 50 50 0.00056 2.57 6.00 2.0 0.020 35.62 2.66

100r1 100 102 0.0117 2.53 8.49 2.04 0.010 36.35 3.47
100r2 100 100 0.00013 2.35 11.50 2.0 0.010 - 2.39
100r3 100 100 0.00012 2.51 10.47 2.0 0.010 143.83 1.41

150r1 150 150 3.57e-5 2.56 12.44 2.0 0.0067 107.76 1.43
150r2 150 151 0.0039 2.51 13.42 2.01 0.0068 108.48 1.53
150r3 150 152 0.0067 2.75 9.22 2.03 0.0068 30.88 5.21

200r1 200 201 0.0025 2.75 12.70 2.01 0.0051 72.05 2.92
200r2 200 202 1.57e-5 2.99 13.04 2.02 0.0051 96.70 2.57
200r3 200 202 0.0050 2.45 12.32 2.02 0.0051 41.19 1.63

250r1 250 254 0.0080 2.63 15.92 2.03 0.0041 72.85 19.98
250r2 250 251 0.0020 2.58 17.02 2.01 0.0040 120.26 2.42
250r3 250 250 9.37e-6 2.55 18.98 2.0 0.0040 360.23 1.39

32

Table 11: Properties of underlying interaction graphs of social networks.

Name Properties

Nodes # Edges C d γ ⟨k⟩ δ γin γout

15r1 15 28 0.14 3.14 14.44 3.73 0.13 14.56 14.56
15r2 15 28 0.15 3.49 11.08 3.73 0.13 10.10 2.98
15r3 15 27 0.18 4.17 6.89 3.6 0.13 3.52 3.09

30r1 30 107 0.13 2.68 7.52 7.13 0.12 4.30 3.97
30r2 30 106 0.14 2.68 14.16 7.07 0.12 16.69 18.35
30r3 30 116 0.14 2.50 6.44 7.73 0.13 70.79 33.44

50r1 50 249 0.13 2.62 1.89 9.96 0.10 5.53 4.15
50r2 50 269 0.14 2.49 4.92 10.76 0.11 5.17 9.11
50r3 50 294 0.13 2.36 7.58 11.76 0.12 11.28 12.44

100r1 100 1,260 0.13 2.05 9.86 25.2 0.13 7.73 117.97
100r2 100 1,273 0.13 2.05 17.86 25.46 0.13 14.01 7.19
100r3 100 1,236 0.13 2.06 12.84 24.72 0.12 8.94 10.31

150r1 150 2,133 0.09 2.14 13.05 28.44 0.095 8.31 22.29
150r2 150 2,136 0.097 2.13 12.03 28.48 0.096 25.24 15.80
150r3 150 2,148 0.094 2.13 12.35 28.64 0.096 24.48 16.70

200r1 200 3,788 0.096 2.06 20.18 37.88 0.096 6.71 10.94
200r2 200 3,803 0.094 2.05 10.99 38.03 0.096 20.36 18.15
200r3 200 3,793 0.094 2.06 17.29 37.93 0.095 11.07 23.29

250r1 250 5,921 0.097 2.00 24.09 47.37 0.095 17.50 16.24
250r2 250 5,937 0.095 2.00 23.11 47.50 0.095 28.61 13.97
250r3 250 5,942 0.096 2.00 17.19 47.54 0.095 11.40 12.24

Table 12: Properties of underlying interaction graphs of vascular networks.

Name Properties

Nodes # Edges C d γ ⟨k⟩ δ γin γout

15r1 15 14 0.0 3.2 3.43 1.87 0.067 - 3.34
15r2 15 14 0.0 3.28 3.28 1.87 0.067 - 4.64
15r3 15 14 0.0 3.56 4.47 1.87 0.067 - 3.52

30r1 30 29 0.0 6.58 5.08 1.93 0.033 - 3.75
30r2 30 29 0.0 7.37 6.39 1.93 0.033 - 4.61
30r3 30 29 0.0 5.40 3.83 1.93 0.033 - 2.99

50r1 50 49 0.0 11.09 5.94 1.96 0.02 - 4.31
50r2 50 49 0.0 7.90 3.15 1.96 0.02 - 3.82
50r3 50 49 0.0 11.04 5.76 1.96 0.02 - 4.15

100r1 100 99 0.0 18.32 4.65 1.98 0.01 - 3.77
100r2 100 99 0.0 15.84 5.02 1.98 0.01 - 4.28
100r3 100 99 0.0 17.33 4.73 1.98 0.01 - 4.25

150r1 150 149 0.0 25.47 5.45 1.99 0.0067 - 4.45
150r2 150 149 0.0 24.43 4.45 1.99 0.0067 - 3.19
150r3 150 149 0.0 25.22 4.46 1.99 0.0067 - 3.97

200r1 200 199 0.0 29.01 4.66 1.99 0.005 - 4.21
200r2 200 199 0.0 29.51 4.18 1.99 0.005 - 3.44
200r3 200 199 0.0 36.12 4.92 1.99 0.005 - 4.23

250r1 250 249 0.0 40.51 5.11 1.992 0.004 - 4.24
250r2 250 249 0.0 40.60 4.56 1.992 0.004 - 3.37
250r3 250 249 0.0 41.30 3.91 1.992 0.004 - 3.41

33

Table 13: The scripts for the graph generation.

Graph Script

BN generate_brain_networks_hierarchical.py
CRNA generate_chemical_reactions_in_atmosphere.py
FW generate_food_webs.py
GCN generate_gene_coexpression_networks.py
GRN /network_generation_algo/src/test.py
IN generate_intercellular_networks.py
LN generate_landscape_networks.py
MMO generate_man_made_organic_reaction_networks.py
RNLO generate_reaction_networks_inside_living_organism.py
SN generate_social_networks_latest.py
VN generate_vascular_networks.py

B.2 Dynamical system simulations

The corresponding code for the simulations of interacting dynam-
ical systems can be found at https://github.com/wang422003/
Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/
tree/main/src/simulations. The corresponding scripts for every simulation are summarized in
Table 13.

Table 14: The scripts for the simulation of interacting dynamical systems.

Simulation Script

Springs & NetSims generate_trajectories.py
Springs & NetSims w. Noise generate_noisy_trajectories.py

The details on the simulations of “Springs" and “NetSims" are presented in the following paragraphs.

Springs simulation. We simulate the motion of spring-connected particles in a 2D box using
the springs simulation, where the nodes are represented as particles, and the edges correspond to
springs following Hooke’s law for force calculations. Inspired by [58], we simulate N particles
(point masses) within a 2D box in the absence of external forces. Elastic collisions with the box are
accounted for. The interaction graphs obtained from the previous section are employed to determine
the spring connections. The particles are interconnected through springs with forces governed by
Hooke’s law, given by Fij(t) = −k(xi(t) − xj(t)), where Fij(t) represents the force exerted on
particle i by particle j at time t, k is the spring constant, and xi(t) is the 2D location vector of particle
i at time t. The dynamic function of the Springs simulation is characterized by a second-order ODE
which can be represented as follows:

mi · x′′
i (t) =

∑
j∈Ni

−k ·
(
xi(t)− xj(t)

)
, (4)

Here, mi represents the mass of node i, assumed to be 1 for simplicity. The spring constant, denoted
as k, is fixed at 1. Ni refers to the set of neighboring nodes with directed connections to node
i. We integrate this equation to compute x′

i(t) and subsequently xi(t) for each time step. The
sampled values of x′

i(t) and xi(t) form the 4D node features at each time step. The initial locations
are sampled from a Gaussian distribution N (0, 0.5), and the initial velocities, also 2D vectors, are
randomly generated with a norm of 0.5. Starting from these initial locations and velocities in two
dimensions, we simulate the trajectories by solving Newton’s equations of motion. The simulation is
performed using leapfrog integration with a minor time step size of 0.001 seconds, and the trajectories
are sampled every 100 minor time steps. Consequently, the feature representation of each node at
every minor time step in this case is a 4D vector comprising 2D locations and 2D velocities.

34

https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/simulations
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/simulations
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/simulations

We implement the simulation in such a way that the next value of a feature of each particle depends
on the current value of the feature and the interactions with other particles. This design allows us
to accommodate theoretically asymmetric interaction graphs, as the spring force is disentangled for
each individual particle. Given a set of initial locations and velocities, we generate trajectories for
the current interacting dynamical system, encompassing all feature vectors of the particles within
the specified time period. Specifically, we generate trajectories comprising 49 time points (obtained
with integration over 4,900 minor time steps) for training and validation purposes, while trajectories
with 100 time steps are generated for testing to align with the requirements in [58, 106]. For each
interaction graph, we generate a total of 8,000 trajectories for training, 2,000 trajectories for validation,
and 2,000 trajectories for testing.

NetSims simulation. The NetSim dataset, described in [95], simulates blood-oxygen-level-
dependent (BOLD) imaging data across different regions within the human brain. It has been
extensively utilized in structural inference experiments as documented in [68, 106]. In [68], NetSims
were initially adopted as the dataset for structural inference experiments. In this simulation, each node
corresponds to a spatial region of interest derived from brain atlases or functional tasks. The node
feature represents the 1D neural signal at each time step. To enhance the diversity and complexity of
the data, we generate additional NetSims following the procedure outlined in [95]. The dynamics of
the NetSims are modeled using dynamic causal modeling [35], and follow a first-order ODE model
for the 1D BOLD signal of each node i at time step t:

x′
i(t) = σ ·

∑
j∈Ni

xj(t)− σ · xi(t) + C · ui, (5)

where σ governs the within-node temporal smoothing and neural lag between nodes, and is set to 0.1
based on [95]. C represents weights controlling the interaction of external inputs with the network
and is set to zero here to minimize noise from external inputs ui [95]. The off-diagonal terms in
A determine the interactions between nodes, while the diagonal elements are set to −1 to model
within-node temporal decay. The 1D node features at each time step are formed using the sampled
xi(t).

The initial features are sampled from a Gaussian distribution N (0, 0.5). For each initial feature, we
generate a trajectory. The trajectory collection settings used in this study are consistent with those
employed in the “Springs" simulation.

B.3 Quality evaluation of DoSI

In order to assess the quality of the proposed DoSI dataset, we follow the metrics mentioned in [39],
and with adaption to the data proposed in DoSI, as the original were designed for images data or text
data. We have the following metrics: (1) file completeness, (2) trajectory completeness, (3) adjacency
matrix completeness, and (4) label accuracy.

File Completeness. This metric aims at finding possible missing files in the dataset The measurement
of this metric is originally calculated by:

XFC =

∑N1
i=1 ai +

∑N2
i=1 bi

2×max(N1, N2)
, (6)

where N1 is the number of trajectory files, N2 is the number of adjacency matrix files. Besides, we
traverse the data folder, and for the ith data record, check whether the annotation file corresponding
to the data record exists in the annotation folder, if it exists, ai = 0, otherwise, ai = 1. We traverse
the annotation folder, and for the ith annotation file, check whether the data record file corresponding
to the annotation file exists in the data folder. If it exists, bi = 0, otherwise, bi = 1. As we put the
trajectory file (data record) and adjacency matrix file (annotation) of each subdataset in the same
folder, we simplify the measurement metric in Eq. 6 to:

XFC =

∑N
i=1 ai

2×N
, (7)

35

where N is the number of trajectory files. ai: Traverse the folder, and for the ith trajectory, check
whether the adjacency matrix file corresponding to the trajectory exists in the annotation folder. If it
exists, ai = 0, otherwise, ai = 1.

Trajectory Completeness. We check the missing values in each trajectory in the proposed dataset,
and report the metrics as:

XTC =

∑T
t=1 ct
T

, (8)

where T refers to the expected length of the trajectory, ci: Traverse from the time t = 1 for each
trajectory till t = T , and for the tth time step, check whether the feature exists or not. If it exists,
ct = 0, otherwise, ct = 1.

Adjacency Matrix Completeness. We check the missing values in each adjacency matrix in the
proposed dataset, and report the metrics as:

XAC =

∑N
i=1

∑N
j=1 dij

N2
, (9)

where N refers to the number of the nodes, dij : check whether the value representing the connectivity
from node i to j exists or not in the adjacency matrix. If it exists, dij = 0, otherwise, dij = 1.

Label Accuracy. We check the obtained adjacency matrix in the data folder and the corresponding
adjacency matrix fed to the dynamics simulation, and report the value as: XLC , it equals 0 if there is
no mismatch, or 1, otherwise.

We report all results of all datasets in Tables 15-17. As shown in the tables, all of the proposed
datasets are free from errors on the four metrics.

Table 15: Quality evaluation of the BN, CRNA, FW and GCN datasets proposed in DoSI.

Name Metrics Name Metrics Name Metrics Name Metrics Name Metrics Name Metrics Name Metrics Name Metrics

BN_SP XFC XTC XAC XLC Prop. BN_NS XFC XTC XAC XLC Prop. CRNA_SP XFC XTC XAC XLC Prop. CRNA_NS XFC XTC XAC XLC Prop. FW_SP XFC XTC XAC XLC Prop. FW_NS XFC XTC XAC XLC Prop. GCN_SP XFC XTC XAC XLC Prop. GCN_NS XFC XTC XAC XLC Prop.

15r1 0.0 0.0 0.0 0.0 ✓ 15r1 0.0 0.0 0.0 0.0 ✓ 15r1 0.0 0.0 0.0 0.0 ✓ 15r1 0.0 0.0 0.0 0.0 ✓ 15r1 0.0 0.0 0.0 0.0 ✓ 15r1 0.0 0.0 0.0 0.0 ✓ 15r1 0.0 0.0 0.0 0.0 ✓ 15r1 0.0 0.0 0.0 0.0 ✓
15r2 0.0 0.0 0.0 0.0 ✓ 15r2 0.0 0.0 0.0 0.0 ✓ 15r2 0.0 0.0 0.0 0.0 ✓ 15r2 0.0 0.0 0.0 0.0 ✓ 15r2 0.0 0.0 0.0 0.0 ✓ 15r2 0.0 0.0 0.0 0.0 ✓ 15r2 0.0 0.0 0.0 0.0 ✓ 15r2 0.0 0.0 0.0 0.0 ✓
15r3 0.0 0.0 0.0 0.0 ✓ 15r3 0.0 0.0 0.0 0.0 ✓ 15r3 0.0 0.0 0.0 0.0 ✓ 15r3 0.0 0.0 0.0 0.0 ✓ 15r3 0.0 0.0 0.0 0.0 ✓ 15r3 0.0 0.0 0.0 0.0 ✓ 15r3 0.0 0.0 0.0 0.0 ✓ 15r3 0.0 0.0 0.0 0.0 ✓

30r1 0.0 0.0 0.0 0.0 ✓ 30r1 0.0 0.0 0.0 0.0 ✓ 30r1 0.0 0.0 0.0 0.0 ✓ 30r1 0.0 0.0 0.0 0.0 ✓ 30r1 0.0 0.0 0.0 0.0 ✓ 30r1 0.0 0.0 0.0 0.0 ✓ 30r1 0.0 0.0 0.0 0.0 ✓ 30r1 0.0 0.0 0.0 0.0 ✓
30r2 0.0 0.0 0.0 0.0 ✓ 30r2 0.0 0.0 0.0 0.0 ✓ 30r2 0.0 0.0 0.0 0.0 ✓ 30r2 0.0 0.0 0.0 0.0 ✓ 30r2 0.0 0.0 0.0 0.0 ✓ 30r2 0.0 0.0 0.0 0.0 ✓ 30r2 0.0 0.0 0.0 0.0 ✓ 30r2 0.0 0.0 0.0 0.0 ✓
30r3 0.0 0.0 0.0 0.0 ✓ 30r3 0.0 0.0 0.0 0.0 ✓ 30r3 0.0 0.0 0.0 0.0 ✓ 30r3 0.0 0.0 0.0 0.0 ✓ 30r3 0.0 0.0 0.0 0.0 ✓ 30r3 0.0 0.0 0.0 0.0 ✓ 30r3 0.0 0.0 0.0 0.0 ✓ 30r3 0.0 0.0 0.0 0.0 ✓

50r1 0.0 0.0 0.0 0.0 ✓ 50r1 0.0 0.0 0.0 0.0 ✓ 50r1 0.0 0.0 0.0 0.0 ✓ 50r1 0.0 0.0 0.0 0.0 ✓ 50r1 0.0 0.0 0.0 0.0 ✓ 50r1 0.0 0.0 0.0 0.0 ✓ 50r1 0.0 0.0 0.0 0.0 ✓ 50r1 0.0 0.0 0.0 0.0 ✓
50r2 0.0 0.0 0.0 0.0 ✓ 50r2 0.0 0.0 0.0 0.0 ✓ 50r2 0.0 0.0 0.0 0.0 ✓ 50r2 0.0 0.0 0.0 0.0 ✓ 50r2 0.0 0.0 0.0 0.0 ✓ 50r2 0.0 0.0 0.0 0.0 ✓ 50r2 0.0 0.0 0.0 0.0 ✓ 50r2 0.0 0.0 0.0 0.0 ✓
50r3 0.0 0.0 0.0 0.0 ✓ 50r3 0.0 0.0 0.0 0.0 ✓ 50r3 0.0 0.0 0.0 0.0 ✓ 50r3 0.0 0.0 0.0 0.0 ✓ 50r3 0.0 0.0 0.0 0.0 ✓ 50r3 0.0 0.0 0.0 0.0 ✓ 50r3 0.0 0.0 0.0 0.0 ✓ 50r3 0.0 0.0 0.0 0.0 ✓

100r1 0.0 0.0 0.0 0.0 ✓ 100r1 0.0 0.0 0.0 0.0 ✓ 100r1 0.0 0.0 0.0 0.0 ✓ 100r1 0.0 0.0 0.0 0.0 ✓ 100r1 0.0 0.0 0.0 0.0 ✓ 100r1 0.0 0.0 0.0 0.0 ✓ 100r1 0.0 0.0 0.0 0.0 ✓ 100r1 0.0 0.0 0.0 0.0 ✓
100r2 0.0 0.0 0.0 0.0 ✓ 100r2 0.0 0.0 0.0 0.0 ✓ 100r2 0.0 0.0 0.0 0.0 ✓ 100r2 0.0 0.0 0.0 0.0 ✓ 100r2 0.0 0.0 0.0 0.0 ✓ 100r2 0.0 0.0 0.0 0.0 ✓ 100r2 0.0 0.0 0.0 0.0 ✓ 100r2 0.0 0.0 0.0 0.0 ✓
100r3 0.0 0.0 0.0 0.0 ✓ 100r3 0.0 0.0 0.0 0.0 ✓ 100r3 0.0 0.0 0.0 0.0 ✓ 100r3 0.0 0.0 0.0 0.0 ✓ 100r3 0.0 0.0 0.0 0.0 ✓ 100r3 0.0 0.0 0.0 0.0 ✓ 100r3 0.0 0.0 0.0 0.0 ✓ 100r3 0.0 0.0 0.0 0.0 ✓

150r1 0.0 0.0 0.0 0.0 ✓ 150r1 0.0 0.0 0.0 0.0 ✓ 150r1 0.0 0.0 0.0 0.0 ✓ 150r1 0.0 0.0 0.0 0.0 ✓ 150r1 0.0 0.0 0.0 0.0 ✓ 150r1 0.0 0.0 0.0 0.0 ✓ 150r1 0.0 0.0 0.0 0.0 ✓ 150r1 0.0 0.0 0.0 0.0 ✓
150r2 0.0 0.0 0.0 0.0 ✓ 150r2 0.0 0.0 0.0 0.0 ✓ 150r2 0.0 0.0 0.0 0.0 ✓ 150r2 0.0 0.0 0.0 0.0 ✓ 150r2 0.0 0.0 0.0 0.0 ✓ 150r2 0.0 0.0 0.0 0.0 ✓ 150r2 0.0 0.0 0.0 0.0 ✓ 150r2 0.0 0.0 0.0 0.0 ✓
150r3 0.0 0.0 0.0 0.0 ✓ 150r3 0.0 0.0 0.0 0.0 ✓ 150r3 0.0 0.0 0.0 0.0 ✓ 150r3 0.0 0.0 0.0 0.0 ✓ 150r3 0.0 0.0 0.0 0.0 ✓ 150r3 0.0 0.0 0.0 0.0 ✓ 150r3 0.0 0.0 0.0 0.0 ✓ 150r3 0.0 0.0 0.0 0.0 ✓

200r1 0.0 0.0 0.0 0.0 ✓ 200r1 0.0 0.0 0.0 0.0 ✓ 200r1 0.0 0.0 0.0 0.0 ✓ 200r1 0.0 0.0 0.0 0.0 ✓ 200r1 0.0 0.0 0.0 0.0 ✓ 200r1 0.0 0.0 0.0 0.0 ✓ 200r1 0.0 0.0 0.0 0.0 ✓ 200r1 0.0 0.0 0.0 0.0 ✓
200r2 0.0 0.0 0.0 0.0 ✓ 200r2 0.0 0.0 0.0 0.0 ✓ 200r2 0.0 0.0 0.0 0.0 ✓ 200r2 0.0 0.0 0.0 0.0 ✓ 200r2 0.0 0.0 0.0 0.0 ✓ 200r2 0.0 0.0 0.0 0.0 ✓ 200r2 0.0 0.0 0.0 0.0 ✓ 200r2 0.0 0.0 0.0 0.0 ✓
200r3 0.0 0.0 0.0 0.0 ✓ 200r3 0.0 0.0 0.0 0.0 ✓ 200r3 0.0 0.0 0.0 0.0 ✓ 200r3 0.0 0.0 0.0 0.0 ✓ 200r3 0.0 0.0 0.0 0.0 ✓ 200r3 0.0 0.0 0.0 0.0 ✓ 200r3 0.0 0.0 0.0 0.0 ✓ 200r3 0.0 0.0 0.0 0.0 ✓

250r1 0.0 0.0 0.0 0.0 ✓ 250r1 0.0 0.0 0.0 0.0 ✓ 250r1 0.0 0.0 0.0 0.0 ✓ 250r1 0.0 0.0 0.0 0.0 ✓ 250r1 0.0 0.0 0.0 0.0 ✓ 250r1 0.0 0.0 0.0 0.0 ✓ 250r1 0.0 0.0 0.0 0.0 ✓ 250r1 0.0 0.0 0.0 0.0 ✓
250r2 0.0 0.0 0.0 0.0 ✓ 250r2 0.0 0.0 0.0 0.0 ✓ 250r2 0.0 0.0 0.0 0.0 ✓ 250r2 0.0 0.0 0.0 0.0 ✓ 250r2 0.0 0.0 0.0 0.0 ✓ 250r2 0.0 0.0 0.0 0.0 ✓ 250r2 0.0 0.0 0.0 0.0 ✓ 250r2 0.0 0.0 0.0 0.0 ✓
250r3 0.0 0.0 0.0 0.0 ✓ 250r3 0.0 0.0 0.0 0.0 ✓ 250r3 0.0 0.0 0.0 0.0 ✓ 250r3 0.0 0.0 0.0 0.0 ✓ 250r3 0.0 0.0 0.0 0.0 ✓ 250r3 0.0 0.0 0.0 0.0 ✓ 250r3 0.0 0.0 0.0 0.0 ✓ 250r3 0.0 0.0 0.0 0.0 ✓

Table 16: Quality evaluation of the GRN, IN, LN and MMO datasets proposed in DoSI.

Name Metrics Name Metrics Name Metrics Name Metrics Name Metrics Name Metrics Name Metrics Name Metrics

GRN_SP XFC XTC XAC XLC Prop. GRN_NS XFC XTC XAC XLC Prop. IN_SP XFC XTC XAC XLC Prop. IN_NS XFC XTC XAC XLC Prop. LN_SP XFC XTC XAC XLC Prop. LN_NS XFC XTC XAC XLC Prop. MMO_SP XFC XTC XAC XLC Prop. MMO_NS XFC XTC XAC XLC Prop.

15r1 0.0 0.0 0.0 0.0 ✓ 15r1 0.0 0.0 0.0 0.0 ✓ 15r1 0.0 0.0 0.0 0.0 ✓ 15r1 0.0 0.0 0.0 0.0 ✓ 15r1 0.0 0.0 0.0 0.0 ✓ 15r1 0.0 0.0 0.0 0.0 ✓ 15r1 0.0 0.0 0.0 0.0 ✓ 15r1 0.0 0.0 0.0 0.0 ✓
15r2 0.0 0.0 0.0 0.0 ✓ 15r2 0.0 0.0 0.0 0.0 ✓ 15r2 0.0 0.0 0.0 0.0 ✓ 15r2 0.0 0.0 0.0 0.0 ✓ 15r2 0.0 0.0 0.0 0.0 ✓ 15r2 0.0 0.0 0.0 0.0 ✓ 15r2 0.0 0.0 0.0 0.0 ✓ 15r2 0.0 0.0 0.0 0.0 ✓
15r3 0.0 0.0 0.0 0.0 ✓ 15r3 0.0 0.0 0.0 0.0 ✓ 15r3 0.0 0.0 0.0 0.0 ✓ 15r3 0.0 0.0 0.0 0.0 ✓ 15r3 0.0 0.0 0.0 0.0 ✓ 15r3 0.0 0.0 0.0 0.0 ✓ 15r3 0.0 0.0 0.0 0.0 ✓ 15r3 0.0 0.0 0.0 0.0 ✓

30r1 0.0 0.0 0.0 0.0 ✓ 30r1 0.0 0.0 0.0 0.0 ✓ 30r1 0.0 0.0 0.0 0.0 ✓ 30r1 0.0 0.0 0.0 0.0 ✓ 30r1 0.0 0.0 0.0 0.0 ✓ 30r1 0.0 0.0 0.0 0.0 ✓ 30r1 0.0 0.0 0.0 0.0 ✓ 30r1 0.0 0.0 0.0 0.0 ✓
30r2 0.0 0.0 0.0 0.0 ✓ 30r2 0.0 0.0 0.0 0.0 ✓ 30r2 0.0 0.0 0.0 0.0 ✓ 30r2 0.0 0.0 0.0 0.0 ✓ 30r2 0.0 0.0 0.0 0.0 ✓ 30r2 0.0 0.0 0.0 0.0 ✓ 30r2 0.0 0.0 0.0 0.0 ✓ 30r2 0.0 0.0 0.0 0.0 ✓
30r3 0.0 0.0 0.0 0.0 ✓ 30r3 0.0 0.0 0.0 0.0 ✓ 30r3 0.0 0.0 0.0 0.0 ✓ 30r3 0.0 0.0 0.0 0.0 ✓ 30r3 0.0 0.0 0.0 0.0 ✓ 30r3 0.0 0.0 0.0 0.0 ✓ 30r3 0.0 0.0 0.0 0.0 ✓ 30r3 0.0 0.0 0.0 0.0 ✓

50r1 0.0 0.0 0.0 0.0 ✓ 50r1 0.0 0.0 0.0 0.0 ✓ 50r1 0.0 0.0 0.0 0.0 ✓ 50r1 0.0 0.0 0.0 0.0 ✓ 50r1 0.0 0.0 0.0 0.0 ✓ 50r1 0.0 0.0 0.0 0.0 ✓ 50r1 0.0 0.0 0.0 0.0 ✓ 50r1 0.0 0.0 0.0 0.0 ✓
50r2 0.0 0.0 0.0 0.0 ✓ 50r2 0.0 0.0 0.0 0.0 ✓ 50r2 0.0 0.0 0.0 0.0 ✓ 50r2 0.0 0.0 0.0 0.0 ✓ 50r2 0.0 0.0 0.0 0.0 ✓ 50r2 0.0 0.0 0.0 0.0 ✓ 50r2 0.0 0.0 0.0 0.0 ✓ 50r2 0.0 0.0 0.0 0.0 ✓
50r3 0.0 0.0 0.0 0.0 ✓ 50r3 0.0 0.0 0.0 0.0 ✓ 50r3 0.0 0.0 0.0 0.0 ✓ 50r3 0.0 0.0 0.0 0.0 ✓ 50r3 0.0 0.0 0.0 0.0 ✓ 50r3 0.0 0.0 0.0 0.0 ✓ 50r3 0.0 0.0 0.0 0.0 ✓ 50r3 0.0 0.0 0.0 0.0 ✓

100r1 0.0 0.0 0.0 0.0 ✓ 100r1 0.0 0.0 0.0 0.0 ✓ 100r1 0.0 0.0 0.0 0.0 ✓ 100r1 0.0 0.0 0.0 0.0 ✓ 100r1 0.0 0.0 0.0 0.0 ✓ 100r1 0.0 0.0 0.0 0.0 ✓ 100r1 0.0 0.0 0.0 0.0 ✓ 100r1 0.0 0.0 0.0 0.0 ✓
100r2 0.0 0.0 0.0 0.0 ✓ 100r2 0.0 0.0 0.0 0.0 ✓ 100r2 0.0 0.0 0.0 0.0 ✓ 100r2 0.0 0.0 0.0 0.0 ✓ 100r2 0.0 0.0 0.0 0.0 ✓ 100r2 0.0 0.0 0.0 0.0 ✓ 100r2 0.0 0.0 0.0 0.0 ✓ 100r2 0.0 0.0 0.0 0.0 ✓
100r3 0.0 0.0 0.0 0.0 ✓ 100r3 0.0 0.0 0.0 0.0 ✓ 100r3 0.0 0.0 0.0 0.0 ✓ 100r3 0.0 0.0 0.0 0.0 ✓ 100r3 0.0 0.0 0.0 0.0 ✓ 100r3 0.0 0.0 0.0 0.0 ✓ 100r3 0.0 0.0 0.0 0.0 ✓ 100r3 0.0 0.0 0.0 0.0 ✓

150r1 0.0 0.0 0.0 0.0 ✓ 150r1 0.0 0.0 0.0 0.0 ✓ 150r1 0.0 0.0 0.0 0.0 ✓ 150r1 0.0 0.0 0.0 0.0 ✓ 150r1 0.0 0.0 0.0 0.0 ✓ 150r1 0.0 0.0 0.0 0.0 ✓ 150r1 0.0 0.0 0.0 0.0 ✓ 150r1 0.0 0.0 0.0 0.0 ✓
150r2 0.0 0.0 0.0 0.0 ✓ 150r2 0.0 0.0 0.0 0.0 ✓ 150r2 0.0 0.0 0.0 0.0 ✓ 150r2 0.0 0.0 0.0 0.0 ✓ 150r2 0.0 0.0 0.0 0.0 ✓ 150r2 0.0 0.0 0.0 0.0 ✓ 150r2 0.0 0.0 0.0 0.0 ✓ 150r2 0.0 0.0 0.0 0.0 ✓
150r3 0.0 0.0 0.0 0.0 ✓ 150r3 0.0 0.0 0.0 0.0 ✓ 150r3 0.0 0.0 0.0 0.0 ✓ 150r3 0.0 0.0 0.0 0.0 ✓ 150r3 0.0 0.0 0.0 0.0 ✓ 150r3 0.0 0.0 0.0 0.0 ✓ 150r3 0.0 0.0 0.0 0.0 ✓ 150r3 0.0 0.0 0.0 0.0 ✓

200r1 0.0 0.0 0.0 0.0 ✓ 200r1 0.0 0.0 0.0 0.0 ✓ 200r1 0.0 0.0 0.0 0.0 ✓ 200r1 0.0 0.0 0.0 0.0 ✓ 200r1 0.0 0.0 0.0 0.0 ✓ 200r1 0.0 0.0 0.0 0.0 ✓ 200r1 0.0 0.0 0.0 0.0 ✓ 200r1 0.0 0.0 0.0 0.0 ✓
200r2 0.0 0.0 0.0 0.0 ✓ 200r2 0.0 0.0 0.0 0.0 ✓ 200r2 0.0 0.0 0.0 0.0 ✓ 200r2 0.0 0.0 0.0 0.0 ✓ 200r2 0.0 0.0 0.0 0.0 ✓ 200r2 0.0 0.0 0.0 0.0 ✓ 200r2 0.0 0.0 0.0 0.0 ✓ 200r2 0.0 0.0 0.0 0.0 ✓
200r3 0.0 0.0 0.0 0.0 ✓ 200r3 0.0 0.0 0.0 0.0 ✓ 200r3 0.0 0.0 0.0 0.0 ✓ 200r3 0.0 0.0 0.0 0.0 ✓ 200r3 0.0 0.0 0.0 0.0 ✓ 200r3 0.0 0.0 0.0 0.0 ✓ 200r3 0.0 0.0 0.0 0.0 ✓ 200r3 0.0 0.0 0.0 0.0 ✓

250r1 0.0 0.0 0.0 0.0 ✓ 250r1 0.0 0.0 0.0 0.0 ✓ 250r1 0.0 0.0 0.0 0.0 ✓ 250r1 0.0 0.0 0.0 0.0 ✓ 250r1 0.0 0.0 0.0 0.0 ✓ 250r1 0.0 0.0 0.0 0.0 ✓ 250r1 0.0 0.0 0.0 0.0 ✓ 250r1 0.0 0.0 0.0 0.0 ✓
250r2 0.0 0.0 0.0 0.0 ✓ 250r2 0.0 0.0 0.0 0.0 ✓ 250r2 0.0 0.0 0.0 0.0 ✓ 250r2 0.0 0.0 0.0 0.0 ✓ 250r2 0.0 0.0 0.0 0.0 ✓ 250r2 0.0 0.0 0.0 0.0 ✓ 250r2 0.0 0.0 0.0 0.0 ✓ 250r2 0.0 0.0 0.0 0.0 ✓
250r3 0.0 0.0 0.0 0.0 ✓ 250r3 0.0 0.0 0.0 0.0 ✓ 250r3 0.0 0.0 0.0 0.0 ✓ 250r3 0.0 0.0 0.0 0.0 ✓ 250r3 0.0 0.0 0.0 0.0 ✓ 250r3 0.0 0.0 0.0 0.0 ✓ 250r3 0.0 0.0 0.0 0.0 ✓ 250r3 0.0 0.0 0.0 0.0 ✓

Table 17: Quality evaluation of the RNLO, SN and VN datasets proposed in DoSI.

Name Metrics Name Metrics Name Metrics Name Metrics Name Metrics Name Metrics

RNLO_SP XFC XTC XAC XLC Prop. RNLO_NS XFC XTC XAC XLC Prop. SN_SP XFC XTC XAC XLC Prop. SN_NS XFC XTC XAC XLC Prop. VN_SP XFC XTC XAC XLC Prop. VN_NS XFC XTC XAC XLC Prop.

15r1 0.0 0.0 0.0 0.0 ✓ 15r1 0.0 0.0 0.0 0.0 ✓ 15r1 0.0 0.0 0.0 0.0 ✓ 15r1 0.0 0.0 0.0 0.0 ✓ 15r1 0.0 0.0 0.0 0.0 ✓ 15r1 0.0 0.0 0.0 0.0 ✓
15r2 0.0 0.0 0.0 0.0 ✓ 15r2 0.0 0.0 0.0 0.0 ✓ 15r2 0.0 0.0 0.0 0.0 ✓ 15r2 0.0 0.0 0.0 0.0 ✓ 15r2 0.0 0.0 0.0 0.0 ✓ 15r2 0.0 0.0 0.0 0.0 ✓
15r3 0.0 0.0 0.0 0.0 ✓ 15r3 0.0 0.0 0.0 0.0 ✓ 15r3 0.0 0.0 0.0 0.0 ✓ 15r3 0.0 0.0 0.0 0.0 ✓ 15r3 0.0 0.0 0.0 0.0 ✓ 15r3 0.0 0.0 0.0 0.0 ✓

30r1 0.0 0.0 0.0 0.0 ✓ 30r1 0.0 0.0 0.0 0.0 ✓ 30r1 0.0 0.0 0.0 0.0 ✓ 30r1 0.0 0.0 0.0 0.0 ✓ 30r1 0.0 0.0 0.0 0.0 ✓ 30r1 0.0 0.0 0.0 0.0 ✓
30r2 0.0 0.0 0.0 0.0 ✓ 30r2 0.0 0.0 0.0 0.0 ✓ 30r2 0.0 0.0 0.0 0.0 ✓ 30r2 0.0 0.0 0.0 0.0 ✓ 30r2 0.0 0.0 0.0 0.0 ✓ 30r2 0.0 0.0 0.0 0.0 ✓
30r3 0.0 0.0 0.0 0.0 ✓ 30r3 0.0 0.0 0.0 0.0 ✓ 30r3 0.0 0.0 0.0 0.0 ✓ 30r3 0.0 0.0 0.0 0.0 ✓ 30r3 0.0 0.0 0.0 0.0 ✓ 30r3 0.0 0.0 0.0 0.0 ✓

50r1 0.0 0.0 0.0 0.0 ✓ 50r1 0.0 0.0 0.0 0.0 ✓ 50r1 0.0 0.0 0.0 0.0 ✓ 50r1 0.0 0.0 0.0 0.0 ✓ 50r1 0.0 0.0 0.0 0.0 ✓ 50r1 0.0 0.0 0.0 0.0 ✓
50r2 0.0 0.0 0.0 0.0 ✓ 50r2 0.0 0.0 0.0 0.0 ✓ 50r2 0.0 0.0 0.0 0.0 ✓ 50r2 0.0 0.0 0.0 0.0 ✓ 50r2 0.0 0.0 0.0 0.0 ✓ 50r2 0.0 0.0 0.0 0.0 ✓
50r3 0.0 0.0 0.0 0.0 ✓ 50r3 0.0 0.0 0.0 0.0 ✓ 50r3 0.0 0.0 0.0 0.0 ✓ 50r3 0.0 0.0 0.0 0.0 ✓ 50r3 0.0 0.0 0.0 0.0 ✓ 50r3 0.0 0.0 0.0 0.0 ✓

100r1 0.0 0.0 0.0 0.0 ✓ 100r1 0.0 0.0 0.0 0.0 ✓ 100r1 0.0 0.0 0.0 0.0 ✓ 100r1 0.0 0.0 0.0 0.0 ✓ 100r1 0.0 0.0 0.0 0.0 ✓ 100r1 0.0 0.0 0.0 0.0 ✓
100r2 0.0 0.0 0.0 0.0 ✓ 100r2 0.0 0.0 0.0 0.0 ✓ 100r2 0.0 0.0 0.0 0.0 ✓ 100r2 0.0 0.0 0.0 0.0 ✓ 100r2 0.0 0.0 0.0 0.0 ✓ 100r2 0.0 0.0 0.0 0.0 ✓
100r3 0.0 0.0 0.0 0.0 ✓ 100r3 0.0 0.0 0.0 0.0 ✓ 100r3 0.0 0.0 0.0 0.0 ✓ 100r3 0.0 0.0 0.0 0.0 ✓ 100r3 0.0 0.0 0.0 0.0 ✓ 100r3 0.0 0.0 0.0 0.0 ✓

150r1 0.0 0.0 0.0 0.0 ✓ 150r1 0.0 0.0 0.0 0.0 ✓ 150r1 0.0 0.0 0.0 0.0 ✓ 150r1 0.0 0.0 0.0 0.0 ✓ 150r1 0.0 0.0 0.0 0.0 ✓ 150r1 0.0 0.0 0.0 0.0 ✓
150r2 0.0 0.0 0.0 0.0 ✓ 150r2 0.0 0.0 0.0 0.0 ✓ 150r2 0.0 0.0 0.0 0.0 ✓ 150r2 0.0 0.0 0.0 0.0 ✓ 150r2 0.0 0.0 0.0 0.0 ✓ 150r2 0.0 0.0 0.0 0.0 ✓
150r3 0.0 0.0 0.0 0.0 ✓ 150r3 0.0 0.0 0.0 0.0 ✓ 150r3 0.0 0.0 0.0 0.0 ✓ 150r3 0.0 0.0 0.0 0.0 ✓ 150r3 0.0 0.0 0.0 0.0 ✓ 150r3 0.0 0.0 0.0 0.0 ✓

200r1 0.0 0.0 0.0 0.0 ✓ 200r1 0.0 0.0 0.0 0.0 ✓ 200r1 0.0 0.0 0.0 0.0 ✓ 200r1 0.0 0.0 0.0 0.0 ✓ 200r1 0.0 0.0 0.0 0.0 ✓ 200r1 0.0 0.0 0.0 0.0 ✓
200r2 0.0 0.0 0.0 0.0 ✓ 200r2 0.0 0.0 0.0 0.0 ✓ 200r2 0.0 0.0 0.0 0.0 ✓ 200r2 0.0 0.0 0.0 0.0 ✓ 200r2 0.0 0.0 0.0 0.0 ✓ 200r2 0.0 0.0 0.0 0.0 ✓
200r3 0.0 0.0 0.0 0.0 ✓ 200r3 0.0 0.0 0.0 0.0 ✓ 200r3 0.0 0.0 0.0 0.0 ✓ 200r3 0.0 0.0 0.0 0.0 ✓ 200r3 0.0 0.0 0.0 0.0 ✓ 200r3 0.0 0.0 0.0 0.0 ✓

250r1 0.0 0.0 0.0 0.0 ✓ 250r1 0.0 0.0 0.0 0.0 ✓ 250r1 0.0 0.0 0.0 0.0 ✓ 250r1 0.0 0.0 0.0 0.0 ✓ 250r1 0.0 0.0 0.0 0.0 ✓ 250r1 0.0 0.0 0.0 0.0 ✓
250r2 0.0 0.0 0.0 0.0 ✓ 250r2 0.0 0.0 0.0 0.0 ✓ 250r2 0.0 0.0 0.0 0.0 ✓ 250r2 0.0 0.0 0.0 0.0 ✓ 250r2 0.0 0.0 0.0 0.0 ✓ 250r2 0.0 0.0 0.0 0.0 ✓
250r3 0.0 0.0 0.0 0.0 ✓ 250r3 0.0 0.0 0.0 0.0 ✓ 250r3 0.0 0.0 0.0 0.0 ✓ 250r3 0.0 0.0 0.0 0.0 ✓ 250r3 0.0 0.0 0.0 0.0 ✓ 250r3 0.0 0.0 0.0 0.0 ✓

36

B.4 More details on EMT dataset

The EMT dataset contains observations of the TGFB1-induced epithelial-mesenchymal transition
from the A549 cancer cell line. This dataset was collected by Cook and Vanderhyden [26] and
was processed by Sha et al. [92]. The raw sequencing files [26] can be retrieved from https:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147405 under the license of CC BY
4.0, while the processed gene expression matrixes [92] can be retrieved from https://github.com/
yutongo/TIGON under the MIT License. This scRNA-seq dataset contains gene expression levels of
3,133 cells and 3,000 genes. The number of cells sampled at day t = 0, 1

3 , 1, 3, 7 are 577, 885, 788,
754, and 129, respectively. We query the interaction network of the top 50 high-variance genes in the
EMT dataset on the STRING database [97] and use this interaction network as the ground-truth GRN
for evaluation. Isolated components are removed in the ground-truth GRN, resulting in a network
with 36 nodes and 103 undirected edges.

We reconstructed the cellular trajectories from the distributions of gene expression across time. We
used Waddington-OT [91] to build the transition matrixes between cells in consecutive time steps
using optimal transport (OT). For each time step ti, denote the number of genes as g, the number of
cells and gene expression matrix sampled at ti as ci and Xti ∈ Rg×ci , respectively. For each pair
of gene expression matrix Xti , Xti+1 at time i, i+ 1, Waddington-OT first computes the pairwise
cell Euclidean distance matrix M ∈ Rci×ci+1 as the cost matrix. Waddington-OT then solves the
following unbalanced entropy-regularized OT optimization problem:

γti→ti+1
= argmin

γ∈Rci×ci+1

∑
p,q

γp,qMp,q + ϵ
∑
p,q

γp,q log γp,q (10)

subject to
∑
p

γp,q =
1

ci∑
q

γp,q =
1

ci+1

γp,q ≥ 0,

where p, q are the auxiliary cell indexes for time ti, ti+1, γti→ti+1
is the optimal transport plan

between Xti and Xti+1 , and ϵ is the entropic regularization term. We view the optimal transport
plan as a transition matrix between cells in Xti and Xti+1 , and reconstruct the cell trajectory Vp

by iteratively finding the next most probable cell at the next time step through the transition matrix
γti→ti+1

. Finally, we convert the irregular cell trajectories at 5-time points into regular time series
with 22-time points using piecewise cubic hermite interpolating polynomial [36], where the time
difference between consecutive interpolated time steps is determined by the greatest common divisor
of the sample times.

C Further implementation details of structural inference methods

In this section, we demonstrate the implementation details of the structural inference methods in this
work. For every method, we show the implementation, computational resources, and if possible, the
choice of hyperparameters.

The TIGRESS method, information-theory-based methods, and tree-based methods assumed an
input of normalized 1D gene expression level, so we performed an extra hyperparameter search of
the normalization method on top of the original method implementation. Among “NetSims" and
“Springs" simulations, only the former gives 1D feature, so all methods are tested only on “NetSims"
dataset. For each trajectory, we denote vti as the scalar neural signal for node i at time t. The
normalization methods included:

• None: no normalization,

• Symlog: symmetrically shifted logarithm transform with equation f(vti) = sign(vti)log(1 + |vti |),
• Unitary: L2 normalization on the node dimension, and

• Z-score: standardization using standard deviation on the node dimension.

37

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147405
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147405
https://github.com/yutongo/TIGON
https://github.com/yutongo/TIGON

C.1 ppcor

Implementation. We use the official implementation of ppcor from the R package
ppcor [57] with a customized wrapper. Our wrapper will parse multiple arguments to
select a set of targeted trajectories for inference, transform trajectories into a suitable for-
mat, feed each trajectory into the ppcor algorithm, and store the output into designated
directories. Our implementation can be found at https://github.com/wang422003/
Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/
tree/main/src/models/ppcor. The method is implemented by ppcor [57] in R with
the help of NumPy [45] Python package to store generated trajectories, reticulate from
https://github.com/rstudio/reticulate to load Python variables into the R environment,
stringr from https://stringr.tidyverse.org for string operation, and optparse from
https://github.com/trevorld/r-optparse to produce Python-style argument parser.

Computational resources. We infer networks on Amazon EC2 C7g.2xlarge instances equipped with
64 vCPUs powered by AWS Graviton3 processors and 128 GB RAM. Each inference took one vCPU
to run.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the normalization method, (2) the correlation statistics, and (3) the function to compute partial or
semi-partial correlation. The corresponding search spaces are:

• the normalization method: None, Symlog, Unitary, Z-score,

• the correlation statistics: pearson, spearman,

• the function to compute partial or semi-partial correlation: spcor, pcor.

We search for the values of these hyperparameters on the NetSims simulation trajectories of CRNA
graph of 15 nodes, and we find the best hyperparameters to be: (1) the normalization method: None,
(2) the MI estimation method: spearman, and (3) the function to compute partial or semi-partial
correlation: pcor. Due to computational requirements, we do not perform the hyperparameter search
on every trajectory but use this set of choices for all of the experiments. We argue that there might be
other possible values, but the effect on the structural inference results is minor.

C.2 TIGRESS

Implementation. We use the official implementation of TIGRESS by the author at
https://github.com/jpvert/tigress with a customized wrapper. Our wrapper will
parse multiple arguments to select a set of targeted trajectories for inference, transform trajectories
into a suitable format, feed each trajectory into the TIGRESS algorithm, and store the output in
designated directories. Our implementation can be found at https://github.com/wang422003/
Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/
tree/main/src/models/TIGRESS. The method is implemented in R with the help
of NumPy [45] Python package to store generated trajectories, reticulate from
https://github.com/rstudio/reticulate to load Python variables into the R environ-
ment, stringr from https://stringr.tidyverse.org for string operation, and optparse
from https://github.com/trevorld/r-optparse to produce Python-style argument parser.

Computational resources. We infer networks on our clusters with 128 AMD Epyc ROME 7H12 @
2.6 GHz CPUs and 256 GB RAM. Each inference took the whole cluster to run.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the normalization method, (2) the noise level in stability selection, (3) the number of steps in least
angle regression (LARS), (4) the number of random subsampling in stability selection, (5) the
scoring method in stability selection, and (6) the Boolean to perform node-level standardization. The
corresponding search spaces are:

• the normalization method: None, Symlog, Unitary, Z-score,

• the noise level in stability selection: 0.1, 0.2, 0.5,

• the number of steps in LARS: 3, 5, 8, 10,

• the number of random subsampling in stability selection: 50, 100, 200, 500,

38

https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/ppcor
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/ppcor
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/ppcor
https://github.com/rstudio/reticulate
https://stringr.tidyverse.org
https://github.com/trevorld/r-optparse
https://github.com/jpvert/tigress
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/TIGRESS
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/TIGRESS
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/TIGRESS
https://github.com/rstudio/reticulate
https://stringr.tidyverse.org
https://github.com/trevorld/r-optparse

• the scoring method in stability selection: area, max,

• the Boolean to perform node-level standardization: True, False.

We search for the values of these hyperparameters on the NetSims simulation trajectories of CRNA
graph of 15 nodes, and we find the best hyperparameters to be: (1) the normalization method: Symlog,
(2) the noise level in stability selection: 0.5, (3) the number of steps in LARS: 5, (4) the number of
random subsampling in stability selection: 500, (5) the scoring method in stability selection: area,
and (6) the Boolean to perform node-level standardization: True. Due to computational requirements,
we do not perform the hyperparameter search on every trajectory but use this set of choices for all of
the experiments. We argue that there might be other possible values, but the effect on the structural
inference results is minor.

C.3 ARACNe

Implementation. We use the implementation of ARACNe by the Bioconductor [49] pack-
age minet [75] with a customized wrapper. Our wrapper will parse multiple arguments
to select a set of targeted trajectories for inference, transform trajectories into a suitable
format, feed each trajectory into the ARACNe algorithm, and store the output into desig-
nated directories. Our implementation can be found at https://github.com/wang422003/
Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/
tree/main/src/models/ARACNE. The method is implemented by minet [75] in R with
the help of NumPy [45] Python package to store generated trajectories, reticulate from
https://github.com/rstudio/reticulate to load Python variables into the R environment,
stringr from https://stringr.tidyverse.org for string operation, and optparse from
https://github.com/trevorld/r-optparse to produce Python-style argument parser.

Computational resources. We infer networks on Amazon EC2 C7g.2xlarge instances equipped with
64 vCPUs powered by AWS Graviton3 processors and 128 GB RAM. Each inference took one vCPU
to run.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the normalization method, (2) the MI estimation method, (3) the discretization method, and (4) the
MI threshold for edge removal. The corresponding search spaces are:

• the normalization method: None, Symlog, Unitary, Z-score,

• the MI estimation method: mi.empirical, mi.mm, mi.shrink, mi.sg, pearson,
spearman,

• the discretization method: equalfreq, equalwidth, globalequalwidth,

• the MI threshold for edge removal: 0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10.

We search for the values of these hyperparameters on the NetSims simulation trajectories of CRNA
graph of 15 nodes, and we find the best hyperparameters to be: (1) the normalization method: Symlog,
(2) the MI estimation method: spearman, (3) the discretization method: equalfreq, and (4) the
MI threshold for edge removal: 0.1. Due to computational requirements, we do not perform the
hyperparameter search on every trajectory but use this set of choices for all of the experiments. We
argue that there might be other possible values, but the effect on the structural inference results is
minor.

C.4 CLR

Implementation. We use the implementation of CLR by the Bioconductor [49] pack-
age minet [75] with a customized wrapper. Our wrapper will parse multiple arguments
to select a set of targeted trajectories for inference, transform trajectories into a suitable
format, feed each trajectory into the CLR algorithm, and store the output into designated
directories. Our implementation can be found at https://github.com/wang422003/
Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/
tree/main/src/models/CLR. The method is implemented by minet [75] in R with
the help of NumPy [45] Python package to store generated trajectories, reticulate from
https://github.com/rstudio/reticulate to load Python variables into the R environment,

39

https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/ARACNE
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/ARACNE
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/ARACNE
https://github.com/rstudio/reticulate
https://stringr.tidyverse.org
https://github.com/trevorld/r-optparse
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/CLR
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/CLR
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/CLR
https://github.com/rstudio/reticulate

stringr from https://stringr.tidyverse.org for string operation, and optparse from
https://github.com/trevorld/r-optparse to produce Python-style argument parser.

Computational resources. We infer networks on Amazon EC2 C7g.2xlarge instances equipped with
64 vCPUs powered by AWS Graviton3 processors and 128 GB RAM. Each inference took one vCPU
to run.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the normalization method, (2) the MI estimation method, (3) the discretization method, and (4) the
Boolean to skip the diagonal entries. The corresponding search spaces are:

• the normalization method: None, Symlog, Unitary, Z-score,
• the MI estimation method: mi.empirical, mi.mm, mi.shrink, mi.sg, pearson,
spearman,

• the discretization method: equalfreq, equalwidth, globalequalwidth,
• the Boolean to skip the diagonal entries: True, False.

We search for the values of these hyperparameters on the NetSims simulation trajectories of CRNA
graph of 15 nodes, and we find the best hyperparameters to be: (1) the normalization method: Symlog,
(2) the MI estimation method: spearman, (3) the discretization method: equalfreq, and (4) the
Boolean to skip the diagonal entries: False. Due to computational requirements, we do not perform
the hyperparameter search on every trajectory but use this set of choices for all of the experiments.
We argue that there might be other possible values, but the effect on the structural inference results is
minor.

C.5 PIDC

Implementation. We use the official implementation of PIDC by the author at https:
//github.com/Tchanders/NetworkInference.jl with a customized wrapper. Our wrapper
will parse multiple arguments to select a set of targeted trajectories for inference, transform trajecto-
ries into a suitable format, feed each trajectory into the PIDC algorithm, and store the output into
designated directories. Our implementation can be found at https://github.com/wang422003/
Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/
tree/main/src/models/PIDC. The method is implemented in Julia [12] with the
help of NumPy [45] Python package to store generated trajectories, ArgParse.jl from
https://github.com/carlobaldassi/ArgParse.jl to parse command line arguments,
CSV.jl from https://github.com/JuliaData/CSV.jl to save and load .csv files,
DataFrames.jl from https://github.com/JuliaData/DataFrames.jl to manipulate
data array, and NPZ.jl from https://github.com/fhs/NPZ.jl to load .npy into the Julia
environment.

Computational resources. We infer networks on our clusters with 128 AMD Epyc ROME 7H12 @
2.6 GHz CPUs and 256 GB RAM. Each inference took one CPU to run.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the normalization method, (2) the discretizing method, (3) the probability distribution estimator, and
(4) the number of bins in discretization. The corresponding search spaces are:

• the normalization method: None, Symlog, Unitary, Z-score,
• the discretizing method: uniform_width, uniform_count,
• the probability distribution estimator: maximum_likelihood, miller_madow,
dirichlet, shrinkage,

• the number of bins in discretization: 4, 5, 10, 20, 100, 200, 500, 1000,
√
#Nodes.

We search for the values of these hyperparameters on the NetSims simulation trajectories of CRNA
graph of 15 nodes, and we find the best hyperparameters to be: (1) the normalization method:
Symlog, (2) the discretizing method: uniform_count, (3) the probability distribution estimator:
maximum_likelihood, and (4) the number of bins in discretization:

√
#Nodes. Due to computa-

tional requirements, we do not perform the hyperparameter search on every trajectory but use this
set of choices for all of the experiments. We argue that there might be other possible values, but the
effect on the structural inference results is minor.

40

https://stringr.tidyverse.org
https://github.com/trevorld/r-optparse
https://github.com/Tchanders/NetworkInference.jl
https://github.com/Tchanders/NetworkInference.jl
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/PIDC
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/PIDC
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/PIDC
https://github.com/carlobaldassi/ArgParse.jl
https://github.com/JuliaData/CSV.jl
https://github.com/JuliaData/DataFrames.jl
https://github.com/fhs/NPZ.jl

C.6 Scribe

Implementation. We optimize the official implementation of Scribe by the author at
https://github.com/aristoteleo/Scribe-py with a customized wrapper. Our wrap-
per will parse multiple arguments to select a set of targeted trajectories for inference, transform
trajectories into a suitable format, feed each trajectory into the Scribe algorithm, and store the
output into designated directories. Our implementation has customized causal_network.py
and information_estimators.py scripts so as to modify the hyperparameters directly from
command line arguments. We have also optimized the parallel support and computation efficiency
and kept minimal functionality for benchmarking purposes, at the same time maintaining its
general mechanism. Our implementation can be found at https://github.com/wang422003/
Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/
tree/main/src/models/scribe. The method is implemented in Python with the
help of NumPy [45] package to store generated trajectories and tqdm from https:
//github.com/tqdm/tqdm to create progress bars.

Computational resources. We infer networks on our clusters with 128 AMD Epyc ROME 7H12 @
2.6 GHz CPUs and 256 GB RAM. Each inference took the whole cluster to run.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the normalization method, (2) the MI estimator, (3) the number of nearest neighbors used in entropy
estimation, (4) the number of conditional variables under consideration in MI estimation (only valid
when the MI estimator is crdi or ucrdi), and (5) the Boolean for applying differentiation. The
corresponding search spaces are:

• the normalization method: None, Symlog, Unitary, Z-score,

• the MI estimator: rdi, urdi, crdi, ucrdi,

• the number of nearest neighbors used in entropy estimation: 2, 3, 4, 5,

• the number of conditional variables under consideration in MI estimation: 1, 2, 3, 4, 5,

• the Boolean for applying differentiation: True, False.

We search for the values of these hyperparameters on the NetSims simulation trajectories of CRNA
graph of 15 nodes, and we find the best hyperparameters to be: (1) the normalization method:
Unitary, (2) the MI estimator: urdi, (3) the number of nearest neighbors used in entropy estimation:
2, and (4) the Boolean for applying differentiation: False. Due to computational requirements, we
do not perform the hyperparameter search on every trajectory but use this set of choices for all of
the experiments. We argue that there might be other possible values, but the effect on the structural
inference results is minor.

C.7 dynGENIE3

Implementation. We optimize the official Python implementation of dynGENIE3 by the author
at https://github.com/vahuynh/dynGENIE3 with a customized wrapper. Our wrapper
will parse multiple arguments to select a set of targeted trajectories for inference, transform
trajectories into a suitable format, feed each trajectory into the dynGENIE3 algorithm, and
store the output in designated directories. Following the principle of maintaining dynGE-
NIE’s general mechanism, we have modified the dynGENIE3.py script so as to tune the
hyperparameters directly from command line arguments, increase computation efficiency on
big datasets, enable calculation of self-influence, and retain minimal functionality for bench-
marking purposes. Our implementation can be found at https://github.com/wang422003/
Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/
tree/main/src/models/dynGENIE3. The method is implemented in Python with the help of
NumPy [45] package to store generated trajectories.

Computational resources. We infer networks on our clusters with 128 AMD Epyc ROME 7H12 @
2.6 GHz CPUs and 256 GB RAM. Each inference took the whole cluster to run.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the normalization method, (2) the number of trees in random forest regression, and (3) the maximum
depth allowed in random forest regression. The corresponding search spaces are:

41

https://github.com/aristoteleo/Scribe-py
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/scribe
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/scribe
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/scribe
https://github.com/tqdm/tqdm
https://github.com/tqdm/tqdm
https://github.com/vahuynh/dynGENIE3
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/dynGENIE3
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/dynGENIE3
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/dynGENIE3

• the normalization method: None, Symlog, Unitary, Z-score,

• the number of trees in random forest regression: 100, 200, 300, 400, 500, 600, 700, 800,
900, 1000,

• the maximum depth allowed in random forest regression: 10, 20, 30, 40, 50, 60, 70, 80, 90,
100, unlimited.

We search for the values of these hyperparameters on the NetSims simulation trajectories of CRNA
graph of 15 nodes, and we find the best hyperparameters to be: (1) the normalization method:
Z-score, (2) the number of trees in random forest regression: 700, and (3) the maximum depth
allowed in random forest regression: 90. Due to computational requirements, we do not perform the
hyperparameter search on every trajectory but use this set of choices for all of the experiments. We
argue that there might be other possible values, but the effect on the structural inference results is
minor.

C.8 XGBGRN

Implementation. We use the official implementation of XGBGRN by the author at
https://github.com/lab319/GRNs_nonlinear_ODEs with a customized wrapper. Our wrapper
will parse multiple arguments to select a set of targeted trajectories for inference, transform trajecto-
ries into a suitable format, feed each trajectory into the XGBGRN algorithm, and store the output in
designated directories. Our implementation can be found at https://github.com/wang422003/
Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/
tree/main/src/models/GRNs_nonlinear_ODEs. The method is implemented in Python with
the help of NumPy [45] package to store generated trajectories.

Computational resources. We infer networks on our clusters with 128 AMD Epyc ROME 7H12 @
2.6 GHz CPUs and 256 GB RAM. Each inference took the whole cluster to run.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the normalization method, (2) the number of estimators, (3) the maximum depth allowed, (4) the
subsample ratio during training, (5) the learning rate, and (6) the L1 regularization strength on
weights. The corresponding search spaces are:

• the normalization method: None, Symlog, Unitary, Z-score,

• the number of estimators: 100, 200, 500, 1000,

• the maximum depth allowed: 3, 5, 6, 8, 10, unlimited,

• the subsample ratio during training: 0.6, 0.8, 1.0,

• the learning rate: 0.01, 0.02, 0.05, 0.1,

• the L1 regularization strength on weights: 0, 0.01, 0.02, 0.05.

We search for the values of these hyperparameters on the NetSims simulation trajectories of CRNA
graph of 15 nodes, and we find the best hyperparameters to be: (1) the normalization method:
Unitary, (2) the number of estimators: 100, (3) the maximum depth allowed: 3, (4) the subsample
ratio during training: 0.6, (5) the learning rate: 0.1, and (6) the L1 regularization strength on weights:
0.02. Due to computational requirements, we do not perform the hyperparameter search on every
trajectory but use this set of choices for all of the experiments. We argue that there might be other
possible values, but the effect on the structural inference results is minor.

C.9 NRI

Implementation. We use the official implementation code by the author from
https://github.com/ethanfetaya/NRI with customized data loaders for our chosen datasets.
We choose the MLPEncoder and MLPDecoder as the blocks for VAE. We add our metric evaluation in
the “test" function, after the calculation of accuracy in the original code. Besides that, we add multiple
arguments to select the target trajectories for training, but these arguments do not affect the general
mechanism of NRI. Our implementation can be found at https://github.com/wang422003/
Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/
tree/main/src/models/NRI. The method is implemented with PyTorch [81] with the help of

42

https://github.com/lab319/GRNs_nonlinear_ODEs
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/GRNs_nonlinear_ODEs
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/GRNs_nonlinear_ODEs
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/GRNs_nonlinear_ODEs
https://github.com/ethanfetaya/NRI
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/NRI
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/NRI
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/NRI

Table 18: Batch sizes of the training of different methods in accordance with the number of nodes in
the trajectories.

Methods Number of Nodes

15 30 50 100

NRI 64 16 16 8
ACD 64 16 16 8
MPM 32 16 16 8
iSIDG 64 16 16 8
RCSI 64 16 16 8
GDP 8192 2048 512 128

Scikit-Learn [82] to calculate metrics. The AUROC values are calculated between the ground truth
adjacency matrix and the prob variable in the algorithm.

Computational resources. We train NRI with two different GPU cards depending on the number
of nodes in the trajectories. For the trajectories with less than 50 nodes, we train NRI on a single
NVIDIA Tesla V100 SXM2 16G GPU card, with 768 GB RAM, and with a single Xeon Gold 6132
@ 2.6GHz CPU. For the trajectories with equal or more than 50 nodes, we train NRI on a single
NVIDIA Tesla V100 SXM2 32G GPU card, with 768 GB RAM, and with a single Xeon Gold 6132
@ 2.6GHz CPU. We show the batch sizes for training NRI in Table 18. The learning rate we use is
identical to the default in NRI [58], i.e., 0.0005.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the number of units of the hidden layers in the encoder, (2) the number of units of the hidden layers
in the decoder, (3) the dropout rates in the encoder, and (4) the dropout rates in the decoder, while
the rest are set the same as the default. These hyperparameters can be set from the arguments of
arg_parser. The corresponding search spaces are:

• the number of units of the hidden layers in the encoder: {128, 256, 512},

• the number of units of the hidden layers in the decoder: {128, 256, 512},

• the dropout rates in the encoder: {0.0, 0.3, 0.5, 0.6, 0.7, 0.8},

• the dropout rates in the decoder: {0.0, 0.3, 0.5, 0.6, 0.7, 0.8}.

We search for the values of these hyperparameters based on 5 runs of NRI on the springs simulation
trajectories of CRNA graphs of 15 nodes, and we find the best hyperparameters to be: (1) the number
of units of the hidden layers in the encoder: 256, (2) the number of units of the hidden layers in the
decoder: 256, (3) the dropout rates in the encoder: 0.5, and (4) the dropout rates in the decoder: 0.0.
Due to computational requirements, we do not perform the hyperparameter search on every trajectory
but use this set of choices for all of the experiments. We argue that there might be other possible
values, but the effect on the structural inference results is minor.

C.10 ACD

Implementation. We use the official implementation code by the author (https:
//github.com/loeweX/AmortizedCausalDiscovery) with customized data load-
ers for our chosen datasets. Same as default, we choose the MLPEncoder and
MLPDecoder as the blocks for ACD. We implement the metric-calculation pipeline in the
forward_pass_and_eval() function. Besides that, we add multiple arguments to select
the target trajectories for training, but these arguments do not affect the general mecha-
nism of ACD. Our implementation can be found at https://github.com/wang422003/
Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/
tree/main/src/models/ACD. The method is implemented with PyTorch [81] with the help of
Scikit-Learn [82] to calculate metrics. The AUROC values are calculated between the ground truth
adjacency matrix and the prob variable in the algorithm.

Computational resources. We train ACD with two different GPU cards depending on the number
of nodes in the trajectories. For the trajectories with less than 50 nodes, we train ACD on a single

43

https://github.com/loeweX/AmortizedCausalDiscovery
https://github.com/loeweX/AmortizedCausalDiscovery
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/ACD
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/ACD
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/ACD

NVIDIA Tesla V100 SXM2 16G GPU card, with 768 GB RAM, and with a single Xeon Gold 6132
@ 2.6GHz CPU. For the trajectories with equal or more than 50 nodes, we train ACD on a single
NVIDIA Tesla V100 SXM2 32G GPU card, with 768 GB RAM, and with a single Xeon Gold 6132
@ 2.6GHz CPU. We show the batch sizes for training ACD in Table 18. The learning rate we use is
identical to the default in ACD [68], i.e., 0.0005.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the number of units of the hidden layers in the encoder, (2) the number of units of the hidden layers
in the decoder, (3) the dropout rates in the encoder, and (4) the dropout rates in the decoder, while
the rest are set the same as the default. These hyperparameters can be set from the arguments of
arg_parser. The corresponding search spaces are:

• the number of units of the hidden layers in the encoder: {128, 256, 512},

• the number of units of the hidden layers in the decoder: {128, 256, 512},

• the dropout rates in the encoder: {0.0, 0.3, 0.5, 0.6, 0.7, 0.8},

• the dropout rates in the decoder: {0.0, 0.3, 0.5, 0.6, 0.7, 0.8}.

We search for the values of these hyperparameters based on 5 runs of ACD on the springs simulation
trajectories of CRNA graphs of 15 nodes, and we find the best hyperparameters to be: (1) the number
of units of the hidden layers in the encoder: 256, (2) the number of units of the hidden layers in the
decoder: 256, (3) the dropout rates in the encoder: 0.5, and (4) the dropout rates in the decoder: 0.5.
Due to computational requirements, we do not perform the hyperparameter search on every trajectory
but use this set of choices for all of the experiments. We argue that there might be other possible
values, but the effect on the structural inference results is minor.

C.11 MPM

Implementation. We use the official implementation code by the author at https://github.com/
hilbert9221/NRI-MPM with customized data loaders for our chosen datasets. Same as default, we
choose the RNNENC and RNNDEC as the blocks for MPM. We add our metric evaluation for AUROC in
the evaluate function of class XNRIDECIns in the original code. Besides that, we add multiple
arguments to select the target trajectories for training, but these arguments do not affect the general
mechanism of MPM. Our implementation can be found at https://github.com/wang422003/
Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/
tree/main/src/models/MPM. The method is implemented with PyTorch [81] with the help of
Scikit-Learn [82] to calculate metrics. The AUROC values are calculated between the ground truth
adjacency matrix and the prob variable in XNRIIns.test().

Computational resources. We train MPM with two different GPU cards depending on the number
of nodes in the trajectories. For the trajectories with less than 50 nodes, we train MPM on a single
NVIDIA Tesla V100 SXM2 16G GPU card, with 768 GB RAM, and with a single Xeon Gold 6132
@ 2.6GHz CPU. For the trajectories with equal or more than 50 nodes, we train MPM on a single
NVIDIA Tesla V100 SXM2 32G GPU card, with 768 GB RAM, and with a single Xeon Gold 6132
@ 2.6GHz CPU. We show the batch size for training MPM in Table 18. Because the number of
parameters in MPM is larger than those in other deep learning methods, the batch-size of MPM for
graphs of 15 nodes is smaller than of other methods. The learning rate we use is identical to the
default in MPM [19], i.e., 0.0005.

Hyperparameters. The hyperparameters that are being considered during implementation are (1)
the number of units of the hidden layers in the encoder, (2) the number of units of the hidden layers
in the decoder, (3) the dropout rates in the encoder, and (4) the dropout rates in the decoder, while the
rest are set the same as the default. These hyperparameters can be set from the arguments of config.
The corresponding search spaces are:

• the number of units of the hidden layers in the encoder: {128, 256, 512},

• the number of units of the hidden layers in the decoder: {128, 256, 512},

• the dropout rates in the encoder: {0.0, 0.3, 0.5, 0.6, 0.7, 0.8},

• the dropout rates in the decoder: {0.0, 0.3, 0.5, 0.6, 0.7, 0.8}.

44

https://github.com/hilbert9221/NRI-MPM
https://github.com/hilbert9221/NRI-MPM
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/MPM
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/MPM
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/MPM

We search for the values of these hyperparameters based on 5 runs of MPM on the springs simulation
trajectories of CRNA graphs of 15 nodes, and we find the best hyperparameters to be: (1) the number
of units of the hidden layers in the encoder: 256, (2) the number of units of the hidden layers in the
decoder: 256, (3) the dropout rates in the encoder: 0.0, and (4) the dropout rates in the decoder: 0.0.
Due to computational requirements, we do not perform the hyperparameter search on every trajectory
but use this set of choices for all of the experiments. We argue that there might be other possible
values, but the effect on the structural inference results is minor.

C.12 iSIDG

Implementation. We use the official implementation sent by the authors. Same as default, we
choose the GINEncoder and MLPDecoder as the blocks for iSIDG. The original code contains
evaluation pipelines to calculate AUROC values. Besides that, we add multiple arguments to
select the target trajectories for training, but these arguments do not affect the general mech-
anism of iSIDG. Our implementation can be found at https://github.com/wang422003/
Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/
tree/main/src/models/iSIDG. The method is implemented with PyTorch [81] with the help of
Scikit-Learn [82] to calculate metrics. The AUROC values are calculated between the ground truth
adjacency matrix and the prob variable in the algorithm.

Computational resources. We train iSIDG with two different GPU cards depending on the number
of nodes in the trajectories. For the trajectories with less than 50 nodes, we train iSIDG on a single
NVIDIA Tesla V100 SXM2 16G GPU card, with 768 GB RAM, and with a single Xeon Gold 6132
@ 2.6GHz CPU. For the trajectories with equal or more than 50 nodes, we train iSIDG on a single
NVIDIA Tesla V100 SXM2 32G GPU card, with 768 GB RAM, and with a single Xeon Gold 6132
@ 2.6GHz CPU. We show the batch size for training iSIDG in Table 18. The learning rate we use is
identical to the default in iSIDG [106], i.e., 0.0005.

Hyperparameters. The hyperparameters that are being considered during implementation are (1) the
number of units of the hidden layers in the encoder, (2) the number of units of the hidden layers in the
decoder, (3) the dropout rates in the encoder, (4) the dropout rates in the decoder, (5) the weight for
KL-divergence in the loss, (6) the weight for smoothness in the loss, (7) the weight for connectiveness
in the loss, and (8) the weight for sparsity in the loss, while the rest are set the same as the default.
These hyperparameters can be set from the arguments of arg_parser. The corresponding search
spaces are:

• the number of units of the hidden layers in the encoder: {128, 256, 512},
• the number of units of the hidden layers in the decoder: {128, 256, 512},
• the dropout rates in the encoder: {0.0, 0.3, 0.5, 0.6, 0.7, 0.8},
• the dropout rates in the decoder: {0.0, 0.3, 0.5, 0.6, 0.7, 0.8},
• the weight for KL-divergence: {100, 200, 300, 400, 500},
• the weight for smoothness: {20, 30, 40, 50, 60, 70},
• the weight for connectiveness: {10, 20, 30, 40, 50},
• the weight for sparsity: {10, 20, 30, 40, 50}.

We search for the values of these hyperparameters based on 5 runs of iSIDG on the springs simulation
trajectories of CRNA graphs of 15 nodes, and we find the best hyperparameters to be: (1) the number
of units of the hidden layers in the encoder: 256, (2) the number of units of the hidden layers in the
decoder: 256, (3) the dropout rates in the encoder: 0.0, (4) the dropout rates in the decoder: 0.0, (5)
the weight for KL-divergence in the loss: 200, (6) the weight for smoothness in the loss: 50, (7)
the weight for connectiveness in the loss: 20, and (8) the weight for sparsity in the loss: 20. Due to
computational requirements, we do not perform the hyperparameter search on every trajectory but
use this set of choices for all of the experiments. We argue that there might be other possible values,
but the effect on the structural inference results is minor.

C.13 RCSI

Implementation. We use the official implementation sent by the authors.
The original code contains evaluation pipelines to calculate AUROC val-

45

https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/iSIDG
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/iSIDG
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/iSIDG

ues. Our implementation can be found at https://github.com/wang422003/
Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/
tree/main/src/models/RCSI. The method is implemented with PyTorch [81] with the help of
Scikit-Learn [82] to calculate metrics. The AUROC values are calculated between the ground truth
adjacency matrix and the prob variable in the algorithm.

Computational resources. We train RCSI with two different GPU cards depending on the number
of nodes in the trajectories. For the trajectories with less than 50 nodes, we train RCSI on a single
NVIDIA Tesla V100 SXM2 16G GPU card, with 768 GB RAM, and with a single Xeon Gold 6132
@ 2.6GHz CPU. For the trajectories with equal or more than 50 nodes, we train RCSI on a single
NVIDIA Tesla V100 SXM2 32G GPU card, with 768 GB RAM, and with a single Xeon Gold 6132
@ 2.6GHz CPU. We show the batch size for training RCSI in Table 18. The learning rate we use is
identical to the default in RCSI [106], i.e., 0.0005.

Hyperparameters. The hyperparameters that are being considered during implementation are (1) the
number of units of the hidden layers in the encoder, (2) the number of units of the hidden layers in the
decoder, (3) the dropout rates in the encoder, (4) the dropout rates in the decoder, (5) the weight for
KL-divergence in the loss, (6) the weight for smoothness in the loss, (7) the weight for connectiveness
in the loss, and (8) the weight for sparsity in the loss, while the rest are set the same as the default.
These hyperparameters can be set from the arguments of arg_parser. The corresponding search
spaces are:

• the number of units of the hidden layers in the encoder: {128, 256, 512},

• the number of units of the hidden layers in the decoder: {128, 256, 512},

• the dropout rates in the encoder: {0.0, 0.3, 0.5, 0.6, 0.7, 0.8},

• the dropout rates in the decoder: {0.0, 0.3, 0.5, 0.6, 0.7, 0.8},

• the weight for KL-divergence: {100, 200, 300, 400, 500},

• the weight for smoothness: {20, 30, 40, 50, 60, 70},

• the weight for connectiveness: {10, 20, 30, 40, 50},

• the weight for sparsity: {10, 20, 30, 40, 50}.

• the number of neurons in each reservoir computing cell: {20, 40, 60, 80},

• the number of reservoir computing cells: {1, 2, 3, 4}

We search for the values of these hyperparameters based on 5 runs of RCSI on the springs simulation
trajectories of CRNA graphs of 15 nodes, and we find the best hyperparameters to be: (1) the number
of units of the hidden layers in the encoder: 256, (2) the number of units of the hidden layers in the
decoder: 256, (3) the dropout rates in the encoder: 0.0, (4) the dropout rates in the decoder: 0.0, (5)
the weight for KL-divergence in the loss: 200, (6) the weight for smoothness in the loss: 50, (7) the
weight for connectiveness in the loss: 20, (8) the weight for sparsity in the loss: 20, (9) the number of
of neurons in each reservoir computing cell: 20, and (10) the number of reservoir computing cells: 3.
Due to computational requirements, we do not perform the hyperparameter search on every trajectory
but use this set of choices for all of the experiments. We argue that there might be other possible
values, but the effect on the structural inference results is minor.

D Further benchmarking results and details

In this section, we present additional experimental results apart from those discussed in Section 5 in
the main content.

D.1 Results on all of the trajectories without noise

The average AUROC values with standard deviations of ten runs of all investigated structural inference
methods are presented in Tables 19-29. The results are grouped into each table according to the
type of underlying interaction graphs. In each table, the nested column headings indicate the type
of simulation and system size used for trajectory generation, e.g., “Springs" and “n30" refer to the
trajectories of a system of 30 nodes that are generated by the “Springs" simulation.

46

https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/RCSI
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/RCSI
https://github.com/wang422003/Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/tree/main/src/models/RCSI

Table 19: AUROC values (in %) of investigated structural inference methods on BN trajectories.

Method Springs NetSims

n15 n30 n50 n100 n15 n30 n50 n100

ppcor - - - - 96.12± 0.40 98.08± 0.22 98.83± 0.09 99.43± 0.01

TIGRESS - - - - 93.14± 0.67 96.44± 0.76 97.72± 0.26 98.72± 0.04

ARACNe - - - - 94.10± 0.66 96.45± 0.31 97.78± 0.19 98.83± 0.03

CLR - - - - 95.39± 0.48 96.72± 0.56 97.73± 0.19 98.84± 0.03

PIDC - - - - 88.45± 0.61 93.16± 0.69 94.28± 0.26 96.17± 0.12

Scribe - - - - 48.71± 1.37 62.41± 1.64 68.79± 2.53 69.36± 1.50

dynGENIE3 - - - - 90.70± 2.97 99.87± 0.01 99.89± 0.00 99.97± 0.00

XGBGRN - - - - 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

NRI 99.75± 0.00 99.57± 0.00 99.12± 0.01 97.54± 0.02 99.79± 0.00 98.73± 0.00 76.08± 0.01 75.26± 0.01

ACD 99.75± 0.00 99.60± 0.00 98.96± 0.01 99.57± 0.01 99.87± 0.00 98.95± 0.00 80.96± 0.01 79.88± 0.01

MPM 99.98± 0.00 99.95± 0.00 99.97± 0.01 98.69± 0.01 99.95± 0.00 99.56± 0.00 98.60± 0.01 79.92± 0.01

iSIDG 99.97± 0.00 99.94± 0.00 99.95± 0.01 98.92± 0.01 99.91± 0.00 99.62± 0.00 98.59± 0.01 76.41± 0.01

RCSI 99.81± 0.01 99.46± 0.01 99.50± 0.01 99.04± 0.01 99.72± 0.01 99.43± 0.00 98.60± 0.01 80.01± 0.01

Table 20: AUROC values (in %) of investigated structural inference methods on CRNA trajectories.

Method Springs NetSims

n15 n30 n50 n100 n15 n30 n50 n100

ppcor - - - - 91.37± 1.10 90.35± 0.39 90.26± 0.54 89.16± 0.55

TIGRESS - - - - 84.40± 2.84 74.88± 0.64 69.41± 0.64 60.10± 0.46

ARACNe - - - - 78.11± 1.50 77.93± 1.00 77.55± 0.80 75.74± 0.89

CLR - - - - 86.01± 1.98 86.59± 1.06 84.24± 0.76 81.14± 1.24

PIDC - - - - 85.70± 3.35 75.38± 0.42 70.81± 1.99 82.74± 0.88

Scribe - - - - 55.19± 3.80 52.19± 0.22 50.78± 0.25 50.94± 0.74

dynGENIE3 - - - - 56.92± 6.83 50.32± 1.36 50.12± 0.84 50.35± 0.60

XGBGRN - - - - 99.60± 0.30 99.58± 0.13 97.40± 0.52 51.48± 0.22

NRI 83.91± 0.03 72.81± 0.05 70.73± 0.02 65.32± 0.02 49.47± 0.02 49.03± 0.03 50.06± 0.02 50.65± 0.02

ACD 85.90± 0.04 75.41± 0.01 69.97± 0.01 64.51± 0.02 48.26± 0.02 48.40± 0.03 51.42± 0.01 50.21± 0.02

MPM 85.75± 0.03 73.71± 0.01 68.25± 0.02 64.87± 0.02 49.72± 0.01 51.16± 0.04 50.06± 0.01 50.56± 0.02

iSIDG 87.01± 0.02 78.21± 0.05 70.72± 0.01 62.31± 0.02 51.04± 0.01 50.24± 0.04 51.26± 0.01 50.87± 0.02

RCSI 87.51± 0.02 78.11± 0.05 69.82± 0.02 64.80± 0.03 51.15± 0.02 50.81± 0.04 51.10± 0.02 50.00± 0.02

Table 21: AUROC values (in %) of investigated structural inference methods on FW trajectories.

Method Springs NetSims

n15 n30 n50 n100 n15 n30 n50 n100

ppcor - - - - 78.21± 1.57 73.63± 1.75 72.76± 1.04 71.72± 0.15

TIGRESS - - - - 64.15± 1.55 58.00± 0.61 57.92± 0.84 53.97± 0.44

ARACNe - - - - 66.07± 4.26 65.40± 3.82 68.39± 0.24 53.18± 2.03

CLR - - - - 79.69± 3.33 74.20± 1.57 73.94± 1.01 44.50± 2.24

PIDC - - - - 78.82± 3.75 50.00± 0.00 50.00± 0.00 64.72± 1.39

Scribe - - - - 52.96± 2.66 54.25± 1.16 51.02± 1.59 51.73± 0.92

dynGENIE3 - - - - 47.98± 2.67 49.89± 1.29 49.40± 0.58 51.26± 1.07

XGBGRN - - - - 84.84± 1.90 73.00± 4.00 52.36± 0.35 49.11± 0.77

NRI 81.80± 0.01 76.75± 0.02 74.15± 0.01 71.57± 0.01 49.30± 0.03 48.50± 0.03 50.75± 0.02 47.56± 0.03

ACD 81.89± 0.01 76.38± 0.02 73.50± 0.01 71.12± 0.01 50.74± 0.06 50.19± 0.01 50.49± 0.03 49.82± 0.01

MPM 81.87± 0.02 75.97± 0.01 73.59± 0.01 71.52± 0.01 53.01± 0.08 50.66± 0.008 51.22± 0.03 53.01± 0.03

iSIDG 81.95± 0.01 76.75± 0.01 74.38± 0.02 72.21± 0.02 53.36± 0.03 50.78± 0.03 50.46± 0.03 51.07± 0.01

RCSI 81.80± 0.01 75.62± 0.02 74.51± 0.02 72.40± 0.02 53.70± 0.05 50.28± 0.03 51.61± 0.03 53.82± 0.02

D.2 Benchmarking over robustness

In this section, we summarized the AUROC results of all methods on trajectories with noise generated
with BN and NetSims simulations. The average AUROC values and corresponding standard deviations
of all investigated methods are presented in Tables 30 - 32. The results are grouped by two levels of
headings, i.e., the level of Gaussian noise, and the number of nodes in the graph.

47

Table 22: AUROC values (in %) of investigated structural inference methods on GCN trajectories.

Method Springs NetSims

n15 n30 n50 n100 n15 n30 n50 n100

ppcor - - - - 96.72± 1.64 98.48± 0.35 98.55± 0.22 98.20± 0.42

TIGRESS - - - - 91.72± 4.28 87.90± 1.44 80.44± 1.78 78.12± 0.15

ARACNe - - - - 95.24± 0.00 91.15± 2.18 92.75± 1.94 94.04± 0.71

CLR - - - - 94.57± 2.14 97.48± 0.54 97.25± 0.76 96.40± 0.21

PIDC - - - - 92.75± 3.92 91.98± 0.90 92.01± 1.23 94.17± 1.25

Scribe - - - - 50.47± 2.55 49.31± 1.72 48.17± 2.80 49.51± 0.77

dynGENIE3 - - - - 46.70± 5.05 47.86± 4.04 50.46± 1.93 49.58± 1.37

XGBGRN - - - - 93.28± 2.47 96.71± 0.51 96.74± 0.62 94.95± 0.33

NRI 97.42± 0.00 93.38± 0.01 89.54± 0.02 83.78± 0.01 43.46± 0.02 52.74± 0.06 50.98± 0.02 50.34± 0.02

ACD 97.95± 0.01 92.62± 0.01 89.96± 0.03 90.73± 0.02 42.23± 0.03 46.12± 0.04 47.66± 0.03 49.87± 0.04

MPM 98.82± 0.01 92.68± 0.02 85.81± 0.03 84.98± 0.02 52.59± 0.03 66.65± 0.07 63.01± 0.07 53.07± 0.06

iSIDG 98.93± 0.01 93.16± 0.01 89.53± 0.01 87.60± 0.01 56.41± 0.06 52.07± 0.03 52.96± 0.03 50.78± 0.03

RCSI 97.66± 0.01 93.92± 0.02 88.69± 0.02 88.01± 0.02 53.31± 0.05 59.23± 0.03 54.30± 0.02 50.44± 0.02

Table 23: AUROC values (in %) of investigated structural inference methods on GRN trajectories.

Method Springs NetSims

n15 n30 n50 n100 n15 n30 n50 n100

ppcor - - - - 86.12± 0.98 88.72± 1.33 89.83± 0.89 89.61± 0.93

TIGRESS - - - - 79.09± 1.07 85.16± 2.26 85.85± 1.96 87.41± 2.73

ARACNe - - - - 70.46± 3.52 70.05± 2.10 70.73± 1.90 69.48± 2.10

CLR - - - - 78.25± 0.49 76.48± 1.91 75.67± 1.29 73.09± 2.10

PIDC - - - - 57.49± 3.59 63.51± 2.69 65.95± 1.41 63.85± 2.00

Scribe - - - - 44.89± 7.52 47.79± 3.50 45.50± 3.03 46.15± 2.41

dynGENIE3 - - - - 64.23± 4.75 59.69± 6.09 54.38± 3.18 58.53± 3.94

XGBGRN - - - - 80.08± 3.81 83.77± 0.49 84.51± 0.43 83.47± 1.31

NRI 91.65± 0.01 90.45± 0.01 90.35± 0.02 88.14± 0.02 78.08± 0.03 57.01± 0.05 55.71± 0.05 58.33± 0.04

ACD 91.10± 0.00 88.21± 0.01 86.78± 0.01 90.07± 0.03 80.18± 0.04 69.78± 0.07 62.65± 0.02 53.99± 0.03

MPM 94.02± 0.01 93.25± 0.02 84.60± 0.02 85.30± 0.02 70.46± 0.04 57.36± 0.03 72.25± 0.05 66.74± 0.03

iSIDG 92.91± 0.01 90.06± 0.01 90.15± 0.01 87.94± 0.04 71.11± 0.04 56.25± 0.02 57.15± 0.02 62.13± 0.02

RCSI 93.88± 0.02 93.01± 0.02 90.35± 0.01 89.90± 0.03 77.45± 0.03 65.77± 0.03 59.93± 0.02 60.15± 0.03

Table 24: AUROC values (in %) of investigated structural inference methods on IN trajectories.

Method Springs NetSims

n15 n30 n50 n100 n15 n30 n50 n100

ppcor - - - - 94.14± 0.54 96.13± 1.65 97.64± 0.11 97.61± 0.01

TIGRESS - - - - 94.39± 1.34 91.79± 5.82 86.31± 1.42 78.25± 0.52

ARACNe - - - - 85.82± 3.90 87.77± 5.36 83.05± 2.84 86.14± 0.54

CLR - - - - 87.17± 0.26 92.45± 2.50 89.58± 3.93 92.82± 1.03

PIDC - - - - 81.90± 1.92 85.16± 1.59 84.84± 2.89 89.35± 0.48

Scribe - - - - 54.29± 4.17 50.81± 1.34 50.68± 3.52 50.76± 0.53

dynGENIE3 - - - - 58.18± 4.97 70.18± 15.42 68.08± 8.25 50.22± 1.78

XGBGRN - - - - 99.00± 0.85 99.69± 0.07 99.90± 0.04 99.91± 0.05

NRI 93.09± 0.01 90.54± 0.05 88.10± 0.03 82.51± 0.03 60.47± 0.04 61.78± 0.06 56.45± 0.04 53.96± 0.04

ACD 93.33± 0.02 89.12± 0.05 87.69± 0.04 81.37± 0.02 68.39± 0.06 55.11± 0.08 53.88± 0.02 53.04± 0.05

MPM 95.61± 0.02 89.59± 0.05 86.47± 0.03 83.45± 0.03 63.83± 0.03 64.70± 0.09 54.18± 0.03 54.37± 0.04

iSIDG 95.37± 0.02 90.72± 0.05 87.79± 0.02 84.00± 0.02 62.18± 0.03 61.91± 0.01 56.50± 0.02 53.85± 0.02

RCSI 96.70± 0.01 93.46± 0.02 88.02± 0.02 83.96± 0.01 62.08± 0.04 60.05± 0.02 55.65± 0.03 52.84± 0.02

D.3 Benchmarking over efficiency

Investigating the potential influence of trajectory lengths on the performance of structural inference
methods is of significant interest. Additionally, such evaluations shed light on the data efficiency of
these methods by examining the number of time steps required to yield reliable results. To explore
these aspects, we conducted evaluations using trajectories generated by BN with varying numbers of
time steps (lengths). The selected time step counts include 10, 20, 30, 40, 49, with 49 representing the
full-length trajectories. By comparing the average AUROC results between shorter and full-length
trajectories, we computed the differences ∆AUROC = AUROCTS−AUROCraw, where AUROCTS

denotes the average AUROC results with shorter trajectories, and AUROCraw represents the average

48

Table 25: AUROC values (in %) of investigated structural inference methods on LN trajectories.

Method Springs NetSims

n15 n30 n50 n100 n15 n30 n50 n100

ppcor - - - - 99.49± 0.56 95.04± 5.20 86.75± 1.66 79.32± 4.32

TIGRESS - - - - 84.15± 1.16 87.38± 3.32 92.22± 0.42 93.97± 1.96

ARACNe - - - - 92.33± 4.84 80.36± 5.67 71.17± 0.48 62.82± 8.36

CLR - - - - 97.35± 3.17 96.56± 4.87 91.04± 2.35 95.04± 0.53

PIDC - - - - 97.53± 1.01 82.03± 7.28 88.58± 1.69 94.18± 2.28

Scribe - - - - 54.22± 3.98 56.16± 3.88 52.12± 2.49 52.55± 1.62

dynGENIE3 - - - - 51.32± 5.21 50.12± 2.42 50.49± 1.22 67.32± 14.23

XGBGRN - - - - 97.21± 1.13 96.95± 2.10 96.90± 0.83 97.99± 0.93

NRI 97.01± 0.02 94.94± 0.00 87.10± 0.01 82.80± 0.01 56.00± 0.04 53.94± 0.02 54.36± 0.02 51.75± 0.03

ACD 96.99± 0.02 95.79± 0.01 87.58± 0.02 83.92± 0.02 61.94± 0.03 61.56± 0.04 53.36± 0.02 50.19± 0.02

MPM 97.92± 0.01 95.53± 0.02 86.92± 0.01 84.22± 0.03 52.18± 0.02 62.08± 0.05 53.44± 0.01 50.42± 0.03

iSIDG 97.38± 0.02 94.70± 0.02 87.44± 0.02 83.15± 0.02 59.19± 0.05 56.18± 0.03 55.73± 0.03 52.30± 0.02

RCSI 97.30± 0.02 94.42± 0.02 88.02± 0.02 84.26± 0.02 60.28± 0.03 60.15± 0.02 57.56± 0.03 53.48± 0.02

Table 26: AUROC values (in %) of investigated structural inference methods on MMO trajectories.

Method Springs NetSims

n15 n30 n50 n100 n15 n30 n50 n100

ppcor - - - - 96.42± 0.02 98.28± 0.00 98.98± 0.00 99.49± 0.00

TIGRESS - - - - 99.88± 0.01 99.98± 0.00 100.00± 0.00 100.00± 0.00

ARACNe - - - - 89.76± 0.16 96.60± 1.51 97.09± 1.07 98.11± 0.79

CLR - - - - 96.43± 0.00 98.28± 0.00 98.98± 0.00 98.81± 0.37

PIDC - - - - 44.74± 4.70 70.03± 7.65 77.24± 1.02 75.01± 0.29

Scribe - - - - 69.85± 12.21 38.03± 25.86 20.70± 10.19 23.88± 15.76

dynGENIE3 - - - - 16.90± 2.38 23.49± 5.12 23.31± 4.03 45.89± 20.23

XGBGRN - - - - 59.77± 2.14 81.64± 6.68 72.13± 11.09 63.83± 6.71

NRI 99.62± 0.00 84.96± 0.02 77.66± 0.01 78.04± 0.02 68.34± 0.03 66.21± 0.06 57.84± 0.03 56.10± 0.01

ACD 99.68± 0.00 93.89± 0.01 85.53± 0.02 85.46± 0.01 71.88± 0.03 59.46± 0.06 64.14± 0.03 58.05± 0.02

MPM 99.83± 0.00 88.32± 0.01 87.02± 0.03 86.75± 0.02 79.34± 0.04 65.48± 0.07 54.78± 0.04 57.06± 0.02

iSIDG 99.84± 0.00 89.77± 0.01 87.47± 0.02 85.47± 0.01 74.58± 0.03 64.71± 0.06 56.07± 0.04 58.80± 0.01

RCSI 99.70± 0.01 92.73± 0.02 88.05± 0.02 85.49± 0.02 73.61± 0.04 66.08± 0.02 57.90± 0.03 58.74± 0.02

Table 27: AUROC values (in %) of investigated structural inference methods on RNLO trajectories.

Method Springs NetSims

n15 n30 n50 n100 n15 n30 n50 n100

ppcor - - - - 96.36± 0.10 98.28± 0.00 98.95± 0.04 99.25± 0.38

TIGRESS - - - - 99.82± 0.06 99.98± 0.00 99.99± 0.00 99.99± 0.01

ARACNe - - - - 93.47± 2.99 95.67± 1.61 97.02± 0.86 98.03± 0.43

CLR - - - - 96.35± 0.12 98.28± 0.00 98.72± 0.31 98.62± 0.29

PIDC - - - - 56.18± 6.51 72.67± 10.76 74.36± 6.83 71.95± 2.31

Scribe - - - - 38.49± 1.57 47.15± 18.16 46.52± 26.84 20.23± 13.56

dynGENIE3 - - - - 15.96± 2.97 21.37± 8.84 27.57± 7.69 56.44± 21.63

XGBGRN - - - - 83.55± 8.24 81.05± 5.42 81.82± 5.07 67.30± 12.31

NRI 95.54± 0.02 72.53± 0.08 72.72± 0.03 75.07± 0.02 69.43± 0.04 67.70± 0.08 60.55± 0.03 62.42± 0.02

ACD 96.20± 0.02 93.44± 0.03 75.83± 0.02 79.14± 0.02 57.32± 0.05 53.75± 0.01 61.68± 0.05 65.45± 0.03

MPM 97.40± 0.01 83.70± 0.06 78.50± 0.02 79.36± 0.02 72.62± 0.03 62.34± 0.01 56.90± 0.05 60.05± 0.02

iSIDG 97.45± 0.01 81.60± 0.05 78.51± 0.03 79.08± 0.03 64.79± 0.05 57.10± 0.02 64.50± 0.05 66.01± 0.02

RCSI 97.30± 0.01 83.05± 0.03 80.43± 0.02 79.04± 0.02 69.92± 0.04 59.42± 0.03 60.99± 0.04 60.24± 0.02

AUROC results with full-length trajectories. The results are presented in Fig. 5. These findings
provide insights into the impact of trajectory lengths on the performance and efficiency of structural
inference methods.

The performance of the majority of the methods investigated tends to decrease as the trajectory
lengths shorten, as evident in Fig. 5, where most methods show a decline in AUROC values with
decreasing trajectory lengths across various graph sizes. This reduction in performance is largely due
to the limited information available in shorter trajectories, which constrains the methods’ capacity to
accurately infer the underlying structures. Notably, ARACNe, CLR, and PIDC behave differently;
they show improved performance with shorter trajectories. ARACNe and CLR experience a decline
in performance due to the removal of correctly predicted edges when the number of time steps

49

Table 28: AUROC values (in %) of investigated structural inference methods on SN trajectories.

Method Springs NetSims

n15 n30 n50 n100 n15 n30 n50 n100

ppcor - - - - 93.77± 0.59 94.17± 0.28 94.74± 0.44 94.37± 0.05

TIGRESS - - - - 90.20± 1.52 82.82± 0.30 78.22± 1.92 67.98± 0.57

ARACNe - - - - 80.80± 3.58 78.78± 3.00 80.42± 1.00 81.49± 0.32

CLR - - - - 85.08± 0.54 87.70± 1.11 89.81± 0.74 88.24± 0.60

PIDC - - - - 83.96± 2.44 84.29± 1.00 84.66± 0.70 91.76± 0.25

Scribe - - - - 56.52± 2.94 51.30± 0.50 50.38± 0.50 50.74± 1.01

dynGENIE3 - - - - 62.48± 5.44 55.74± 3.23 50.00± 1.70 50.20± 0.77

XGBGRN - - - - 99.83± 0.21 99.88± 0.07 99.74± 0.12 98.81± 0.12

NRI 93.26± 0.01 79.96± 0.02 80.40± 0.02 71.84± 0.01 58.41± 0.04 51.43± 0.01 49.57± 0.03 50.16± 0.03

ACD 93.47± 0.01 81.17± 0.01 79.63± 0.02 68.76± 0.02 65.24± 0.05 52.96± 0.03 49.28± 0.02 50.76± 0.01

MPM 92.68± 0.00 79.32± 0.01 75.90± 0.01 69.36± 0.03 67.42± 0.02 50.87± 0.01 53.12± 0.03 50.08± 0.02

iSIDG 93.51± 0.00 81.38± 0.01 80.80± 0.02 69.25± 0.01 66.14± 0.04 53.79± 0.03 54.83± 0.01 51.72± 0.02

RCSI 94.13± 0.02 82.66± 0.01 81.21± 0.01 73.42± 0.02 67.58± 0.03 55.84± 0.02 55.04± 0.02 53.24± 0.03

Table 29: AUROC values (in %) of investigated structural inference methods on VN trajectories.

Method Springs NetSims

n15 n30 n50 n100 n15 n30 n50 n100

ppcor - - - - 96.68± 0.01 98.33± 0.01 99.00± 0.00 99.50± 0.00

TIGRESS - - - - 99.28± 0.18 99.41± 0.15 99.62± 0.09 99.84± 0.02

ARACNe - - - - 96.66± 0.03 97.85± 0.09 98.54± 0.01 99.08± 0.00

CLR - - - - 96.68± 0.00 98.34± 0.00 99.00± 0.00 99.50± 0.00

PIDC - - - - 76.51± 2.67 85.70± 3.99 91.80± 0.43 95.01± 0.70

Scribe - - - - 51.56± 5.64 52.71± 4.98 57.68± 2.56 59.50± 0.83

dynGENIE3 - - - - 92.81± 2.83 97.33± 1.01 97.87± 0.66 97.30± 1.26

XGBGRN - - - - 97.99± 0.49 98.54± 0.38 99.21± 0.12 99.59± 0.02

NRI 94.58± 0.01 95.12± 0.01 94.65± 0.02 89.17± 0.02 90.31± 0.01 74.64± 0.04 69.78± 0.03 68.80± 0.02

ACD 94.34± 0.01 93.73± 0.01 87.54± 0.03 90.49± 0.03 80.32± 0.02 65.36± 0.06 69.01± 0.03 68.72± 0.03

MPM 96.56± 0.01 89.71± 0.04 85.07± 0.02 84.56± 0.03 91.18± 0.01 83.37± 0.03 72.66± 0.04 70.34± 0.03

iSIDG 96.59± 0.02 95.66± 0.01 95.72± 0.02 85.07± 0.02 91.20± 0.02 78.08± 0.06 73.68± 0.02 68.81± 0.02

RCSI 97.03± 0.01 95.31± 0.01 94.48± 0.02 90.72± 0.03 91.53± 0.02 82.27± 0.04 74.08± 0.02 70.29± 0.03

Table 30: AUROC values (in %) of investigated structural inference methods on BN_NS trajectories
with 1 (N1) and 2 (N2) levels of Gaussian noise.

Method N1 N2

n15 n30 n50 n100 n15 n30 n50 n100

ppcor 92.66± 0.80 97.16± 0.59 98.48± 0.19 99.30± 0.02 91.25± 0.75 96.68± 0.64 98.28± 0.22 99.21± 0.03

TIGRESS 93.08± 0.76 96.42± 0.67 97.59± 0.23 98.65± 0.05 93.12± 0.80 96.43± 0.62 97.55± 0.24 98.59± 0.05

ARACNe 84.73± 1.20 91.90± 1.00 95.84± 0.33 98.11± 0.11 84.39± 1.04 92.37± 0.98 95.73± 0.34 97.76± 0.13

CLR 91.46± 0.45 96.48± 0.64 97.97± 0.24 98.97± 0.03 90.88± 0.73 96.55± 0.67 98.12± 0.20 99.04± 0.03

PIDC 87.87± 0.64 94.54± 0.41 95.84± 0.10 96.77± 0.08 88.58± 0.66 95.02± 0.75 96.78± 0.19 97.56± 0.06

Scribe 47.75± 6.78 63.04± 2.33 73.37± 1.11 70.95± 1.87 46.19± 5.58 63.42± 4.19 72.37± 1.98 71.36± 1.12

dynGENIE3 83.60± 3.35 90.28± 1.63 92.28± 2.10 98.00± 0.45 76.46± 0.64 88.32± 3.03 90.96± 1.39 97.93± 0.04

XGBGRN 93.72± 1.08 98.35± 0.21 98.63± 0.18 99.40± 0.01 86.78± 2.19 96.92± 1.00 97.94± 0.28 99.07± 0.05

NRI 72.98± 0.01 73.85± 0.02 74.12± 0.02 74.70± 0.02 56.76± 0.02 59.64± 0.03 62.52± 0.03 63.52± 0.02

ACD 65.62± 0.02 63.47± 0.01 66.69± 0.02 61.56± 0.03 62.08± 0.02 58.14± 0.03 61.73± 0.02 59.04± 0.02

MPM 70.23± 0.02 74.37± 0.02 75.72± 0.03 75.60± 0.03 62.83± 0.02 65.22± 0.02 66.52± 0.02 66.88± 0.03

iSIDG 74.33± 0.03 76.06± 0.02 76.29± 0.01 76.54± 0.03 63.40± 0.04 66.44± 0.03 67.52± 0.03 68.75± 0.02

RCSI 73.09± 0.03 74.50± 0.03 76.83± 0.02 76.01± 0.02 63.90± 0.02 64.72± 0.02 65.31± 0.03 66.62± 0.02

exceeds 20, affecting their AUROC scores. Conversely, PIDC benefits from shorter trajectories as it
tends to infer more false positive edges with increasing time steps, often connecting node pairs that
co-influence a common node.

The impact of shorter trajectories on the performance of structural inference methods can be mitigated
by increasing the number of nodes in the graph. With the exception of Scribe, all methods show
smaller reductions in AUROC when the graph contains more nodes, as observed in Fig. 5. Typically,
shorter trajectories provide limited information, challenging the methods’ ability to discern the true
structure. However, larger dynamical systems with more nodes offer richer information, allowing

50

Table 31: AUROC values (in %) of investigated structural inference methods on BN trajectories with
3 (N3) and 4 (N4) levels of Gaussian noise.

Method N3 N4

n15 n30 n50 n100 n15 n30 n50 n100

ppcor 90.87± 0.66 96.36± 0.62 98.16± 0.19 99.15± 0.04 90.81± 0.67 96.10± 0.65 98.09± 0.19 99.09± 0.04

TIGRESS 93.11± 0.65 96.45± 0.62 97.59± 0.21 98.56± 0.05 93.00± 0.38 96.44± 0.60 97.64± 0.22 98.57± 0.05

ARACNe 88.04± 1.01 93.42± 0.85 96.02± 0.34 97.80± 0.11 89.51± 0.73 93.89± 0.79 96.22± 0.35 97.85± 0.12

CLR 91.22± 0.82 96.57± 0.70 98.20± 0.20 99.07± 0.03 91.40± 0.86 96.63± 0.71 98.26± 0.20 99.09± 0.03

PIDC 90.24± 0.56 95.17± 0.75 96.93± 0.23 97.98± 0.04 91.53± 1.11 95.17± 0.84 97.03± 0.28 98.12± 0.04

Scribe 51.12± 2.82 61.51± 3.27 71.40± 3.26 72.10± 0.97 48.14± 2.15 60.82± 2.68 67.96± 2.52 70.71± 1.81

dynGENIE3 63.28± 2.16 80.56± 2.28 87.03± 2.73 98.04± 0.03 52.46± 0.55 73.68± 1.60 81.89± 4.03 97.77± 0.01

XGBGRN 86.90± 1.19 96.38± 1.00 97.55± 0.32 98.88± 0.06 85.29± 0.62 95.74± 1.21 97.37± 0.31 98.75± 0.07

NRI 50.67± 0.02 51.68± 0.01 54.40± 0.02 58.16± 0.02 50.91± 0.03 51.11± 0.02 51.24± 0.02 52.89± 0.03

ACD 50.09± 0.03 54.38± 0.02 56.42± 0.01 56.12± 0.02 51.89± 0.02 54.65± 0.02 55.73± 0.03 55.02± 0.03

MPM 55.29± 0.03 56.81± 0.03 57.41± 0.02 59.23± 0.02 55.85± 0.03 57.48± 0.01 59.76± 0.02 59.90± 0.02

iSIDG 56.73± 0.02 56.79± 0.02 57.71± 0.01 60.60± 0.03 54.59± 0.04 57.82± 0.03 58.08± 0.02 59.70± 0.02

RCSI 54.20± 0.02 54.72± 0.02 56.44± 0.02 59.43± 0.03 52.47± 0.03 53.02± 0.03 59.50± 0.02 58.34± 0.03

Table 32: AUROC values (in %) of investigated structural inference methods on BN trajectories with
5 (N5) levels of Gaussian noise.

Method N5

n15 n30 n50 n100

ppcor 91.11± 0.69 95.81± 0.61 97.97± 0.18 99.04± 0.05

TIGRESS 92.95± 0.42 96.38± 0.64 97.66± 0.18 98.57± 0.05

ARACNe 90.22± 0.96 94.15± 0.70 96.33± 0.35 97.90± 0.11

CLR 91.59± 0.90 96.65± 0.70 98.31± 0.20 99.10± 0.04

PIDC 91.18± 1.61 95.11± 0.95 96.90± 0.32 98.17± 0.03

Scribe 52.20± 6.61 58.31± 2.98 66.41± 2.87 69.35± 1.47

dynGENIE3 47.84± 1.10 67.07± 2.68 74.14± 4.26 97.46± 0.03

XGBGRN 85.18± 0.34 95.41± 1.22 97.27± 0.28 98.70± 0.08

NRI 46.68± 0.03 46.70± 0.02 49.57± 0.03 49.79± 0.03

ACD 46.21± 0.03 46.34± 0.05 44.06± 0.02 44.41± 0.02

MPM 55.39± 0.05 58.87± 0.02 59.07± 0.03 60.45± 0.03

iSIDG 55.59± 0.03 58.82± 0.03 59.08± 0.01 60.70± 0.02

RCSI 52.00± 0.04 55.31± 0.02 57.43± 0.02 58.10± 0.03

the methods to compensate for the limited data and improve performance. This underscores the
importance of the interplay between trajectory length and graph size in achieving reliable structural
inference results.

Furthermore, ppcor, TIGRESS, and XGBGRN demonstrate remarkable resilience to shorter trajecto-
ries. As depicted in Fig. 5, these methods exhibit minimal decreases in AUROC as trajectory lengths
decrease. This resilience underscores the robustness of correlation metrics and tree-based approaches
when faced with shorter trajectories. Thus, for developing algorithms focused on structural infer-
ence with limited data, integrating these techniques could be a promising direction to overcome
the challenges of shorter trajectories and enhance the accuracy and reliability of inferred structural
connections.

D.4 Discussion on metrics

The AUROC (Area Under the Receiver Operating Characteristic) metric has several advantages
over other metrics such as F1 score, accuracy, and Hamming distance when it comes to evaluating
structural inference problems, where the results are binary:

• Handling imbalanced datasets: AUROC is less sensitive to class imbalance compared to accuracy
and F1 score. In imbalanced datasets where one class is dominant, such as the adjacency matrix
of a sparse graph, accuracy and F1 score can be misleading due to the high accuracy achieved by
simply predicting the majority class. AUROC considers the trade-off between true positive rate and
false positive rate, making it more suitable for imbalanced datasets.

51

10 20 30 40 49
Lengths of Trajectories

−30

−20

−10

0

10

ΔA
UR

OC
 (%

)

Classical Statistics with 15 Nodes

ppcor
TIGRESS

10 20 30 40 49
Lengths of Trajectories

−30

−20

−10

0

10

ΔA
UR

OC
 (%

)

Information Theory Methods with 15 Nodes

ARACNe
CLR
PIDC
Scribe

10 20 30 40 49
Lengths of Trajectories

−30

−20

−10

0

10

ΔA
UR

OC
 (%

)

Tree Algorithms with 15 Nodes

dynGENIE3
XGBGRN

10 20 30 40 49
Lengths of Trajectories

−30

−20

−10

0

10

ΔA
UR

OC
 (%

)

Deep Learning Methods with 15 Nodes

NRI
ACD
MPM
iSIDG
RCSI

10 20 30 40 49
Lengths of Trajectories

−30

−20

−10

0

10

ΔA
UR

OC
 (%

)

Classical Statistics with 30 Nodes

ppcor
TIGRESS

10 20 30 40 49
Lengths of Trajectories

−30

−20

−10

0

10

ΔA
UR

OC
 (%

)

Information Theory Methods with 30 Nodes

ARACNe
CLR
PIDC
Scribe

10 20 30 40 49
Lengths of Trajectories

−30

−20

−10

0

10

ΔA
UR

OC
 (%

)

Tree Algorithms with 30 Nodes

dynGENIE3
XGBGRN

10 20 30 40 49
Lengths of Trajectories

−30

−20

−10

0

10

ΔA
UR

OC
 (%

)

Deep Learning Methods with 30 Nodes

NRI
ACD
MPM
iSIDG
RCSI

10 20 30 40 49
Lengths of Trajectories

−30

−20

−10

0

10

ΔA
UR

OC
 (%

)

Classical Statistics with 50 Nodes

ppcor
TIGRESS

10 20 30 40 49
Lengths of Trajectories

−30

−20

−10

0

10

ΔA
UR

OC
 (%

)

Information Theory Methods with 50 Nodes

ARACNe
CLR
PIDC
Scribe

10 20 30 40 49
Lengths of Trajectories

−30

−20

−10

0

10

ΔA
UR

OC
 (%

)

Tree Algorithms with 50 Nodes

dynGENIE3
XGBGRN

10 20 30 40 49
Lengths of Trajectories

−30

−20

−10

0

10

ΔA
UR

OC
 (%

)

Deep Learning Methods with 50 Nodes

NRI
ACD
MPM
iSIDG
RCSI

10 20 30 40 49
Lengths of Trajectories

−30

−20

−10

0

10

ΔA
UR

OC
 (%

)

Classical Statistics with 100 Nodes

ppcor
TIGRESS

10 20 30 40 49
Lengths of Trajectories

−30

−20

−10

0

10

ΔA
UR

OC
 (%

)

Information Theory Methods with 100 Nodes

ARACNe
CLR
PIDC
Scribe

10 20 30 40 49
Lengths of Trajectories

−30

−20

−10

0

10

ΔA
UR

OC
 (%

)

Tree Algorithms with 100 Nodes

dynGENIE3
XGBGRN

10 20 30 40 49
Lengths of Trajectories

−30

−20

−10

0

10

ΔA
UR

OC
 (%

)

Deep Learning Methods with 100 Nodes

NRI
ACD
MPM
iSIDG
RCSI

Figure 5: Performance drops (in %) of investigated structural inference methods on BN trajectories
of different shorter lengths with respect to the performance on the full-length trajectories.

• Performance across different classification thresholds: AUROC considers the structural inference
method’s performance at various classification thresholds by plotting the ROC curve. It captures
the overall discriminative power of the method across all possible threshold values, whereas F1
score, accuracy, and Hamming distance are based on a specific threshold. This makes AUROC
more comprehensive in evaluating the method’s performance.

• Robustness to class distribution changes: AUROC remains consistent even when the class distribu-
tion changes, for example, the underlying interaction graph may be sparse or dense. In scenarios
where the class distribution in the test set differs from the training set, AUROC provides a reliable
measure of the method’s performance. F1 score, accuracy, and Hamming distance can be influenced
by changes in class distribution, leading to biased evaluations.

• Handling probabilistic predictions: AUROC can handle probabilistic predictions and rank them
accordingly, which is particularly useful when the structural inference method outputs probabilities
instead of hard class labels. F1 score, accuracy, and Hamming distance require explicit thresholding,
which may not be suitable for probabilistic outputs.

While F1 score, accuracy, and Hamming distance have their own strengths in specific contexts,
AUROC is widely used and preferred when evaluating binary classification tasks due to its robustness,
ability to handle imbalanced datasets, and comprehensive evaluation of method performance across
different classification thresholds. So in this work, we benchmark all of the methods with AUROC.

52

D.5 Benchmarking with EMT Dataset

In addition to the datasets generated by simulations, we also tested the investigated structural inference
methods on an EMT dataset collected from the real world. The description of the dataset is in Section 4
and Appendix B.4, and the average results of ten runs are summarized in Table 33.

The EMT dataset is comparable with NetSims dataset with 30 nodes, both sharing a similar node
size and unidimensionality. While the model performance on NetSims dataset with 30 nodes ranges
from 51.10% to 93.59%, that on the EMT dataset ranges from 51.14% to 57.22%. Such a much
lower value and narrower range depicted the difficulty of inferencing a real-world interaction graph.
Furthermore, this difficulty cannot simply be explained by the data noise because all methods fail in
modeling the cell dynamic, while we have shown that classical statistical methods and information
theory-based methods are resistant to Gaussian noise in Table 32. The root causes of the difficulty
may include data deficiency in the number of trajectories and time steps, ultra-high complexity of
cell dynamics, and unreliable ground truth interaction graphs. In addition, the collected data may
only capture a portion of the information from the cell dynamics, and current sequencing technology
does not support snapshotting every key change during gene regulations. These uncertainties forbid
our benchmarking on other real-world datasets, suggesting that benchmarking on synthetic datasets is
the optimal choice for controllable and reliable experiments.

Table 33: AUROC values (in %) of investigated structural inference methods on EMT dataset.

Method AUROC

ppcor 55.31± 0.00

TIGRESS 56.32± 0.28

ARACNe 57.22± 0.00

CLR 51.41± 0.00

PIDC 54.53± 0.00

Scribe 54.82± 0.00

dynGENIE3 44.42± 0.05

XGBGRN 55.63± 0.74

NRI 52.09± 0.06

ACD 51.14± 0.03

MPM 52.43± 0.07

iSIDG 52.58± 0.06

RCSI 53.02± 0.07

E Limitations

This study has certain limitations, which can be summarized as follows: resource limitation, trajectory
generation, and the exploration of additional valid methods.

• Resource limitation: The computational resources available for this study include NVIDIA Tesla
V100 SXM2 cards, AMD Epyc ROME 7H12 CPUs, and AWS Graviton3 processors. As a result,
conducting experiments on trajectories generated with larger graphs (e.g., exceeding 100 nodes)
would be infeasible or would require a significant amount of time. However, in the interest of
fostering further research, we plan to make the trajectories generated by graphs with more than 100
nodes publicly available. We encourage interested researchers to leverage their own computational
resources to test alternative structural inference methods on these trajectories.

• Computational Intensity: Fully reproducing the benchmarking results presented in this study
requires over 263,400 GPU hours, highlighting the computational demands of the evaluation in this
paper. We advise researchers to consider their available resources and, where necessary, focus on
specific methods or datasets that align with their computational capacity.

• Assumption: The fundamental assumption underlying our study is that the nodes in the graph
are entirely observed within the specified time frame, and the edges remain stable. However, we
acknowledge the potential for nodes to be only partially observed, resulting in incomplete data.
Moreover, dynamic graphs may come into play, where nodes and edges evolve over time. While
this paper primarily focuses on benchmarking structural inference methods on static graphs, we

53

recognize the significance of exploring these methods in the context of dynamic graphs. This
avenue remains a promising area for future research.

• Need for Further Validation on Diverse Real-World Datasets: Although we included an
evaluation using the EMT single-cell dataset, there remains a need for broader validation across
diverse real-world datasets. This is a notable limitation, and we are committed to addressing it in
future work.

• Trajectory generation: This study heavily relies on synthetic data generated by synthetic static
interaction graphs. While the synthetic graphs were designated based on properties observed
in real-world graphs, discrepancies may still exist between them, proven by the differences in
model performance between synthetic and experimental GRN networks. Furthermore, the chosen
dynamical simulations are based on first-order and second-order ODEs. They may not fully
capture the diverse range of dynamical systems encountered in real-world scenarios, such as those
based on stochastic differential equations, and those based on quadratic dependency on locations.
Future research should aim to incorporate more real-world data and explore a broader array of
dynamical simulations to enhance the evaluation of the fidelity and applicability of structural
inference methods.

• Exploration of additional valid methods: It is important to acknowledge that this study does not
encompass all potentially valid methods for structural inference. Numerous methods from various
fields may possess the capability to perform, or to be adapted for, the task of structural inference.
Besides the methods investigated in this work, we also recognize the possibility of leveraging
federated graph learning to perform structural learning, such as [48]. We select the methods for our
benchmarking based on four criteria:

– Representativeness: Our selected methods are either the latest work in its line of work or widely-
used methods in its research domain. XGBGRN and RCSI are the latest work in their line of
work, while ppcor, ARACNe and CLR are widely used methods in GRN inference. Although
GENIE3 is also widely used in GRN inference, we have chosen its successor, the dynGENIE3
method, in our benchmark.

– Diversity: We only choose one representative if methods have similar functional mechanisms.
For example, for all of the methods based on information theory, we choose PIDC and Scribe as
they use new MI estimators in their algorithms. Similarly, we choose TIGRESS because it uses
feature selection instead of indirect edge elimination in GRN inference.

– Data constraint: As most methods are domain-specific, we screen out methods with strong data
assumptions or low utilization of our data input. For example, methods that only allow single time
series input are screened out, such as GRNVBEM [90], SCODE [73] and SINCERITIES [79].
Besides, LinkedSOMs [54] and method in [44] were screened out because the former requires
additional single-cell ATAC sequencing data on top of the gene expression level as input, and the
latter restricted node interaction as Boolean functions. For similar reasons, we exclude several
methods in the field of causal structural discovery, because they either require interventional
data [121, 40, 114, 113] or impose strong assumptions [27, 16, 53, 13].

– Computational constraint: We screen out methods with long computation time such as
SINGE [30], PCA-PMI [118], Jump3 [51] and Bayesian network methods.

We encourage researchers in this field to explore and evaluate other promising methods originating
from diverse disciplines. Such exploration will contribute to the advancement of the field and the
discovery of innovative approaches to structural inference.

By recognizing and addressing these limitations in future research endeavors, we can enhance the
robustness, versatility, and effectiveness of structural inference methods, enabling their application in
a wide range of real-world scenarios.

F Broader Impact

Structural inference methods on dynamical systems allow numerous researchers in the fields of
physics, chemistry, and biology to study the interactions inside the systems. We have shown that
investigated methods work well on either one-dimensional node features or multi-dimensional
features, where the features are continuous variables. These results prove the wide application of
the methods. Similarly to [106], while the emergence of the structural inference technology may be

54

extremely helpful for many, it has the potential for misuse. Potentially, structural inference methods
can be extended to infer online social connections via measuring mutual information or correlations,
which could erode privacy.

G Reproducibility

All results in this benchmark paper can be easily reproduced. The DoSI dataset can be downloaded at:
https://structinfer.github.io/download/, while the code of all evaluated methods and with
our implementation can be found at https://structinfer.github.io/. The implementation
details in Appendix C will guide the reproduction of the benchmark results.

H Author statement

We, the authors, confirm that we bear full responsibility for any violation of rights, including but
not limited to intellectual property rights, privacy, and confidentiality, that may arise in connection
with the content of this paper. We declare that all data used in this study are either created by us or
obtained and processed under appropriate licenses that permit their use in this research. We confirm
that we have adhered to all relevant data protection and usage guidelines in the preparation of this
manuscript.

55

https://structinfer.github.io/download/
https://structinfer.github.io/

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
[Yes] See abstract, last paragraph of Section 1 and conclusion.

(b) Did you describe the limitations of your work?
[Yes] The limitations are described in Appendix E.

(c) Did you discuss any potential negative societal impacts of your work?
[Yes] The potential negative societal impacts are discussed in Appendix F.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them?
[Yes] We have read the ethics review guidelines and ensured that our paper conforms
to them.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results?
[N/A] This is a benchmark paper, and it does not contain theoretical results.

(b) Did you include complete proofs of all theoretical results?
[N/A] This is a benchmark paper, and it does not contain theoretical results.

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)?
[Yes] Besides the link to the project website on the first page of this paper, we also
attach the link to our code and data in the supplementary documents. We also give
instructions about how to reproduce the main experimental results in Appendix C.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)?
[Yes] See Appendix C.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)?
[Yes] See raw results in Appendix D.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)?
[Yes] Please refer to the Appendix C.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators?
[Yes] We have cited the creators for the raw and post-processed EMT dataset.

(b) Did you mention the license of the assets?
[Yes] We have mentioned the licenses for the raw and post-processed EMT dataset.

(c) Did you include any new assets either in the supplemental material or as a URL?
[Yes] We attach the link to the EMT dataset in the supplementary documents.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating?
[N/A] The cells reported in the EMT dataset were cultivated in the laboratory.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content?
[N/A] Data were collected in vitro.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable?
[N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable?
[N/A]

56

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation?
[N/A]

57

	Introduction
	Preliminaries
	Methods for structural inference
	Methods based on classical statistics
	Methods based on information theory
	Methods based on tree algorithms
	Methods based on deep learning
	More related works

	Datasets for benchmarking
	Underlying interaction graphs of DoSI
	Dynamical systems

	Benchmarking setup
	Benchmarking results
	Benchmarking over different interaction graphs
	Benchmarking over scalability
	Benchmarking over robustness
	Benchmarking with Charged Particles

	Conclusion
	Dataset documentation
	Motivation
	Composition
	Collection process
	Preprocessing/Cleaning/Labeling
	Uses
	Distribution
	Maintenance

	Further details of datasets
	Underlying interaction graphs
	Dynamical system simulations
	Quality evaluation of DoSI
	More details on EMT dataset

	Further implementation details of structural inference methods
	ppcor
	TIGRESS
	ARACNe
	CLR
	PIDC
	Scribe
	dynGENIE3
	XGBGRN
	NRI
	ACD
	MPM
	iSIDG
	RCSI

	Further benchmarking results and details
	Results on all of the trajectories without noise
	Benchmarking over robustness
	Benchmarking over efficiency
	Discussion on metrics
	Benchmarking with EMT Dataset

	Limitations
	Broader Impact
	Reproducibility
	Author statement

