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Abstract

In probabilistic terms, optimal transport aims to find a joint distribution that couples two
distributions, which minimizes the cost of transforming one distribution to another. Any
feasible coupling necessarily maintains the support of both distributions. However, main-
taining the entire support is not ideal when only a subset of one of the distributions, namely
the source, is assumed to align with the other target distribution. For these cases, which are
common in machine learning applications, we propose to relax the constraints on the joint
distribution allowing it to underrepresent a subset of the source by overrepresenting other
subsets of the source by a constant factor. This is a special case of partial optimal transport.
In the discrete distribution case, such as in the case of two samples from continuous random
variables, optimal transport with the relaxed constraints is a linear program. When suffi-
ciently relaxed, the solution has a source marginal with only a subset of its original support.
We demonstrate the usefulness of this support subset selection in applications such as color
transfer, partial point cloud alignment, and semisupervised machine learning, where a part
of data is curated to have reliable labels and another part is unlabeled or has unreliable
labels. Our experiments show that optimal transport under the relaxed constraint can im-
prove the performance of these applications by allowing for more flexible alignment between
distributions.

1 Introduction

Measuring, and subsequently minimizing, the dissimilarity between two distributions or data samples are
ubiquitous tasks in machine learning. Recently, the theory of optimal transport and the family of Wasserstein
distances have seen applications across the spectrum of machine learning problems including computer vision
(Solomon et al., 2014; Kolouri et al., 2017; Rabin et al., 2011; Garg et al., 2020), generative modeling
(Arjovsky et al., 2017; Gulrajani et al., 2017; Salimans et al., 2018; Genevay et al., 2018; Tolstikhin et al.,
2018; Kolouri et al., 2018; Deshpande et al., 2018), natural language processing (Xu et al., 2018), and domain
adaptation (Kirchmeyer et al., 2022). Optimal transport is widely applicable since it combines the statistical
and geometric aspects of data and provides a correspondence to couple two samples or distributions.

However, a limitation of standard optimal transport is the strict constraint on the complete transfer of mass
between the two distributions being compared. This can be problematic in cases where such a transfer is
not necessary or desirable, such as when dealing with distributions with different support, over- or under-
representation, or the presence of outliers in a portion of the data. In order to deal with this kind of
unbalanced scenarios partial optimal transport problems (Figalli, 2010; Caffarelli & McCann, 2010; Bonneel
& Coeurjolly, 2019; Chapel et al., 2020) have been proposed. Partial optimal transport relaxes the marginal
constraints on the transport plan to inequalities, allowing transportation plans that cover only a fraction
of the total mass. The marginal constraints can also be relaxed to divergence-based regularizations, such
as Kullback-Leibler divergence and total-variation distance (Chizat et al., 2018; Peyré et al., 2019). The
solution of partial optimal transport often selects a subset (also known as an active region) of the support.
This property is exploited in the partial Wasserstein covering problem, which has applications in active
learning (Kawano et al., 2022).

In practice, a key limiting factor is the scalability of solving the linear program corresponding to partial or
standard optimal transport for large data sets. While efficient gradient based methods cannot be applied
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to it directly, a number of regularization based remedies, including entropic (Cuturi, 2013; Cuturi & Peyré,
2018), quadratic, and group-lasso regularization (Flamary et al., 2016; Blondel et al., 2018) have been shown
to give approximate solutions. In particular, the Sinkhorn algorithm provides a solution to the entropically
regularized standard optimal transport problem. The Sinkhorn algorithm has been widely applied due to
its simple implementation consisting of alternating projections to the feasible sets of marginal constraints.
In Chizat et al. (2018), the authors propose to use Dykstra’s algorithm1to solve the entropically regularized
partial optimal transport problem.

In this paper, we study a discrete case of partial optimal transport (Figalli, 2010; Caffarelli & McCann, 2010)
where the solution is a joint distribution with one fixed marginal and one marginal that is constrained to
be pointwise less than or equal to a constant factor c ≥ 1 of the original, typically uniform, marginal. We
propose an entropically regularized version to efficiently find an approximate solution that we solve with an
algorithm that combines Sinkhorn-like projections with the proximal gradient method. To yield solutions
closer to the original, unregularized, linear program, we follow the inexact Bergman proximal gradient-
based method adopted by Xie et al. (2020) in the context of the classical optimal transport problem. The
contributions of this paper are the following:

• We motivate and formulate a partial optimal transport problem for selecting a subset of a source distri-
bution, which may exhibit overrepresentation or outliers, for a fixed target distribution.

• We develop an accelerated proximal gradient method-based algorithm to solve the entropically regularized
version and incorporate the inexact Bregman proximal method-based approach from Xie et al. (2020) to
mitigate the effects of entropic regularization.

• We demonstrate the resultant algorithm for color adaptation, partial distribution alignment, partial point
cloud registration problems, and positive-unlabeled learning (Bekker & Davis, 2020).

• We incorporate the subset selection-based approach into a semi-supervised loss function for training a
neural network-based classifier, which computes the optimal transport based on the learning representa-
tion.

2 Methodology

In Section 2.1, relevant preliminaries related to discrete optimal transport along with formulation of subset
selection problem are discussed. In Section 2.2, the entropically regularized support subset selection problem
and an algorithm to solve it are discussed. In Section 2.3, an inexact Bregman proximal-based approach to
better approximate the solution of the unregularized support selection problem is detailed.

Notation: The set of the first n natural numbers {1, 2, . . . , n}, is denoted by [n]. The set of integers is
denoted by Z. The ceiling function defined on real numbers x ∈ R is ⌈x⌉ = min{n ∈ Z : n ≥ x}. The
floor function defined on real numbers x ∈ R is ⌊x⌋ = max{n ∈ Z : n ≤ x}. The n-dimensional real
vector space is denoted by Rn. Vectors are typeset in lowercase bold (x); matrices are in uppercase bold
(X); and bold is dropped when an element are referenced by subscripts (xi, Xij). When needed for clarity,
elements will be referenced by subscripts on square brackets ([x1]i, [X2]ij). The set of non-negative vectors
in Rn, known as the non-negative orthant, is denoted by Rn

+. The n-dimensional vector with all elements
equal to unity is denoted by 1n and the m-by-n matrix with all unity elements is denoted by 1m×n. For
vectors and matrices, the symbol ≼ denotes element-wise less than or equal to, and ≽ denotes element-
wise greater than or equal to. The set denoted by ∆∆∆n = {x ∈ Rn

+ :
∑n

i=1 xi = 1} is the probability
simplex. The element-wise product for vectors and matrices is denoted by the ⊙ symbol. The element-wise
division for vectors and matrices is denoted by the ⊘ symbol. The diagonal operator is a matrix valued
map D : Rn → Rn×n, such that [D(x)]ii = xi ∀ i ∈ [n] and [D(x)]ij = 0 ∀ i ̸= j ∈ [n]. For x ∈ Rn, the
ℓ1, ℓ2 and ℓ∞ norms are given by ∥x∥1 =

∑
i |xi|, ∥x∥2 = (

∑
i |xi|2) 1

2 and ∥x∥∞ = max
i
|xi|, respectively.

Both, the Euclidean inner-product for x, y ∈ Rn given by
∑

i xiyi, and the Frobenius inner-product for
X, Y ∈ Rm×n given by

∑m
i=1

∑n
j=1 XijYij , are denoted by ⟨·, ·⟩. The element-wise exponent of a vector or

1Dykstra’s algorithm can find solutions at the intersection of convex, not necessarily affine, sets.
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a matrix is denoted by expexpexp(·) and the element-wise logarithm of a vector or a matrix is denoted by logloglog(·).
For a matrix X ∈ Rm×n, its non-negative part is represented by X+ or [X]+, with matrix components
given by

[
X+

]
ij

= max{Xij , 0} ∀ i ∈ [m], j ∈ [n]. Similarly, the non-positive part of matrix X ∈ Rm×n

is denoted by X− or [X]− and contains matrix elements
[
X−

]
ij

= min{Xij , 0} ∀ i ∈ [m] and j ∈ [n]. For
a vector x ∈ Rn, both x+ and x− denote the non-negative and non-positive parts respectively. We denote

the indicator function of the singleton set {z} as δz(x) =
{

1, x = z

0, x ̸= z
. The set of vectors {ei}n

i=1 form the

standard basis for Rn, where [ei]i = 1 and [ei]j = 0 for i ̸= j.

2.1 Problem Formulation

We consider the discrete optimal transport between two weighted samples of size m and n corresponding to
random variables X ∼ µ defined on {x(i)}m

i=1 ⊂ Rd and Y ∼ ν defined on {y(j)}n
j=1 ⊂ Rd, with probability

measures µ =
∑m

i=1 µiδx(i) and ν =
∑n

j=1 νjδy(j) for probability masses µµµ ∈ ∆∆∆m (with {µi = µ(x(i))}m
i=1)

and ννν ∈ ∆∆∆n (with {νj = ν(y(j))}n
j=1), respectively. Let d : Rd × Rd → R+ denote a distance function.

In practice, this is often the Euclidean distance matrix between the points d(x, y) = ∥x − y∥2. Given
1 ≤ p ≤ ∞, the p-Wasserstein distance (to the p-power) between µ and ν is expressed in terms of the cost
matrix M , where Mij = dp(x(i), y(j)) ∀i ∈ [m], j ∈ [n] is the cost associated with transporting x(i) to y(j),
as

Wp
p (µ, ν) := min

P≽0
⟨P , M⟩

s.t. P 1n = µµµ, P ⊤1m = ννν,
(1)

where P is the transport map and 1⊤
mP 1n = 1⊤

mµµµ = ννν⊤1n = 1. The constraints ensure that any solution P ∗

is a joint distribution that couples the target marginal µµµ and the source marginal ννν. (In the computational
optimal transport literature, µ is referred to as the target and ν as the source.) Therefore, any Wasserstein
distance requires the complete mass transfer between a fixed source and target.

In partial optimal transport (Figalli, 2010), the marginal equality constraints are replaced by the inequalities
P 1n ≼ µµµ, P ⊤1m ≼ ννν, and the equality 1⊤

mP 1n = ρ; µµµ ∈ Rm
+ and ννν ∈ Rn

+ may not have equal mass; and
the transport map need only transport a fraction of the total mass ρ ∈ [0, min{∥µµµ∥1, ∥ννν∥1}]. Motivated
by machine learning scenarios with a trusted target sample of data and an additional source of data which
cannot be assumed to be of uniform quality, we focus on a special case, where the target is fixed with
∥µµµ∥1 = 1, ensuring the total mass constraint, but allow the source mass to redistribute among the source
points to a new marginal ννν∗ ≤ cννν, where c ≥ 1 is a scaling factor. The relaxed constraint is P ⊤1m ≼ cννν.
The resulting partial optimal transport problem2 is

min
P≽0

⟨P , M⟩

s.t. P 1n = µµµ, P ⊤1m ≼ cννν.
(2)

Let P ∗
c denote an optimal solution, then the source’s new mass is ννν∗

c = P ∗⊤
c 1m. Since 1⊤

mµµµ = 1⊤
mP ∗

c 1n = 1,
∥ννν∗

c∥1 = 1. Intuitively, this problem allows the new mass of some source points that have relatively lower
cost to increase by a factor of c of the original mass, which enables higher cost source points to have less or
even zero mass. In other words, due to total unit mass constraint, the mass increment at one source point
results in its decrement at other source points. The subset of the source points selected is supp(ννν∗

c), where
supp(·) indicates the support of a vector, i.e., the indices of the points with non-zero mass.3

2An equivalent set of constraints are P 1n ≼ µµµ, P ⊤1m ≼ cννν, 1⊤
mP 1n = 1.

3Support subset selection can be extended to both marginals, by scaling the total mass of the transport plan to unity, which
results in mass assignments constraints for both source and target being scaled by the same constant factor 1

ρ
:

min
P≽0

⟨P , M⟩

s.t. P 1n ≼ µµµ, P ⊤1m ≼ ννν, 1⊤
mP 1n = ρ

T = 1
ρ

P

⇐⇒

min
T≽0

⟨T , M⟩

s.t. T 1n ≼
1
ρ

µµµ, T ⊤1m ≼
1
ρ

ννν, 1⊤
mT 1n = 1.
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To explore the relaxed constraint set, we consider the case of a uniformly distributed mass ννν = 1
n 1n and

express the constraint as P ⊤1m ≤ 1
L 1n, where 0 < L ≤ n and c = n

L . For a fixed value of L, the set
of feasible source marginal distributions form a polyhedral set ΞΞΞ(L)

n ⊆ ∆∆∆n bounded by linear inequalities
parameterized by L. The set ΞΞΞ(L)

3 for different values of L are given in Figure 1.
Remark. For the partial optimal transport problem 2 with n > 2 and ννν = 1

n 1n, by defining L = n
c , the

inequality constraint can be written as P ⊤1m ≤ 1
L 1n. Extreme points of ΞΞΞ(L)

n can be characterized as
follows:

• For 0 < L ≤ 1, the entire probability simplex ∆∆∆n is feasible due to the fact that in this case the vertices
of the probability simplex correspond to extreme points of feasible set.

• For 1 < L < 2 and n > 2, the feasible set ΞΞΞ(L)
n has n(n− 1) number of vertices, which can can be written

as as convex combination 1
L ei + (1− 1

L )ej, where i, j ∈ [n] and i ̸= j.

• For L = 2, the feasible set ΞΞΞ(2)
n has n(n−1)

2 vertices given as 1
2 (ei + ej) for i ̸= j.

• More generally, the number of extreme points of the feasible set ΞΞΞ(L)
n is

n!
⌊L⌋!⌈1− ⌊L⌋

L ⌉!(n− ⌊L⌋ − ⌈1−
⌊L⌋
L ⌉)!

,

with the vertices given as the set of possible multi-set permutations of the vector:[ ⌊L⌋ terms︷ ︸︸ ︷
1
L

1
L · · · 1

L 1− ⌊L⌋
L

n − 1 − ⌊L⌋ terms︷ ︸︸ ︷
0 0 · · · 0

]⊤
.

Since the amount of mass to be transported is constant, when the scaling parameter c is increased (or
equivalently, when the value of L is decreased) starting from c = 1, the behavior of the coupling P ∗

c in the
transportation problem is affected. This behavior depends on the structure of the cost matrix M and leads
to a redistribution of mass, assigning more mass to certain points and less to others. At c = 1, all source
constraints are active, meaning that all constraints in the problem are considered. However, as the value of c
is increased, constraints become inactive, which constraints depends on the structure of the cost matrix M
and the distributions.Once c reaches c∗, all inequality constraints are inactive and can be discarded. After
this breakpoint c∗, any further increments in c do not affect the resulting transport plans. In other words, for
c ≥ c∗, the transport plan P ∗

c remains the same as P ∗
c∗ . The exact value of c∗ can be determined analytically.

The analytical expression for c∗ depends on the properties of the cost matrix M and the constraints involved,

c∗ = max
j∈[n]

∑
j Qij

νj
, (3)

where the matrix Q is found by nearest neighbor search,

Qij =
{

µi, j ∈ arg mink∈[n] Mik

0, otherwise
, i ∈ [m], j ∈ [n]. (4)

In cases without an initial source mass ννν, a designer can provide an upper-bound on the mass assignments to
source points by ζζζ ∈ Rn

+ with ∥ζζζ∥1 ≥ 1 (equality corresponds to standard optimal transport), which adds the
flexibility in designing partial optimal transport problems that allow variable ranges of masses for the source
points. For target distribution µ and source upper-bounding measure ζ =

∑m
j=1 ζjδy(j) , which is necessarily

not a probability measure, the support subset selection problem can be stated as

Sp(µ, ζ) := min
P≽0

⟨P , M⟩

s.t. P 1n = µ, P ⊤1m ≼ ζζζ,
(5)

and related to the p-Wasserstein distance by Sp(µ, cν) ≤ Wp
p (µ, ν) for c ≥ 1. In the next section, we will

discuss the entropic regularization of the support subset selection problem and algorithms to solve it.
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Figure 1: The feasible set Ξ(L)
3 for different values of L. For 0 < L ≤ 1 the whole probability simplex is

feasible. (a) L = 1.3, six vertices will exist for 1 < L < 2 . (b) L = 2 yields 3 vertices. (c) L = 2.2, 2 < L < 3
also give 3 vertices. (d) L = 3 yields a singleton set corresponding to a uniform distribution.

2.2 Support Subset Selection with Entropic Regularization

The support subset selection problem 5 is a linear program, which can be exactly solved by the simplex
method or interior point methods, both of which do not scale well with the dimension of transport map (Cu-
turi, 2013). In order to apply efficient gradient based optimization to linear programs, entropic regularization
has been added to linear objective functions (Li & Fang, 1997). Cuturi applied entropic regularization to
the optimal transport problem to efficiently approximate the Wasserstein distance using Sinhkorn’s matrix
scaling algorithm (Cuturi, 2013; Sinkhorn, 1964). For fixed target distribution µ and upper-bounding source
measure ζ with mass ζζζ ∈ Rn

+, the proposed entropically regularized support subset selection problem is

S(γ)
p (µ, ζ) := min

P≽0
⟨P , M⟩+ γ⟨P , logloglog(P )− 1m×n⟩

s.t. P 1n = µ, P ⊤1m ≼ ζζζ,
(6)

where γ is the regularization parameter. It is important to mention that the regularization term ⟨P , logloglog(P )−
1m×n⟩ is negative entropy, which is 1-strongly convex with respect to the ℓ1 and ℓ2 norms in the feasible
set: {P : P ≽ 0, P 1n = µ, P ⊤1m ≼ ζζζ} (Beck, 2017). The Lagrangian of equation 6 is

L(P ,ααα,βββ) =
〈
P , M + γ(logloglogP − 1m1⊤

n ) + ααα1⊤
n + 1mβββ⊤〉

− ⟨ααα,µµµ⟩ − ⟨βββ,ζζζ⟩, (7)

where ααα,βββ are the Lagrange multipliers. Note that we have adopted the approach of Cuturi (2013) and do
not explicitly enforce the simplex constraint on P , which would lead to the log-sum-exp formulation as in
Cuturi & Peyré (2018); Lin et al. (2022); Guminov et al. (2021). Taking the element-wise derivative of L
with respect to P and setting it to zero yields

P̃ (ααα,βββ) = D

(
expexpexp(−ααα/γ)

)
expexpexp(−M/γ)D

(
expexpexp(−βββ/γ)

)
. (8)

Substituting P̃ back into Lagrangian results in the dual problem

min
ααα,βββ

{
f(ααα,βββ) = γ1⊤

mP̃ (ααα,βββ)1n + ⟨ααα,µµµ⟩+ ⟨βββ,ζζζ⟩
}

s.t. βββ ≽ 0.
(9)

The constraint set βββ ≽ 0 is closed. The indicator function of the constraint set βββ ≽ 0 is defined as

I+(βββ) =
{

0, for βββ ≽ 0
∞, otherwise.

Therefore, we can convert problem 9 into an unconstrained composite optimization problem,

min
ααα,βββ

f(ααα,βββ) + I+(βββ). (10)
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Since f(ααα,βββ) is convex and I+(βββ) is proper, closed, and convex, we can apply the accelerated proximal
gradient algorithm to solve the composite optimization problem. Defining the Gibbs kernel K = expexpexp(−M

γ ),
the partial gradient ∇βββf(ααα,βββ) is

∇βββf(ααα,βββ) = ζζζ − expexpexp(−βββ/γ)⊙
(
K⊤expexpexp(−ααα/γ)

)
. (11)

The proximal projection for the non-negative orthant’s indicator function I+ is computed by setting any
negative entries to zero.

Algorithm 1 outlines our accelerated proximal gradient algorithm to solve the dual form of subset selection
problem with entropic regularization. Similar to the standard entropically regularized optimal transport
problem, the dual variable ααα is updated with a Sinkhorn-like update at iteration k as

ααα(k+1) = γlogloglog
((

Kexpexpexp(−βββ(k)/γ)
)
⊘µµµ

)
. (12)

Whereas, βββ is updated at iteration k using accelerated proximal gradient based update rule (Beck, 2017;
Beck & Teboulle, 2009) with step size 1

η
(k)
s

βββ(k+1) =
[
ξξξ(k)− 1

η
(k)
s

∇ξξξf(ααα(k+1), ξξξ(k))
]

+ =
[
ξξξ(k)− 1

η
(k)
s

(
ζζζ − expexpexp(−ξξξ(k)/γ)⊙K⊤expexpexp(−ααα(k+1)/γ)

) ]
+

, (13)

which uses equation 11 to compute the gradient with respect to the variable ξξξ(k) before applying the proximal
operator [·]+. In Algorithm 1, we use a constant step size 1

η
(k)
s

= γ (since the primal problem 9 is γ-strongly
convex and its semi-dual is 1

γ -Lipschitz smooth Cuturi & Peyré (2016), see Appendix C for details), but
another option is a backtracking line search (Beck, 2017).

By incorporating the update of ααα(k+1) as in equation 12 directly into the gradient ∇βββf(ααα(k+1),βββ(k)), the
algorithm can be written entirely in terms of βββ(k). This shows that Algorithm 1 consists of standard
accelerated proximal gradient updates and has a O(1/k2) convergence rate. As shown by Beck (2017), the
required number of iterations kε to achieve an ε sub-optimal solution of equation 10 using Algorithm 1 is
upper-bounded as

kε + 1 ≤
√

2
γε
· ∥βββ(i) − βββ∗∥, (14)

where βββ(i) is the initialization and βββ∗ is the optimal solution.

If Algorithm 1 is allowed to run until its convergence, it returns the optimal coupling P ∗, but in practice,
if Algorithm 1 does not reach convergence, P̂ ∗ ∈ Rm×n

+ may violate the primal constraints on its marginals
as these are not ensured by an approximate dual solution. For some applications a projection of P̂ ∗ to
satisfy one or both of the marginal constraints may be required. While not explored in this paper due to the
additional computational cost, projection to the feasible set can be done by the fast dual proximal gradient
(FDPG) algorithm from Beck & Teboulle (2014); Beck (2017) in conjunction with Altschuler et al. (2017)’s
Algorithm-2.

2.3 Support Subset Selection with the Bregman Proximal-point Method

Although the entropic regularization of the coupling distribution enables an efficient approximation of the
support subset selection problem 5, the entropic regularization yields denser coupling distributions as com-
pared to the unregularized problem. The denser coupling distributions result in a new marginal mass ννν∗ that
is also not sparse, yielding complete support rather than a subset of the source points. Different approaches
have been proposed to maintain the computational benefits of entropic regularization while yielding solutions
closer to the unregularized problem (Schmitzer, 2019; Xie et al., 2020).

In this paper, we follow Xie et al. (2020) and adapt an inexact Bregman proximal gradient for the negative
entropy function (Teboulle, 1992) to the partial optimal transport case. The Bregman proximal gradient
approach uses a Bregman proximal operator by replacing the usual Euclidean distance in the proximal

6
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Algorithm 1: Fast proximal gradient algorithm to solve the dual problem 10 of the entropically
regularized support subset selection problem 6

Inputs : Target distribution µµµ, mass assignment bounding vector ζζζ, cost matrix M ,
entropic regularization parameter γ, initial dual variable, βββ(i) ∈ Rn

+, and iteration
limit max-iter.

Outputs : P̂ ∗, which approaches the optimal coupling P ∗

1 Function EntropicSS(µµµ, ζζζ, βββ(i), γ, M , max-iter):
Initialization: t0 ← 1, βββ(0) ← βββ(i), ξξξ(0) ← βββ(i), K ← expexpexp(− 1

γ M)
2 for k ← 0 to max-iter− 1 do

3 ααα(k+1) ← γlogloglog
((

Kexpexpexp(− 1
γβββ(k))

)
⊘µµµ

)
4 βββ(k+1) ←

[
ξξξ(k) − γ∇ξξξf(ααα(k+1), ξξξ(k))

]
+

5 tk+1 ←
1+
√

1+4t2
k

2
6 ξξξ(k+1) ← βββ(k+1) + ( tk−1

tk+1
)(βββ(k+1) − βββ(k))

7 end
8 ααα∗ ← ααα(k+1)

9 βββ∗ ← βββ(k+1)

10 P̂ ∗ ← P̃ (ααα∗,βββ∗) = D
(
expexpexp(− 1

γααα∗)
)
KD

(
expexpexp(− 1

γβββ∗)
)

11 return P̂ ∗, ααα∗, βββ∗

method (Parikh & Boyd, 2014) with the Bregman divergence associated with a continuously differentiable
and strictly convex function (Beck, 2017). In the case of negative entropy, the Bregman divergence is the
Kullback–Leibler divergence. Let ϕ(P ) = ⟨P , logloglog(P )−1m×n⟩ denote the negative entropy of a non-negative
matrix P , then given a non-negative matrix P

′ ∈ Rm×n
+ , the Bregman divergence is

Bϕ(P ||P
′
) := ⟨P , logloglog(P ⊘ P

′
)⟩ − ⟨P , 1m×n⟩+ ⟨P

′
, 1m×n⟩. (15)

For the subset selection problem 5, the Bregman proximal point evaluated at P (t), is

Breg-proxϕ(P (t)) = arg min
P≽0

⟨P , M⟩+ λBϕ(P ||P (t))

s.t. P 1n = µ, P ⊤1m ≼ ζζζ,
(16)

where λ is positive scaling factor. By substituting Bϕ(P ||P (t)) from equation 15 into equation 16 and
ignoring the constant term ⟨P (t), 1m×n⟩ we obtain

Breg-proxϕ(P (t)) = arg min
P≽0

⟨P , M − logloglog(P (t))⟩+ λ⟨P , logloglog(P )− 1m×n⟩

s.t. P 1n = µ, P ⊤1m ≼ ζζζ,
(17)

which corresponds to the entropically regularized subset selection problem 6 with parameters γ and M in 6
replaced by λ and M−logloglog(P (t)), respectively. Thus, solving the entropy-regularized support subset selection
problem is required to solve an iteration of the proximal-step evaluation problem in equation 17. It has been
shown in Xie et al. (2020) that as t→∞, the iterations P (t+1) = Breg-proxϕ(P (t)) converge to an optimal
solution of the original unregularized problem. Therefore, to solve 5 we can iteratively invoke Algorithm 1 to
obtain P (t+1) = Breg-proxϕ(P (t)), while replacing γ and M in problem 6 by λ and M −λP (t) in problem
17, respectively.

Algorithm 2 outlines the steps to solve the subset support selection using the Bregman proximal-point
method, where the inner loop is solved by Algorithm 1. The nested loops of the exact proximal point
algorithm result in high computational costs, but this can circumvented by choosing a lower number of
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iterations for the inner loop—stopping before its convergence. This is justified by the observation that the
majority of the progress towards optimal solutions by gradient based methods is achieved during the first
few iterations. Recently, an inertial variant of Bregman proximal point method for the optimal transport
has been proposed (Yang & Toh, 2022), which may further accelerate the Bregman proximal point method,
but to the best of our knowledge there are no guarantees for accelerated convergence.

Algorithm 2: Bregman Proximal Point Algorithm to approximately solve 5 via 17
Inputs : Target distribution µµµ, mass assignment upper bounding vector ζζζ, cost matrix M ,

Bregman scaling parameter λ, and initial dual variable, βββ(i) ∈ Rn
+, inner-iteration

limit max-inner-iter and outer-iteration limit max-outer-iter
Outputs : P̂ ∗

Initialization: βββ(0) ← βββ(i), P (0) ← 1
mn 1m×n

1 for t← 0 to max-outer-iter− 1 do
// repeatedly invoke the function EntropicSS from the Algorithm 1.

2 P (t+1),ααα(t+1),βββ(t+1) ← EntropicSS
(
µµµ,ζζζ,βββ(t), λ, M − logloglog(P (t)), max-inner-iter

)
3 end
4 P̂ ∗ = P (t+1)

Due to early stopping, Algorithm 2 can yield infeasible solutions that do not satisfy the marginal constraints.
In practice, the number of iterations depends on problem in the hand. For applications related to point
cloud registration, color transfer and PU learning, where number of data points in a data-batch is small, the
algorithm is allowed to run with a large number of iterations yielding a highly accurate and feasible solution.
Whereas, for the applications related to neural network training where training efficiency is more important
than the solution accuracy, the algorithm is allowed to run for a smaller number of iterations.

2.4 Point Cloud Registration with Subset Selection

Point cloud registration is a well studied problem that tries to find a correspondence of points in one sample
(cloud) to another sample (Zhang et al., 2021; Zang et al., 2019). Practical settings include points sampled
from the boundaries of 3D images such as captured by LIDAR or the points on the edges of objects in 2D
images (Xu et al., 2023). More generally, points correspond to data points in two or more samples. In both
of these cases it is useful to consider the case that the two samples exist in different coordinate frames such
that there is an affine transformation needed to align the samples before finding the correspondence.

Partial optimal transport for point cloud registration is motivated by cases of occlusion in 2D or 3D imagery.
In the case of data, it could be that one sample has dropped modes either by the nature of the data gathering
or generating process. Our proposed subset selection algorithms are applicable to cases where the source is
assumed to have a complete or overcomplete representation of the target, i.e., only a subset of the target is
available and all target points should be maintained.

We propose to use support subset selection as a loss function for optimizing affine transformations in partial
point cloud registration. This can be posed as a bi-level optimization problem

min
Θ

min
P≽0

⟨P , M̂(Θ)⟩ s.t. P 1n = µ, P ⊤1m ≼ cννν, (18)

where Θ = [A, b] are the parameters of the affine transform, the entries of the cost matrix M̂(Θ) are
[M̂(Θ)]ij = ∥xi − ŷΘ

j ∥2
2 i ∈ [m], j ∈ [n] for fixed target {xi}m

i=1 and transformed source {ŷΘ
j = Ayj +

b}n
j=1. To find a solution to equation 18, we use an iterative alternating algorithm with two steps. In the

first step, given the affine transformation we obtain an approximate solution P̂ ∗ to the subset selection
problem equation 5 via Algorithm 2. In the second step, we used automatic differentiation of the cost
⟨P̂ ∗, M̂(Θ)⟩ and perform gradient based update for the parameters Θ = [A, b]. It is important to mention
that we follow the approach adopted by Xie et al. (2020) for gradient evaluation. Therefore, during an
iteration, once the subset set selection map P̂ ∗ is obtained, it is deemed constant for the iteration in
consideration, therefore the gradient is: ∇Θ⟨P̂ ∗, M̂(Θ)⟩ =

∑
i,j [P̂ ∗]ij∇Θ[M̂(Θ)]ij . More specifically, we

8
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used PyTorch based automatic differentiation for gradient evaluation (Paszke et al., 2017) and the Adam
optimizer (Kingma & Ba, 2014) with learning rate of 0.5 for gradient based updates of parameters Θ. Instead
of using the entire set of points, we can also sample mini-batches from each point cloud. To initialize the
affine mapping parameters we simply set A and b to the identity matrix and zero vector, respectively.
However, since the bi-level optimization problem is not convex, even though the subset selection problem
at each iteration is convex, in practice the algorithm could be allowed to run with multiple initialization to
obtain the best fit.

The bi-level optimization approach we employ is similar to the standard approaches in point cloud registration
(Myronenko & Song, 2010; Arun et al., 1987). The standard approach discussed in Myronenko & Song (2010)
also involves two step iterations, but the standard is to solve the subproblem exactly via ordinary least
squares. If the coupling matrix during an iteration is given by P ∗, the next subproblem is to find the affine
transformation parameters Θ = [A, b] that minimize the weighted squared errors

∑
i,j [P ∗]ij∥xi−(Ayj+b)∥2

2.
The solution can be found analytically in terms of the source mass vector ννν∗ = P ∗⊤1m, weighted means of
the target point cloud X = [x1, . . . , xm]⊤ and the source point cloud Y = [y1, . . . , yn]⊤ as x̄ = X⊤µµµ and
ȳ = Y ⊤ννν∗, and centered point clouds X̃ = X − 1mx̄⊤ and Ỹ = Y − 1nȳ⊤, as

A =
(
X̃⊤P ∗Ỹ

)(
Ỹ ⊤D(ννν∗)Ỹ

)†
,

b = x̄−Aȳ,
(19)

where (·)† indicates the Moore-Penrose pseudo-inverse. Also in contrast to Myronenko & Song (2010),
instead of using complete source and target point clouds to obtain affine transformations, during every
iteration we draw batches from both source and target point clouds to obtain the coupling matrix P ∗ and
update the affine transformation parameters Θ. The advantage of this mini-batch based approach is an
implicit regularization and faster updates for affine transformation parameters.

3 Experimental Results and Discussion

In this section we discuss the application of subset selection to different test case. Subsections 3.1 and 3.2
discuss the application of subset selection in toy data sets: point-clouds in 2D and 3D with and without
affine transformations and color transfer, respectively. Subsection 3.3 discusses subset selection for positive-
unlabeled learning tasks. Subsection 3.4 discusses the application of subset selection for semi-supervised
training of neural networks. All the experiments done in this paper use p = 2 and the Euclidean distance to
define the cost matrix. Unless stated otherwise, experiments use µµµ = 1

m 1m and ζζζ = c
n 1n, where c ≥ 1 is the

scaling factor.

3.1 Subset Selection on Point Clouds

Circle and Square: In order to demonstrate the proposed algorithms and highlight the difference between
regular optimal transport and subset selection, we consider a target sample of points from a circle centered
at the origin and a source sample of points from a 2D uniform distribution also centered at the origin. We
allow the scaling parameter c to vary between 1 and 100, obtain the optimal transport plans P ∗ using both
Algorithm 1 and Algorithm 2, and evaluate the cost values ⟨P ∗, M⟩. Results for this toy case are shown
in Figure 2. It can be observed that as c is increased the transport cost decreases until it saturates to the
cost of the greedy solution

∑
i∈[m]

1
m minj∈[n][M ]ij , which corresponds to c = c∗ where the transport map

could be found by greedily choosing nearest source point for each target point as in equation 3. Figure 2 also
illustrates the transport couplings for c ∈ {1, 1.25, 1.5, 1.75, 2, 4, 8, 16}. A key observation is that transport
maps obtained with Algorithm 2 are sparser as compared to the denser maps obtained using Algorithm 1.
Additionally, they achieve smaller values of transport cost. Therefore in the subsequent, we focus on results
from Algorithm 2 in the main body; results for Algorithm 1 are in Appendix A.

Fragmented Hypercube with Mode Dropping: We demonstrate the utility of the support subset
selection algorithm for partial point cloud registration on a toy case with one dropped mode and an affine
transformation between the source and the target. Specifically, we consider data sampled from a uniform
distribution over a hypercube (specifically, a square in 2D or a cube in 3D), which is then fragmented, where

9
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(c)
Entropic subset-selection (Algorithm 2)
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Figure 2: (a) The toy data generated by uniformly sampling m = 100 points from a circle centered at the
origin with unit diameter as the target. The source contains n = 80 points generated by sampling uniformly
from [- 1

2 , 1
2 ] × [- 1

2 , 1
2 ]. (b) The optimal costs ⟨P ∗, M⟩ obtained using Algorithms 1 and 2 versus c for

c ∈ [1, 100]. Algorithm 1 is ran for 10,000 iterations with γ = 0.1. Algorithm 2 is ran for max-outer-iter =
100, max-inner-iter = 100 and λ = 0.1. (c) and (d) Support subset selection results obtained for c ∈
{1, 1.25, 1.5, 1.75, 2, 4, 8, 16} using the Algorithms 1 and 2, respectively.

the target has one less fragment than the source. To generate the source we sample n points {vi}n
i=1 from

the uniform distribution over a unit hypercube centered at the origin [− 1
2 , 1

2 ]d, d ∈ {2, 3}. These points
are then fragmented into 2d fragments according to their quadrant ỹi = vi + (d− 1) sign(vi) and then offset
to obtain the source points as yi = ỹi + 5(d − 1) for i ∈ [n]. The target data is generated similarly: a
sample of m̂ > m points {zi}m̂

i=1 is obtained from [− 1
2 , 1

2 ]d, then points with all negative coordinates are
discarded, leaving m points, which are fragmented into 2d− 1 fragments to obtain the target set {xi}m

i=1 via
xi = zi + (d − 1) sign(zi) for i ∈ [m]. Examples of the data for 2D and 3D are shown in Figure 3(a) and
Figure 4(a), respectively.

Due to the translation by 5(d − 1) of the source point coordinates, direct application of the transport map
will not yield a meaningful registration. Instead we use the bi-level optimization algorithm described in
Section 2.4. The target and the transformed source after applying the affine transformation obtained using
Algorithm 2 for c ∈ {1, 1.25, 1.5, 1.75, 2, 4, 8, 16} are displayed in Figure 3(c) and Figure 4(c), respectively.
Clearly, the c = 1 case corresponding to the complete optimal transport fails to identify a meaningful affine
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Figure 3: Results for affine transformation optimization with subset selection for partial optimal transport.
Target points X are sampled from a 2D fragmented hypercube centered at the origin with negative co-
ordinates removed, whereas source points Y are sampled from a translated fragmented hypercube. (a) Source
and target sample points. (b) Loss function curves for scaling parameter c ∈ {1, 1.25, 1.5, 1.75, 2, 4, 8, 16}. (c)
Target and transformed source points after application of optimized affine transformation. Subset selection
problems are solved using the Algorithm 2 with λ = 0.1, max-outer-iter = 200 and max-inner-iter = 200.

transformation, instead skewing and rotating the source fragments to minimize the Wasserstein distance
to the target. The figures also display the cost ⟨P ∗, M̂⟩ across iterations. It can be observed that, like
the previous toy examples as the value of scaling factor c is increased, initially the value of the optimal
loss ⟨P ∗, M̂⟩ decreases but after certain values of c, it saturates and stops decreasing and stays constant
afterwards.

Partial Point Cloud for 3D Shapes: We further applied this form of subset selection based point cloud
registration to point clouds for 3D objects when the target points are only taken from a portion of the
entire 3D point cloud. Results for the Stanford bunny and armadillo (Turk & Levoy, 1994; Krishnamurthy
& Levoy, 1996) are shown in Figure 5. It can be observed that for the case c = 1, which corresponds to
complete optimal transport, the entire set of source points are coupled to the target point cloud which results
in a distorted affine transform. For c ∈ {2, 5, 10, 20}, subset selection allows an appropriate subset of the
source points to be well-fit by an affine transform to the target point cloud.
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Figure 4: Results for affine transformation optimization with subset selection for partial optimal transport.
Target points X are sampled from a 3D fragmented hypercube centered at the origin with negative co-
ordinates removed, whereas source points Y are sampled from a translated fragmented hypercube. (a) Source
and target sample points. (b) Loss function curves for scaling parameter c ∈ {1, 1.25, 1.5, 1.75, 2, 4, 8, 16}.
(c) Target and transformed source points after application of the optimized affine transformation. Sub-
set selection problems are solved using the Algorithm 2 with λ = 0.1, max-outer-iter = 200 and
max-inner-iter = 200.

3.2 Color Transfer

Color transfer is the problem of finding a correspondence in the colors of pixels (represented as points in
a 3D color space) between two images and then using this map to assign the colors of the source image to
the target image (Reinhard et al., 2001). Color transfer is essentially an optimal transport problem in the
color space, but with the added context that the pixels have their image coordinates, which are not used
by the algorithm. For practical application to high resolution images, the pixel colors are first quantized
using k-means clustering, as using partial optimal transport on the full set of pixel colors is computationally
demanding. While in standard optimal transport the relative mass of each color cluster has to be preserved,
here we exploit our formulation of partial optimal transport as support subset selection to allow a subset
of colors to be used at a higher proportion than in the original source and allow a subset of colors to be
completely discarded. For example, if a color cluster represents 1% of the original source’s pixels, then it
could represent up to c% of the target’s pixels.

We apply k-means clustering to the set of vectors in RGB color space representing the source’s M pixels and
the target’s N pixels separately to obtain m ≪ M color centroids {xi}m

i=1 ⊂ R3
+ for the target image and

n ≪ N color centroids {yj}n
j=1 ⊂ R3

+ for the source image, with µµµ ∈ ∆∆∆m and µµµ ∈ ∆∆∆n being the vectors of
proportion of colors in the target and source image color clusters, respectively. After that, we defined the
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Figure 5: Affine transformation optimization for partial alignment of point clouds where the source point-
cloud Y can be perfectly aligned (after rotation and scaling) with a subset of the target point cloud X.
We use the optimization algorithm described in Section 2.4, where Algorithm 2 is employed to obtain the
coupling P ∗ given the affine transformation parameters A and b, which are updated using equation 19. (a)
Stanford bunny point cloud. (b) Stanford armadillo point cloud.

cost matrix between the color centroids as Mij = ∥xi − yj∥2
2,∀i ∈ [m], j ∈ [n] and obtained the support

subset selection map P ∗ ∈ Rm×n
+ using Algorithm 2, such that P ∗1n = µµµ and P ∗⊤1m ≼ cννν. The support

subset selection is then used to obtain the barycenter projections by solving (Blondel et al., 2018)

x̂i = arg min
x∈R3

n∑
j=1

P ∗
ij∥x− yj∥2

2, ∀i ∈ [m]. (20)

The analytic solution of the barycenter projections can be compactly written as

X̂ = (P ∗ ⊘ (µµµ1⊤
n ))Y ∈ Rm×3, (21)

where X = [x1, x2, . . . , xm]⊤ ∈ Rm×3 and Y = [y1, y2, . . . , ym]⊤ ∈ Rn×3 are matrices of the color centroids.
Each pixel in the target image is assigned the corresponding barycenter projection x̂π(i), where π(i) ∈ [m]
is the cluster assignment for the i-th pixel of target image, i ∈ [M ].

We apply this color transfer scheme to images freely available though a Creative Commons licence, the
“Louisiana Nature Scene Barataria Preserve” by Neil O as target and “Autumn in Toronto” by Bahman
A-Mahmoodi as source. The color transfer results with m = n = 128 and Algorithm 2 with λ = 0.1 are
shown in Figure 6. It can be observed that the results for larger values of c are smoother and sharper as
compared to the optimal transport case c = 1. This due to fact that larger values of c allow certain colors
to be reused more than their prevalence in the source image and allow some colors to be discarded, which
enables smoother transitions in colors for areas of the target images with smooth color gradients. Similar
observations can be seen in Figure 7 which uses the same settings and MATLAB test images: “peppers” as
target and “corn” as source.

3.3 Subset Selection for Positive-Unlabeled Learning

In this section, we discuss the application of subset selection to the one-class semi-supervised classification
scheme known as positive-unlabeled (PU) learning (Bekker & Davis, 2020). In PU learning, the training
sample consists of purely positively labeled instances, and the unlabeled test sample consists of both positive
and negative instances. Previous work often assumes that a prior on the probability of positive instances in
unlabeled data is known (Kato et al., 2019; Hsieh et al., 2019; Chapel et al., 2020). Partial optimal transport
is then used to find a subset with cardinality proportional to the prior of the test sample (the source) that
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Figure 6: Color transfer results for c ∈ {1, 1.25, 1.5, 1.75, 2, 4, 8, 16} for “Louisiana Nature Scene Barataria
Preserve” by Neil O as target and “Autumn in Toronto” as source by Bahman A-Mahmoodi as target. The
value of c for each image is indicated at the top of image.

target
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Figure 7: Color transfer results for c ∈ {1, 1.25, 1.5, 1.75, 2, 4, 8, 16} for MATLAB image “peppers” as target
and “corn” as source. The value of c for each image is indicated at the top of image.

corresponds to all or a subset of the training sample (the target). We argue that all of the target mass
should be preserved in cases of a relatively small and curated positive training sample. This motivates the
application of our proposed subset selection approach to find the subset of the source that covers the positive
target.

We applied subset selection to PU learning using the experimental settings adapted from Chapel et al. (2020),
who previously explored using partial optimal transport and the partial Gromov-Wasserstein distance on
various UCI, MNIST, colored-MNIST, and Caltech-office data sets. For the UCI, MNIST, and colored-
MNIST data sets, we randomly draw m = 400 positive points and n = 800 unlabeled points. For Caltech-
office data sets, we randomly sampled m = 100 positive points from the first domain and n = 100 unlabeled
data points. Following the experiments from Chapel et al. (2020) and Kato et al. (2019), for multi-class data
sets, we chose the data points from the first class as positive and a random mixture of all classes as unlabeled,
and the prior probability of positive class in the unlabeled set π is set to be exactly the proportion of positives
in unlabeled sample π = n+

n , where n+ is the number of true positives. This informs the partial Wasserstein
and partial Gromov-Wasserstein optimal transport problems on the amount of mass to be transported as
ρ = π, whereas for subset selection we set the scaling parameter to be c = n

⌈πn⌉ . Classification accuracy is
evaluated by assigning positive predictions to the n+ largest source mass assignments and negative predictions
to the remaining source points. We also compute the ROC curve by using the source mass assignment ννν∗ to
rank the unlabeled source points. We ran the experiment 10 times and report the average of classification
accuracy and the area under the ROC curve (ROC-AUC) in Table 1. It can be observed that subset-selection
performs better than both the partial Wasserstein and partial Gromov-Wasserstein optimal transport in
terms of accuracy in 6 out of the 8 UCI and MNIST data sets. For the Caltech-office data sets with domain
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transfer, the partial Gromov-Wasserstein optimal transport does better than both partial Wasserstein optimal
transport and the subset selection. In terms of ROC-AUC, subset selection does the best in 13 out of the
16 data sets, which is not surprising since the relative ranking is more meaningful than when the mass
assignments are restricted to be binary valued {0, p} as in Chapel et al. (2020).

Dataset π
Accuracy ROC-AUC

PW PGW SS PW PGW SS
mushrooms 0.518 95.15 94.85 96.63 0.9657 0.3336 0.9883

shuttle 0.786 95.13 93.63 96.20 0.9321 0.6215 0.9718
pageblocks 0.898 91.90 90.38 92.40 0.8036 0.7197 0.8513

usps 0.167 98.28 95.55 98.48 0.9815 0.5096 0.9927
connect-4 0.658 60.95 58.03 60.73 0.5692 0.5126 0.5871
spambase 0.394 78.80 68.40 79.28 0.7952 0.5834 0.8369

mnist 0.1 99.08 98.23 99.18 0.9874 0.7638 0.9971
mnist-colored 0.1 91.58 96.78 91.88 0.8189 0.6619 0.9521

surf C → surf C 0.1 90.00 87.20 90.40 0.8576 0.4622 0.7333
surf C → surf A 0.1 81.60 86.80 81.60 0.4546 0.4764 0.4889
surf C → surf W 0.1 82.20 86.40 82.20 0.4707 0.4807 0.5056
surf C → surf D 0.1 80.00 87.00 80.00 0.3756 0.4328 0.4444

decaf C → decaf C 0.1 94.00 86.20 93.00 0.9498 0.5713 0.9566
decaf C → decaf A 0.1 80.20 88.20 80.00 0.3986 0.5031 0.4242
decaf C → decaf W 0.1 80.20 88.60 80.20 0.4299 0.5827 0.6282
decaf C → decaf D 0.1 80.80 92.20 81.00 0.4546 0.5042 0.4617

Table 1: PU learning on data sets in (Chapel et al., 2020). For subset selection (SS) accuracy is evaluated
by assigning label 1 to the largest mass assignments to and label 0 to the remaining mass assignments. In
Chapel et al. (2020), the mass assignment are constrained to be binary valued in the set {0, p}, the data
points with mass assignments 0 are labeled 0 and the data points with mass p are labeled 1.

3.3.1 PU Learning on MNIST/EMNIST

To further illustrate how Algorithm 2 operates on PU learning, we apply it to the case where the positive
training sample (target) consists of MNIST digit images and the unlabeled test sample contains 50% points
(MNIST digits) and 50% negative points (alphabetic letters from EMNIST). When c = 1, which is equivalent
to standard optimal transport, initially all the images in the unlabeled source sample are assigned uniform
masses. As c is increased, we hypothesize that the true positive MNIST digits will been assigned larger
mass and remain in the selected support, whereas the EMNIST letters will receive relatively lower or zero
mass. Our hypothesis is confirmed by the results displayed in Figure 8(a), which displays the ROC curve
across different choices of c, and in Figure 8(c), which displays the area under the ROC curve (AUC). As
c is increased, source points with largest mass assignments are mostly MNIST digits. Likewise, Figure 8(e)
shows the images with highest mass for different values of c which are mainly MNIST numbers or EMNIST
letters with close resemblance to a number. Figure 8(b) visualizes the distribution of source point masses
by graphing the sorted masses for different values of c. From these curves the cardinality of the subset is
easily seen for different values of c. Notably, for values of c ≤ 4 there are exists a subset of the selected
source points with uniform mass, but for larger values of c, the mass is non-uniform across all instances.
These changes correspond to the change in slope of the entropy of the distribution for different values of c
is displayed in Figure 8(d).

3.3.2 PU Learning for CIFAR-10 Neural-Network Representations

We now consider the proposed subset selection algorithm for PU learning on the CIFAR-10 data set, where a
single class from the training set is treated as the positive target and a mixture of all classes from the test set is
the unlabeled source. Fundamentally, the performance of optimal transport methods on PU learning depends
on the distance metric defining the cost matrix. Thus, the method performs poorly if a Euclidean distance
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Figure 8: Subset selection results obtained using Algorithm 2 with parameters λ = 1, max-outer-iter = 250
and max-inner-iter = 20. Source sample n = 512 consists of 50% digit images from MNIST and 50% letter
images from EMNIST. The target sample contains m = 512 digit images drawn from MNIST. (a) ROC
curves for different values for c ∈ {1, 1.25, 1.50, 1.75, 2, 4, 8, 16, 20, 24, 28, 32}. (b) Mass assignments to source
images in descending order ννν↓. (c) AUC of ROC versus c. (d) Entropy H(ννν) of the mass assignments ννν
versus c.

metric is applied to complex data such as natural images. Instead, a learning representation extracted from
a pretrained neural network can be used. Here each image is represented as the vector of activations of the
penultimate layer of the pre-trained ResNet-20 classifier (trained on CIFAR-10), and the Euclidean distance
between the activation vectors defines the cost matrix for the transport problem.

The results are given in Figure 9. The results are similar to the previous MNIST/EMNIST data set. Mass is
uniformly distributed across a subset of images for values of 1 < c < 8. When the subset is greater than the
proportion of positive instances in the unlabeled source, then the relative ranking of mass is not reliable: the
top instances for c ∈ {1.5, 2, 4} are images from the target class, but c ∈ {1.25, 1.75} have images resembling
it from other classes. As c is increased above c = 8 the mass assignment is non-uniform, but constant for
further increment in c. Values of c greater than 2 have an AUC >90%.

3.4 Subset Selection for Semi-supervised Learning

We consider the semi-supervised training of a classifier where the training set is divided into a reliably
labeled (curated) target set and an unlabeled or noisily labeled source set. We apply our proposed subset
selection algorithm to perform partial optimal transport of the unlabeled source to the labeled target. The
transport plan is computed without knowledge of any labels but defines how the source points will be labeled,
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Figure 9: Subset selection results obtained using algorithm 2 with parameters λ = 1, max-outer-iter =
250 and max-inner-iter = 20. Target and source consist of ResNet-20 embeddings of m = 512 CIFAR-
10 dog images and n = 512 randomly sampled CIFAR-10 images, respectively. (a) ROC curves for c ∈
{1, 1.25, 1.50, 1.75, 2, 4, 8, 16, 20, 24, 28, 32}. (b) Mass assignments to source images in descending order ννν↓.
(c) AUC of the ROC versus c. (d) Entropy H(ννν) of mass assignments ννν with versus c. (e) Source images
with 10 largest mass assignments.

and subset selection removes points that cannot easily be aligned to labeled training points. Additionally,
the new mass assignment source points may be relatively higher for unlabeled points relatively close to
labeled training points and lower for unlabeled points from existing points. Used in this way, the optimal
transport with subset selection automatically tunes how far to propagate labels in a manner that takes
into consideration the geometry and distribution of the curated target data set rather than only the local
distances.

However, using the distances defined directly in the input space may not be suitable, and a pre-trained
representation may not exist for various tasks. Instead, we propose to use the internal learning representation
from the neural network classifier while it is being optimized with the semi-supervised loss function.

Let S = {(xi, Li)}M
i=1 denote the labeled portion of the training set with the input xi ∈ X and label encoded

as a one-hot vector Li ∈ {0, 1}k ⊂∆∆∆k, ∥Li∥1 = 1 for i ∈ [M ], and T = {yj}N
j=1 denote the unlabeled portion,

yj ∈ X for j ∈ [N ]. We consider a neural-network classifier with soft-max activation f(· ;θθθ) : X → ∆∆∆k

with parameters θθθ trained on data with k classes. The neural network’s internal representation is a function
g(· ;θθθ) : X → Rd. The Euclidean distance between the internal representation of data points provides the
distance function, dθθθ(xi, yj) = ∥g(xi;θθθ)− g(yj ;θθθ)∥2, which is parameterized by the network’s parameters.
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We train the neural network using mini-batches and a semi-supervised cross-entropy loss. Equal-sized batches
are drawn uniformly from the pooled training data set of size M + N . Let τττ and σσσ denote the length-m and
length-n vectors of indices of the labeled and unlabeled points in a given batch, respectively, where m + n is
the constant batch size. The m-by-n ground cost matrix M(θθθ) is defined using the squared distances among
the batch’s latent representations, Mij(θθθ) = d2

θθθ(xτi
, yσj

) = ∥g(xτi
;θθθ)− g(yσj

;θθθ)∥2
2.

Given the cost matrix and hyper-parameters (including c ≤ n), the subset selection transport plan P ∗ ∈
[0, 1]m×n is obtained using Algorithm 2. Given the matrix of one-hot encoded labels L = [Lτ1 , . . . , Lτm

]⊤ ∈
{0, 1}m×k, the matrix of pseudo-labels assigned by the algorithm of the unlabeled mini-batch points is
computed L̃ = nP ∗⊤L ∈ [0, c]n×k, where [P ∗⊤L]jl = 1

n L̃jl ∈ [0, 1] is the estimate of the joint probability
that mini-batch unlabeled instance j ∈ [n] belongs to class l ∈ [k].4 Given the pseudo-labels, the semi-
supervised cross-entropy loss function for a batch is

loss(θθθ) = −
[ m∑

i=1

k∑
l=1

1
m

Lil log(fl(xτi
;θθθ)) +

n∑
j=1

k∑
l=1

1
n

L̃jl log(fl(yσj
;θθθ))

]
. (22)

Our approach is similar to other recent work (Damodaran et al., 2020) that also employs optimal transport
using a learning representation. While we address the semi-supervised case, Damodaran et al. (2020) address
supervised learning in the presence of label noise and perform self optimal transport within batches to correct
for label noise.

As baseline comparisons, we compare our semi-supervised approach to supervised training with either only
the labeled portion or with noisy labels on the unlabeled portion. Due to the curated labeled set, the latter
is not the typical label noise scenario; however, the division of a training set into a curated portion and a
portion with label noise is relevant to practical scenarios. While our semi-supervised approach does not use
noisy labels, future extensions could consider how to leverage the noisy labels too.

In order to evaluate our approach we used MNIST, Fashion-MNIST (FMNIST), and CIFAR-10. We split
training data sets into 80/20 proportions for training and validation. We further split the training part
into a reliably labeled and unreliably labeled parts. Labels for the unreliably labeled part are generated
by uniformly corrupting the true labels to other classes depending on the noise level. For each of our
experiments, the subset selection transport underlying the loss done is found via Algorithm 2 with λ = 0.01,
max-outer-iter = max-inner-iter = 20 with a batch-size of 512. We used PyTorch framework for our
experiments. A ResNet-18 model architecture is used on the CIFAR-10 data set. We trained the ResNet-18
for 180 epochs using Adam optimizer with an initial learning rate of 0.001, which is scheduled to be halved
after every 60 epochs. The model architectures containing two convolutional layers for MNIST and FMNIST
are given in Appendix B. The neural network classification models for MNIST are trained using stochastic
gradient descent with a learning rate of 0.001, whereas models for FMNIST are trained using Adam with
a learning rate of 0.001 and weight decay 1e-4. Model training for MNIST and Fashion-MNIST are done
on a desktop system with Intel Core-i7 9700 with 32 GB memory and NVIDIA GeForce RTX 2070 GPU.
ResNet-18 based models for CIFAR-10 are trained using Lambda-labs cloud resources with 30 vCPUs, 200
GB memory, and NVIDIA A10 GPUs.

In the first step of experiments, we split the training set for each data set into 50/50 proportions for unreliably
and unreliably labeled parts. Unreliably labeled data is generated by uniformly corrupting the labels with a
80% chance (noise level 0.8). Validation accuracies for each data set are displayed in the Table 2. Notably,
the performance for c = 1 is higher than training with noisy labels, which shows that the semi-supervised
training performs better than training with data with a high noise level. (Because the algorithm is not run
to convergence, the mass assignments for unlabeled points may not be be exactly uniform in the c = 1 case.)
The performance of subset selection is consistently higher for values of c > 1 compared to the c = 1, and the
validation accuracies do not exhibit much change between c = 2 and c = 20. Therefore, we further evaluated
our approach by varying both noise levels and clean and noisy proportions only for c = 2 and c = 20.

4It can be seen that the total sum of this joint is 1, 1⊤
n P ∗⊤︸ ︷︷ ︸

µµµ⊤

L1k︸︷︷︸
1m

= 1.
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Dataset Architecture stand. Subset Selection
c = 1 | c = 2 | c = 3 | c = 4 | c = 5 | c = 6 | c = 7 | c = 8 | c = 20

MNIST 2-layer conv-net 96.57 97.15 97.39 97.33 97.40 97.43 97.32 97.38 97.44 97.35
FMNIST 2-layer conv-net 88.68 90.14 90.30 90.27 90.51 90.23 90.38 90.21 90.37 90.16
CIFAR-10 ResNet-18 79.10 87.18 89.45 89.27 89.21 89.53 89.54 89.72 89.47 89.57

Table 2: Validation accuracies for different values for neural network classification models trained with 50%
reliably labeled points and 50% points with noisy labels (noise level 0.8). Standard training (stand.) treats
them equally, but subset selection treats them as unlabeled and assign pseudo-labels. Subset selection is
done using the Algorithm 2 with λ = 0.1 and max-outer-iter = max-inner-iter = 20.

Progress of validation accuracies on CIFAR-10 are displayed in Figure 10 for clean/noisy proportions in
{20/80, 40/60, 60/40, 80/20} with noise levels {0.2, 0.4, 0.6, 0.8}. It can be observed that standard neural
network training process with label noise can divided into three phases, first in which the validation accuracy
increases until a peak. In the second phase, validation accuracy decreases, where the magnitude of the
decrement depends on the noise level: it decreases less for low noise levels and more for higher noise levels.
In the third phase, validation accuracy increases again and then oscillates around a constant value. This kind
of phenomenon is more pronounced for larger noise levels (Zheng et al., 2020). In contrast, for the proposed
subset selection based semi-supervised learning the validation accuracy does not go down after hitting its
peak during the training process. This indicates that the transport map tend to assign correct pseudo-labels
to the data points nearest the labeled data points and does not introduce label noise.

standard training subset-select training c=2 

(a) (b) (c)

subset-select training c=20 

Figure 10: Progress of validation accuracies while training ResNet-18 for CIFAR-10 classification. (a) Uni-
form noise levels are varied between 0.2, 0.4, 0.6, 0.8 for standard training. (b) and (c) Training with the
subset selection based semi-supervised loss at different values of c, does not use the unreliable labels, and
outperforms standard training with noisy labels when either the proportion of reliably labeled data is 40%
or the noise level is 0.4 or greater. Subset selection is done using the Algorithm 2 with c = 20, λ = 0.1,
max-outer-iter = max-inner-iter = 20.

The test set accuracies are displayed in Table 3 for supervised training on only the labeled data versus the
semi-supervised training. The semi-supervised training with subset selection outperforms training performs
better on 2 of 3 data sets under a 20/80 split of labeled and unlabeled, but does not outperform supervsed
learning for the 40/60 split. Thus, the semi-supervised loss function equation 22 is most beneficial when
there is a higher ratio of unlabeled to labeled points.
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Dataset Architecture Labeled/Unlabeled % Labeled only Semi-supervised
with subset selection

MNIST 2-layer
conv-net

20/80 98.19 96.09
40/60 98.30 97.14

F-MNIST 2-layer
conv-net

20/80 88.35 88.42
40/60 89.93 89.48

CIFAR-10 ResNet-18 20/80 81.62 82.37
40/60 87.77 86.74

Table 3: Test accuracies on MNIST, Fashion-MNIST, and CIFAR-10. Subset selection is done using the
Algorithm 2 with c = 20, λ = 0.1, max-outer-iter = max-inner-iter = 20.

4 Discussion and Further Work

In this paper, we have focused on selecting a subset of one distribution’s support as a special case of partial
optimal transport Figalli (2010); Chapel et al. (2020). This is useful to find meaningful alignment when the
support of the target distribution is assumed to be a subset of the source distribution. Results on the partial
point cloud alignment, color transfer, PU learning, and semi-supervised learning all demonstrate the utility
of this approach.

In particular, the results from the PU learning show that the proposed subset selection is useful when there
is known target distribution (an existing training or validation set) and an additional source distribution,
which has additional diversity, but also outliers, compared to the target. One application of PU learning
is to filter a source of new data for relevant examples for further modeling. In this case, a user would
want to balance the diversity (entropy) of the filtered source with its purity. Future work, could explore
this approach for source distributions created from synthetic generation mechanisms. While not explored
in a machine learning context, it is possible that the partial optimal transport with affine (or nonlinear)
transformation can be applied to account for global covariate shifts in these cases.

In our experiments related to semi-supervised learning, we employed optimal transport between a labeled
target and unlabeled source, to assign pseudo-labels to source points that cover the labeled data distribution,
while ignoring ambiguous cases, during training. In future extension, we can consider how to use class
information in the optimal transport planning, perhaps by using class conditional optimal transport, as
currently the transport plan is not informed of the known target labels nor the classifier’s boundaries.
Another line of exploration is how to use the support subset selection to correct noisily labeled source.

While not explored here, support subset selection on both distributions can be useful (perhaps in generative
modeling due to the established theory of partial optimal transport for continuous distributions). How-
ever, the proposed algorithms are not directly applicable, but with slight modifications similar optimization
algorithms could be applied.

Another key contribution of this work is the proposed support subset selection algorithm using the inexact
Bregman proximal point algorithm (Algorithm 2), which as shown in Appendix A yields a solution with a
sparse source marginal similar to solutions to the original linear program 5—unlike the entropically regu-
larized solution from Algorithm 1. We also demonstrate that the mass assignments of the linear program
solution are piece-wise linear as a function of c. While not fully investigated here, this behavior could be
exploited to find the sequence of breakpoints where points leave the support and where points leave the
active set of constraints (indicated by being on the upper diagonal).

Recently, Gromov-Wasserstein optimal transport has seen applications in graph-matching and generative
modeling (Brogat-Motte et al., 2022; Li et al., 2023; Titouan et al., 2019; Nekrashevich et al., 2023; Bunne
et al., 2019; Mémoli, 2009; Bunne et al., 2019). Due to inherent ability to match structural correspondences
across spaces, partial Gromov-Wasserstein optimal transport can be used to solved robust graph-alignment
problems. Recently, efficient locally convergent solutions for a relaxed Gromov-Wasserstein distance have
been proposed (Peyré et al., 2016; Li et al., 2023). Future work can explore the subset selection case of
the partial Gromov-Wasserstein optimal transport, where one domain is expected to have a complete or
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overcomplete source distribution compared to the target. This may be useful in robust domain adaptation,
semi-supervised domain adaptation, and metric alignment.

Broader Impact Statement

This paper discusses the application of optimal transport with support subset selection, which can be applied
in wide variety of machine learning contexts. To the best of our knowledge, this work does not violate any
of TMLR ethics guidelines.
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A Appendix: Entropic Regularization Results

First we show the variation of mass assignments ν∗
j , for j ∈ [n] as a function of c for the toy problem

in the Figure 2 with transport plans obtained using Algorithm 1, Algorithm 2, and the solution to the
unregularized linear program obtained from CVXPY (Diamond & Boyd, 2016; Agrawal et al., 2018). It can
be be observed sparsity patterns of ννν∗ obtained using Algorithm 2 matches closer to the linear program
solution, whereas mass assignments obtained using Algorithm 1 are more dense with less mass assignments
equal to 0.
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Figure 11: (a) The variation of mass assignment vector ννν∗ with c for toy problem in Figure 2, using Al-
gorithm 1, Algorithm 2, and linear programming solution obtained using CVXPY Agrawal et al. (2018);
Diamond & Boyd (2016). (b) Optimal dual variables ααα∗ and βββ∗ obtained using using Algorithms 1 and 2
as c is varied. It can be observed that above certain threshold c∗ (c∗ = 11.19 as calculated using the method
discussed in section 2.1) all dual potentials corresponding to inequality βββ go to zero, this is due to fact that
corresponding constraints become inactive and therefore superfluous for all values of c larger than c∗.
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Fragmented Hypercubes: In this appendix, results for point cloud registration and color transfer for
Algorithm 1 are displayed, which can be compared to the results for Algorithm 2 in the main body. Figure
12 shows the results for affine transformation optimization in 2D, which can be compared with the results
in Figure 3(a). Visually it is clear that the alignment is much worse for values of c ∈ {1.25, 1.5}, but
quantitatively it is worse for all values of c > 1 as Algorithm 2 achieves cost below 10−2 at 500 iterations.
Figure 13 shows the results in 3D using Algorithm 1, which can be compared with the results in Figure 4(a).
In this case, results are quantitatively worse for all values of c > 1 as Algorithm 2 achieves cost below 10−1

at 500 iterations.

(a) (b)

Figure 12: Results for affine transformation optimization with subset selection for partial optimal transport.
Target points X are sampled from a 2D fragmented hypercube centered at the origin with negative co-
ordinates removed, whereas source points Y are sampled from a translated fragmented hypercube. (a)
Target and transformed source points after application of optimized affine transformation. Subset selection
problems are solved using the Algorithm 1 with γ = 0.01 with max-iter = 4000.(b) Loss function curves for
scaling parameter c ∈ {1, 1.25, 1.5, 1.75, 2, 4, 8, 16}.

(a) (b)

Figure 13: Results for affine transformation optimization with subset selection for partial optimal transport.
Target points X are sampled from a 3D fragmented hypercube centered at the origin with negative co-
ordinates removed, whereas source points Y are sampled from a translated fragmented hypercube. (a)
Target and transformed source points after application of optimized affine transformation. Subset selection
problems are solved using the Algorithm 1 with γ = 0.01 with max-iter = 4000.(b) Loss function curves for
scaling parameter c ∈ {1, 1.25, 1.5, 1.75, 2, 4, 8, 16}.
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Partial point cloud registration: The results for partial point cloud registration with entropically regu-
larized subset selection (Algorithm 1) for the Stanford bunny and armadillo point clouds. It is clear that the
entropically regularized form alone fails to find a meaningful correspondence, transforming the source such
that is completely covered by the partial point cloud.

Figure 14: Bunny and Armadillo partial point cloud registration using entropically regularized subset selec-
tion Algorithm 1 gamma = 0.05, fails to find a accurate alignment of the source with the partially occluded
target.

Color Transfer: The results for color transfer with the entropically regularized subset selection Algorithm 1
are shown in Figure 15, which can be compared to results from Algorithm 2 shown in Figure 6 and Figure 7.
Namely, for the first image “Louisiana Nature Scene Barataria Preserve” the entropically regularized results
appear more monochromatic with less distinct colors. In the second set of images, there is no visual difference
between the outputs of Algorithm 1 and Algorithm 2.

)a(

)b(

c=1 c=1.25 c=1.5 c=1.75

c=2 c=4 c=8 c=16

Figure 15: Color transfer results for c ∈ {1, 1.25, 1.5, 1.75, 2, 4, 8, 16} using Algorithm 1.
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B Appendix: Neural Network Model Architectures

For semi-supervised learning, we used neural networks to both perform the classification and provide a
learning representation space in which to perform the optimal transport to assign pseudo-labels to both
unlabeled points. For the CIFAR-10 data set, we used the ResNet-18 (He et al., 2016) architecture. For
MNIST and Fashion-MNIST, we used custom, but simple, model architectures. Both architectures contain
two convolutional layers, followed by three fully-connected layers. The model used to train Fashion-MNIST
(FMNIST) classifier contains additional batch-normalization layer between the convolutional layers. Opti-
mization algorithms along with related hyper-parameters are in Section 3.4. The code below details the
exact architectures along with types and shapes of all transformations.

1 import torch
2 import torch .nn as nn
3 import torch .nn. functional as F
4

5 class MNIST_classifier (nn. Module ):
6 def __init__ (self):
7 super (). __init__ ()
8 self. conv1 = nn. Conv2d ( in_channels =1, out_channels =5, kernel_size =(5 ,5))
9 self. conv2 = nn. Conv2d ( in_channels =5, out_channels =1, kernel_size =(5 ,5))

10 self.fc1 = nn. Linear (400 , 128)
11 self.fc2 = nn. Linear (128 , 64)
12 self.fc3 = nn. Linear (64 , 10)
13

14 def forward (self , x):
15 x = F.relu(self. conv1 (x))
16 x = F.relu(self. conv2 (x))
17 x = torch . flatten (x, 1)
18 x = F.relu(self.fc1(x))
19 x_rep = F.relu(self.fc2(x))
20 x = self.fc3( x_rep )
21 return x, x_rep
22

23 class FMNIST_classifier (nn. Module ):
24 def __init__ (self):
25 super (). __init__ ()
26 self. conv1 = nn. Conv2d ( in_channels =1, out_channels =32 , kernel_size =(5 , 5))
27 self. batchN1 = nn. BatchNorm2d ( num_features =32)
28 self. conv2 = nn. Conv2d ( in_channels =32 , out_channels =64 , kernel_size =(5 , 5))
29 self.fc1 = nn. Linear ( in_features =64*4*4 , out_features =128)
30 self.fc2 = nn. Linear ( in_features =128 , out_features =64)
31 self.fc3 = nn. Linear ( in_features =64 , out_features =10)
32

33 def forward (self , x):
34 x = self. conv1 (x)
35 x = F.relu(F. max_pool2d ( input =x, kernel_size =2, stride =2))
36 x = self. batchN1 (x)
37 x = self. conv2 (x)
38 x = F.relu(F. max_pool2d ( input =x, kernel_size =2, stride =2))
39 x = torch . flatten (x, 1)
40 x = F.relu(self.fc1(x))
41 x_rep = self.fc2(x)
42 x = self.fc3( x_rep )
43 return x, x_rep

Listing 1: Models used for training classifiers for MNIST and Fashion-MNIST

C Appendix: Lipschitz Smoothness of Dual

The dual form 9 considered in this paper does not explicitly enforce the primal problem’s marginal simplex
constraints on the transport plan. Consequently, the dual form is not necessarily Lipschitz smooth (Lin
et al., 2019; Cuturi & Peyré, 2018; Lin et al., 2022). But in the proposed algorithm, we first update the
dual variable ααα using the Sinkhorn-like update, which implicitly enforces the simplex constraint, making the
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semi-dual problem 1
γ -Lipschitz smooth with respect to ℓ1, ℓ2 and ℓ∞ norms. This justifies the use of η

(k)
s = 1

γ
in the accelerated proximal-gradient based approach to solve 9.

Recall that the Lagrangian of 9 given in equation 7 is

L(P ,ααα,βββ) =
〈
P , M + γ(logloglog(P )− 1m1⊤

n ) + ααα1⊤
n + 1mβββ⊤〉

− ⟨ααα,µµµ⟩ − ⟨βββ,ζζζ⟩. (23)

By Slater’s conditions, the problem 9 is strongly dual therefore

min
P≽0

max
ααα,βββ
L(P ,ααα,βββ) = max

ααα,βββ
min
P≽0
L(P ,ααα,βββ). (24)

In order to find the minimum of the Lagrangian with respect to P , one takes its element-wise derivative with
respect to P and obtains P̃ (ααα,βββ) = D

(
expexpexp(− 1

γααα)
)
expexpexp(− 1

γ M)D
(
expexpexp(− 1

γβββ)
)
, which can then be substituted

back into the Lagrangian 23 to obtain the problem

max
ααα,βββ

{
g(ααα,βββ) = −γ1⊤

mP̃ (ααα,βββ)1n − ⟨ααα,µµµ⟩ − ⟨βββ,ζζζ⟩
}

, s.t. βββ ≽ 0, (25)

which can be converted to the convex minimization problem 9 by defining f(ααα,βββ) = −g(ααα,βββ), as in

min
ααα,βββ

{
f(ααα,βββ) = γ1⊤

mP̃ (ααα,βββ)1n + ⟨ααα,µµµ⟩+ ⟨βββ,ζζζ⟩
}

, s.t. βββ ≽ 0, (26)

The partial gradients of f(ααα,βββ) with respect to ααα and βββ are

∇αααf(ααα,βββ) = µµµ− expexpexp
(
− ααα

γ

)
⊙Kexpexpexp(−βββ

γ
), (27a)

∇βββf(ααα,βββ) = ζζζ − expexpexp
(
− βββ

γ

)
⊙K⊤expexpexp(−ααα

γ
). (27b)

For twice continuously differentiable functions, the Lipschitz smoothness parameter is determined by the
Hessian. The Hessian for f(ααα,βββ) is

Hf

(
ααα,βββ

)
=

[
∇⊤

ααα∇αααf(ααα,βββ) ∇⊤
βββ∇αααf(ααα,βββ)

∇⊤
ααα∇βββf(ααα,βββ) ∇⊤

βββ∇βββf(ααα,βββ)

]
, (28)

where

∇⊤
ααα∇αααf(ααα,βββ) = 1

γ
D

(
expexpexp

(
− ααα

γ

)
⊙Kexpexpexp(−βββ

γ
)
)

= 1
γ

D
(
P̃ (ααα,βββ)1n

)
, (29a)

∇⊤
βββ∇βββf(ααα,βββ) = 1

γ
D

(
expexpexp

(
− βββ

γ

)
⊙K⊤expexpexp(−ααα

γ
)
)

= 1
γ

D
(
P̃ (ααα,βββ)⊤1m

)
, (29b)

∇⊤
βββ∇αααf(ααα,βββ) = 1

γ

(
K ⊙ expexpexp

(
− ααα

γ

)
expexpexp(−βββ⊤

γ
)
)

= 1
γ

P̃ (ααα,βββ), (29c)

∇⊤
ααα∇βββf(ααα,βββ) = 1

γ

(
K⊤ ⊙ expexpexp

(
− βββ

γ

)
expexpexp(−ααα⊤

γ
)
)

= 1
γ

P̃ (ααα,βββ)⊤. (29d)

The Sinkhorn update for ααα in equation 12 ensures that after each update of ααα, the transport plan
lies on the probability simplex and matches the target marginal µµµ = P̃ (ααα(k+1),βββ(k))1n. Defining ν̃νν =
P̃ (ααα(k+1),βββ(k))⊤1m, the Hessian equation 28 at (ααα(k+1),βββ(k)) is compactly written as

Hf (ααα(k+1),βββ(k)) = 1
γ

[
D(µµµ) P̃ (ααα(k+1),βββ(k))

P̃ (ααα(k+1),βββ(k))⊤ D(ν̃νν)

]
.

We use the induced-norms of the Hessian Hf (ααα(k+1),βββ(k)) to characterize the smoothness at (ααα(k+1),βββ(k)).
For a matrix A ∈ Rm×n, the induced norm ∥ · ∥p,q is defined as

∥A∥p,q := max
x:∥x∥p≤1

∥Ax∥q. (30)
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The twice continuously differentiable function f(ααα(k+1),βββ(k)) is L-Lipschitz with respect to ℓp norm, if
∥Hf (ααα(k+1),βββ(k))∥p,q ≤ L, where ℓq is the dual norm of the ℓp norm. Since the Hessian Hf (ααα(k+1),βββ(k)) is
a non-negative matrix, one can observe that all its matrix entries are less than 1

γ max {µmax, ν̃max}, where
µmax and ν̃max are maximum entries of µµµ and ν̃νν respectively. Therefore for p = 1, if one can find the column
index k corresponding to a matrix entry with value 1

γ max{µmax, ν̃max}, then x = ek is the vertex of the ℓ1

norm-ball where ∥Hf (ααα(k+1),βββ(k))x∥∞ = 1
γ max{µmax, ν̃max}. Thus,

∥Hf (ααα(k+1),βββ(k))∥1,∞ = 1
γ

max {µmax, ν̃max} ≤
1
γ

, (31)

which proves the function f(ααα(k+1),βββ(k)) is 1
γ -Lipschitz with respect to the ℓ1 norm. Since all the matrix

entries of the Hessian Hf (ααα(k+1),βββ(k)) are less than 1
γ , its spectral radius is less than 1

γ (Horn & Johnson,
2012)(Theorem 8.1.18) and

∥Hf (ααα(k+1),βββ(k))∥2,2 = λmax(Hf ) ≤ 1
γ

. (32)

Therefore, the function f(ααα(k+1),βββ(k)) is 1
γ -Lipschitz with respect to the ℓ2 norm. For p = ∞, one can

maximize the norm ∥Hf (ααα(k+1),βββ(k))x∥1, at the vertex of the ℓ∞ ball where all entries are unit magnitude,
in particular x = 1m+n, which results into

Hf (ααα(k+1),βββ(k))1m+n = 1
γ

[
µµµ + P̃ (ααα(k+1),βββ(k))1n

P̃ (ααα(k+1),βββ(k))⊤1m + ν̃νν

]
= 2

γ

[
µµµ
ν̃νν

]
. (33)

Therefore,
∥Hf (ααα(k+1),βββ(k))∥∞,1 = 2

γ

∥∥∥∥µµµ
ν̃νν

∥∥∥∥
1

= 4
γ

, (34)

and the function f(ααα(k+1),βββ(k)) is 4
γ -Lipschitz with respect to the ℓ∞ norm. In summary, the partial gradients

are all 1
γ -Lipschitz smooth with respect to ℓ1, ℓ2 and ℓ∞ norms. Additionally, considering the dual variables

ααα and βββ, seperately, one can see that

∥∇⊤
ααα∇αααf(ααα(k+1),βββ(k))∥1,∞ = µmax

γ
≤ 1

γ
, ∥∇⊤

ααα∇αααf(ααα(k+1),βββ(k))∥2,2 ≤
1
γ

, ∥∇⊤
ααα∇αααf(ααα(k+1),βββ(k))∥∞,1 = 1

γ
,

and

∥∇⊤
βββ∇βββf(ααα(k+1),βββ(k))∥1,∞ = ν̃max

γ
≤ 1

γ
, ∥∇⊤

βββ∇βββf(ααα(k+1),βββ(k))∥2,2 ≤
1
γ

, ∥∇⊤
βββ∇βββf(ααα(k+1),βββ(k))∥∞,1 = 1

γ
.

Therefore, f(ααα(k+1),βββ(k)) is separately 1
γ -Lipschitz for both ααα and βββ with respect to ℓ1, ℓ2 and ℓ∞ norms.
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