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ABSTRACT

We introduce a novel and adaptive batch-wise regularization based on the proposed
Batch Confusion Norm (BCN) to flexibly address the natural world distribution
which usually involves fine-grained and long-tailed properties at the same time. The
Fine-Grained Visual Classification (FGVC) problem is notably characterized by
two intriguing properties, significant inter-class similarity and intra-class variations,
which cause learning an effective FGVC classifier a challenging task. Existing
techniques attempt to capture the discriminative parts by their modified attention
mechanism. The long-tailed distribution of visual classification poses a great chal-
lenge for handling the class imbalance problem. Most of existing solutions usually
focus on the class-balancing strategies, classifier normalization, or alleviating the
negative gradient of tailed categories. Depart from the conventional approaches,
we propose to tackle both problems simultaneously with the adaptive confusion
concept. When inter-class similarity prevails in a batch, the BCN term can alleviate
possible overfitting due to exploring image features of fine details. On the other
hand, when inter-class similarity is not an issue, the class predictions from different
samples would unavoidably yield a substantial BCN loss, and prompt the network
learning to further reduce the cross-entropy loss. More importantly, extending the
existing confusion energy-based framework to account for long-tailed scenario,
BCN can learn to exert proper distribution of confusion strength over tailed and
head categories to improve classification performance. While the resulting FGVC
model by the BCN technique is effective, the performance can be consistently
boosted by incorporating extra attention mechanism. In our experiments, we
have obtained state-of-the-art results on several benchmark FGVC datasets, and
also demonstrated that our approach is competitive on the popular natural world
distribution dataset, iNaturalist2018.

1 INTRODUCTION

Fine-grained visual classification (FGVC) is an active and challenging problem in computer vision.
Such a recognition task differs from the classical problem of large-scale visual classification (LSVC)
by focusing on differentiating similar sub-categories of the same meta-category. In FGVC, the
inter-class similarity among the object categories is often pervasive, while the intra-class variations
further impose ambiguities in learning a unified and discriminative representation for each category.
Long-tailed distribution brings in another aspect of challenge that the head categories tend to dominate
the training procedure. The learned classification model thus performs better on these categories,
while yielding significantly poor performance for the tail categories. The performance distribution
somewhat resembles the data distribution. As the natural world distribution often assumes both
fine-grained and long-tailed properties, how to satisfactorily address the recognition problem under
such a general setting raises a practical and challenging problem.

From the existing literature, there are only a few attempts to solving these two problems at the
same time. Relevant efforts mostly focus on tackling either task. In FGVC, most of the recent
research efforts have converged to learn pivotal local/part details relevant to distinguishing fine-
grained categories e.g., (Fu et al., 2017; Yang et al., 2018; Zheng et al., 2019), and typically require
the fusion of several sophisticated computer vision techniques to accomplish the task such as in (Ge
et al., 2019). In resolving the long-tailed issue, previous approaches have looked into data balanced
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Figure 1: (a) Inter-class similarity vs. intra-class variation: Each column includes two instances of a
specific “Gull” category from the CUB-200-2011 dataset Wah et al. (2011). (b) The natural world
distribution dataset iNaturalist2018 Van Horn et al. (2018).

sampling (Huang et al., 2016a; Wang et al., 2017) and the recent development such as Kang et al.
(2020) learns the representation at the first stage and refines the classifier by balanced data sampling.

Figure 1a illustrates the two aspects of paradoxes in FGVC where the inter-class similarity and the
intra-class variations are subtly intertwined, yielding a daunting classification task. For humans,
the example convincingly suggests that expert knowledge is needed to differentiate one from the
other two categories. Alternatively, it also exhibits the challenges of formulating universal criteria
in developing machine learning frameworks to satisfactorily solve the FGVC problem even for a
modest case involving just three object categories. Figure 1b presents an extreme data distribution
that some head categories have 1,000 images but only 2 images are included in a tailed category.
Hence, a model by conventional training is expected to yield classification performance, displaying
the long-tailed distribution on a balanced test/val set.

It goes without saying that techniques based on deep neural networks have been the focal point of the
recent development in tackling FGVC. Characterized by powerful model capacity and end-to-end
feature learning, these state-of-the-art approaches are craftily designed to extract discriminative
local details and consistent global structure, and shown to achieve significant improvements over
conventional non-DNN approaches, e.g., Duan et al. (2012) on almost all FGVC benchmark datasets.
However, the improvement for solving FGVC by exploring visual features of different levels and
resolutions from relevant regions seems to be saturated and also does not properly address the long-
tailed issue. The concern is reflected by that most FGVC methods do not include experimental results
on the natural world distribution dataset iNaturalist2018 (Van Horn et al., 2018).

Motivated by these developments, we propose a flexible and effective regularization design that
aims at guiding the resulting DNN learning to improve model efficiency on tackling the FGVC and
long-tailed issues at the same time. Our method is relevant to the pairwise confusion regularization
(Dubey et al., 2018); however, the proposed formulation goes beyond the restriction of working
on pairs of data and develops a batch norm-based framework with sufficient model capacity to
simultaneously deal with FGVC and long-tailed issues. We first assume all samples/images within a
batch are of different classes. The targeted confusion energy is then modeled by a batch-wise matrix
norm, termed as Batch Confusion Norm (BCN). The matrix is constructed by including prediction
results from all images within a batch, as well as an adaptive matrix to adjust class-specific weights.
The former is used to handle the FGVC task and the latter is for resolving the long-tailed distribution.
To achieve efficient DNN learning, we provide an approximation scheme to BCN so that gradient
backpropagation can be readily carried out. The promising experimental results support that BCN
has good potential to function as a generic regularizer for solving a wide range of classification tasks.
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Figure 2: Learning to FGVC with (a) conventional Cross Entropy (CE) loss, (b) + Pairwise Confusion
(PC) energy and (c) + the proposed Batch Confusion Norm (BCN).

2 RELATED WORK

Researches in fine-grained and long-tailed visual classification are going on in two different branches.
Most articles focus on just one of these issues. We will introduce recent studies on both sides, and
then briefly explain our approach.

FGVC. In the early works, the training data are annotated with additional information such as
part labels. Along this line, Berg et al. (2014) explore the labeled part locations to eliminate highly
similar object categories for improving the learned classifiers. The approach in Huang et al. (2016b)
is established based on a two-stream classification network to explicitly capture both object-level and
part-level information. However, owing to the rapid research advances in visual classification, the
majority of recent FGVC approaches are designed to complete the model learning solely based on
the information of category labels (Sun et al., 2019; Dubey et al., 2018; Wang et al., 2018; Li et al.,
2018; Yang et al., 2018; Zheng et al., 2019; Chen et al., 2019).

Long-Tail. To alleviate the impact of the unbalanced data, the two common basic methods are
re-sampling and re-weighting. In recently, a most common strategy is called class-balanced sampling
(Shen et al., 2016). Different from instance-balanced sampling, every image has the same probability
of being selected, class-balanced is to weight the sampling frequency of each image according to
the number of samples of different categories. Furthermore, Gupta et al. (2019) proposed repeat
factor sampling (RFS), a dynamic-sampling mechanism, to balance the instances. In general, re-
sampling means that in the case of unbalanced existing data, the training samples that the model is
artificially exposed to during learning are category balanced, so as to reduce the overfitting of the
head data to a certain extent. Recently, Cao et al. (2019) introduces a label distribution aware margin
loss that expands the decision boundaries of few-shot classes. Kang et al. (2020) decouples the
learning procedure into two-stage, representations learning and classifier. And gives the conclusion
that instance-balanced sampling gives more generalizable representations which can improve the
performance after refining the classifiers by re-sampling.

Confusion energy. The confusion-related formulation for dealing with intra-class variations and
inter-class similarity in FGVC have two main implications. First, it can be applied to alleviate the
overfitting problem in training a FGVC model. Dubey et al.Dubey et al. (2018) construct a Siamese
neural network, trained with a loss function including pairwise confusion (PC). The reasoning behind
the design is that bringing the class probability distributions closer to each other could prevent the
learned FGVC model from overfitting sample-specific artifacts. Second, the confusion tactic can be
used to boost the FGVC performance by focusing on local evidence. Chen et al.Chen et al. (2019)
partition each training image into several local regions and then shuffle them by a region confusion
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mechanism (RCM). It implicitly excludes the information about the global object structure and forces
the model to predict the category label based on local information. In other words, the ability of
identifying the object category from local details is expected to be enhanced through shape confusion.

Our approach to FGVC and long-tail is most relevant to the above confusion-based approaches. We
retain the advantages of confusion energy and exploit the potential in the long-tailed distribution.
And then propose a novel confusion energy term called Batch Confusion Norm (BCN) which can
flexibly adjust the confusion strength corresponding to the data distribution.

3 METHOD

The core of our method centers around the proposed BCN to not only alleviate the overfitting problem
in training an FGVC model but also boost the classification performance. We begin by discussing the
pairwise confusion energy (PC) (Dubey et al., 2018) and then elaborate the essential components of
the proposed framework. We conclude the section with detailed explanations on how BCN is used to
handle the long-tailed distribution dataset, namely, iNaturalist2018 (Van Horn et al., 2018).

3.1 BATCH CONFUSION NORM

Let Φ be the FGVC model as illustrated in Figure 2 and D be the training set over totally C fine-
grained categories. An arbitrary sample from D is denoted as (x, y) where in our case x is an image
and y ∈ {1, . . . , C} is the corresponding class label. In learning Φ, we follow the standard batch
training and set the batch size to include M images.

For each training sample xi in a batch B, the forward propagation through Φ would yield a class
probability (i.e., softmax) distribution pi ∈ RC . We can then define the batch-wise class prediction
matrix by

P = [p1 p2 . . . pM ] ∈ RC×M , (1)

where each pi is the softmax class prediction over the C fine-grained categories. Notice that the
formulation assumes M ≤ C and all images within a batch B are randomly sampled. In contrast, the
confusion regularization of PC Dubey et al. (2018) only affects the paired images with distinct labels.

An explicit purpose of BCN is to infuse slight classification confusions into the FGVC training
procedure and drive the learning to work harder for making as many correct predictions in each
training batch as possible. To this end, it is reasonable to minimize the rank of the batch prediction
matrix P so that all individual predictions are similar:

arg min
Φ

rank(P ) . (2)

However, the rank-related minimization problems are often NP-hard, and convex relaxations are
instead introduced to approximate the solutions. In our formulation, minimizing the rank of P is
reduced to minimizing its nuclear norm. We define the batch confusion norm of P as

‖P‖BCN = ‖P‖∗ (3)

where ‖ · ‖∗ is the nuclear norm that computes the sum of the singular values of the underlying
tensor/matrix.

Stability. In order to make the matrix decomposition of P being stable and to prevent the negative
singular values affecting the training loss, we could replace the right-hand side of (3) with ‖PTP‖∗
since it is known that

rank(P ) = rank(PTP ). (4)

Adaptability. The BCN defined in (1) confuses each category evenly. However, the strategy does
not take account of realistic data distribution such as long-tailed as well as fine-grained, and it could
yield performance drop. Pertaining to those tailed classes of a few samples, infusing even small
amount of confusion energy could easily degrade their classification outcomes. To resolve this issue,
we include an adaptive matrix A ∈ RC×C into the model so that BCN can adjust the strength of
confusion energy for each category. Here are a couple of criteria for initializing an appropriate A:
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• When the data distribution is long-tailed, A should alleviate the confusion energy on the
tailed categories to prevent the model from getting excessive confusions over these classes.

• When the data distribution is balanced, A should be almost the same as the identity matrix.

Follow these guidelines, we design the adaptive matrix A as

Aij =

{
(logµ+1(Ni + 1))σ

τ

, i = j

0, i 6= j
, (5)

where Ni, i ∈ {1, 2, ..., C}, µ = 1
C

∑C
i=1Ni, σ =

√
1
C

∑C
i=1(Ni − µ)2, and τ are the size of each

category, size mean, size standard deviation, and hyper-parameter, respectively. Note that when
Ni −→ µ, we have Aii −→ 1. Furthermore, if σ −→ 0 then Aii −→ 1. This means that A will
reduce to the identity matrix when the data distribution is balanced.

Hence, to incorporate the batch confusion energy with the adaptive matrix A into the total loss
function for training, we have

LBCN = ‖PTATAP‖BCN, (6)

where the batch confusion loss LBCN is computed based on the eigenvalues of PTATAP .

Learnability. In practice, there is no feasible way to ensure that the parameters of A given in
(5) assume the optimal confusion. We instead use it as a good initialization and go for a learnable
adaptive matrix, denoted as Â. Consequently, we modify the LBCN into

L̂BCN = ‖PTÂTÂP‖BCN + η‖Â−A‖2, (7)

where η is the hyper-parameter to regulate that the learnable adaptive matrix Â should not be too far
away from A. Empirically, we initialize Â with A and set η = 1 to gain improvement over simply
using the hand-crafted A as the adaptive matrix.

3.2 LOSS FUNCTION

From (7) and the network architecture in Figure 2, the refined feature maps are followed by a fully-
connected softmax layer to output the class prediction vector p. The overall loss function can now be
readily expressed by

L = LCE + λ L̂BCN (8)

where LCE is the cross-entropy loss which is usually applied in classification task and λ is a hyper-
parameter to adjust the influence of the BCN loss to learning the model.

4 EXPERIMENTAL RESULTS

We conduct extensive experiments to evaluate our approach on three balanced benchmark FGVC
datasets and the natural world distribution dataset. We then describe comparisons to prior work
as well as the implementation details. We also provide an insightful ablation study for assessing
the performance gains of using adaptive confusion energy BCN. Finally, a number of visualization
examples are demonstrated for further discussions.

4.1 DATASETS

We first evaluate the effectiveness of the proposed approach on three standard fine-grained visual
classification datasets, namely, CUB-200-2011 (Wah et al., 2011), Stanford Cars (Krause et al., 2013),
and FGVC-Aircraft (Maji et al., 2013). Table 1 shows the detailed statistics with the numbers of
training and testing splits along with the category numbers. The data ratio between the training
and the testing is about 1 : 1 for CUB-200-2011 and Stanford Cars, and is about 2 : 1 in FGVC-
Aircraft. The class distribution of the three datasets is nearly balanced which can be used to measure
the performance of the proposed method only in the fine-grained scenario with adaptive matrix Â
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Table 1: Statistics of 3 balanced FGVC datasets and the natural world dataset iNaturalist2018.

Dataset CUB CAR AIR iNaturlist2018

# Train 5,994 8,144 6,667 437513
# Val/Test 5,794 8,041 3,333 24426
# Category 200 196 100 8142

approximating identity matrix. Compared with other datasets for the large-scale visual classification
task, these three FGVC datasets have obviously fewer training data for each category.

We then focus on the natural world distribution dataset iNaturalist2018 (Van Horn et al., 2018) which
has the properties of both fine-grained and long-tailed distribution. Besides, it is also a large-scale
dataset. Judging from the recent literature (Cao et al., 2019; Kang et al., 2020), this is a fairly
challenging dataset that the performance can serve as an objective measure about the usefulness of
our method. Finally, we remark that the proposed model does not require any additional annotations
in the training process but merely the image-level class annotations.

4.2 IMPLEMENTATION DETAILS

We describe the implementation details with FGVC and iNaturalist2018. All our inference results are
obtained from end-to-end training. We implement our method by using Pytorch framewrok (Paszke
et al., 2017), and the source code will be made available online.

FGVC. Following relevant work (Yang et al., 2018; Chen et al., 2019; Zheng et al., 2019), we
evaluate our method on the widely-used classification backbone ResNet-50 (He et al., 2016) which
is pre-trained on the ImageNet dataset. For the sake of fair comparison in FGVC training, we use
the data augmentation setting as in Chen et al. (2019) that the input size is set as 448 × 448, and
horizontal flipping is randomly performed. The initial learning rate and the hyper-parameter λ are
0.008 and 10, respectively. The training batch size usually is 16 if the GPU memory is enough and
the training optimizer is Momentum SGD, which accompanies with cosine annealing (Loshchilov &
Hutter, 2017) as the learning rate decay.

iNaturalist2018. We further evaluate the proposed BCN on the iNaturalist2018 dataset. In addition
to using similar augmentation schemes, we set up the training conditions as in Kang et al. (2020);
Cao et al. (2019) that the backbones, input size, training epochs, optimization method, and learning
rate schedule are ResNet-50/ResNet152, 224, 90, SGD, and cosine annealing, respectively.

Evaluation. After training on the FGVC and natural world datasets, we evaluate the models on
the corresponding balanced test/validation datasets and report the top-1 accuracy which is used
commonly. The value of accuracy is reported in the format of percentage.

4.3 PERFORMANCE OVERVIEW

The proposed BCN not only preserves the benefits of confusion energy in FGVC task, but also
addresses the downside of the confusion energy in long-tailed challenge. Table 2 shows the overall
results on three benchmark FGVC datasets and the natural world distribution dataset. In FGVC, we
have developed a general way to explore confusion energy (compared with PC). In Table 2a, we
compare the results with recent state-of-the-art approaches on ResNet-50 backbone (Sun et al., 2019;
Dubey et al., 2018; Wang et al., 2018; Li et al., 2018; Yang et al., 2018; Zheng et al., 2019; Chen
et al., 2019). We further boost the performance with a simple attention mechanism GASPP to make
BCN more competitive to the state-of-the-art approaches. The details of GASPP can be found in
Appendix B.1. Table 2b includes the results on iNaturalist2018. We see that when adaptive matrix
is set to the identity matrix I , the use of confusion energy drops the performance in both PC and
BCN. The performance drops indicate that the adaptive matrix Â plays a pivotal role in solving the
long-tailed problem. Indeed, Â enables BCN to just focus on the head categories but alleviate the
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Table 2: Accuracy (%) on the test sets of three FGVC datasets and the validation set of iNaturalist2018.
The superscript † means that the models are re-implemented by the same training setting to ours.

(a)

Method CUB CAR AIR

PC† 87.0 93.5 92.4
DB 87.7 94.3 92.1
DFL-CNN 87.4 93.1 91.7
NTS-Net 87.5 93.9 91.4
DCL 87.8 94.5 93.0
TASN 87.9 93.8 -
iSQRT-COV 88.1 92.8 90.0

Ours 87.8 94.3 93.2
Ours + GASPP 88.4 94.7 93.5

(b)

Method ResNet-50 ResNet152

CB-Focal 61.1 -
LADM (SGD) 64.6 -

Baseline 61.7 65.0
cRT 65.2 68.5
LWS 65.9 69.1
PC† 61.4 64.1

Ours (Â = I) 61.6 64.7
Ours 66.1 69.5

l 2
 n

o
rm

Baseline

PC
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Sorted category index

Frequent Common Rare
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Figure 3: Baseline versus confusion energy models. (a) The l2-norm of each category corresponds to
the weight wi in the classifier. (b) The classification accuracy of Frequent, Common, and Rare from
the baseline and the other two confusion energy methods, PC and BCN.

confusion energy effect on the tailed categories. Note that, our models are trained not only with the
most common way of data sampling instance-balanced sampling but also end-to-end. In contrast,
Kang et al. (2020) trains the model in two stages and requires the use of class-balanced sampling.

4.4 ANALYSIS

Dubey et al. (2018) has shown that confusion energy alleviates the overfitting problem and improves
the FGVC performance. However, we observe that if the baseline model coupled with the confusion
energy directly, the overall performance will drop on the natural world dataset. It suggests that the
long-tailed issue needs further investigations beyond the conventional model of confusion energy.
Consider next the magnitude of each category corresponding to the classifier weight wi in Figure 3a.
The scale of ‖‖wi‖‖ distribution on the baseline method is very similar to the data distribution. In
addition, although PC has alleviated the scale of the head categories, but the distribution does not
change significantly. Note that BCN (Â = I) has the similar phenomenon as PC. Nevertheless, the
adaptive confusion energy BCN, makes the scale of the head to become smoother. This means that
the prediction of the classification will not be dominated by the weights of head categories. We
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Figure 4: Heatmap-visualization of testing images by Grad-CAM (Selvaraju et al., 2017). The spatial
heatmaps show the responses of the network to different images. For each image set, the first column
shows the input images; the remained three columns show the corresponding heatmap of each model.

further split the categories into three groups, Frequent (Ni >= 100), Common (Ni >= 10), and
Rare (Ni < 10), and evaluate the performance of each group. The results are presented in Figure 3b,
where the conventional confusion energy still behaves like the baseline, but BCN yields a more
uniformly distributed performance.

4.5 DISCUSSIONS

In summary, BCN provides several benefits. First, it alleviates the overfitting problem of the cross-
entropy loss. While training with the cross-entropy loss concerning the ground truth label in the
manner of the one-hot vector, the inter-class similarity information is usually significantly suppressed.
Consequently, it is not able to capture the fine-grained essence by one single cross-entropy loss
while handling the overfitting issue. The proposed BCN successfully alleviates this issue. Second,
BCN forces the model to learn the inter-class similarity so that the classifier is more focused on
the discriminative parts. This phenomenon can be found by using the class activation mapping
(Grad-CAM) (Selvaraju et al., 2017) presented in Figure 4. Without any attention mechanism and
additional annotation, we successfully make the attention region smaller and accurately attend on
the discriminative parts only by BCN. Third, BCN does not require additional processing of inputs
and outputs during training and there is no extra cost at inference time, which makes it flexible and
applicable to real applications. Final, BCN solves the confusion energy problem while meets the
long-tailed distribution. BCN coupled with the adaptive matrix Â not only preserves the benefits of
confusion energy in FGVC task, but also addresses its downside in long-tailed scenario.

5 CONCLUSIONS

We have developed a general regularization technique specifically designed for addressing the fine-
grained visual classification and the long-tailed data distribution problems simultaneously. The
proposed Batch Confusion Norm (BCN), together with the standard cross entropy loss can be used to
account for the inherent classification difficulties due to inter-class similarity and intra-class variations.
And also solves the long-tailed problem by an adaptive matrix term. The proposed BCN considers
the confusion regularization within each training batch and thus is more general than the relevant
formulation of pairwise confusion energy. The resulting model is shown to be capable of learning
discriminative features within regions of interest and alleviating the overfitting problem in training.
The provided experimental results nearly achieve state-of-the-art over the three mainstream FGVC
datasets and are competitive to leading long-tailed approaches on the natural world distribution
dataset. Our future work will focus on generalizing the adaptive BCN concept to tensors and also on
extending its applications to other challenging computer vision problems.
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APPENDIX

In this section, we provide some supplementary information to explore how confusion energy
regularization term works in FGVC task. And then present some interesting phenomena that the
conventional methods does not have.

A ABLATION STUDY

Table 3: FGVC accuracy comparisons on the standard FGVC datasets CUB-200-2011 (CUB),
Stanford Cars (Cars), and FGVC-Aircraft (Aircraft).

Model
ResNet-50 ResNeXt-50 ResNeXt-101

CUB CAR AIR CUB CAR AIR CUB CAR AIR

baseline 85.5 92.7 90.3 86.3 93.1 90.9 87.3 93.5 91.6

baseline + PC 87.0 92.4 90.1 87.5 93.2 91.2 88.2 93.7 92.4
baseline + BCN 87.8 94.3 93.2 88.1 94.4 93.3 88.6 94.5 93.5

To investigate the performance of different confusion energies between the different backbones, we
make an ablation study on the ResNet-50, ResNeXt-50, and ResNeXt101. Table 3 shows the ablation
between PC and BCN. The confusion energies both obviously improve the baseline performance on
the CUB. Since CUB is the most difficult in the three benchmark datasets. But while the datasets are
more easier, although BCN gains more improvement, the confusion energies provide little help. And
take a look at the FGVC researches recently, it seems to have reached the limitation so far. Hence, it
is reasonable to go through the more challenge task, fine-grained and long-tailed.

B ARCHITECTURE DETAILS

Let F ∈ Rc×h×w be the feature maps obtained by the last convolutional layer of the ResNet backbone
as shown in Figure 5. We extend the network with two streams: one for learning discriminative
features and the other for uncovering the proper attention responses. In both streams, we use the
atrous spatial pyramid pooling (ASPP) technique to simultaneously extract features/attentions from
different field-of-views.

conv1 conv2 conv3 conv4 conv5

ResNet-50 backbone 

Batch of images

GASPP MLP

Figure 5: The proposed neural network architecture Φ for tackling the task.

B.1 ATTENTION GATED ASPP

In addition, our method is implemented with an attention-gated network, boosted with the use of
Atrous Spatial Pyramid Pooling (ASPP) technique. As shown in Figure 6, in the feature stream, per-
forming ASPP would covert F into ASPPf (F ), while in the attention stream, the similar procedure
would yield attention feature maps, ASPPa(F ). Note that parameters in the two streams are not
shared but learned jointly. After regulating with respect to the respective activation function, we carry
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Sigmoid

Atrous Spatial Pyramid Pooling for Features

Atrous Spatial Pyramid Pooling for Attentions

ReLU

Elementwise 

multiplication

1x1 Conv, 3x3 Conv with rate=1, 3, 5, 7

Attention Gated ASPP

GAP

1x1 Conv, 3x3 Conv with rate=1, 3, 5, 7

GASPP

Figure 6: The attention gated ASPP architecture

out the gated element-wise product to output the adjusted feature maps F̃ , weighted by the predicted
attentions. That is, the attention-gated ASPP feature maps F̃ are derived by

F̃ = σf (ASPPf (F ))� σa(ASPPa(F )) (9)

where F̃ ∈ Rc×h×w remains the same dimensions, � denotes the element-wise product, σf in our
implementation is ReLU and σa is the sigmoid function for gating. The ASPP operation is similar
to that in Chen et al. (2017) except that we use different dilated rates. In summary, ASPPf (·) would
learn the image features across the whole spatial domain and ASPPa(·) instead predicts the attention
heatmaps. The gated fusion between the two streams leads to the output of discriminative feature
maps F̃ for FGVC.

C BCN REASONING.

To justify the design of BCN, we use Figure 7 to illustrate the underlying mechanism. As we have
mentioned before, the complexity of FGVC originates from the dilemma of simultaneously addressing
the inter-class similarity and intra-class variations. Our formulation requires the samples in each
training batch to be of different labels, and thus leads to two extreme cases to be considered. When the
inter-class similarity in a batch is significant, as shown in Figure 7a, the BCN loss can be considered
as a typical regularization term to avoid overfitting. On the other hand, when inter-class similarity is
not of concern as in Figure 7b, the distributions of class prediction from the samples in a batch could
vary significantly and induce a substantial BCN loss. Thus, the training would explore discriminative
features to reduce the cross-entropy loss and consequently boost the FGVC performance.

D THE ADVANTAGE OF BCN

To investigate the advantage of the proposed BCN, we show the prediction layer with softmax
activation at Figure 8. In standard deep neural networks for classification, the loss function for
prediction layer is cross-entropy. Other methods such as NTS-Net Yang et al. (2018), DCL Chen
et al. (2019) and TASN Zheng et al. (2019) adopt many loss functions, but their loss function for the
prediction layer remains the same. If only the cross-entropy is used to learn the prediction layer, the
output probability tends to be very close to one-hot vector even though the prediction is not correct.
We highlight the observation in Figure 8. This outcome conflicts the real scenarios in FGVC problems.
In FGVC, the categories sharing high similarities should have similar classification probabilities to
recognize them but not concentrating on a specific category as one-hot vector. With the help of BCN,
which already learned the characteristics of FGVC, the satisfactory results are expected.

Figure 9b shows the influence of confusion regularization in respect of the training loss. This
experiment shows that training our model in various value of λ has similar convergence speeds but
has noticeable saturated training losses. The higher weight of confusion regularization brings the
larger training loss, and the larger training loss means the model is harder to over-fit the training
data. Notice that the standard FGVC datasets often have a small number of training images for each
category; hence, it is easy for a deep neural network to over-fit the training data. Figure 9a presents
that with the confusion regularization term, the entropy of prediction pi would be larger than the one
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Herring Gull California GullRing billed Gull Glaucous Winged Gull

(a) Heavy inter-class similarity Batch: BCN alleviates overfitting 

Horned Grebe Winter Wren

(b) Moderate inter-class similarity Batch: BCN improves FGVC in tail classes 

Dual-effect of BCN loss: 

Painted Bunting Rose Breasted Grosbeak

Figure 7: All images in a training batch are of different class labels. (a): When inter-class similarity
prevails in a batch, the BCN loss functions as regularization to avoid overfitting. (b): When inter-class
similarity is not obvious, the batch would yield a significant BCN loss and the optimization would
turn to further reduce the cross-entropy loss and thus is expect to boost the FGVC performance in
inference.
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Similar image
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Similar image

59: California Gull64:Glaucous Winged Gull

Prediction 

with BCN 

Prediction 

w/o BCN
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Figure 8: Prediction-visualization of FGVC. The X-axis denotes the category index, and the Y-axis
denotes the classification confidence. This figure shows the predictions of ResNet-50 with/without
coupling BCN. Blue lines indicate coupling the proposed BCN with the vanilla ResNet-50, which
correctly classifies the two testing images. Green lines indicate the predictions of the vanilla ResNet-
50, which only correctly classify the right testing image. One similar image is attached under each
test image. With the aids of BCN, the classification model try to exert a regularization effect from
other images in the same batch, hence shows hesitation among similar categories. However, the
model trained without confusion loss seems very confident even though making a wrong prediction.

without in inference. The model has learnt the inter-class similarity and needs to make the decision
from the discriminative points. For The black line in Figure 9b shows that it is easy to over-fit the
CUB-200-2011, Standord Cars and FGVC-Aircraft datasets using ResNet-50 without applying BCN
or PC. Therefore, the proposed BCN and previous PC can be used to reduce the over-fitting issue in
the FGVC task.
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Figure 9: The impacts by BCN and PC on CUB-200-2011. (a): The regularization terms promote
the performance in the FGVC task by confusion energy. Each point represents a class in the task.
The BCN is more stable than PC, giving each class similar confusion energy, which eventually
leads to more classes with higher accuracy. (b): The training CE loss with different λ values. The
hyper-parameter λ is used to control the weight of BCN and PC in the loss function. According to
these figures, we observe that the phenomenon is similar in each data set.

Take attention to the situation with λ = 100. In Figure 9b, while BCN provides valid predictions,
the PC destroys the entire training process. This indicates that BCN is insensitive and stable to the
influence of hyper-parameter λ. At the same time, there is a wide range between 10 and 100 but
the performance is very similar. So we don’t have to perform manual tuning. In addition, when the
hyper-parameter λ is greater than 1.0, the PC may provide better results, but it may also cause the
model to be completely untrainable.
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