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ABSTRACT

Much research in machine learning involves finding appropriate inductive biases
(e.g. convolutional neural networks, momentum-based optimizers, transformers) to
promote generalization on tasks. However, quantification of the amount of inductive
bias associated with these architectures and hyperparameters has been limited. We
propose a novel method for efficiently computing the inductive bias required for
generalization on a task with a fixed training data budget; formally, this corresponds
to the amount of information required to specify well-generalizing models within
a specific hypothesis space of models. Our approach involves sampling from the
hypothesis space and modeling the loss distribution of hypotheses to estimate
the required inductive bias for a task. Unlike prior work, our method provides
a direct estimate of inductive bias without using bounds and is applicable to
diverse hypothesis spaces. Moreover, we derive approximation error bounds for
our estimation approach in terms of the number of sampled hypotheses. Consistent
with prior results, our empirical results demonstrate that higher dimensional tasks
require greater inductive bias. We show that relative to other expressive model
classes, neural networks as a model class encode massive amounts of inductive
bias. Furthermore, our measure quantifies the relative difference in inductive bias
between different neural network architectures (e.g. with varying width and depth).
Our proposed inductive bias metric provides an information-theoretic interpretation
of the benefits of specific model architectures for certain tasks and provides a
quantitative guide to developing tasks requiring greater inductive bias, thereby
encouraging the development of more powerful inductive biases.

1 INTRODUCTION

Generalization is a fundamental challenge in machine learning, as models must be able to perform
well on unseen data after being trained on a limited set of examples. To achieve this, researchers have
extensively studied the role of inductive biases, which are prior assumptions or restrictions embedded
within learning algorithms, in promoting generalization. These biases can take various forms, such as
architectural choices (e.g., convolutional neural networks, momentum-based optimizers, transformers)
or hyperparameter settings, and they shape the space of hypotheses that the model can consider.

Despite the importance of inductive biases, quantifying the amount of bias associated with different
architectural and hyperparameter choices has remained challenging. Inductive bias can be formulated
as the amount of information required to specify well-generalizing models within a hypothesis space
of models (Chollet, 2019; Boopathy et al., 2023). Previous attempts at measuring inductive bias have
often provided only upper bounds or have been limited to specific model classes. This limitation
hinders a comprehensive understanding of how different biases contribute to generalization and
impedes the systematic development of more effective biases.

In this paper, we propose a novel and efficient method for computing the inductive bias required for
generalization on a task under fixed training data budget. Unlike prior work, our approach provides
a direct estimate of inductive bias without relying on bounds. Moreover, it is applicable to diverse
hypothesis spaces, allowing the computation of inductive bias within the context of particular model
classes such as neural networks. We believe more precise and flexible computation of inductive bias
is practically valuable:

First, by quantifying the amount of inductive bias associated with different architectural choices,
researchers can gain profound insights into how specific design decisions affect the model’s ability
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to generalize. This understanding helps identify which architectural features contribute most signif-
icantly to improved performance and informs the development of more tailored and task-specific
models. Armed with a quantitative measure of inductive bias, practitioners can make more informed
decisions about which architectural choices to prioritize when building and optimizing machine
learning models. This, in turn, can lead to more efficient model development processes and improved
real-world applications.

Second, our inductive bias measure serves as a practical guide for designing tasks that demand higher
levels of inductive bias. By precisely estimating the amount of inductive bias needed for a given task,
researchers can intentionally craft benchmarks that challenge the boundaries of generalizability of
current models. This approach encourages the development of more powerful model architectures
and learning algorithms, fostering innovation in the field.

We summarize our contributions as follows:

• We propose a definition of inductive bias with an explicit dependence on the hypothesis
space within which models are defined.

• We develop an efficient sampling-based algorithm to compute the inductive bias required
to generalize on a task. Unlike prior work, the method can be applied to parametric and
non-parametric hypothesis spaces.

• We derive an upper bound on the approximation error of inductive bias estimate; the
approximation error scales inversely with the number of sampled hypotheses.

• We empirically apply our inductive bias metric to a range of domains including supervised
image classification, reinforcement learning (RL) and few-shot meta-learning. Consistent
with prior work, we find that higher dimensional tasks require greater inductive bias.

• We empirically find that neural networks encode massive amounts of inductive bias relative
to other expressive model classes. Furthermore, we quantify the difference in inductive bias
provided by different neural network architectures within a neural network hypothesis space.

2 RELATED WORK

Generalization vs. Sample Complexity Traditionally, the generalizability of machine learning
models has been analyzed in terms of sample complexity, which is the amount of training data
required to generalize on a task (Cortes et al., 1994; Murata et al., 1992; Amari, 1993; Hestness
et al., 2017). Measures such as Rademacher complexity (Koltchinskii & Panchenko, 2000) and VC
dimension (Blumer et al., 1989) quantify the capacity of a model class and provide upper bounds
on sample complexity, with less expressive model classes requiring fewer samples. More recently,
data-dependent generalization bounds have been proposed, yielding tighter bounds based on dataset
properties (Negrea et al., 2019; Raginsky et al., 2016; Kawaguchi et al., 2022; Lei et al., 2015;
Jiang et al., 2021). Additionally, scaling laws for neural networks have modeled learning as kernel
regression, revealing that sample complexity scales exponentially with the intrinsic dimensionality of
data (Bahri et al., 2021; Hutter, 2021; Sharma & Kaplan, 2022).

Generalization vs. Inductive Bias Complexity The importance of inductive biases in promoting
generalization has been widely recognized, starting with the No Free Lunch theorem (Wolpert, 1996)
which states that no learning algorithm can perform well on all possible tasks: learning algorithms
require inductive biases tailored to specific sets of tasks. Subsequent studies have further emphasized
the role of inductive biases in learning (Hernández-Orallo, 2016; Haussler, 1988; Du et al., 2018;
Li et al., 2021), showing that specific abilities, biases, and model architectures contribute to the
prior knowledge that facilitates generalization. Despite the central role of inductive biases, work on
quantifying them has been limited. Chollet (2019) proposes measuring the generalization difficulty of
a task as the amount of inductive bias required for a learning system to perform the task in addition to
any training data provided. Boopathy et al. (2023) provides an upper bound on the inductive bias
complexity of a task (i.e. how much inductive bias is required to generalize on a task) based on task
properties. In particular, it finds that higher-dimensional tasks require exponentially greater inductive
bias, mirroring results for sample complexity. In this work, we aim to more precisely and directly
estimate the required inductive bias of a task without the use of bounds. Moreover, unlike Boopathy
et al. (2023), our approach can compute inductive bias complexity within general hypothesis spaces: it
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Figure 1: Illustration of how the required inductive bias for a task can be computed from the
hypothesis space and the region of well-generalizing hypotheses. Black boxes indicate hypothesis
spaces; ph is a uniform distribution over each box. Purple indicates regions of well-generalizing
hypotheses. Inductive bias is the negative log of the fraction of hypothesis space that generalizes well;
it depends on both the size of the hypothesis space as well as how much the hypothesis space overlaps
with well-generalizing hypotheses. Different hypothesis spaces may yield different inductive bias
estimates even on the same task (i.e. the same set of well-generalizing hypotheses).

allows for context-specific computation of inductive bias (e.g. the inductive bias required to generalize
on ImageNet (Deng et al., 2009) classification assuming models are convolutional neural networks).

3 QUANTIFYING INDUCTIVE BIAS

In this section, we first provide a formal quantitative definition of the inductive bias of a model class.
We then propose a method of efficiently sampling models from the model class. Given the sampled
models, we then estimate the distribution of test set errors of the models; this allows us to efficiently
and precisely estimate inductive bias. We prove that the approximation error of our algorithm can be
bounded in terms of the number of sampled models.

3.1 DEFINITION OF INDUCTIVE BIAS

Intuitively, inductive biases are any properties of a model class that enhance generalization on a
task. Boopathy et al. (2023) proposes quantifying the amount of inductive bias required to generalize
on a task based on the probability that a model that fits a training set also generalizes to a test set.
Importantly, this definition assumes that there exists a hypothesis space in which all models are
contained; training data and inductive biases help winnow this space to a well-generalizing set of
hypotheses.

We first clarify the relationship between a hypothesis space, models, and model classes. A hypothesis
space is a set of all possible models that could be used to solve a given problem. A model is a specific
hypothesis from a hypothesis space. A model class is a set of models (i.e. a subset of the hypothesis
space) typically selected by a model designer to include mostly well-generalizing models. Inductive
bias is quantified as the amount of information required to specify a well-generalizing model class
within a hypothesis space.

Note that the size of the hypothesis space can strongly affect the magnitude of the inductive bias,
but in Boopathy et al. (2023) the dependence on the hypothesis is implicit. Here we formally define
inductive bias in a similar manner to Boopathy et al. (2023) but provide a way to explicitly include
the distribution of models in the hypothesis space. The method of Boopathy et al. (2023) was
task-dependent but relatively model-independent given a very broad hypothesis space. Allowing for
an explicit dependence on hypothesis space allows us to compute inductive bias for a variety of more
narrowly defined hypothesis families (e.g. neural networks versus Gaussian RBF models; or more
finely, different neural network architectures), across a variety of domains ranging from supervised
classification to RL as we will empirically show. Next, we present our formal definition of amount of
inductive bias:
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Definition 1. Let H be a set of hypotheses, and let hypothesis distribution ph define a probability
distribution over these hypotheses. Suppose there exists a loss function L that maps a hypothesis
h ∈ H and a task input x ∈ X to a scalar: L : H × X → R. Finally, suppose there exists a test
distribution px over the task inputs. With respect to distribution ph, the amount of inductive bias
required to achieve test set error rate ε on a task is:

I(ε, ph, px, L) = − log

∫
1(Ex∼px

[L(h, x)] ≤ ε)ph(h)dh (1)

where 1 denotes the indicator function.

Note that this is simply negative log of the probability that a hypothesis sampled from ph achieves an
error rate ≤ ε on a test set. ph may be any distribution over the hypothesis space; Boopathy et al.
(2023) sets ph as a uniform distribution of models achieving a training set error ≤ ϵ. In practice, we
may be interested in the case when ph is a distribution of models produced by an optimization process
on a training set. This allows us to quantify the additional inductive bias required to generalize on
top of any information provided by the training data. Critically, as Figure 1 illustrates, the specific
choice of ph has a significant impact on the inductive bias. Intuitively, if the hypothesis distribution
is more aligned with a task, fewer inductive biases are required to generalize.

Estimating this inductive bias by directly sampling hypotheses from a hypotheses space is com-
putationally infeasible for large hypothesis spaces since the vast majority of hypotheses may not
generalize well. Thus, we propose a two-phase approach to compute the inductive bias: first, we
sample from the hypothesis space and compute an empirical distribution of test set error values
Ex∼px [L(h, x)]. Few (or none) of these hypotheses may generalize at the desired error rate. Thus,
we use the samples to model the test error distribution to estimate the probability of achieving test
error ≤ ε.

We also note that inductive bias in Equation 1 is a function of the desired error rate ε; it is not
a function of a specific model or model class, although it is a function of the hypothesis space
distribution ph. However, we may use this definition to compute the inductive bias provided by a
specific model under a specific hypothesis space by computing the amount of inductive bias required
to generalize at the level of the model (i.e. by plugging in the model’s test set error rate ε into
Equation 1). This allows us to understand how the inductive bias of a model is affected by the
properties of the broader hypothesis space, and how it contributes to the model’s generalization
performance.

3.2 EFFICIENTLY SAMPLING FROM THE HYPOTHESIS SPACE

Here, we aim to efficiently sample hypotheses from ph, where we assume ph includes only hypotheses
fitted to a training set. We use two approaches: directly optimizing the parameters of a hypothesis
(i.e. training a model on the training data), or a kernel-based sampling approach.

Direct Optimization by Gradient Descent For hypothesis spaces with a known, finite-dimensional
parameterization, it may be reasonable to set ph as a distribution of hypotheses produced by perform-
ing gradient descent on loss function L evaluated on a training set of data x. For instance, ph may
correspond to a distribution of neural networks after training from random initialization by gradient
descent on a training set. Given P parameters per hypothesis, performing each step of gradient
descent takes O(P ) time, yielding O(PT ) time for T optimization steps. Thus, producing S samples
requires O(SPT ) time.

Kernel-based Sampling If the hypothesis space is very high-dimensional (or infinite-dimensional),
it may be infeasible to directly optimize hypotheses by gradient descent. Instead, we formulate
the problem of sampling from a hypothesis space as sampling from a Gaussian process, for which
efficient algorithms have been extensively studied. We use an algorithm resembling the approach
of Lin et al. (2023). The key principle behind our algorithm is to reparameterize the distribution
of hypothesis output values on a test set in terms of a unit Gaussian. This allows us to easily and
efficiently draw samples from this distribution in linear time (in terms of training set size).

We assume hypotheses h are linearly parameterized with parameters θ ∈ RP as:

h(x) = ϕ(x)θ (2)
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where ϕ(x) ∈ Rk×P is a dimensional feature matrix and k is the dimensionality of h(x). Here,
we set ph to include only the set of hypotheses that interpolate the training data. Given a set of N
training points X , their corresponding features ϕ(X) ∈ RNk×P and target model outputs Y ∈ RNk,
where k represents output dimensionality, observe that if a hypothesis interpolates the training data,
its parameters must satisfy:

Y = ϕ(X)θ (3)

We may decompose θ into two terms:

θ = ϕ(X)†Y + β (4)

where β ∈ RP satisfies ϕ(X)β = 0. The first term ensures the hypothesis fits the training data while
the second term allows for variation between hypotheses. Finally, we set β as a Gaussian with mean
0 and covariance I − ϕ(X)†ϕ(X), where † represents pseudoinverse. This corresponds to setting the
distribution of parameters θ as:

pθ(θ) = N (ϕ(X)†Y, I − ϕ(X)†ϕ(X)) (5)

This corresponds to a Gaussian process conditioned on the training points.

We aim to sample the value of h on a test set X̄ consisting of n points. These values h(X̄) may be
computed as:

h(X̄) = K(X̄,X)α∗ +
√
K(X̄, X̄)−K(X̄,X)A∗z (6)

where α∗ and A∗ are found as:

α∗ = argmin
α

||Y −K(X,X)α||22 (7)

A∗ = argmin
A

||K(X, X̄)−K(X,X)A||2F (8)

and z is drawn from a unit Gaussian N (0, I). We find approximate solutions to these optimization
problems by stochastic gradient descent. Pseudocode is provided in Algorithm 1, with additional
details included in Appendix B.1. Producing S samples requires a total of O(nNk2T + n3k3 +
n2Nk3 + n2k2S) time where T is the number of optimization steps.

Algorithm 1 Kernel-based Sampling

1: procedure KERNELSAMPLING(X,Y, X̄, n, k, T, S, η)
2: Initialize α and A with zeros
3: for t = 1 to T do
4: Randomly sample a mini-batch of training examples (x, y) ∈ (X,Y )
5: Compute gradient gα = 2K(X,x)(K(x,X)α− y)
6: Compute gradient gA = 2K(X,x)(K(x, X̄)A−K(x, X̄))
7: Update α using gradient descent: α← α− ηgα (where η is the learning rate)
8: Update A using gradient descent: A← A− ηgA (where η is the learning rate)
9: end for

10: Compute mean m = K(X̄,X)α

11: Compute square root of covariance
√
C =

√
K(X̄, X̄)−K(X̄,X)A

12: Initialize an empty list samples
13: for s = 1 to S do
14: Sample z ∼ N (0, I)

15: Compute sample h(X̄) = m+
√
Cz

16: Append h(x̄s) to samples
17: end for
18: return samples
19: end procedure

3.3 MODELING THE TEST ERROR DISTRIBUTION
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Figure 2: Fitting a scaled non-central Chi-
squared distribution to an empirical distri-
bution of mean squared errors of models
drawn from a kernel-based Gaussian RBF
hypothesis space on a restricted version
of MNIST. Observe that the distribution
closely models the empirical distribution.

Once we generate samples from the hypothesis space,
we next aim to model the distribution of test set losses
of sampled functions from the hypothesis space; this
allows us to compute inductive bias.

To understand what the shape of the test loss distribution
may be, we return to the assumptions in the kernel-
based sampling of the hypothesis space. We assume
that the regression targets Y, Ȳ on the training and test
sets respectively are constructed as Y = ϕ(X)θ∗, Ȳ =
ϕ(X̄)θ∗ for some unknown parameters θ∗.

The squared error between the prediction h(X̄) and true
value Ȳ may be written as:

||h(X̄)− Ȳ ||22
= ||ϕ(X̄)ϕ(X)†ϕ(X)θ∗ + ϕ(X̄)β − ϕ(X̄)θ∗||22 (9)

We may write β as β = (I − ϕ(X)†ϕ(X))ξ where
ξ ∈ RP is distributed as a unit Gaussian. Then, the squared prediction error may be written as:

||h(X̄)− Ȳ ||22 = ||ϕ(X̄)(I − ϕ(X)†ϕ(X))(ξ − θ∗)||22 (10)

Observe that this is a quadratic form of a Gaussian random variable ξ − θ∗; thus, ||h(X̄) − Ȳ ||22
follows a generalized Chi-squared distribution.

In practice, to minimize the number of fit parameters when modeling the empirical error distribution,
we fit the test loss using a scaled non-central Chi-squared (which is a special case of a generalized
Chi-squared distribution); this has three fit parameters. These parameters are fit with maximum
likelihood estimation. Figure 2 illustrates that this distribution is able to closely fit test errors of
random hypotheses on a real dataset.

Since we model the test error distribution as a Chi-squared distribution, we need to approximate
the negative log of the cumulative distribution function (CDF) given its parameters. Given a Chi-
squared distribution with k degrees of freedom and non-centrality parameter λ, we use the following
approximation by Sankaran (Sankaran, 1959) for the CDF:

P (z; k, λ) ≈ Φ


(

z
k+λ

)h

− (1 + hp(h− 1− 0.5(2− h)mp))

h
√
2p(1 + 0.5mp)

 , (11)

where Φ is the CDF of a standard normal random variable and

h = 1− 2

3

(k + λ)(k + 3λ)

(k + 2λ)2
, p =

k + 2λ

(k + λ)2
, m = (h− 1)(1− 3h).

Finally, we use a Chernoff bound-based approximation Φ(−z) ≈ e
−z2

2 to finish the calculation.
Specifically, since the inductive bias is given as the negative log probability of generalizing up to error
rate ε (see Equation 1), we simply compute the negative log of the approximated CDF after plugging
in the desired ε for z. Appendix B.3 provides further details on how the test error distribution is
modeled.

3.4 BOUNDING THE APPROXIMATION ERROR

Next, we derive a bound on the approximation error of our estimate of required inductive bias. At a
high level, the bound proceeds as follows: we first bound how closely our samples from the hypothesis
distribution match the true distribution ph, and then bound the error in our modeling of the test error
distribution to arrive at a final bound on the amount of inductive bias.
Theorem 1. Suppose we are provided a hypothesis distribution ph, input distribution px, loss function
L and desired error rate ε. Suppose we estimate I(ε, ph, px, L) by first sampling n hypotheses
(h1, h2, ...hn) iid from qh which is close to ph in the sense that

| log ph(h)− log qh(h)| ≤ ξh (12)
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for all h. We then compute the test losses of each hypothesis
Ex∼px

[L(h1, x)],Ex∼px
[L(h2, x)], ...Ex∼px

[L(hn, x)]. Next, we model the distribution of
test losses with a distribution f(l;α) where α represents a finite number of parameters. We assume f
has bounded support over l. We assume that knowing a finite number of moments of f uniquely
determines α in the sense that there exists f̃ such that f̃(l;µ) = f(l;α) where µ represent r moments
of the distribution:

µ =

∫
M(l)f(l;α)dl (13)

for some function M(l). We assume log f̃ is Lipschitz continuous with respect to µ.

Denote the distribution of Ex∼px
[L(h, x)] when h is drawn from qh as ql. We assume ql can be

closely modeled by f(l;α) in the following sense:

max
l
| log ql(l)− log f̃(l; µ̄)| ≤ ξl (14)

where µ̄ =
∫
M(l)ql(l)dl are the moments of ql. Given the empirical test loss distribution, we use the

method of moments to estimate the parameters of f , yielding α∗. Finally, suppose that the estimate
of I(ε, ph, px, L) is computed as:

Ĩ = − log

∫ ε

−∞
f(l;α∗)dl (15)

Then with probability 1− σ, the approximation error of Ĩ can be bounded as:

|Ĩ − I(ε, ph, px, L)| ≤ ξh + ξl +
κ

n

√
r log

2r

σ
(16)

for a constant κ.

See Appendix A for a proof. Observe that the approximation error is bounded by three terms: the first
corresponds to how accurately the hypothesis distribution can be sampled, the second corresponds to
the modeling error of the test error distribution, and the third corresponds to the error from drawing
a finite number of samples. Practically, the first term can be set to 0 is we are able to sample from
ph. Similarly, ξl = 0 is 0 if the test error distribution follows a scaled non-central Chi-squared
distribution, which can be motivated theoretically and empirically as explained in Section 3.3. Thus,
the remaining error is the finite sample approximation error which converges with rate O( 1n ).

Note that instead of the method of moments, we use maximum likelihood estimation to estimate α
since it is practically effective. Maximum likelihood estimation can also be shown to yield the same
convergence rate asymptotically with n, although deriving a finite sample bound is more challenging.

4 EXPERIMENTAL RESULTS

We first evaluate inductive bias for various tasks under an infinite-dimensional kernel-based hypothesis
space and interpret trends of inductive bias in terms of task properties. We then measure inductive
bias in the context of a more restricted neural network hypothesis space.

4.1 INDUCTIVE BIAS INCREASES WITH TASK DIMENSIONALITY

We evaluate the inductive bias required to generalize on benchmark tasks across various domains:
MNIST (Lecun et al., 1998), CIFAR-10 (Krizhevsky et al., 2009), 20-way 1-shot Omniglot (Lake
et al., 2015) and inverted pendulum control (Florian, 2007). Classification tasks are treated as
regression problems with a mean squared error loss function with one-hot-encoded labels. The
hypothesis space is a kernel-based hypothesis space using a Gaussian RBF kernel constructed as
K(x1, x2) = e−

1
2 ||x1−x2||22I . Note that the hypotheses from this space are constrained to fit the

training data; thus, our inductive bias measure quantifies additional information required to generalize
on top of the training data. We use Algorithm 1 to sample hypotheses from this space and evaluate
their mean squared error on the test set of each task. Note that this hypothesis space is infinite-
dimensional; directly optimizing in the space is not feasible. Due to computational constraints,
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Table 1: Gaussian RBF model class results, compared with bounds from Boopathy et al. (2023) for
image classification datasets (MNIST, CIFAR-10), Omniglot, and Inverted Pendulum tasks. *Our
version of the Inverted Pendulum task differs somewhat from Boopathy et al. (2023).

Task Upper Bound (Boopathy et al., 2023) Our Results

Inverted Pendulum 4.41× 109 bits∗ 29 bits
MNIST 1.48× 1016 bits 2568 bits

CIFAR-10 3.43× 1032 bits 2670 bits
Omniglot 1.79× 10145 bits 2857 bits

gradient descent in Algorithm 1 is not run until full convergence; thus, sampled hypotheses may
not interpolate the training data. Nevertheless, we find that the corresponding distribution of losses
stabilizes after a small number of epochs (see Appendix B.1 Figure 5). Once we have a distribution
of mean-squared errors, we use the approach of Section 3.3 to compute inductive bias. Appendix B
includes further experimental details.

Figure 3: Fitted scaled non-central Chi-
squared distributions for the test set errors on
MNIST, CIFAR-10, Omniglot, and Inverted
Pendulum tasks.

Figure 3 plots the fitted Chi-squared distributions to
the test set errors for the four tasks. Table 1 show-
cases the resulting inductive bias estimates and com-
pares them to Boopathy et al. (2023)’s prior upper
bounds on inductive bias; Boopathy et al. (2023) use
a similarly high-dimensional hypothesis space as our
kernel-based hypothesis space. Note that given our
choice of model class, our measure is many orders of
magnitude lower than Boopathy et al. (2023)’s prior
upper bound. This is because Boopathy et al. (2023)
computed upper bounds of inductive bias, while we
used a more precise estimation method. Further, our
hypothesis space, although quite broad, is different
than theirs and potentially more restricted, leading
to fewer bits being needed to narrow down the well-
generalizing hypotheses. The particular number ex-
tracted for each task also depends on the particular
cutoff test set error rate ε chosen; we chose ≤ 0.001
as the required quadratic loss for all four tasks as a measure of being well-generalizing. This roughly
corresponds to the performance of typical competitive models on each of the tasks.

In general, we see that tasks with more intrinsic dimensionality require more bits of inductive bias
to generalize well; in particular, Inverted Pendulum < MNIST < CIFAR-10 < Omniglot, which
matches our expectations from Boopathy et al. (2023)’s results. Interestingly, if we examine the main
peaks in the Chi-squared distribution from Figure 3, the Omniglot task errors appear shifted further
to the left which would suggest a lower inductive bias. However, Omniglot has a lower variance in
hypotheses that interpolate the training data, leading to a lower probability that the error is very small,
compared to MNIST or CIFAR-10.

4.2 RESTRICTING THE BASE HYPOTHESIS SPACE REDUCES REQUIRED INDUCTIVE BIAS

Next, we measure the inductive bias of various models trained on MNIST under a more restricted,
but still expressive hypothesis space. Specifically, we consider the hypothesis space expressible
by a high-capacity ReLU-activated fully-connected neural network with 9 layers and 512 units per
hidden layer. Appendix B describes the details of how the hypothesis space is constructed. Note
that our inductive bias measure is a function of the desired test set error rate (ε in Equation 1);
previously, we set the desired error rate as a fixed value for each task. However, we may also
compute the inductive bias provided by different models. Following Boopathy et al. (2023), we
compare models by evaluating the test set error of the models and plugging this error into ε in
Equation 1. In other words, the inductive bias provided by a model is the amount of information
required to achieve the error rate of the model. We evaluate four different models: a linear model,
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a decision tree, a wide and shallow neural network (depth 3, widths 512 and 256), and a deep
and narrow neural network (depth 6, width 64). See Appendix B for additional model details.

Figure 4: Inductive bias of different models
trained on MNIST under a neural network hy-
pothesis space. The decision tree and linear
model have inductive bias smaller than ma-
chine precision and are thus estimated as 0.

In Figure 4, we find that all models provide very little
inductive bias (in contrast to the much larger numbers
observed for the kernel hypothesis space earlier); the
largest measured inductive bias is below 0.01 bits.
On this scale, even though all models achieve similar
errors, the relative difference between the inductive
bias of different models is quite large. This reverses
the trend observed in the high-dimensional hypoth-
esis space of Boopathy et al. (2023) where different
models with quite different error rates contained sim-
ilar amounts of inductive bias. In other words, within
a more restricted hypothesis space, the relative differ-
ence between the inductive biases of different models
is accentuated. The results demonstrate that within
the neural network hypothesis space, the additional
inductive bias of practical models may be quite small.
That is, neural networks themselves provide enor-
mous inductive bias.

5 DISCUSSION

Our results reveal that different tasks require different levels of inductive bias, with higher dimensional
tasks demanding greater amounts. In particular, with expressive kernel-based hypothesis spaces, the
required inductive bias can be higher for high-dimensional tasks such a Omniglot compared to lower-
dimensional tasks such as CIFAR-10 even when the lower-dimensional task may be intuitively simpler.
This curse of dimensionality occurs due to an exponential explosion of the size of the hypothesis
space with the task dimension: intuitively, each additional dimension of variation in a task increases
the dimensionality of the hypothesis space by a constant factor. Our findings confirm previous
research and highlight the importance of the choice of model class, particularly for high-dimensional
problems.

We also find that neural networks as a model class, inherently encode massive amounts of inductive
bias. The choice of neural networks themselves provides a much greater inductive bias than specific
architectural choices, although our measure also reveals that architectural choices can provide
significant inductive bias. This observation suggests that the strong smoothness (Li et al., 2018) and
compositionality (Mhaskar et al., 2017) constraints of neural networks align well with the properties
of realistic tasks. Consequently, these models naturally embody the inductive bias required for a wide
range of tasks, underscoring their prevalence and success across various domains.

We note that our empirical results are restricted to two specific choices of hypothesis spaces: a
Gaussian RBF kernel-based hypothesis space and a fixed neural network hypothesis space. However,
our approach is applicable to general hypothesis spaces. Future work may be able to extend our
inductive bias quantification to other hypothesis space choices.

We propose two potential ways of using our inductive bias quantification. First, it provides an
information-theoretic interpretation of the advantages of particular model architectures for specific
tasks. By quantifying the amount of inductive bias associated with different architectural choices,
researchers can gain insights into how specific design decisions affect the model’s ability to general-
ize. This understanding helps identify which architectural features contribute most significantly to
improved performance and informs the development of more tailored and task-specific models.

Second, the inductive bias measure serves as a quantitative guide for developing tasks that require
greater inductive bias. By precisely estimating the amount of inductive bias needed for a given
task, researchers can intentionally design challenging benchmarks that push the boundaries of
machine learning capabilities. We hope this can encourage the development of more powerful model
architectures and learning algorithms that drive the field forward.
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A PROOF OF THEOREM 1

Proof. Denote the probability distribution over Ex∼px [L(h, x)] when h is drawn from ph as pl(l).
From the definition of Ĩ and I(ε, ph, px, L), it is known that:

|Ĩ − I(ε, ph, px, L)| = | − log

∫ ε

−∞
f(l;α∗)dl + log

∫ ε

−∞
pl(l)dl| (17)

Expressing the difference of logs as a log of a ratio:

|Ĩ − I(ε, ph, px, L)| =

∣∣∣∣∣− log

∫ ε

−∞ f(l;α∗)dl∫ ε

−∞ pl(l)dl

∣∣∣∣∣ (18)

Observe that this expression can be upper bounded by:

max
l
| log f(l;α∗)− log pl(l)| (19)

To see this, denote k = maxl | log f(l;α∗)− log pl(l)|. Then,

f(l;α∗) ≤ ekpl(l) (20)

This implies:

log

∫ ε

−∞ f(l;α∗)dl∫ ε

−∞ pl(l)dl
≤ log

∫ ε

−∞ ekpl(l)dl∫ ε

−∞ pl(l)dl
= log ek

∫ ε

−∞ pl(l)dl∫ ε

−∞ pl(l)dl
= k (21)

Similarly, − log
∫ ε
−∞ f(l;α∗)dl∫ ε
−∞ pl(l)dl

can be upper bounded by k. Thus,

|Ĩ − I(ε, ph, px, L)| ≤ max
l
| log f(l;α∗)− log pl(l)| (22)

We can upper bound the absolute value as:

max
l
| log f(l;α∗)− log pl(l)| ≤ max

l
| log f(l;α∗)− log ql(l)|+max

l
| log ql(l)− log pl(l)| (23)

We first bound the first term. Reparameterizing f in terms of moments µ:

max
l
| log f(l;α∗)− log ql(l)| = max

l
| log f̃(l;µ∗)− log ql(l)| (24)

where µ∗ are moment estimates computed as sample averages. We upper bound the absolute value as:

max
l
| log f̃(l;µ∗)−log ql(l)| ≤ max

l
| log f̃(l;µ∗)−log f̃(l; µ̄)|+max

l
| log f̃(l; µ̄)−log ql(l)| (25)

Note that maxl | log f̃(l; µ̄)−log ql(l)| is bounded by ξl. Since f has bounded support, by Hoeffding’s
inequality, the deviation from the mean of a single element of µ∗ can be bounded as:

P (|µ∗
i − µ̄i|2 ≥

t

r
) ≤ 2e−C n2t

r (26)

for some constant C. Using the union bound:

P (||µ∗
i − µ̄i||2 ≥ t) ≤ 2re−C n2t

r (27)

We set σ = 2re−C n2t
r , which yields:

t =
r

Cn2
log

2r

σ
(28)

Thus, with probability 1− σ:

P (||µ∗
i − µ̄i|| ≤

1

n

√
r

C
log

2r

σ
) (29)

Since log f̃ is Lipschitz continuous with respect to µ, with probability 1− σ:

max
l
| log f̃(l;µ∗)− log f̃(l; µ̄)| ≤ κ

n

√
r log

2r

σ
(30)
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for some constant κ. Thus, we may bound maxl | log f(l;α∗)− log ql(l)| as:

max
l
| log f(l;α∗)− log ql(l)| ≤ ξl +

κ

n

√
r log

2r

σ
(31)

Next, we bound maxl | log ql(l)− log pl(l)| using the bound on maxh | log qh(h)− log ph(h)|. Note
that

log ql(l)− log pl(l) = log

∫
h:Ex∼px [L(h,x)]=l

qh(h)dh∫
h:Ex∼px [L(h,x)]=l

ph(h)dh
≤ log

∫
h:Ex∼px [L(h,x)]=l

eξhph(h)dh∫
h:Ex∼px [L(h,x)]=l

ph(h)dh
= ξh

(32)
Similarly,

log pl(l)− log ql(l) = log

∫
h:Ex∼px [L(h,x)]=l

ph(h)dh∫
h:Ex∼px [L(h,x)]=l

qh(h)dh
≤ log

∫
h:Ex∼px [L(h,x)]=l

eξhqh(h)dh∫
h:Ex∼px [L(h,x)]=l

qh(h)dh
= ξh

(33)
Therefore,

max
l
| log ql(l)− log pl(l)| ≤ ξh (34)

Combining all the inequalities, with probability 1− σ:

|Ĩ − I(ε, ph, px, L)| ≤ ξh + ξl +
κ

n

√
r log

2r

σ
(35)

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 KERNEL-BASED SAMPLING DETAILS

Using the decomposition of θ, h(X̄) ∈ Rnk can be expressed as:

h(X̄) = ϕ(X̄)ϕ(X)†Y + ϕ(X̄)β (36)

where ϕ(X̄) ∈ Rnk×P . Note that this is distributed as a Gaussian with mean ϕ(X̄)ϕ(X)†Y and
covariance matrix ϕ(X̄)(I − ϕ(X)†ϕ(X))ϕ(X̄)T = ϕ(X̄)ϕ(X̄)T − ϕ(X̄)ϕ(X)†ϕ(X)ϕ(X̄)T . We
may express these quantities in terms of the kernel corresponding to features ϕ(x). The kernel is
defined a k × k matrix:

K(x1, x2) = ϕ(x1)ϕ(x2)
T (37)

In our experiments, we use a Gaussian radial basis function (RBF) kernel. We denote K(X,X) ∈
RNk,Nk and K(X̄,X) ∈ RnK,Nk as the kernels between all pairs of training points and pairs of test
and training points respectively. Then, assuming N < P , h(X̄) has mean K(X̄,X)K(X,X)−1Y
and covariance K(X̄, X̄)−K(X̄,X)K(X,X)−1K(X, X̄). Thus, we may express h(X̄) as:

h(X̄) = K(X̄,X)K(X,X)−1Y +
√

K(X̄, X̄)−K(X̄,X)K(X,X)−1K(X, X̄)z (38)

where z ∈ Rnk is distributed as a unit Gaussian and√ denotes matrix square root. Computing this
quantity directly for a given choice of z may be computationally challenging since it requires storing
and inverting the kernel matrix K(X,X). Thus, we instead approximate solutions to K(X,X)−1Y
and K(X,X)−1K(X, X̄) via gradient descent. Specifically, we define α∗ = K(X,X)−1Y and
A∗ = K(X,X)−1K(X, X̄). Note that these can be found as solutions to the following optimization
problems:

α∗ = argmin
α

||Y −K(X,X)α||22 (39)

A∗ = argmin
A

||K(X, X̄)−K(X,X)A||2F (40)

We find approximate solutions to these optimization problems by stochastic gradient descent. Once
α∗ and A∗ are found, samples of h(X̄) may be computed as:

h(X̄) = K(X̄,X)α∗ +
√

K(X̄, X̄)−K(X̄,X)A∗z (41)
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Assuming a constant time kernel computation per element, performing stochastic gradient descent on
α and A for one iteration requires O(Nk) and O(nNk2) time respectively; thus, for T optimization
steps, the time complexity is O(nNk2T ). Once computed, sampling h(X̄) requires O(n3k3 +
n2Nk3) time to determine the constants in the above equation, and an additional O(n2k2) per
sample. Thus, producing S samples requires a total of O(nNk2T + n3k3 + n2Nk3 + n2k2S)
time. Importantly, this time is linear in the training set size and constant in the parameter size; this
efficiency is critical for large datasets and high-dimensional hypothesis spaces.

Figure 5: Distribution of hypothesis losses for
MNIST after 5, 10, and 15 epochs of gradient
descent. Notice that the update in distribution
is minimal.

We use a Gaussian RBF kernel constructed as
K(x1, x2) = e−

1
2 ||x1−x2||22I . Due to the computa-

tional cost of computing the full gradients gα and
gA (both of which have sizes scaling linearly with
the training set size), we compute the gradient in
steps. Specifically, for gα, K(x,X)α is computed by
splitting the training set into groups Xi (and corre-
spondingly α into αi) and summing the contribution
of each K(x,Xi)αi. An analogous grouping is done
to compute gA.

For experiments on MNIST, we use a learning rate of
0.0001 to optimize α and a learning rate of 0.00001
to optimize A. We use a batch size of 128 and a group
size of 2048. Training is performed for 20 epochs.
See Figure 5 for an analysis of the convergence of
the resulting loss distribution.

For experiments on CIFAR-10, we use a learning rate of 0.001 to optimize α and a learning rate of
0.0001 to optimize A. We use a batch size of 64 and a group size of 1024. Training is performed for
20 epochs.

For experiments on Omniglot, we use a learning rate of 0.0001 to optimize α and a learning rate of
0.00001 to optimize A. We use a batch size of 10 and a group size of 100. Training is performed for
1 epoch.

For experiments on the inverted pendulum task, we use a learning rate of 0.001 to optimize α and a
learning rate of 0.0001 to optimize A. We use a batch size of 64 and a group size of 1024. Training
is performed for 500 epochs.

B.2 NEURAL NETWORK HYPOTHESIS SPACE DETAILS

The architecture of our base hypothesis space is constructed as follows: the input is linearly projected
to a 512 dimensional vector, followed by 9 more fully connected layers of dimensionality 512. Finally,
the output is linearly projected to a 10-dimensional output to predict the one-hot encoded label. All
layers include a bias term. Each fully connected layer except the final one is followed by a ReLU
non-linearity. No additional components such as normalization are used.

The model is trained on a mean squared error loss using Adam with a learning rate of 0.001. Training
is conducted for 10 epochs with a batch size of 128. We sample 100 hypotheses from this hypothesis
space by using different random initializations and orderings of training points during training.

Within the neural network hypothesis space, we consider the performance of four models: decision
tree, linear model, deep and narrow neural network and a wide and shallow neural network. All
models are trained to minimize mean squared error training loss.

For the decision tree model, Gini impurity is used to evaluate split quality. At each node, the best
split is chosen. A minimum of 2 samples are required to split a sample. Predictions are clipped to be
in the range [0, 1] before computing mean-squared error with one-hot encoded labels.

For the linear model, ordinary least squares fitting is used to fit the model. Predictions are clipped to
be in the range [0, 1] before computing mean-squared error with one-hot encoded labels.

For the deep and narrow neural network, we construct a neural network consisting of 6 fully connected
layers each of output 64 except the final output which has dimensionality 10. Each layer except the
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last one is followed by a ReLU non-linearity. No additional components such as normalization are
used. The model is trained on a mean squared error loss using Adam with a learning rate of 0.001.

For the wide and shallow neural network, we construct a neural network consisting of a fully
connected layer with output dimensionality 512 followed by a fully connected layer with output
dimensionality 256 followed by a final fully connected layer with output dimensionality 10. Each
layer except the last one is followed by a ReLU non-linearity. No additional components such as
normalization are used. The model is trained on a mean squared error loss using Adam with a learning
rate of 0.001.

B.3 DISTRIBUTION FITTING DETAILS

We sample 100000 hypotheses from the hypothesis space and compute the test set error for each
one. Given the empirical distribution of test set errors, we fit a three-parameter scaled non-central
Chi-squared distribution to match the data. We use maximum likelihood estimation to determine the
fit parameters. Once the distribution parameters are determined, we use approximations to quantify
the log of the cumulative distribution function as described in the main text.

B.4 TASKS

For all tasks, desired error rates are set as the values provided in Boopathy et al. (2023) unless
otherwise specified.

MNIST & CIFAR-10 We use the base MNIST and CIFAR-10 datasets without modification.

ImageNet We use standard ImageNet normalization and random cropping.

Omniglot We consider 20-way 1-shot Omniglot classification. In this setting, each input consists
of 20 images, 1 from each of 20 alphabets, and the goal is to predict the class of a new image from
one of the 20 seen alphabets. We encode this task in the following form: the inputs x consist of 21
images, the first 20 of which correspond to training images and the last one of which corresponds to
the evaluation image. The input is flattened to remove all spatial structure. The desired output is a
one-hot encoded 20-dimensional vector of which of the 20 training images matches the class of the
evaluation image. We generate a training set of size 1000 and a test set of size 100, drawn from the
Omniglot background and evaluation alphabets respectively.

Inverted Pendulum Task We consider the following inverted pendulum control task: an inverted
pendulum with angle θ ∈ R and angular velocity ω ∈ R has the following dynamics:

θ̇ = ω (42)

ω̇ = sin θ + u (43)

where u ∈ R is a control action. The goal is to minimize the time average of the following cost:

C(u, θ, ω) =
1

2
u2 + 24θ2 + (8θ + 4ω)(θ − sin θ) (44)

The first term encourages small control actions. The second term encourages the inverted pendulum
to remain at rest at θ = 0. The third term is added to allow an analytically tractable optimal control.
Intuitively, it penalizes when future values of θ (as represented by 8θ + 4ω) are far from 0 (as
represented by θ − sin θ). Note that this term is on the order of O(θ3); for small θ, the second term
dominates.

The optimal cost to go, or value function (i.e. the optimal total cost over all future time steps) given
current state θ, ω is:

V (θ, ω) = 14θ2 + 8θω + 2ω2 (45)

To verify this, note that the optimal cost obeys the Bellman equation:

min
u

∂

∂θ
V (θ, ω)θ̇ +

∂

∂ω
V (θ, ω)ω̇ + C(u, θ, ω) = 0 (46)
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Substituting in the expressions from above:

min
u

[(28θ + 8ω)ω + (8θ + 4ω)(sin θ + u) +
1

2
u2 + 24θ2 + (8θ + 4ω)(θ − sin θ)] = 0 (47)

Setting the derivative with respect to u to 0, the optimal u must satisfy:

8θ + 4ω + u = 0 (48)

Thus, u = −8θ − 4ω. Plugging this back into the Bellman equation:

(28θ+8ω)ω+(8θ+4ω)(sin θ−8θ−4ω)+ 1

2
(−8θ−4ω)2+24θ2+(8θ+4ω)(θ−sin θ) = 0 (49)

Observe that all terms on the left-hand side cancel; thus V (θ, w)i is the correct value function for this
optimal control problem. Given θ, ω, the optimal control action is:

u = −8θ − 4ω (50)

In this task, inputs (θ, ω) are drawn from a uniform distribution over [−π, π] × [−1, 1]. Desired
outputs u are constructed as above. We generate a training set of size 10000 and a test set of size 100.

B.5 COMPUTING INFRASTRUCTURE

Experiments are run on a computing cluster with GPUs ranging in memory size from 11 GB to 80
GB.
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