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Abstract

The Koopman operator provides a principled framework for analyzing nonlinear
dynamical systems through linear operator theory. Recent advances in dynamic
mode decomposition (DMD) have shown that trajectory data can be used to identify
dominant modes of a system in a data-driven manner. Building on this idea, deep
learning methods such as VAMPnet and DPNet have been proposed to learn the
leading singular subspaces of the Koopman operator. However, these methods
require backpropagation through potentially numerically unstable operations on
empirical second moment matrices, such as singular value decomposition and
matrix inversion, during objective computation, which can introduce biased gradi-
ent estimates and hinder scalability to large systems. In this work, we propose a
scalable and conceptually simple method for learning the top-k singular functions
of the Koopman operator for stochastic dynamical systems based on the idea of low-
rank approximation. Our approach eliminates the need for unstable linear-algebraic
operations and integrates easily into modern deep learning pipelines. Empirical re-
sults demonstrate that the learned singular subspaces are both reliable and effective
for downstream tasks such as eigen-analysis and multi-step prediction.

1 Introduction

The Koopman operator theory offers a powerful framework for analyzing nonlinear dynamical
systems by lifting them into an infinite-dimensional function space, where spectral techniques from
linear operator theory can be applied. Recent advances in dynamic mode decomposition (DMD)
have shown that trajectory data can be effectively used to identify dominant eigen-modes in a
data-driven manner [40, 46, 47, 18, 4]. Inspired by the success of deep learning, recent methods
such as VAMPnet [48, 24] and DPNet [16] employ neural networks to approximate the leading
singular subspaces of the Koopman operator. While shown effective for some benchmark tasks, these
approaches often rely on numerically unstable operations such as singular value decomposition (SVD)
or matrix inversion during objective computation. These operations present practical challenges,
particularly in computing unbiased gradients and thus scaling to high-dimensional systems.

In this work, we propose a conceptually simple and scalable method for learning the top-k singular
functions of the Koopman operator for stochastic dynamical systems. Our approach builds on the
idea of low-rank approximation, which has recently received increasing attention in the literature
due to its favorable optimization structure that aligns well with modern optimization practices; see,
e.g., [21, 45] in the numerical optimization literature, and [42, 39, 8, 32, 49, 17] in the machine
learning literature. Our method avoids unstable linear-algebraic computations and is easy to integrate
into modern deep learning pipelines. We demonstrate that it reliably recovers dominant Koopman
eigen-subspaces and supports downstream tasks such as prediction and eigen-analysis.
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2 Problem Setting and Preliminaries

In this section, we introduce the problem setting and establish the foundation for the subsequent
discussion. We begin by formulating the problem in the context of discrete-time dynamical systems,
which will serve as our primary focus. We then briefly address the continuous-time case. Next,
we review two existing approaches, VAMPnet and DPNet, and highlight their limitations, thereby
motivating the need for our proposed method.

Notation. We denote linear operators by stylized script letters, e.g., U, K , L , and I , using the Zapf
Chancery font to distinguish them from matrices and scalar functions. Bold lowercase letters such as
x and y are reserved for vectors, while bold uppercase letters like X denote vector-valued random
variables. Sans-serif uppercase letters, e.g., M and S, are used for matrices. In particular, I denotes the
identity matrix.

2.1 Discrete-Time Dynamical Systems

Consider a stochastic discrete-time dynamical system xt+1 = ξ(F (xt), ϵt). Here, F : X → X is
a possibly nonlinear mapping for a domain X ⊆ Rd, ϵt ∼ D is an independent random noise
variable, and xt 7→ ξ(F (xt), ϵt) ∈ X captures independent noise in the process, such as the
additive white Gaussian noise.2 Assuming that F and the noise distribution D are time-invariant,
the process becomes a time-homogeneous Markov process with transition density p(x′ |x), i.e.,
Pr(Xt+1 ∈ A |Xt = x) =

∫
A
p(x′ |x) dx′ for all measurable sets A ⊆ X and all t ≥ 0.

In the stochastic setup, the dynamics is fully captured by the transition density p(x′ |x), which is
induced by (ξ ◦F )(·), and thus the problem becomes analyzing p(x′ |x) of a Markov chain. Here, the
Koopman operator becomes the conditional expectation operator, i.e., for an observable g : X → R,

(K g)(x) ≜ Ep(x′ |x)[g(x
′)].

By the Markov property, repeatedly applying the Koopman operator will correspond to the multi-
step prediction in terms of the posterior mean of g(Xt) given X0 = x0, i.e., (K tg)(x0) =
Ep(xt |x0)[g(xt)].

Throughout the paper, we will assume that K is compact following [16], which is a mild assumption
that holds for a large class of Markov processes; see, e.g., [14]. We remark that we cannot directly
apply the existing spectral techniques to a deterministic dynamical system, including the technique
developed in this paper, since the corresponding Koopman operator is not compact; see [48, Appendix
A.5]. The consideration of stochasticity breaks the degeneracy and allows the linear algebraic tech-
niques to be applicable. Moreover, assuming stochasticity is not necessarily a restrictive assumption,
as physical processes in the real world may be inherently noisy.

Problem Setting. Our goal is to analyze the Markov dynamics of the length-T trajectory
(x0,x1, . . . ,xT ) ∼ p(x0)p(x1 |x0) . . . p(xT |xT−1), where p(x0) is a distribution for the ini-
tial state. In practice, we assume that we have access to N independent, random trajectories,
and collect the consecutive transition pairs {(x0,x1), (x1,x2), . . . , (xT−1,xT )} and define the
joint distribution over the pair as p(x,x′) ≜ 1

T

∑T−1
t=0 pt(x)p(x

′ |x), where p0(x) = p(x0) and
pt+1(x

′) ≜
∫
p(x′ |x)pt(x)dx. We let ρ0(x) and ρ1(x′) denote the marginal distribution over X of

the current and future states. Note that while ρ1(x′) = Eρ0(x)[p(x
′ |x)] holds, the two distributions,

ρ0(x) and ρ1(x′) can differ significantly, particularly when the trajectory length T is relatively short.

Let (X ,F) be a measurable space and let ρ0 and ρ1 be (finite) measures on (X ,F) repre-
senting the distributions of the current and future states, respectively. For any measure ρ on
(X ,F) define L2

ρ(X ) ≜ {f : X → C|
∫
|f(x)|2ρ(dx) < ∞}. Equipped with the inner prod-

uct ⟨f, g⟩ρ ≜
∫
f(x)g(x)ρ(dx), L2

ρ(X ) is a Hilbert space. The Koopman operator K is then
a mapping from L2

ρ1
(X ) to L2

ρ0
(X ), which is an integral kernel operator with the transition

kernel k(x,x′) ≜ p(x′ |x)
ρ1(x′) . The adjoint operator K ∗ then acts as the backward predictor, i.e.,

(K ∗f)(x′) = Eq(x |x′)[f(x)], where q(x |x′) ≜ ρ0(x)p(x
′ |x)

ρ1(x′) denotes the conditional distribution
induced by ρ0(x)p(x′ |x). Similar to K , repeated application of K ∗ yields multi-step backward
prediction: ((K ∗)tf)(x0) = Ep(x0 |xt)[f(x0)].

2All machinery developed here can also be adapted for a discrete state space, but we focus on continuous X .
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Special Case 1: Stationary Markov Processes. Given p(x′ |x), let π(x) denote the stationary
distribution, i.e., the distribution satisfies Eπ(x)[p(x

′ |x)] = π(x′). Under mild regularity conditions
such as ergodicity and irreducibility, such distribution uniquely exists.3 In the stationary case, the
marginal distributions of current and future states are equal, i.e., ρ0 = ρ1 = π, and the Koopman
operator K becomes a map from L2

π(X ) to L2
π(X ). Assuming ergodicity, we can collect the time-

lagged pairs (x,x′) from a long, single trajectory, as time averages converge to expectations under
the stationary distribution.

Special Case 2: Reversible Markov Processes. A Markov process is time-reversible if and only if it
satisfies the detailed balance condition: the joint function P (x,x′) ≜ π(x)p(x′ |x) is symmetric,
i.e., P (x,x′) = P (x′,x) for any x,x′ ∈ X × X . In this case, the Koopman operator becomes
self-adjoint, and thus the eigenfunctions and eigenvalues are real. This is a much stronger condition
than the normality of a Koopman operator and thus the easiest to deal with. For the case of reversible
processes, Noé and Nüske [28] proposed a method to approximate eigenfunctions from time-series
data, followed by the extended DMD (EDMD) [46].

2.2 Continuous-Time Dynamical Systems

Let (xt)t≥0 be a time-homogeneous Markov process (e.g., Langevin dynamics). The Koopman
semigroup {Ut}t≥0 acts on observables f : X → R as (Utf)(x0) ≜ Ep(xt |x0)[f(xt)]. This defines
a strongly continuous semigroup satisfying U0 = I (identity operator) and UtUs = Ut+s. The
(infinitesimal) generator L of the Koopman semigroup is given by:

(Lf)(x) ≜ lim
t→0

(Utf)(x)− f(x)
t

=
d

dt
Ep(xt |x0)[f(xt)],

where the limit is taken in the strong operator topology.

In general, generators may not be bounded, and thus not compact. Similar to [48], however, one can
view that this discrete-time dynamics is a discretized version of a continuous dynamics with lag time
τ > 0, and the Koopman operator of the discretized system is often compact; see [48]. Moreover,
as argued in Kostic et al. [16], we can also directly apply the developed technique for special, yet
important continuous-time dynamical systems such as an overdamped Langevin dynamics. Unless
stated explicitly (like in Section 3.1), we will describe our techniques for discrete-time processes.

2.3 Data-Driven Learning of Singular Subspaces: VAMPnet and DPNet

Learning the dominant singular subspaces of the Koopman operator is a key goal for understanding
complex dynamical systems, especially in data-driven modeling. First, for non-normal operators,
which commonly arise in irreversible or non-equilibrium dynamics, the singular value decomposition
(SVD) provides the best possible low-rank approximation measured by Hilbert–Schmidt norm.
Second, if a process is reversible and stationary (i.e., ρ0(x) = ρ1(x) = π(x)), the Koopman operator
is self-adjoint. In this case, its SVD coincides with its eigenvalue decomposition (EVD). Third,
even for irreversible processes, the dominant singular functions still capture essential dynamical
features. For example, they can show kinetic distances between states, much like eigenfunctions
do in reversible systems [31], or also find coherent sets in changing Markov processes; these are
generalized forms of long-lasting states [13]. See also [48, Section 2.3].

These theoretical advantages have motivated recent developments in neural network-based approaches,
such as VAMPnet [48, 24] and DPNet [16], which aim to learn the top-k singular subspace of
the Koopman operator directly from trajectory data. Both methods are grounded in variational
characterizations of the dominant singular subspaces, yet they differ significantly in their training
objectives and optimization strategies. In the following, we briefly contrast these training approaches
and highlight their common limitations. Here we focus on the training approaches, and defer the
discussion on their inference procedures to Section 3.2. Also, unlike the score convention commonly
used in the literature, we will follow the loss convention throughout, whereby the training objective is
formulated as a quantity to be minimized.

3For example, if the stochasticity in the system is induced by an additive noise, i.e., xt+1 = F (xt) + ϵt for
ϵt ∼ D, with the density of D being positive almost everywhere, then the system is asymptotically stable, i.e., it
converges to a unique stationary distribution; see [19, Corollary 10.5.1].
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2.3.1 Common Setup

Suppose that we wish to capture the top-k singular subspaces using neural networks x 7→ f(x) ≜
[f1(x), . . . , fk(x)]

⊺ ∈ Rk and x′ 7→ g(x′) ≜ [g1(x
′), . . . , gk(x

′)]⊺ ∈ Rk. These are sometimes
referred to as the encoder and the lagged encoder, respectively, which are intended to capture the
left and right singular subspaces. Since a Koopman operator, as a special example of canonical
dependence kernels, always has the top singular functions ϕ1(x) ≡ 1 and ψ1(x

′) ≡ 1 with singular
value 1, we can simply set f1(x)← 1 and g1(x′)← 1 [32]. We refer to this operation as centering,
as it ensures that the remaining modes are centered, i.e., orthogonal to the constant modes. We adopt
this parameterization by default, although many existing methods do not follow this practice. Properly
handling the constant modes is crucial, as mishandling them can lead to misleading results; see
Appendix A.2 for further discussion.

In a variational optimization framework for SVD, the key quantities are second-moment matrices.
We thus introduce the following shorthand notation. The second-moment matrix of vector-valued
functions h1(·) and h2(·) with respect to a distribution ρ is denoted as

Mρ[h1,h2] ≜ Eρ(x)[h1(x)h2(x)
⊺],

and we write Mρ[h] ≜ Mρ[h,h] for shorthand. The joint second-moment matrix of h1(·) and h2(·)
over the joint distribution ρ0(x)p(x′ |x) is defined and denoted as

T[h1,h2] ≜ Eρ0(x)p(x′ |x)[h1(x)h2(x
′)⊺],

which satisfies the identities T[h1,h2] = Mρ0
[h1,K h2] = Mρ1

[K ∗h1,h2].

In what follows, we will define a population objective function using the population second moment
matrices Mρ0 [f ],Mρ1 [g], and T[f ,g]. In practice, these quantities are to be estimated with trajectories,
and their empirical estimates are denoted with hats (ˆ), i.e., M̂ρ0

[f ], M̂ρ1
[g], and T̂[f ,g].

2.3.2 VAMPnet

For an integer r ≥ 1, Wu and Noé [48] introduce the VAMP-r objective4

Lvamp-r(f ,g) ≜ −
∥∥∥(Mρ0

[f ])−
1
2T[f ,g](Mρ1

[g])−
1
2

∥∥∥r
r
. (1)

Here, ∥ · ∥r denotes the Schatten r-norm. The variational principle behind the VAMP-r objective is
explained in Appendix B.1 for completeness. In practice with finite samples, to avoid the numerical
instability in computing the inverse matrices, L̂(λ)

vamp-r(f ,g) ≜ ∥(M̂ρ0 [f ] + λI)−
1
2 T̂[f ,g](M̂ρ1 [g] +

λI)−
1
2 ∥rr. Tuning λ in practice can be done by a cross validation. In the literature, the use of r = 1 [24]

or r = 2 [48] has been advocated.

2.3.3 DPNet

Kostic et al. [16] proposed an alternative objective, called the deep projection (DP) objective,

L(γ)
dp (f ,g) ≜ −

∥∥∥(Mρ0
[f ])−

1
2T[f ,g](Mρ1

[g])−
1
2

∥∥∥2
F
+ γ(R(Mρ0

[f ]) +R(Mρ1
[g])), (2)

where they further introduced the metric distortion lossR : SL+ → R+ defined asR(M) ≜ tr(M2 −
M − lnM) for M ⪰ 0. Note that with γ = 0, the objective becomes equivalent to the VAMP-
2 objective. To detour the potential numerical instability of the first term, which is the VAMP-2
objective, the authors further proposed a relaxed objective called the DP-relaxed objective

L(γ)
dpr (f ,g) ≜ −

∥T[f ,g]∥2F
∥Mρ0

[f ]∥op∥Mρ1
[g]∥op

+ γ(R(Mρ0 [f ]) +R(Mρ1 [g])), (3)

where ∥ · ∥op denotes the operator norm. In both cases, Kostic et al. [16] argued that using γ > 0 is
crucial for improving the quality of the learned subspaces. In contrast, the scheme we propose below
does not require such regularization, and we empirically found that it offers no benefit.

4We note that this expression corresponds to the maximal VAMP-r score in the original paper [48], but we
call this VAMP-r objective, which is a slight abuse, as this is the training objective to train neural network basis.
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2.4 Practical Limitations of VAMPnet and DPNet

Although these objectives are well-founded in the population limit for characterizing the desired
singular subspaces, they do not permit efficient optimization via modern mini-batch-based training.

To compute the VAMP-1 objective [24], one must evaluate the matrix square root inverse of M̂ρ0
[f ]

and M̂ρ1
[g], as well as the nuclear norm of the matrix (M̂ρ0

[f ])−1/2T̂[f ,g](M̂ρ1
[g])−1/2. These

computations involve numerical linear algebra operations such as eigenvalue decomposition and
singular value decomposition of empirical second-moment matrices. Such inverses may be ill-defined
or numerically unstable when span(f) is nearly rank-deficient during optimization, and further,
backpropagating through these numerical operations can introduce instability during training.5
Moreover, since empirical second-moment matrices are estimated from mini-batch samples, the
resulting gradients can be highly biased, potentially slowing convergence during optimization.

The VAMP-2 objective [48] suffers from similar issues, as it also requires computation of a matrix
inside the Frobenius norm. The DPNet objective in Eq. (2) introduces the additional metric distortion
loss R(M), which inherits both of the aforementioned issues. Similarly, the operator norms in the
denominator of the DPNet-relaxed objective in Eq. (3) are subject to the same challenges.

3 Proposed Methods

In this section, we introduce an optimization framework based on the idea of low-rank approximation
(LoRA), which circumvents the issues in the existing proposals. Although LoRA has been recently
explored in various contexts [21, 45, 42, 39, 8, 32, 49, 17], its application to learning parametric
singular functions of the Koopman operator remains largely unexplored. A detailed discussion of
related formulations and prior work on LoRA is provided in Appendix A. After describing the
learning procedure, we investigate two inference methods that build upon the learned representations.

3.1 Learning

To bypass the numerical and optimization challenges, we propose to directly minimize the low-rank
approximation error ∥K −

∑k
i=1 fi ⊗ gi∥2HS to find the Koopman singular functions. Succinctly, the

learning objective, whose derivation is provided in Appendix C.1, can be expressed as

Llora(f ,g) ≜ −2 tr(T[f ,g]) + tr(Mρ0 [f ]Mρ1 [g]). (4)

The celebrated Eckart–Young–Mirsky theorem [6, 27] (or, more precisely, Schmidt’s theorem [34])
establishes that this objective precisely characterizes the singular subspaces of K as a global optimum.
Proposition 3.1 (Optimality of LoRA loss; see, e.g., [32, Theorem 3.1]). Let K : L2

ρ1
(X )→ L2

ρ0
(X )

be a compact operator having SVD
∑∞

i=1 σiϕi ⊗ ψi with σ1 ≥ σ2 ≥ . . . ≥ 0. Let (f⋆,g⋆) denote a
global minimizer of Llora(f ,g). If σk > σk+1, then

∑k
i=1 fi ⊗ gi =

∑k
i=1 σiϕi ⊗ ψi.

Moreover, owing to the simple form of the objective, its learning-theoretic properties are amenable
to analysis. In particular, under a mild boundedness assumption, the empirical objective L̂lora(f ,g)
converges to the population objective Llora(f ,g) at the rate of OP(N

−1/2), when N denotes the
number of pairs from the trajectory data. We defer the statement of Theorem C.1 to Appendix C.2.

A notable property of the LoRA objective, compared to the VAMPnet and DPNet objectives, is that
it is expressed entirely as a polynomial in the second-moment matrices. As a result, its gradient
can be naturally estimated in an unbiased manner, in contrast to VAMPnet and DPNet, which
require backpropagation through numerical linear-algebra operations. This property is particularly
advantageous when optimizing large-scale models with moderately sized minibatches.

Special Case: Reversible Continuous-Time Dynamics. As argued in [16], we can also directly
analyze reversible continuous-time dynamics, which includes an important example of (overdamped)

5In the PyTorch implementation, functions such as lstsq, eigh, and matrix_norm from the torch.linalg
package are used; see, e.g., the PyTorch implementations of VAMPnet in deeptime and kooplearn libraries.
For example, eigendecomposition (torch.linalg.eigh) may be numerically unstable when the matrices are
ill-conditioned, since the gradients of eigenvectors scale inversely with eigenvalue gaps, which can lead to
gradient explosions in nearly degenerate subspaces.
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Langevin dynamics. In this special case, we can apply the spectral techniques under a weaker
assumption than compactness; for example, we only require the largest eigenvalue to be separated
from its essential spectrum; see, e.g., [12, Section III.4]. Our objective in Eq. (4) simplifies to

Lsa
lora(f) ≜ −2 tr(Mρ0 [f ,Lf ]) + ∥Mρ0 [f ]∥2F, (5)

where Mρ0 [f ,Lf ] ≜ E[f(x)(Lf)(x)⊺] is plugged in in place of T[f ,g] = Mρ0 [f ,K g]. Ryu et al.
[32, Theorem C.5] show that the LoRA objective applied on a (possibly non-compact) self-adjoint
operator can find the positive eigenvalues that are above its essential spectrum. We describe a special
example of stochastic differential equations in Appendix G.3.

Nesting Technique for Learning Ordered Singular Functions. As introduced in [32], we can
apply the nesting technique to directly learn the ordered singular functions. We note that learning
the ordered singular functions is not an essential procedure, given that we only require well-learned
singular subspaces during inference, as we explain below. We empirically found, however, that LoRA
with nesting consistently improves overall downstream task performance. We conjecture that the
nesting technique helps the parametric models to focus on the most important signals, and thus
improves the overall convergence.

The key idea of nesting is to solve the LoRA problem for all dimensions i ∈ [k] simultaneously.
There are two versions proposed in [32], joint and sequential nesting. On one hand, in joint nesting,
we simply aim to minimize a single objective Ljoint

lora (f ,g) ≜
∑k

i=1 αiLlora(f1:i,g1:i) for any choice
of positive weights α1, . . . , αk > 0, while the uniform weighting has been proven to be the most
effective [32]. The joint objective characterizes the ordered singular functions as its unique global
optima. On the other hand, sequential nesting iteratively update the i-th function pair (fi, gi), using
their gradient from Llora(f1:i,g1:i), as if the previous modes (f1:i−1,g1:i−1) were perfectly fitted
to the top-(i− 1) singular-subspaces. Given that different modes are independently parameterized,
one can use an inductive argument to show the convergence of sequential nesting. Both joint and
sequential nesting can be implemented efficiently, with almost no additional computational cost
compared to the LoRA objective without nesting. We defer the details to Appendix F.

Ryu et al. [32] advocate using sequential nesting for separately parameterized networks, while
recommending joint nesting otherwise. In all our experiments, however, we employed two neural
networks fθ and gθ (i.e., assuming joint parameterization), and empirically observed that sequential
nesting achieved convergence comparable to joint nesting. Thus, a practitioner may by default adopt
joint nesting as a principled choice for jointly parameterized networks, while regarding sequential
nesting as another option as a working heuristic. In the molecular dynamics experiment below, we
found that the nesting technique can provide a stabilization effect during training; see Section 4.3 and
Appendix G.4.

Explicit Parameterization of Singular Values. An alternative, yet natural parameterization is to
explicitly parameterize the singular values by learnable parameters γ ∈ Rk

≥0, and plug in f ← √γ⊙f
and g← √γ⊙g to the LoRA objective in Eq. (4), under the unit-norm constraints ∥fi∥ρ0 = ∥gi∥ρ1 =

1 for all i ∈ [k]. Then, we get the explicit LoRA objective Lexplicit
lora (γ, f ,g) ≜ −2 tr(T[√γ⊙ f ,

√
γ⊙

g])+tr(Mρ0
[
√
γ⊙f ]Mρ1

[
√
γ⊙g]). In a similar spirit to [16], Kostic et al. [17] proposed a regularized

objective Lexplicit
lora (γ, f ,g) + λ(R′

ρ0
[f ] +R′

ρ1
[g]), whereR′

ρ0
[f ] ≜ ∥Mρ0 [f ]− I∥2F + 2∥Eρ0

[f ]∥2 and
R′

ρ1
[g] is similarly defined. An alternative implementation of the explicit parameterization involves

L2-batch normalization, as suggested by Deng et al. [5]. We experimented both formulations and
empirically observed that the original parameterization in Eq. (4) performs well in practice, and no
performance improvement was observed with these regularization approaches.

3.2 Inference

After fitting f(·) and g(·) to the top-k singular subspaces, we can perform the downstream tasks such
as (1) finding ordered singular functions, (2) performing eigen-analysis, and (3) multi-step prediction.
We describe two approaches, each of which is a slightly extended version from VAMPnet and DPNet,
respectively. The two approaches are based on rather different principles: Approach 1 (VAMPnet type)
is based on estimating the Koopman operator by LoRA using both left and right singular functions,
while Approach 2 (DPNet type) uses one set of basis and performs downstream tasks by projecting
the Koopman operator onto the span of the basis. In the experiments below, we will compare and
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Table 1: Summary of inference procedures given learned singular functions (or basis) f ,g.

Approach 1. CCA + LoRA Approach 2. EDMD (b ∈ {f ,g})

CCA step 1: Whitening f̃(x) ≜ (Mρ0 [f ])
−1/2f(x)

g̃(x′) ≜ (Mρ1 [g])
−1/2g(x′)

N/A

CCA step 2: SVD T[f̃ , g̃] = UΣV⊺ N/A

Ordered singular functions ϕ̃(x) = Σ1/2U⊺ f̃(x)

ψ̃(x′) = Σ1/2V⊺g̃(x′)
N/A

Approximate Koopman matrix
Kright

ϕ̃,ψ̃
≜ Mρ1 [ψ̃, ϕ̃] (right)

Kleft
ϕ̃,ψ̃

≜ Mρ0 [ψ̃, ϕ̃] (left)
Kols

b ≜ (Mρ0 [b])
+T[b] (right)

K+,ols
b ≜ (Mρ1 [b])

+T[b] (left)
Forward Ep(xt |x0)[h(xt)] ϕ̃(x0)

⊺(Kright

ϕ̃,ψ̃
)t−1⟨h, ψ̃⟩ρ1 b(x0)

⊺(Kols
b )t(Mρ0 [b])

+⟨h,b⟩ρ0
Backward Ep(x0 |xt)[h(x0)] ψ̃(xt)

⊺(Kleft,⊺
ϕ̃,ψ̃

)t−1⟨h, ϕ̃⟩ρ0 b(x0)
⊺(K+,ols

b )t(Mρ1 [b])
+⟨h,b⟩ρ1

discuss their pros and cons. For simplicity, we describe the procedures using population quantities; in
practice, they are replaced with empirical estimates (i.e., M← M̂ and T← T̂).

3.2.1 Approach 1: CCA + LoRA

In a similar spirit to the inference procedure of VAMPnet [48], we can perform a canonical correlation
analysis (CCA) [10] to retrieve the (ordered) singular values and singular functions as follows,
given that f(·) and g(·) capture left and right singular subspaces. First, we define the whitened basis
functions f̃(x) ≜ (Mρ0

[f ])−1/2f(x) and g̃(x′) ≜ (Mρ1
[g])−1/2g(x′). Then, we perform the SVD

of the joint second moment matrix T[f̃ , g̃] = UΣV⊺, where U ∈ Rk×r,Σ ∈ Rr×r,V ∈ Rk×r. We
define aligned singular functions as

ϕ̃(x) ≜ Σ1/2U⊺f̃(x) ∈ Rr and ψ̃(x′) ≜ Σ1/2V⊺g̃(x) ∈ Rr, (6)

and approximate the transition kernel as k(x,x′) = p(x′ |x)
ρ1(x′) ≈ ϕ̃(x)

⊺ψ̃(x′) = f̃(x)⊺T[f̃ , g̃]g̃(x′).

Hence, compared to the direct approximation f(x)⊺g(x′), the CCA procedure whitens (by Mρ0 [f ]

and Mρ1
[g]) and corrects (by SVD of T[f̃ , g̃]) the given basis. In a real-world scenario, the CCA

alignment can always help f ,g better aligned, and improve the quality of singular value estimation.

Given this finite-rank approximation, the eigenfunctions can be reconstructed using the following
approximate Koopman matrices, based on the theory developed for finite-rank Koopman operators in
Appendix D. Specifically, the eigenvalues of K and the right eigenfunctions can be approximated
using the matrix Kright

ϕ̃,ψ̃
≜ Mρ1 [ψ̃, ϕ̃]; see Theorem D.2. Similarly, the left eigenfunctions and

corresponding eigenvalues can be approximated using Kleft
ϕ̃,ψ̃

≜ Mρ0
[ψ̃, ϕ̃]; see Theorem D.3. We

note that this eigen-analysis using the finite-rank approximation is new compared to [48].

Lastly, given the LoRA p(x′ |x)
ρ1(x′) ≈ ϕ̃(x)

⊺ψ̃(x′), the conditional expectation can be approximated as

Ep(x′ |x)[h(x
′)] = Eρ1(x′)

[
p(x′ |x)
ρ1(x′)

h(x′)

]
≈

k∑
i=1

ϕ̃i(x)⟨ψ̃i, h⟩ρ1
= ϕ̃(x)⊺⟨h, ψ̃⟩ρ1

,

where we let ⟨h, ψ̃⟩ρ1
≜

[
⟨h, ψ̃1⟩ρ1

, . . . , ⟨h, ψ̃k⟩ρ1

]⊺ ∈ Rk. Extending the reasoning, we can obtain
an approximate multi-step prediction as

Ep(xt |x0)[h(xt)] ≈ ϕ̃(x0)
⊺(Kright

ϕ̃,ψ̃
)t−1⟨h, ψ̃⟩ρ1

= f̃(x0)
⊺T[f̃ , g̃](Mρ1

[g̃, f̃ ]T[f̃ , g̃])t−1⟨h, g̃⟩ρ1
. (7)

If Mρ1 [g̃, f̃ ]T[f̃ , g̃] is diagonalizable, we can perform its EVD to make the matrix power computation
more efficient. Similarly, we can perform the multi-step backward prediction using Kleft

ϕ̃,ψ̃
as follows:

Ep(x0 |xt)[h(x0)] ≈ g̃(x0)
⊺T[g̃, f̃ ](Mρ0

[f̃ , g̃]T[g̃, f̃ ])t−1⟨h, f̃⟩ρ0
. (8)
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3.2.2 Approach 2: Extended DMD

Once a good subspace span(b) has been learned using some basis function b : X → Rk, Kostic
et al. [16] proposed to perform the operator regression [14] (also known as principal component
regression [15]), which is essentially the EDMD [46]. The EDMD approximates the Koopman
operator by Kols

b ≜ (Mρ0 [b])
+T[b] ∈ Rk×k, which can be understood as the best finite-dimensional

approximation of the Koopman operator K restricted on span(b), in the sense that (K b)(x) =
Ep(x′ |x)[b(x

′)] ≈ Kb(x). Now, given a function h ∈ span(b), we can again choose the least-
squares solution zolsb (h) ≜ (Mρ0 [b])

+⟨h,b⟩ρ0 to find the best z such that h(x) ≈ z⊺b(x) for
x ∼ ρ0(x). Given this, we can finally approximate the multi-step prediction as

Ep(xt |x0)[h(xt)] ≈ b(x0)
⊺(Kols

b )tzolsb (h) = b(x0)
⊺((Mρ0

[b])+T[b])t(Mρ0
[b])+⟨h,b⟩ρ0

. (9)

Applying the same logic to the adjoint operator K ∗, we can perform the backward prediction as

Ep(x0 |xt)[h(x0)] ≈ b(xt)
⊺((Mρ1 [b])

+T[b]⊺)t(Mρ1 [b])
+⟨h,b⟩ρ1 . (10)

We defer a more detailed derivation of the EDMD predictions to Appendix E. We note that Kostic
et al. [16] proposed to use the left singular basis f for the basis b, whereas we empirically found that
using the right singular basis g yields comparable results.

4 Experiments

We demonstrate the efficacy of the proposed techniques using the experimental suite of [16]. Unless
stated otherwise, all experimental settings are mostly identical to those in [16] except the molecular
dynamics experiment. All technical details and configurations are provided in Appendix G. The
appendix also includes an additional experiment on an instance of a 1D noisy logistic map, whose
Koopman operator has finite rank. We defer this result to the appendix, as most methods perform
comparably in this simple setting. Our PyTorch [30] implementation is publicly available at https:
//github.com/MinchanJeong/NeuralKoopmanSVD.

4.1 Ordered MNIST

We considered the ordered MNIST example, a synthetic experiment which was first considered
in [14]: given an MNIST image xt with digit yt ∈ {0, . . . , 4}, xt+1 is drawn at random from the
MNIST images of digit yt+1 = yt + 1 (mod 5). While this process is not time-reversible, the process
is clearly normal. We tested VAMPnet-1, DPNet, DPNet-relaxed, and sequentially and jointly nested
version of LoRA. For each method, we trained singular basis parameterized by convolutional neural
networks with 100 epochs using 10 random seeds.

We evaluated the multi-step prediction performance of each method, by computing (1) the accuracy
using an oracle classifier similar to [16], and (2) root mean squared error (RMSE) of the prediction
evaluated on the test data. The multi-step prediction performed with EDMD(g) is reported in the first
row of Figure 1. We highlight that LoRA and its variants consistently outperform the other methods,
exhibiting robust RMSE performance over a range of prediction steps t ∈ {−15, . . . , 15}. Notably,
the nesting techniques helped improve the RMSE, especially the joint nesting worked best. We also
remark in passing that, unlike the significant failure reported in [16], the VAMPnet-1 prediction
quality is comparable to DPNet in both metrics.

In the second row, we showed the performance of different prediction methods with the basis learned
with LoRAjnt. We note that the quality is very close to each other, and CCA+LoRA prediction seems
to follow the trend of EDMD(f ) for forward prediction and EDMD(g) for backward prediction. We
also remark that the prediction quality with CCA+LoRA when t = 1 is particularly bad, which we
conjecture to be caused by the absence of the action of Koopman matrices; see Eq. (7) and Eq. (8).

4.2 Langevin Dynamics

We also tested the performance of LoRAseq with the objective in Eq. (5) to learn the eigenfunctions
of a 1D Langevin dynamics, which is a continuous-time, time-reversible process; see Appendix G.3
for the stochastic differential equation used in the experiment.
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Figure 1: Summary of the MNIST experiment. The shaded area indicates ±1 standard deviation.
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Figure 2: Visualization of the eigenfunctions of the 1D Langevin dynamics, learned by LoRAseq. In
the first panel, the learned eigenfunctions across training iterations are overlaid, with later iterations
displayed with higher opacity (red). The dashed lines indicate the true eigenfunctions.

We drew a sample trajectory of length 7×104 by the Euler–Maruyama scheme and used it for training.
We parameterized the top-10 eigenfunctions using a single MLP with hidden units 128-128-128 and
CeLU activation. We trained the network using Adam optimizer with learning rate 10−3 for 50,000
iterations with batch size 128. The differentiation operation in the generator was computed by the
autodiff feature of PyTorch. Exponential moving average with decay 0.995 was applied to result in a
smoother result. In Figure 2, we report the first eight eigenfunctions and the convergence behavior of
the estimated eigenvalues, without any postprocessing other than sign alignment. As demonstrated,
the learned eigenfunctions and eigenvalues converge to the ground truths reliably with LoRAseq.

We also implemented the DPNet objective L̃(γ)
dp (f) ≜ − tr(Mρ0

[f ]†Mρ0
[f ,Lf ]) + γR(Mρ0

[f ]),
following the recommended configuration in [16], but we were unable to obtain successful results.
This example demonstrates the effectiveness of the LoRA framework for a continuous-time dynamics.

4.3 Chignolin Molecular Dynamics

To assess scalability on high-dimensional data, we apply our method to the analysis of chignolin
molecular dynamics. Chignolin is an artificial mini-protein that is considered a standard model for
studying rapid folding dynamics due to its complex and fast transitions [20, 3, 16]. The underlying
physical system is time-reversible, and thus the Koopman operator is self-adjoint. The slowest decay
mode in chignolin is associated with the folding-unfolding transition, which occurs on a microsecond
timescale [20]. Unlike [16], we use the public dataset of [25]. To isolate algorithmic stability from
variance due to data sampling, we fix a data split chosen to balance the root mean square distance
statistics across splits. All experimental details are provided in Appendix G.4.

We first remark on the overall quality of the learned models. As reported in [16], we observe that
VAMPnet-2 and DPNet diverge. However, we empirically find that models trained with VAMPnet-1
can converge, albeit with several caveats. First, we observe that VAMPnet-1 is sensitive to low-
level numerical implementations in torch.linalg, and diverges under a specific PyTorch version.
Moreover, we observe that VAMPnet-1 diverges for certain alternative train-test splits that are
not reported here. Consequently, the only methods that consistently exhibit convergence in our
experiments are our LoRA variants. We nonetheless report VAMPnet-1 results to demonstrate that
our method outperforms it even in regimes where VAMPnet-1 converges.
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Table 2: Test VAMP-E scores on the 300 K chignolin dataset [25] reported as the mean ± 95%
confidence interval (CI). The low-rank case reports results over 5 random seeds. In the high-rank
case, CI is calculated with the final 5 checkpoints of a single run. (Note: We omit the numerically
unstable baselines VAMPnet-2 and DPNet.)

Low-rank (k = 16) High-rank (k = 64)

Algorithm H = 64, B = 384 H = 128, B = 384 H = 64, B = 96

DPNet-relaxed 7.36±0.40 7.85±0.24 6.97±0.31
VAMPnet-1 9.54±0.31 34.76±0.50 19.71±0.59

LoRA 10.27±0.31 38.89±0.29 37.74±0.95
LoRAjnt 10.74±0.35 39.37±0.24 38.50±0.83
LoRAseq 12.29±0.07 42.44±0.35 37.33±1.66

Operator Approximation Performance. Table 2 reports the VAMP-E scores which measure the
operator approximation error in the Hilbert–Schmidt norm. In the low-rank case with k = 16, LoRA
variants consistently outperform baselines, with LoRAseq achieving the highest score and lowest
variance. We further assessed stability under a high-rank setting with k = 64. As shown in the right
columns of Table 2, VAMPnet-1 exhibits significant performance degradation in the restricted-batch
setting. We attribute this behavior to numerical instability arising from ill-conditioned moment
matrices when using small batches. In contrast, our LoRA variants maintain strong performance
across all regimes, demonstrating superior robustness.

Test-Time Orthogonality Analysis. As another performance measure, we report the test-time
orthogonality of the learned basis. To this end, we compute the Gram matrix of the whitened basis
with respect to the test data, formally calculated as Mρtrain

0
[f ]−

1
2Mρtest

0
[f ]Mρtrain

0
[f ]−

1
2 , and similarly

for g. Ideally, this quantity should be an identity matrix.

As illustrated in Figure 3, LoRA variants maintain a relatively cleaner diagonal structure than the
baselines, which exhibit sensitivity to distribution shifts. This confirms that the bases learned by
LoRA more effectively capture the invariant geometry of the system.

DPNet-relaxed

f g

VAMPnet-1

f g

LoRA

f g

LoRAjnt

f g

LoRAseq

f g

1.0

0.5

0.0

0.5

1.0

Figure 3: Test-set orthogonality evaluation of the learned bases whitened by training data. LoRA
variants preserve a clear diagonal structure, demonstrating superior generalization.

5 Concluding Remarks

The evolution of linear-algebraic tools for Koopman analysis, such as DMD, extended DMD, kernel
DMD, VAMPnet, and DPNet, mirrors that of CCA and its kernel and maximal-correlation variants.
The LoRA framework for Koopman operator can be similarly understood as an adoption of the recent
advances in correlation analysis and representation learning, which can naturally avoid unstable
decompositions and train efficiently with standard mini-batch gradients. Across diverse benchmarks,
LoRA variants deliver superior singular subspaces, eigenfunctions, long-horizon forecasts, and
scalability, establishing a practical, reliable path for data-driven modeling of complex dynamics.

While the LoRA framework represents an important step toward scalable deep learning methods
for analyzing stochastic dynamical systems, key limitations persist. For example, as shown in the
chignolin experiment, the quality of learned dynamics is inherently constrained by the data’s temporal
resolution, which can prevent the recovery of the slowest physical processes. Furthermore, robustly
identifying coherent structures in highly non-normal or chaotic systems remains an open challenge.

Future research should therefore focus on advancing the deep learning methodologies tailored for
Koopman analysis. This includes developing specialized neural architectures and establishing stronger
theoretical foundations for learning from trajectories of dynamical systems. A deeper understanding
of the landscape of the LoRA objective will also be crucial for advancing this line of work.
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A Related Work

In this section, we discuss some related work to better contextualize our contribution.

A.1 Deep Learning Approaches for Koopman Operator Estimation

Deep learning models are increasingly being integrated into the Koopman theory framework to
enable the learning of complex system dynamics by leveraging the expressive power of neural
networks. One of the earliest examples is Koopman Autoencoders (KAEs) for forecasting sequential
data [47, 37, 23, 2]. The KAE approach in general aims to learn a latent embedding and a global,
time-invariant linear operator, guided by reconstruction and latent-space constraints. While these
methods laid important groundwork, more recent developments [24, 15, 16] have demonstrated
superior performance. Consequently, our experiments focus on these more advanced techniques.

Recently, various deep learning architectures for learning Koopman operator have been proposed to
handle complex real-world environments, such as non-stationarity in time series data. For example,
Liu et al. [22] introduce Fourier filters for disentanglement and distinct Koopman predictors for time-
variant and invariant components. Another example is Koopman Neural Forecaster [43], which utilizes
predefined measurement functions, a transformer-based local operator, and a feedback loop. We
remark, however, that while these methods demonstrate impressive empirical results on some datasets,
they mainly prioritize forecasting accuracy rather than eigen-analysis essential for understanding the
underlying system and achieving robust prediction, which lies at the core of the Koopman framework.
In this work, we focus on this core aspect, leaving forecasting extensions for future study.
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A.2 On Low-Rank Approximation

The idea of LoRA as a variational characterization for SVD of a matrix or operator has a century-
long history; see [36] for an overview. Despite its simple and elegant formulation, dominated by
the common Rayleigh quotient maximization framework and its variants, its wide adoption as a
variational framework for computing singular subspaces based on optimization started only recently.
For example, see [21, 45] from the numerical optimization literature, [8, 44] in representation learning,
and [42, 49, 17] for correlation analysis. We refer the reader to [32, Appendix B] for a more detailed
overview of the literature.

Our learning technique closely follows the low-rank-approximation-based framework dubbed as
NeuralSVD in [32], including the nesting techniques. Ryu et al. [32] proposed the LoRA framework
with nesting as a generic tool to perform SVD of a general compact operator using neural networks
including scientific simulation and representation learning. While they also considered decomposing
the density ratio p(y |x)

p(y) , which they call the canonical dependence kernel (CDK), as a special case,
they did not explicitly consider its application to dynamical systems. We note in passing that there
exists a similar squared loss studied in density ratio estimation [11, 39], but it becomes only related
to spectral decomposition when the underlying density ratio is in the form of CDK p(x,y)

p(x)p(y) .

More recently, in a concurrent work, Turri et al. [41] also proposed to use the LoRA loss, emphasizing
a self-supervised learning perspective on learning singular functions. Specifically, they parameterize
the encoder-lagged-encoder pair by defining the latter as g(x′) ≜ Pf(x′), where P ∈ Rk×k is
a learnable matrix and f(·) is a neural network encoder. For a fixed encoder f(·), they show that
the optimal P under the LoRA objective coincides with a least-squares estimator for the CDK. A
systematic study of the benefits of this parameterization is an interesting direction for future work.

During the course of our independent study, we also identified an unpublished objective named
EYMLoss in the GitHub repository of Kostic et al. [16], which effectively corresponds to the LoRA loss
investigated in this work; see https://github.com/Machine-Learning-Dynamical-Systems/
kooplearn/blob/ca71864469576b39621e4d4e93c0439682166d1e/kooplearn/nn/losses.py#
L79C7-L79C14. The associated commit message indicates that the authors were unable to obtain
satisfactory results with this formulation. We attribute this failure to a subtle but critical oversight in
handling the constant modes. Recall that a Koopman operator, as a special case of CDK operators,
admits constant functions as its leading singular functions. In our implementation, we explicitly
account for this structure by prepending constant components (i.e., appending 1’s) to the outputs of
both the encoder and the lagged encoder. This ensures that the constant modes are appropriately
represented and preserved throughout training and inference. In contrast, EYMLoss incorporates the
constant modes by projecting out their contribution from the observables. Specifically, it replaces
f(x) with f(x)− Eρ0(x)[f(x)] in the LoRA loss, where the expectation is approximated empirically
using minibatch samples. This approach implicitly enforces orthogonality to constant modes by
requiring the learned singular functions to be zero-mean with respect to the data distribution. While
this treatment is valid in principle, it necessitates that the encoded features remain centered not
only during training but also at inference time. Moreover, the constant singular functions must be
explicitly included in the final model representation. These additional steps do not appear to have
been fully implemented in the kooplearn codebase, which may have contributed to the method’s
lack of empirical success.

Finally, we remark in passing that a recent work studies another unconstrained variational optimization
framework, called the orbital minimization method, for decomposing positive definite (PD) operators
using neural networks [33]. As the framework is restricted to PD operators, it is not directly applicable
to the setup considered in the present manuscript. Developing an extension of this method for
analyzing stochastic dynamical systems would be of theoretical interest.

A.3 On Nesting Techniques

The sequential nesting technique proposed in [32] can be understood as a function-space version of
the triangularized orthogonalization-free method studied in [7]. The joint nesting technique was first
proposed specifically for CDK by Xu and Zheng [49], and later extended as a generic tool in Ryu
et al. [32]. For a more discussion on the history of nesting, we refer to [32].
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B Variational Principles for VAMPnet and DPNet

In this section, we review the principles behind VAMPnet and DPNet in more details.

B.1 VAMPnet

VAMPnet [48, 24] is based on the following trace-maximization-type characterization of the top-k
singular subspaces.
Theorem B.1. Let T : L2

ρy
(Y) → L2

ρx
(X ) be a compact operator with singular triplets

{(σi, ϕi(·), ψi(·))}∞i=1, i.e., (T ψi)(x) = σiϕi(x), (T ∗ϕi)(y) = σiψi(y), and σ1 ≥ σ2 ≥ . . . ≥ 0.
Then, for any fixed r = 1, 2, . . ., the optimizers of the following optimization problem

max
{(fi,gi)}k

i=1⊂L2
ρx

(X )×L2
ρy

(Y)

k∑
i=1

⟨fi, T gi⟩rρx

subject to Mρx
[f ] = Mρy

[g] = Ik (11)

characterize the top-k singular functions of T up to an orthogonal transformation.

We refer an interested reader to the proof in [48]. For the particular case of T being a Koopman
operator K : L2

ρ1
(X )→ L2

ρ0
(X ), Wu and Noé [48] named the objective

Rr[f ,g] ≜
k∑

i=1

⟨fi,K gi⟩rρ0
(12)

as the VAMP-r score of f and g. It is noted that VAMP-1 score is identical to the objective of deep
CCA [1]. Wu and Noé [48], Mardt et al. [24] advocated the use of VAMP-2 score, based on its
relation to the L2-approximation error.

In the original VAMP framework [48, 24], neural networks are not directly trained by the VAMP-r
score. Instead, they considered a two-stage procedure as follows:

• Basis learning: They parameterize the singular functions as

fU,θ(x) ≜ U⊺fθ(x),

gV,θ(x
′) ≜ V⊺gθ(x

′),

where fθ(x) ≜ (fθ,1(x), . . . , fθ,k0
(x))⊺ ∈ Rk0 and gθ(x

′) ≜ (gθ,1(x
′), . . . , gθ,k1

(x′))⊺ ∈
Rk1 denote some basis functions, which in the trainable basis case is typically parameterized
by neural networks, and U ∈ Rk0×k and V ∈ Rk1×k denote the projection matrix to further
express the singular functions using the given basis. Since the jointly optimizing over all
θ,U,V is not practical, to train fθ and gθ, they plug-in fU,θ(x) and gV,θ(x

′) into Eq. (11),
and consider the best U and V by solving the partial maximization problem, i.e.,

max
U,V
Rr(ϕ,ψ) =

∥∥∥(Mρ0
[f ])−

1
2T[f ,g](Mρ1

[g])−
1
2

∥∥∥r
r
.

Here, ∥ · ∥r denotes the Schatten r-norm. This objective is what we call the (maximal)
VAMP-r score in our paper, which is the objective in the VAMP framework that trains the
trainable basis functions.

• Inference: Once fθ and gθ are trained, Eq. (11) become an optimization problem over U
and V:

max
U,V

Rr(U,V)

subject to U⊺Mρ0
[f ]U = I

V⊺Mρ1
[g]V = I,

where

Rr(U,V) ≜
k∑

i=1

(u⊺
i T[f ,g]vi)

r.
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Wu and Noé [48] proposed to solve this using the (linear) CCA algorithm [10], and calling
the final algorithm feature TCCA. To avoid the degeneracy, basis functions need to be
whitened. Strictly speaking, however, the feature TCCA algorithm has nothing to do with the
optimization problem. We note that our CCA+LoRA approach is built upon this inference
method in the VAMP framework.

Let σ̂1, . . . , σ̂k denote the top-k singular values of the approximate Koopman matrix K̂ ≜
(Mρ0

[f ])−
1
2T[f ,g](Mρ1

[g])−
1
2 . After CCA, we can consider the rank-k approximation of the under-

lying Koopman operator K as we considered in our Approach 1 in Section 3.2. If we call the K̂
denote the corresponding approximate operator, Wu and Noé [48] called the (shifted and negated)
approximation error in the Hilbert–Schmidt norm

RE ≜ ∥K ∥2HS − ∥K̂ − K ∥2HS,

which is called the VAMP-E score. While this looks essentially identical to the low-rank approximation
error we consider in this paper, Wu and Noé [48] and Mardt et al. [24] used this metric only for
evaluation, but not considered for training. In Appendix G.4, we provide a precise definition of the
VAMP-E score for completeness.

B.2 DPNet

As introduced in the main text, the DPNet objective is given as

L(γ)
dp (f ,g) ≜ −

∥∥∥(Mρ0 [f ])
− 1

2T[f ,g](Mρ1 [g])
− 1

2

∥∥∥2
F
+ γ(R(Mρ0 [f ]) +R(Mρ1 [g])).

Here, the metric distortion lossR : SL+ → R+ is defined asR(M) ≜ tr(M2 −M− lnM) for M ⪰ 0.
If γ = 0 and Mρ0 [f ] and Mρ1 [g] are nonsingular, the objective becomes equivalent to the VAMP-2
score.

To detour the potential numerical instability in the first term of the DPNet objective, which is
essentially the VAMP-2 objective, Kostic et al. [16] further proposed a relaxed objective

L(γ)
dpr (f ,g) ≜ −

∥T[f ,g]∥2F
∥Mρ0

[f ]∥op∥Mρ1
[g]∥op

+ γ(R(Mρ0
[f ]) +R(Mρ1

[g])).

Kostic et al. [16] proved the following statement:
Theorem B.2 (Consistency of DPNet objectives). Let γ ≥ 0. If T is compact,

L(γ)
dpr (f ,g) ≥ L

(γ)
dp (f ,g) ≥ −

k∑
i=1

σi(T )2.

The equalities are attained when f(x) and g(y) are the top-k singular functions of T . If T is Hilbert–
Schmidt and σL(T ) > σk+1(T ) and γ > 0, the equalities are attained only if f(x) and g(y) are
orthogonal rotations of top-k singular functions.

For the continuous-time dynamics with a self-adjoint Koopman generator L , the authors proposed to
use

L̃(γ)
dp (f) ≜ − tr(Mρ[f ]

†Mρ[f ,Lf ]) + γR(Mρ[f ]).

C Deferred Technical Statements and Proofs

In this section, we provide a short derivation of the low-rank approximation (LoRA) loss for com-
pleteness, and present a learning-theoretic guarantee for the LoRA objective.

C.1 Derivation of Low-Rank Approximation Objective

Proposition C.1.

min
f ,g

∥∥∥K −
k∑

i=1

fi ⊗ gi
∥∥∥2
HS

= min
f ,g
Llora(f ,g).
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Proof. Recall that Llora(f ,g) ≜ −2 tr(T[f ,g]) + tr(Mρ0 [f ]Mρ1 [g]). To prove, first note that∥∥∥K −
k∑

i=1

fi ⊗ gi
∥∥∥2
HS
− ∥K ∥2HS = −2

k∑
i=1

⟨fi,K gi⟩ρ0 +

k∑
i=1

k∑
j=1

⟨fi, fj⟩ρ0⟨gi, gj⟩ρ1 .

Here, the first term can be rewritten as

k∑
i=1

⟨fi,K gi⟩ρ0 =

k∑
i=1

Eρ0(x)p(x′ |x)[fi(x)gi(x
′)]

= tr
(
Eρ0(x)p(x′ |x)

[
f(x)g(x′)⊺

])
= tr(T[f ,g]).

Likewise, the second term is

k∑
i=1

k∑
j=1

⟨fi, fj⟩ρ0⟨gi, gj⟩ρ1 = tr
(
Eρ0(x)

[
f(x)f(x)⊺

]
Eρ1(x′)

[
g(x′)g(x′)⊺

])
= tr(Mρ0

[f ]Mρ1
[g]).

This concludes the proof.

C.2 Statistical-Learning-Theoretic Guarantee

We consider empirical estimates of the second moment matrices T[f ,g],Mρ0 [f ],Mρ1 [g].

T̂[f ,g] ≜
1

N

N∑
t=1

f(xt)g(x
′
t)

⊺,

M̂ρ0 [f ] ≜
1

N0

N0∑
i=1

f(x̆i)f(x̆i)
⊺,

M̂ρ1 [g] ≜
1

N1

N∑
j=1

g(x̆′
j)g(x̆

′
j)

⊺.

Here, (xt,x
′
t) ∼ ρ0(x)p(x′ |x) are i.i.d. samples and x̆i ∼ ρ0(x) and x̆′

j ∼ ρ1(x′) are i.i.d. samples.

Note that, if we follow the common data collection procedure, x̆i ∼ ρ0(x) and x̆′
j ∼ ρ1(x

′) are
drawn from a single trajectory, and thus the samples (x̆, x̆′) cannot be independent. The independence
assumption between {x̆i} and {x̆′

j} are for the sake of simpler analysis. In practice, however, this
can be enforced by splitting the set of given independent trajectories into two subsets and compute
M̂ρ0

[f ] and M̂ρ1
[g] with different subsets of samples.

Theorem C.1. Let ∥f(x)∥ ≤ R and ∥g(x′)∥ ≤ R almost surely for some R > 0. Let Vf ≜
Eρ0(x)[(f(x)f(x)

⊺ − Mρ0 [f ])
2] ∈ Rk×k and Vg ≜ Eρ1(x′)[(g(x

′)g(x′)⊺ − Mρ1 [g])
2] ∈ Rk×k.

Then, with probability at least 1− δ, we have

|L̂ − L| ≤ R2

{√
16

N
log

6

δ
+

8

3N
log

6

δ

+

√
2∥Vf∥op
N0

log
12r(Vf )

δ
+

2R2

3N0
log

12r(Vf )

δ

+

√
2∥Vg∥op
N1

log
12r(Vg)

δ
+

2R2

3N1
log

12r(Vg)

δ

}
.

To prove this, we will invoke Bernstein inequalities for bounded random variables and “bounded”
self-adjoint matrices:
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Lemma C.1 (Bernstein’s inequality [38, Theorem 1.6.1]). Let X1, . . . , Xn be i.i.d. copies of a
random variable X such that |X| ≤ u almost surely, E[X] = 0, and E[X2] ≤ σ2. Then, for any
δ ∈ (0, 1), with probability at least 1− δ,∣∣∣∣∣ 1n

n∑
i=1

Xi

∣∣∣∣∣ ≤ 4u

3n
log

2

δ
+

√
4σ2

n
log

2

δ
.

Lemma C.2 (Matrix Bernstein inequality with intrinsic dimension [26], [38, Theorem 7.7.1]). Let
A1, . . . ,An be i.i.d. copies of a random self-adjoint matrix A, which satisfies ∥A∥op ≤ c almost
surely, E[A] = 0, and E[A2] = V ⪰ 0. Let r(V) ≜ tr(V)

∥V∥op
denote the intrinsic dimension of V. Then,

for any δ ∈ (0, 1), with probability at least 1− δ,∥∥∥∥∥ 1n
n∑

i=1

Ai

∥∥∥∥∥
op

≤ 2c

3n
log

4r(V)

δ
+

√
2∥V∥op
n

log
4r(V)

δ
.

We are now ready to prove Theorem C.1.

Proof of Theorem C.1. Consider

|L̂ − L| =
∣∣∣tr(−2T̂[f ,g] + M̂ρ0 [f ]M̂ρ1 [g])− tr(−2T[f ,g] +Mρ0 [f ]Mρ1 [g])

∣∣∣
≤ 2| tr(T̂[f ,g]− T[f ,g])|+ | tr(M̂ρ0

[f ]M̂ρ1
[g]−Mρ0

[f ]Mρ1
[g])|.

For the first term | tr(T̂[f ,g]− T[f ,g])|, note that

tr(T̂[f ,g]− T[f ,g]) =
1

N

N∑
t=1

f(xt)
⊺g(x′

t)− Eρ0(x)p(x′ |x)
[
f(x)⊺g(x′)

]
.

Here, we note that

|f(x)⊺g(x′)| ≤ ∥f(x)∥ · ∥g(x′)∥ ≤ R2,

(f(x)⊺g(x′))2 ≤ R4.

Hence, we can apply Bernstein’s inequality in Lemma C.1 for (f(xt)
⊺g(x′

t))
N
t=1 with u ← R2,

σ2 ← R4, and δ ← δ′, where δ′ is to be decided at the end of proof.

Now, we wish to bound | tr(M̂ρ0 [f ]M̂ρ1 [g]−Mρ0 [f ]Mρ1 [g])|.

Let ∆f ≜ M̂ρ0
[f ]−Mρ0

[f ] and ∆g ≜ M̂ρ1
[g]−Mρ1

[g]. Then,

| tr(M̂ρ0
[f ]M̂ρ1

[g]−Mρ0
[f ]Mρ1

[g])| = | tr(∆fMρ1
[g] + M̂ρ0

[f ]∆g)|
≤ | tr(∆fMρ1

[g])|+ | tr(M̂ρ0
[f ]∆g)|

(a)

≤ ∥∆f∥op tr(Mρ1
[g]) + ∥∆g∥op tr(M̂ρ0

[f ])

= ∥∆f∥opEπ[∥g(x′)∥2] + ∥∆g∥op
1

N1

N1∑
j=1

∥g(x′
j)∥2

(b)

≤ R2
(
∥∆f∥op + ∥∆g∥op

)
.

where (a) follows from the inequality | tr(AB)| ≤ ∥A∥op tr(B) for square matrices A,B such that
B ⪰ 0, and (b) from the boundedness assumption, i.e., ∥f(x)∥ ≤ R and ∥g(x′)∥ ≤ R almost
surely. Here, we can apply the matrix Bernstein inequality in Lemma C.2 to bound ∥∆f∥op with
A← f(x)f(x)⊺ −Mρ0

[f ] with δ ← 1− δ′, and similarly for ∥∆g∥op.

Finally, by applying the union bound on the Bernstein inequality and two matrix Bernstein inequalities
with δ′ = δ/3, we can conclude the desired bound.
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D Special Case of Finite-Rank Koopman Operator

If a given operator is of finite rank, we can analyze the operator using finite-dimensional matrices of
the same dimension. We can develop a computational procedure for SVD and eigen-analysis under
the finite-rank assumption, and apply the tools once we approximate the target operator using a low
rank expansion. Some of the results established in this section are used later when (numerically)
computing the ground truth characteristics of the noisy logistic map studied in Appendix G.1.

Suppose that the Koopman operator K : L2
ρ1
(X )→ L2

ρ0
(X ) of our interest is of finite rank. Specifi-

cally, the corresponding kernel can be expressed in the following factorized form:

k(x,x′) =
p(x′ |x)
ρ1(x′)

= α(x)⊺β(x′) =

r∑
i=1

αi(x)βi(x
′).

Due to the separable form, the kernel has a rank at most r. We aim to find its SVD as follows:

k(x,x′) =

r∑
i=1

σiϕi(x)ψi(x
′), (13)

where the functions satisfy the orthogonality conditions: ⟨ϕi, ϕj⟩ρ0
= ⟨ψi, ψj⟩ρ1

= δij . The singular
values σ1=1 ≥ σ2 ≥ . . . ≥ σr ≥ 0. The first singular functions ϕ1 and ψ1, corresponding to the
trivial mode σ1 = 1, are constant functions.

D.1 Singular Value Decomposition

We can compute the singular value decomposition (SVD) using Mρ0
[α] and Mρ1

[β] as follows.
Theorem D.1. The SVD of the matrix

Ssqrtρ0,ρ1
[α,β] ≜ (Mρ0 [α])

1/2(Mρ1 [β])
1/2

shares the same spectrum, i.e., there exist orthonormal matrices U ∈ Rk×r and V ∈ Rk×r and
Σ = diag(σ1, . . . , σr) such that

Ssqrtρ0,ρ1
[α,β] = UΣV⊺ =

r∑
i=1

σiuiv
⊺
i .

The ordered, normalized singular functions of the kernel k(x,x′) are given as

ϕ(x) = U⊺(Mρ0
[α])−1/2α(x), (14)

ψ(x′) = V⊺(Mρ1
[β])−1/2β(x′). (15)

Proof. First of all, it is easy to check that Mρ0
[ϕ] = Mρ1

[ψ] = I. Next, we can show Eq. (13). To
show this,

r∑
i=1

σiϕi(x)ψi(x
′) = ϕ(x)⊺Σψ(x′)

= (U⊺(Mρ0
[α])−1/2α(x))⊺U⊺Ssqrtρ0,ρ1

[α,β]V(V⊺(Mρ1
[β])−1/2β(x′))

= α(x)⊺(Mρ0
[α])−1/2((Mρ0

[α])1/2(Mρ1
[β])1/2)(Mρ1

[β])−1/2β(x′)

= α(x)⊺β(x′)

= k(x,x′).

To show (K ϕi)(x′) = σiψi(x
′), consider

(K ϕi)(x′) ≜
∫
k(x,x′)ϕi(x)ρ0(x)dx

= β(x′)⊺
∫
α(x)(u⊺

i (Mρ0
[α])−1/2α(x))ρ0(x)dx
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= β(x′)⊺
∫
α(x)α(x)⊺ρ0(x)dx(Mρ0

[α])−1/2ui

= β(x′)⊺(Mρ0
[α])1/2ui

= β(x′)⊺(Mρ1
[β])−1/2(Ssqrtρ0,ρ1

[α,β])⊺ui

= σiβ(x
′)⊺(Mρ1

[β])−1/2vi

= σiψi(x
′).

We can show (K ∗ψi)(x) = σiϕi(x) by the same reasoning.

D.2 Eigen-analysis

We can compute the eigenvalues and eigenfunctions of the kernel by eigen-analyzing the matrices
Mρ1 [β,α] and Mρ0 [β,α].

Theorem D.2. Let w ∈ Ck be a right eigenvector of Mρ1
[β,α] with eigenvalue λ ∈ C, i.e.,

Mρ1
[β,α]w = λw. If we define η(x′) ≜ w⊺α(x′), then η is a right eigenfunction of K with

eigenvalue λ, i.e., K η = λη.

Proof. Since k(x,x′) = α(x)⊺β(x′), we have

(K η)(x) =
∫
k(x,x′)η(x′)ρ1(x

′)dx′

= α(x)⊺
∫
β(x′)α(x′)⊺wρ1(x

′)dx′

= α(x)⊺Mρ1 [β,α]w

= λα(x)⊺w

= λη(x).

Theorem D.3. Let z ∈ Ck be a left eigenvector of Mρ0
[β,α] with eigenvalue λ ∈ C, i.e.,

z∗Mρ0
[β,α] = λz∗. If we define ζ(x′) ≜ z⊺β(x′), then ζ is a left eigenfunction of K with eigenvalue

λ, i.e., K ∗ζ = λζ.

Proof. We have

(K ∗ζ)(x) =

∫
k(x,x′)ζ(x)ρ0(x)dx

= β(x′)⊺
∫
α(x)β(x)⊺zρ0(x)dx

= β(x′)⊺(Mρ0
[β,α])⊺z

= λβ(x′)⊺z

= λζ(x′).

Interestingly, this implies that spectrum of Mρ1 [β,α] and Mρ0 [β,α] must be identical.

Moreover, if yo denotes the Perron–Frobenius eigenvector of Mρ0
[β,α] (i.e., the left eigenvector

with eigenvalue 1), then go(x) ≜ y⊺
oβ(x) is the stationary distribution.

E Extended DMD and Multi-Step Prediction

In this section, we illustrate the extended DMD (EDMD) procedure [46] using basic ideas as
elementary as linear regression. Suppose that we are given top-k left and right singular functions f(·)
(encoder) and g(·) (lagged encoder), respectively. If h ∈ span(f) ≜ span{f1, . . . , fk}, then there
exists some z ∈ Rk such that h(x) = z⊺f(x). Then, we denote by K f the restriction of the Koopman
operator onto the span, which acts on h as

(K fh)(x) = f(x)⊺Kfz
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for some Kf ∈ Rk×k. With finite data, there are two issues in this picture: (1) How can we compute
Kf from data? (2) Given h ∈ span(f), how can we compute the corresponding z ∈ Rk?

• For the first question, the EDMD aims to find the best finite-dimensional approxima-
tion of the Koopman operator K restricted on span(f), in the sense that (K f)(x) =
Ep(x′ |x)[f(x

′)] ≈ Kf(x). As a natural choice, we can choose the ordinary least square
solution that solves f(x′) = Kf(x) for (x,x′) ∼ ρ0(x)p(x′ |x), where

K̂ols
f ≜ F+F′ = (F⊺F)−1F⊺F′ = (M̂ρ0

[f ])−1T̂[f ],

where we denote the data matrices by

F ≜ [f(x1) . . . f(xN )]⊺ ∈ RN×k and F′ ≜ [f(x′
1) . . . f(x

′
N )]⊺ ∈ RN×k.

Note that M̂ρ0
[f ] and T̂[f ] are the empirical estimates of the second moment matrices Mρ0

[f ]
and T[f ].

• For the second point, we can again view this as a linear regression problem, since

h(xi) = z⊺f(xi) for i = 1, . . . , N.

Hence, we can define the best z again as the OLS solution zolsh [f ] ≜ F+H = (M̂ρ0
[f ])−1F⊺H,

where

H ≜ [h(x1), . . . , h(xN )]
⊺ ∈ RN .

Now, suppose that we already computed T̂[f ,g] and ẑh from data. Then, we can approximate the
multi-step prediction as

Ep(xt |x0)[h(xt)] ≈ f(x0)
⊺T̂[f ,g]tẑh. (16)

The same logic applies to the subspace spanned by the right singular functions ψ(·).

F On Implementation

In this section, we explain how we can implement nesting with automatic differentiation and provide
a pseudocode in PyTorch [30].

F.1 Implementation of Nesting Techniques

We can implement the sequential nesting by computing the derivative of the following objective using
automatic differentiation:

Lseq
lora(f ,g) ≜ −2 tr(M

seq
ρ0

[f ,K g]) + tr(Mseq
ρ0

[f ]Mseq
ρ1

[g]),

where we define a partially stop-gradient second moment matrix

Mseq
ρ [f ,g] ≜


⟨f1, f1⟩ρ ⟨sg[f1], f2⟩ρ ⟨sg[f1], f3⟩ρ · · · ⟨sg[f1], fk⟩ρ
⟨f2, sg[f1]⟩ρ ⟨f2, f2⟩ρ ⟨sg[f2], f3⟩ρ · · · ⟨sg[f2], fk⟩ρ
⟨f3, sg[f1]⟩ρ ⟨f3, sg[f2]⟩ρ ⟨f3, f3⟩ρ · · · ⟨sg[f3], fk⟩ρ

...
...

. . .
...

⟨fk, sg[f1]⟩ρ ⟨fk, sg[f2]⟩ρ ⟨fk, sg[f3]⟩ρ · · · ⟨fk, fk⟩ρ

 .
This can be implemented efficiently with almost no additional computation. We note that the imple-
mentation of the sequentially nested LoRA we provide here is a more direct and simpler version than
the implementation of NeuralSVD in [32], which implemented the sequential nesting by a custom
gradient.

The joint nesting can also be implemented in an efficient manner via the matrix mask, as ex-
plained in [32]. Define the matrix mask P ∈ Rk×k as Pij = mmax{i,j} with mi ≜

∑k
j=i αj . Then,

Ljoint
lora (f ,g;α) ≜

∑k
i=1 αiLlora(f1:i,g1:i) Then, we can write

Ljoint
lora (f ,g;α) =

k∑
i=1

αiLlora(f1:i,g1:i) = tr
(
P⊙

(
−2Mρ0

[f ,K g] +Mρ0
[f ]Mρ1

[g]
))
.
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F.2 Pseudocode for LoRA Loss with Nesting

Based on the nesting techniques described above, here we provide a simple and efficient PyTorch [30]
implementation of the NestedLoRA (i.e., LoRA with nesting) objective.

1 class NestedLoRALoss:
2 def __init__(
3 self,
4 use_learned_svals=False,
5 nesting=None,
6 n_modes=None,
7 ):
8 self.use_learned_svals = use_learned_svals
9 assert nesting in [None, 'seq', 'jnt']

10 self.nesting = nesting
11 if self.nesting == 'jnt':
12 assert n_modes is not None
13 self.vec_mask, self.mat_mask = get_joint_nesting_masks(
14 weights=np.ones(n_modes) / n_modes,
15 )
16 else:
17 self.vec_mask, self.mat_mask = None, None
18 self.kostic_regularization = kostic_regularization
19

20 def __call__(self, f: torch.Tensor, g: torch.Tensor):
21 # f: [b, k]
22 # g: [b, k]
23

24 if self.nesting == 'jnt':
25 # \sum_{i=1}^k <f_i, T g_i >
26 corr_term = -2 * (self.vec_mask.to(f.device) * f * g).mean(0).sum()
27 # \sum_{i=1}^k \sum_{j=1}^k <f_i, f_j> <g_i, g_j>
28 # = tr ( cov (f_{1:k}) * cov(g_{1:k}) )
29 M_f = compute_second_moment(f)
30 M_g = compute_second_moment(g)
31 metric_term = (self.mat_mask.to(f.device) * M_f * M_g).sum()
32

33 else:
34 # \sum_{i=1}^k <f_i, T g_i >
35 corr_term = -2 * (f * g).mean(0).sum()
36 # \sum_{i=1}^k \sum_{j=1}^k <f_i, f_j> <g_i, g_j>
37 # = tr ( cov (f_{1:k}) * cov(g_{1:k}) )
38 M_f = compute_second_moment(f, seq_nesting=self.nesting == 'seq')
39 M_g = compute_second_moment(g, seq_nesting=self.nesting == 'seq')
40 metric_term = (M_f * M_g).sum()
41

42 return corr_term + metric_term
43

44 def compute_second_moment(
45 f: torch.Tensor,
46 g: torch.Tensor = None,
47 seq_nesting: bool = False
48 ) -> torch.Tensor:
49 """
50 compute (optionally sequentially nested) second-moment matrix
51 M_ij = <f_i, g_j>
52 with partial stop-gradient handling when seq_nesting is True.
53

54 args
55 ----
56 f : (n, k) tensor
57 g : (n, k) tensor or None
58 seq_nesting : bool
59 """
60 if g is None:
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61 g = f
62 n = f.shape[0]
63 if not seq_nesting:
64 return (f.T @ g) / n
65 else:
66 # partial stop gradient
67 # lower-triangular: <f_i, sg[g_j]> for i > j
68 lower = torch.tril(f.T @ g.detach(), diagonal=-1)
69 # upper-triangular: <sg[f_i], g_j> for i < j
70 upper = torch.triu(f.detach().T @ g, diagonal=+1)
71 # diagonal: <f_i, g_i> (no stop-grad)
72 diag = torch.diag((f * g).sum(dim=0))
73 return (lower + diag + upper) / n
74

75 def get_joint_nesting_masks(weights: np.ndarray):
76 vector_mask = list(np.cumsum(list(weights)[::-1])[::-1])
77 vector_mask = torch.tensor(np.array(vector_mask)).float()
78 matrix_mask = torch.minimum(
79 vector_mask.unsqueeze(1), vector_mask.unsqueeze(1).T
80 ).float()
81 return vector_mask, matrix_mask

G Deferred Details on Experiments

In this section, we provide details for each experiment. See Table 3 for an overview of the benchmark
problems from [16]. Our implementation builds upon the codebase of [16]6, the kooplearn package7,
and the codebase of [32]8.

Table 3: Overview of the experiments.

Examples Time Spectral complexity Stationarity

Noisy logistic map discrete non-normal (nearly) stationary
Ordered MNIST discrete normal stationary

1D SDE continuous self-adjoint (nearly) stationary

Molecular dynamics continuous (discretized) normal non-stationary

G.1 Noisy Logistic Map

We consider a noisy logistic map defined as

Xt+1 = (rXt(1−Xt) + ξt) mod 1

for ξt ∼ p(ξ), where p(ξ) ≜ CN cosN (πξ) is the order N trigonometric noise over ξ ∈
[−0.5, 0.5] [29], where CN ≜ π/B(N+1

2 , 12 ) is the (reciprocal) normalization constant.

Although the dynamics is non-normal, the structure of the polynomial trigonometric noise ensures
that the associated kernel is of finite rank N + 1. Concretely, the transition density can be written as

p(x′|x) =
N∑
i=0

αi(x)β̆i(x
′),

where

β̆i(x) ≜

√
CN

(
N

i

)
cosi(πx) sinN−i(πx),

6https://github.com/pietronvll/DPNets
7https://kooplearn.readthedocs.io/
8https://github.com/jongharyu/neural-svd
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αi(x) ≜ β̆i(F (x)).

Let βi(x′) ≜
β̆i(x

′)
ρ1(x′) such that we can write p(x′|x)

ρ1(x′) = α(x)⊺β(x′).9

Computation of Ground-Truth Properties. Since the operator is of finite rank, the underlying
singular functions and eigenfunctions can be computed numerically, using the theory developed in
Appendix D. Let

Mπ[ϕ,α] ≜ Eπ[ϕ(x)α(x)
⊺],

Mπ[ϕ,β] ≜ Eπ[ϕ(x)β(x)
⊺].

Note that

Mπ[ϕ,α]Mπ[ϕ,β]
⊺ = Eρ0(x)ρ1(x′)

[
ϕ(x)α(x)⊺β(x′)ϕ(x′)⊺

]
= Eρ0(x)ρ1(x′)

[
ϕ(x)k(x,x′)ϕ(x′)⊺

]
= Eρ0(x)p(x′ |x)[ϕ(x)ϕ(x

′)⊺] = T[ϕ].

Then we can compute the approximate Koopman matrix as the ordinary least square regression,
which is equivalent to the EDMD:

K̂ols
ϕ = (Mπ[ϕ])

−1T[ϕ] = (Mπ[ϕ])
−1Mπ[ϕ,α]Mπ[ϕ,β]

⊺.

Experimental Setup. SettingN = 20, we generated a random trajectory of length 16384 to construct
the pair data. We used a multi-layer perceptron (MLP) with hidden units 64-128-64 and leaky
ReLU activation for left and right parametric singular functions. We evaluated VAMPnet-1 (blue),
DPNet (green), DPNet-relaxed (green with marker x), and LoRA (red) across varying batch sizes
B ∈ {256, 1024, 8192} and learning rates lr ∈ {10−3, 10−4} using the Adam optimizer; see Figure 4.
Each configuration was trained for 500 epochs. We conducted five independent runs per configuration
with different random seeds and report the average values with standard deviation. We set the number
of modes to k = 20.

Results. To evaluate the quality of the learned singular basis, we first estimated the singular values σ̂i
via CCA. Since the ground-truth spectrum is known in this setting, we computed the relative error in
estimating the squared singular values, defined as |σ2

i−σ̂2
i |

σ2
i

for each i ∈ [k]. As shown in the first row
of Figure 4, LoRA consistently outperforms the other methods in capturing the singular subspaces
according to this metric, except in the configuration with a large batch size B = 8192 and a small
learning rate 10−4. We also note that the performance of VAMPnet-1 is highly sensitive to the batch
size, whereas DPNets exhibit relatively robust performance across settings.

Next, we assessed the quality of the estimated eigenvalues. Given the CCA-aligned basis b ∈ {ϕ̃, ψ̃},
we computed the Koopman matrix via EDMD using the first i basis vectors b1:i and extracted the
corresponding eigenvalues (λ̂j)ij=1. Since the true system has three dominant eigenvalues λ1, λ2, λ3,
we evaluated the estimation quality using the directed Hausdorff distance maxi′∈[i] minj∈[3] |λ̂i′−λj |,
following Kostic et al. [16]. The results are presented in the second row of Figure 4.

As expected, increasing the number of singular functions improves the estimation quality across
all methods. Kostic et al. [16] reported a baseline value of 0.06±0.05 achieved by DPNet-relaxed
(indicated by the gray, dashed horizontal line), and nearly all our configurations outperform this base-
line. We observe that DPNet-relaxed and LoRA yield comparable performance, with DPNet-relaxed
occasionally achieving the best results. We attribute the discrepancy between singular subspace
quality and eigenvalue estimation performance to the non-normal nature of the underlying dynamics.

G.2 Ordered MNIST

Following the setup of [16], we generated two independent trajectories of length 1000. We used
one trajectory for training and the other for evaluation. We used Adam optimizer with learning rate
10−3, batch size 64, for 100 epochs. The convolutional neural network we used is same as [16],
namely, Conv2d[16]→ReLU→MaxPool[2]→Conv2d[32]→ReLU→MaxPool[2]→Linear[10]. We
set the metric deformation loss coefficient to be 1 as suggested for DPNet and DPNet-relaxed.

9We note that in the original implementation of Kostic et al. [16], the singular values were computed as if
p(x′|x)
ρ1(x′) = α(x)⊺β̆(x′), which led to wrong singular values.
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Figure 4: Summary of the noisy logistic map experiment. The first row reports relative error in
singular values, and the second row the directed Hausdorff distance of the estimated eigenvalues to
the three most dominant underlying eigenvalues. The shaded area indicates ±0.5 standard deviation.

G.3 Langevin Dynamics

Consider the following stochastic differential equation (SDE):

dXt = A(Xt)dt+ B(Xt)dWt, (17)

where A : Rd → Rd is a drift term, B : Rd → Rd×m is the diffusion term, and Wt is am-dimensional
Wiener process. Since the diffusion process can be modeled as a reversible stochastic differential
equation (SDE) with respect to its stationary distribution π, the associated generator becomes self-
adjoint within the Hilbert space endowed with the inner product ⟨·, ·⟩π [50]. For the Itô SDE in
Eq. (17), we can write the action of the generator L (also called the Kolmogorov backward operator,
or the Itô derivative) of the diffusion on a function f : Rd → R can be written as, by the Itô
formula [50],

(Lf)(x) ≜ ∇xf(x)
⊺A(x) +

1

2
tr
(
B(x)⊺∇2

xf(x)B(x)
)
.

Special 1D Example. Consider a simple 1D case where

A(x) = − 1

γ
U ′(x) and B(x) =

√
2kBT

γ
.

In this case, we can write

(Lf)(x) =
1

γ

(
−U ′(x)f ′(x) + kBTf

′′(x)
)
.

For simplicity, we set kBT = 1 and γ = 0.1.

We use the Schwantes potential U(x) defined as

U(x) = 4
(
x8 + 0.8e−80x2

+ 0.2e−80(x−0.5)2 + 0.5e−40(x+0.5)2
)
,

whose derivative is given as

U ′(x) = 32x7 − 512xe−80x2

− 128(x− 0.5)e−80(x−0.5)2 − 160(x+ 0.5)e−40(x+0.5)2 .
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G.4 Chignolin Molecular Dynamics

This section provides the detail of our experimental setup including the data, as well as a sup-
plementary analysis, which demonstrates the stabilization effect of the nesting techniques during
training.

Experimental Setup. Our work utilizes a publicly available trajectory dataset of the classic chignolin
peptide (sequence: GYDPETGTWG, PDB: 1UAO) simulated at 300 K, provided by [25]. In contrast,
contemporary studies [3, 16] analyze simulation data at 340K of the stabilized CLN025 variant
(sequence: YDPETGTWY, PDB: 5AWL; [9]) from [20], which is not publicly available. To maintain
maximal consistency with the prior works, we selected trajectories from this dataset generated
using the CHARM22* force field and TIP3P solvent, but with a halved sampling interval of 100
ps. Moreover, unlike the non-public data created from a single trajectory, the full dataset contains
approximately 300,000 snapshots from 34 trajectories, initiated from either folded or unfolded states.

Due to the short trajectory lengths, transition events are relatively rare in this dataset [25]. Therefore,
naive random splitting may lead to disjoint ensembles, for example, a training set lacking transition
events while the test set contains them. To mitigate this distribution shift and decouple data sampling
variance from optimization variance, we employed a distribution-matching split strategy. Specifically,
we generated 200 candidate stratified splits and selected the partition that minimizes the 1-Wasserstein
distance between the training and test set distributions of the radius of gyration, computed using the
10 Cα atoms. To ensure balanced initial conditions, we further constrained the split such that the 17
folded-initiated and 17 unfolded-initiated trajectories were each divided into 13 training and 4 testing
trajectories.

After fixing the train-test split, all experiments were performed with five independent model training
runs using this fixed dataset. This allows us to evaluate numerical stability and convergence robustness
of the learning algorithms.

We adopted the SchNet-based architecture and hyperparameters from [16]. Therefore, we trained
the models for 100 epochs with the Adam optimizer whose learning rate is 10−3 , but doubled the
batch size to 384 to maximize GPU memory utilization. We also used γ = 0.01 for the regularization
coefficient of DPNet-relaxed. The SchNet architecture used in our experiments is summarized in
Table 4.

Table 4: Architecture and hyperparameter configuration of the SchNetModel used in our experiments.
The model processes atomic structures to produce fixed-dimensional feature vectors. Key hyperpa-
rameters were adopted from [16] for consistency with prior work.

Component / Layer Key Parameter Value in Experiments
Input Dictionary of atomic properties (positions, atomic numbers, etc.)

PairwiseDistances Cutoff radius (cutoff) 6.0 Å

GaussianRBF Number of radial basis functions (n_rbf) 20

SchNet Blocks Feature dimension (n_atom_basis) 64
Number of interaction blocks (n_interactions) 3
Cutoff function CosineCutoff

Output Layer (nn.Sequential)
1. Linear Layer Output dimension (n_feature_modes) 15 (for k=16 modes with centering)
2. BatchNorm1d Use batch normalization (use_batchnorm) True

Output Per-atom feature tensor of shape (Total Atoms, n_feature_modes)

Since we utilized batch normalization in the output layer, the learned feature vectors are constrained to
have zero mean over the batch. This effectively enforces orthogonality to the constant eigenfunction.
To explicitly account for this structure, we applied the centering strategy (Section 2.3) as a default for
all algorithms, modeling the constant mode separately. Consequently, the output dimension of the
SchNet module was set to k − 1 = 15. This differs from the 16 dimensions used by Kostic et al. [16],
as we incorporate the fixed constant mode as an additional, separate feature.

Implementation of VAMP-E Score. To evaluate the performance of the learned bases, we compute
the VAMP-E score proposed by [48] to evaluate the generalization capability of the learned Koopman
operator. Unlike the VAMP-r scores which measure the canonical correlations within a specific
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dataset, the VAMP-E score estimates the approximation error of the learned model with respect to the
true Koopman operator in the Hilbert-Schmidt norm [48].

Specifically, maximizing the VAMP-E score is equivalent to minimizing the decomposition error
∥K̂−K∥2HS on unseen data. The squared error can be expanded as ∥K̂−K∥2HS = ∥K̂∥2HS−2⟨K̂,K⟩HS+
∥K∥2HS. Since ∥K∥2HS is an unknown constant dependent only on the system, minimizing the error is
equivalent to maximizing the score RE ≜ 2⟨K̂,K⟩HS − ∥K̂∥2HS. Here, the first term measures the
consistency between the learned model and the actual test dynamics, while the second term serves as
a regularization term penalizing the model complexity on the test distribution.

In our implementation, we calculate the VAMP-E score using a cross-validation strategy where the
model parameters are fixed based on the training data, and the score is evaluated on the test moments.
Let M̂ρtest

0
[f ], M̂ρtest

1
[g] and T̂test[f ,g] denote the empirical second-moment matrices calculated from

the test set. We first project these moments onto the singular subspace learned from the training data.
Let W0 ≜ (Mρtrain

0
[f ])−1/2 and W1 ≜ (Mρtrain

1
[g])−1/2 be the whitening matrices. Furthermore, let

U,V and Σ be the singular vectors and the diagonal matrix of singular values, respectively, obtained
from CCA with respect to the training data. The projected test moments are defined as:

C00 ≜ U⊤W0M̂ρtest
0

[f ]W0U = Σ−1/2M̂ρtest
0

[ϕ̃]Σ−1/2,

C01 ≜ U⊤W0T̂test[f ,g]W1V = Σ−1/2T̂test[ϕ̃, ψ̃]Σ
−1/2,

C11 ≜ V⊤W1M̂ρtest
1

[g]W1V = Σ−1/2M̂ρtest
1

[ψ̃]Σ−1/2.

Using the singular value matrix Σ computed from CCA with training data, the VAMP-E score is then
defined as:

RE ≜ 2 tr(ΣC01)︸ ︷︷ ︸
≈⟨K̂,K⟩HS

− tr(ΣC00ΣC11)︸ ︷︷ ︸
≈∥K̂∥2

HS

= 2 tr(T̂test[ϕ̃, ψ̃])− tr(M̂ρtest
0

[ϕ̃]M̂ρtest
1

[ψ̃]). (18)

Intuitively, this formulation penalizes the model if the singular values Σ learned from training are
inconsistent with the correlations observed in the test data (C01), or if the learned basis functions lose
orthonormality on the test set (C00,C11 ̸= I). Therefore, VAMP-E serves as a rigorous metric for
validating both the learned singular subspaces and the estimated timescales [24].

On the Stabilization Effect of Nesting Techniques.
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Figure 5: Test VAMP-2 score on the chignolin dataset for LoRA variants trained without the final
batch normalization layer. While the standard LoRA objective without nesting fails to converge, both
nesting techniques LoRAjnt and LoRAseq achieve high scores, suggesting improved optimization
behavior in this challenging setting.

As an additional study, we report a further benefit of nesting techniques during training. To create
a more challenging learning setup, we remove the final batch normalization layer from the SchNet
architecture and train for 200 epochs. Figure 5 shows that the standard LoRA model fails to learn
meaningful dynamics, as indicated by its low and stagnant VAMP-2 score. In contrast, both joint
and sequential nesting exhibit stable training behavior and converge to high-scoring solutions. This
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suggests that nesting techniques are not merely post hoc alignment mechanisms, but also provide
stronger optimization signals in this challenging setting. We leave a more in-depth analysis of this
empirical observation for future work.

G.5 Computing Resources

All experiments were conducted on a server equipped with two Intel(R) Xeon(R) Gold 5220R CPUs,
about 500 GiB of total RAM, four NVIDIA A5000 GPUs, and a 1TB NVMe SSD for storage. The
chignolin molecular dynamics experiment was the most computationally intensive; each training run
required 2-3 hours on two NVIDIA A5000 GPUs. Considering multiple runs across 5 data splits
(Appendix G.4), the total computational effort for the reported chignolin experiments was equivalent
to approximately 2-3 days. The other experiments (noisy logistic map, ordered MNIST, Langevin
dynamics) were less demanding, completing in approximately 1 hour, typically using one A5000
GPU. All experiments utilized PyTorch; the chignolin simulations additionally employed SchNetPack
2.1.1 [35]. The total compute for the entire research project, including preliminary experiments, is
estimated at approximately 3 days of operational time on this hardware.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clarified the scope in the abstract and introduction. We do not overstate
more than the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we discuss the limitation in the concluding remarks.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Yes, we have the theoretical results and provide full proof in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We described full details of experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We release our code implementation.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer:[Yes]
Justification: Yes, we are opening full training and test details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, we ran the experiments with various training seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We included these details in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we definitely follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

34

https://neurips.cc/public/EthicsGuidelines


generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We did this for the chignolin experiment.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]

Justification: We release our code implementation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We are not contatining crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
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Justification: We have not used LLM for our core research components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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