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Abstract

While large language models (LLMs) have001
proven effective in leveraging textual data for002
recommendations, their application to multi-003
modal tasks involving visual content remains004
underexplored. Although LLM can compre-005
hend multimodal content through a projection006
function that maps visual features into the se-007
mantic space of LLM, recommendation tasks008
often require representing users’ history interac-009
tions through lengthy prompts combining text010
and visual elements, which not only hampers011
training and inference efficiency but also makes012
it difficult for the model to accurately capture013
user preferences from complex and extended014
prompts, leading to reduced recommendation015
performance. To address this challenge, we in-016
troduce USER-LLM, an innovative multimodal017
recommendation framework that integrates tex-018
tual and visual features through a User His-019
tory Encoding Module (UHEM), compressing020
multimodal user history interactions into a sin-021
gle token representation, effectively facilitating022
LLMs in processing user preferences. Exten-023
sive experiments demonstrate the effectiveness024
and efficiency of our proposed mechanism. 1025

1 Introduction026

Nowadays, recommendation models have seen re-027

markable improvements, particularly with the rise028

of LLMs, which offer powerful capabilities for029

generalization and reasoning. LLMs have played030

a significant role in enhancing the performance031

of recommendation systems, driving a shift in the032

paradigm of modern recommendation approaches033

(Lin et al., 2023; Wu et al., 2024b).034

Previous studies (Bao et al., 2023; Zhang et al.,035

2023) have employed LLMs in recommendation036

systems by presenting textual content from users’037

history interactions and the candidate item as038

prompts, allowing the LLMs to infer whether the039

1Once accepted, we will release our code on GitHub.

Figure 1: Incorporating Visual Features into CoLLM
Embeddings. The original prompt of CoLLM and the
prompt with visual features can be found in Appendix.

Dataset movie netflix
Scenario Method AUC AUC
Short CoLLM-VA 0.8070 0.6725
Long CoLLM-VA 0.8067 0.6668

Table 1: Performance Evaluation of CoLLM-VA
in Short and Long interaction Scenarios. CoLLM-
VA refers to the integration of Visual Alignment into
CoLLM.

user would prefer the given candidate item. These 040

approaches leverage LLMs’ advanced text com- 041

prehension capabilities to effectively capture user 042

preferences and improve recommendation perfor- 043

mance. However, for multimodal recommendation 044

tasks, incorporating non-textual modalities, such as 045

images and videos, into the modeling with LLMs 046

remains relatively unexplored. A prevalent strategy 047

of letting LLMs comprehend multimodal content 048

involves mapping visual features into LLMs’ se- 049

mantic space through a projection function (Liu 050

et al., 2024a; Li et al., 2023b). Therefore, an in- 051

tuitive method for multimodal recommendation is 052

to combine both text embedding and projected vi- 053

sual features in prompts, enabling LLMs to discern 054

users’ multimodal preferences and facilitate multi- 055

modal recommendations as shown in Figure 1. 056

In practical applications, users with long history 057

interactions are often encountered, and prompts 058
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that mix long multimodal historical data present059

two main challenges. First, longer prompts slow060

down the speed of model training and inference.061

Second, the mixture of multimodal information062

in lengthy prompts increases the difficulty for the063

model to understand user preferences. Our pre-064

liminary experiments compared the recommenda-065

tion performance for users with long and short his-066

tory interactions as shown in Table 1. On average,067

the model performs better for users with shorter068

history interactions than those with longer ones,069

showing that LLMs lack the ability to effectively070

process long history interactions, which ultimately071

degrades recommendation performance.072

To address the aforementioned issues, we pro-073

pose a User History Encoding Module (UHEM)074

that compresses multimodal user history interac-075

tions into a single token representation in the se-076

mantic space of the LLM. This compressed user077

history representation is then injected into the LLM,078

enabling it to understand user preferences better.079

This approach offers two key benefits. First, it sig-080

nificantly reduces the length of prompts that the081

LLM needs to process, thereby improving training082

and inference efficiency. Second, it addresses the083

challenge faced by LLMs when dealing with exten-084

sive history interactions and long prompts. Given085

that UHEM can encode user history interactions of086

arbitrary length, this method aids the model in bet-087

ter understanding user preferences, especially with088

long history interactions, and therefore enhances089

recommendation performance.090

Based on the ability to encode history interac-091

tions of arbitrary length, we further propose knowl-092

edge augmentation for item content to obtain richer093

semantic descriptions of items. This enhances the094

model’s understanding of both items and user pref-095

erences, leading to further enhancing its recom-096

mendation capabilities. Our main contributions are097

summarized as follows:098

• Multimodal Recommendation: We intro-099

duce a LLM-based multimodal recommenda-100

tion framework, which integrates both text and101

visual modalities in a prompt design, obtain-102

ing improved recommendation performances.103

• Multimodal Encoding and Compression:104

We propose UHEM to encode and compress105

long sequences of history interactions with106

both text and visual features, improving the107

efficiency of capturing user preferences and108

enhancing the model’s recommendation capa- 109

bilities. 110

• Knowledge-Enhanced Text Representation: 111

To further utilize UHEM, we propose knowl- 112

edge augmentation for item content to obtain 113

richer semantic descriptions for enhancing rec- 114

ommendation performances. 115

• Improved Recommendation Performance: 116

Through extensive experiments on real-world 117

datasets, we demonstrate that our proposed 118

method significantly outperforms existing 119

baseline models in key performance metrics. 120

2 Related Work 121

In this section, we discuss some related work on 122

multimodal recommendation, multimodal large 123

language models (Multimodal LLMs), and LLM- 124

based recommendation (LLMRec). 125

2.1 Multimodal Recommendation 126

Recent studies have explored multimodal feature in- 127

tegration through various approaches. Graph-based 128

methods leverage user-item interactions, with Du- 129

alGNN (Wang et al., 2021) and MMGCL (Yi et al., 130

2022) utilizing graph convolutions to model uni- 131

modal preferences. Item-item graphs have proven 132

effective for representation enhancement (Mu et al., 133

2022; Ma et al., 2022), and MICRO (Zhang et al., 134

2022) combines metric learning with contrastive 135

learning for improved multimodal fusion. 136

Attention mechanisms facilitate flexible multi- 137

modal integration at both coarse (Liu et al., 2021a, 138

2022) and fine-grained (Chen et al., 2019; Kim 139

et al., 2022) levels. Recent works like MML (Pan 140

et al., 2022) and MM-Rec (Wu et al., 2021) apply 141

attention to sequence modeling and feature align- 142

ment, while VLSNR (Han et al., 2022) and NOVA 143

(Liu et al., 2021a) employ combined attention struc- 144

tures for enhanced multimodal fusion. 145

2.2 Multimodal LLM 146

With the continuous development of large language 147

models in natural language processing, more re- 148

searchers are focusing on multimodal large mod- 149

els. In pre-training, some work aims to design 150

improved encoders and decoders to enhance fine- 151

grained visual perception and reasoning tasks (Wu 152

et al., 2024a; Hao et al., 2024). The OMG-LLaVA 153

(Zhang et al., 2024b), employs a visual encoder and 154

integrates image information into the visual tokens 155
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of a large language model. This enables end-to-end156

training of a unified encoder, decoder, and LLM, fa-157

cilitating reasoning at the image, object, and pixel158

levels.159

In fine-tuning, CityLLaVA (Duan et al., 2024)160

is a framework for urban scenes, combining visual161

cue techniques like bounding box guidance, view162

selection, and global-local joint views. ViP-LLaVA163

(Cai et al., 2024) uses eight visual cues to overlay164

markers on RGB images, eliminating complex re-165

gion encoding and achieving state-of-the-art perfor-166

mance on region understanding tasks. ImageBrush167

(Yang et al., 2024) enables image manipulation via168

visual cues, reducing cross-modal differences and169

introducing new forms of interaction.170

In instruction tuning, instruction following and171

structured output have been shown to enhance the172

capabilities of LLMs and MLLMs (Ouy; Liu et al.,173

2024b). AnyRef (He et al., 2024) generates pixel-174

level object perception by processing multimodal175

inputs through specialized tags and prompts, en-176

abling consistent cross-modal reference handling.177

2.3 LLMRec178

The rapid development of large language models179

has introduced a new paradigm in recommenda-180

tion algorithms. The related work can be broadly181

categorized into non-generative recommendation182

and generative recommendation based on LLMs.183

Non-generative recommendation aligns pre-trained184

large language models with recommendation tasks,185

receiving a list of candidate items and assigning a186

score or ranking to each item. For instance, LLM-187

Rec (Liu et al., 2023) benchmarks LLMs on recom-188

mendation tasks, showing better performance on189

interpretability than accuracy. NoteLLM (Zhang190

et al., 2024a) uses LLMs to generate text embed-191

dings for item-to-item (I2I) recall, improving rec-192

ommendation performance. Llama4Rec (Luo et al.,193

2024) combines traditional and LLM-based meth-194

ods to enhance recommendation performance. Re-195

cRanker (Luo et al., 2023) fine-tunes LLMs for top-196

k ranking, integrating auxiliary information into197

prompts. ONCE (Liu et al., 2024c) uses LoRA to198

combine open and closed-source LLMs for content-199

based recommendations. TALLRec (Bao et al.,200

2023) integrates supplementary information while201

freezing original parameters. CoLLM (Zhang et al.,202

2023) uses LoRA and Collaborative Information203

Embedding Tuning (CIE) to map collaborative in-204

formation into LLM inputs.205

Generative recommendation creates personal-206

ized item lists based on user history. GPT4Rec 207

(Li et al., 2023a) combines generative models and 208

search engines, generating queries from item ti- 209

tles in user history to retrieve recommendations. 210

RecGPT (Zhang et al., 2024c) uses the ChatGPT 211

paradigm for sequential recommendation, fine- 212

tuning an auto-regressive model with user IDs to 213

generate personalized prompts. GenRec (Ji et al., 214

2024) reformats item titles based on user interac- 215

tions and fine-tunes an LLM to predict the next 216

items. 217

3 Method 218

In this section, we introduce the problem definition 219

and the detailed architecture of our model, followed 220

by an explanation of the fine-tuning method. 221

3.1 Problem Definition 222

Let U represent a user and I represent a candidate 223

item. The recommendation task can be represented 224

as (U, I, y), where y ∈ {0, 1} indicates whether 225

the user liked the candidate item. Specifically, the 226

item I is defined as I = (i, Ti, Pi), where i is the 227

item ID, Ti represents the title of the item, and Pi 228

denotes the item’s image. Similarly, the user U is 229

defined as U = (u, Iu), where u is the user ID and 230

Iu = {It}t=1,2,...,n denotes the set of user’s history 231

interactions, where n being the total number of 232

history interactions. 233

3.2 Model Architecture 234

Figure 2 illustrates the architecture of USER-LLM. 235

Our framework is composed of four key mod- 236

ules: Knowledge Enhancement, Visual Modal- 237

ity Alignment, User History Encoding Module 238

and Collaborative Information Alignment. The 239

prompt, as depicted in Figure 2, is designed to effec- 240

tively integrate the outputs from all these modules. 241

Specifically, the prompt contains five placeholders: 242

• <ItemDescription> refers to the knowledge- 243

enhanced description of the candidate item, 244

generated by the Knowledge Enhancement 245

Module. 246

• <Image> is the placeholder for the projected 247

visual embedding provided by the Visual 248

Modality Alignment Module. 249

• <HistoryInteractions> holds the embed- 250

ding produced by the User History Encoding 251

3



Modul, which condenses the user’s history in-252

teractions, including both textual and visual253

information.254

• <UserID> and <ItemID> serve as placehold-255

ers for the collaborative embeddings produced256

by the Collaborative Information Alignment257

Module.258

The following sections provide a detailed intro-259

duction to the model architecture.260

3.2.1 Knowledge Enhancement261

In our work, we choose advanced LLM to achieve262

knowledge enhancement. We employ FLAN-263

T5-XXL as an example to generate knowledge-264

enhanced descriptions with the original item titles,265

as these titles are often brief and contain limited266

information.267

Dk = FLAN-T5(prompt(Tk)) (1)268

where Tk represents the original title and Dk is269

the knowledge-enhanced description generated by270

FLAN-T5-XXL. The prompt we use can be found271

in the Appendix. This enhancement enriches the in-272

put with more meaningful and relevant information273

for the recommendation task.274

3.2.2 Visual Modality Alignment275

This module consists of two parts: the Visual Em-276

bedding and the Mapping Module.277

Visual Embedding. In our study, we leverage a278

pre-trained Vision Transformer model to extract im-279

age features. We choose a pre-trained dino_vits16280

as an example.281

pk = fϕ(Pk) (2)282

where Pk represents the image, fϕ(Pk) denotes283

the process of obtaining the visual representation284

through a pre-trained Vision Transformer model,285

and pk ∈ R1×d1 represents the visual representa-286

tion with dimension d1.287

Mapping Module. For visual embeddings pk,288

we apply a mapping module to project the visual289

feature into the LLM’s semantic space:290

epk
= Mφ(pk) (3)291

where epk
∈ R1×d3 represents the projected visual292

embedding in the LLM’s semantic space, and Mφ293

is the mapping module parameterized by φ.294

3.2.3 User History Encoding Module 295

We construct item-level embeddings by concatenat- 296

ing the embeddings of textual descriptions with 297

the visual projection of a given item. For a 298

user’s history interactions, these item representa- 299

tions are sequentially concatenated. To manage 300

the potentially lengthy representations, we com- 301

press them into a single token embedding, which 302

serves as a compact representation to replace the 303

<HistoryInteractions> placeholder. 304

For a single item, the process can be formalized 305

as follows: 306

sk = Tokenizer(Dk) edk
= Encoder(sk) (4) 307

where Dk represents the knowledge-enhanced de- 308

scription of the k-th item in the user’s interactions, 309

which is processed by the built-in tokenizer and 310

encoder of the LLM to obtain embeddings. sk is 311

the tokenization output, and edk
denotes the k-th 312

item’s description embeddings. 313

ek = Concatenate(edk
, epk

) (5) 314

where epk
represents the projected visual embed- 315

dings, and ek is the representation of the k-th item. 316

For the entire sequence of history interactions, 317

we concatenate the representations of all items as 318

follows: 319

ehis = Concatenate(e1, e2, ..., en) (6) 320

where ehis represents the concatenated embeddings 321

of the n items in the history interactions. 322

To handle the concatenated history interaction 323

embeddings ehis, we utilize a GRU (Gated Recur- 324

rent Unit) network to compress the embeddings. 325

The GRU network captures the temporal dependen- 326

cies across the items in the sequence, and the final 327

token embedding from the GRU’s output is used as 328

the final representation of the history interactions. 329

The process can be formalized as follows: 330

ht = Gβ(ehis) (7) 331

where the concatenated history interaction embed- 332

dings ehis are passed through a GRU network 333

with the parameter β. The last token embedding 334

ht ∈ R1×d3 is taken as the final embedding repre- 335

sentation of the history interactions. 336

3.2.4 Collaborative Information Alignment 337

In our work, we follow the CoLLM approach 338

(Zhang et al., 2023), which enhances the recom- 339

mendation performance by incorporating collabo- 340

rative filtering information. 341
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Figure 2: Model architecture overview of USER-LLM. The left part is the knowledge enhancement module, visual
modality alignment module and collaborative information module. The central part is the process of LLM-based
prediction. The right part is the specific details of the user history encoding module.

Collaborative Embedding. We use a pre-342

trained collaborative model to get the userID em-343

bedding and the itemID embedding.344

u = fψ(U, (U, I, y)) i = fψ(I, (U, I, y)) (8)345

where u, i ∈ R1×d2 denote the user and item em-346

beddings with dimension d2, and fψ(·) denotes347

the process of obtaining representations through348

a pre-trained collaborative model, such as Matrix349

Factorization (MF).350

Mapping Module. Similarly for collaborative351

embeddings u, i, the mapping module projects352

these embeddings into the LLM’s semantic space:353

eu = Mω(u) ei = Mω(i) (9)354

where eu, ei ∈ R1×d3 are the projected collabora-355

tive embeddings in the LLM’s semantic space, and356

Mω is the mapping module parameterized by ω.357

3.2.5 LLM Prediction358

After replacing the placeholders with embeddings,359

the final representation E′ is fed into the LLM for360

inference. LoRA fine-tuning is applied to adapt361

the model’s parameters. During LoRA fine-tuning,362

the original model parameters θorig are updated by363

adding low-rank matrices θLoRA, which represent364

the adaptation. The updated model parameters θ365

are the sum of the original parameters and the low-366

rank adaptation:367

θ = θorig + θLoRA (10)368

The final output of LLM can be expressed as fol-369

lows:370

ŷ = LLMθ(E
′) (11)371

where ŷ is the model’s predicted result. The train- 372

ing process minimizes the binary cross-entropy loss 373

L, which is calculated between the true label y and 374

the predicted probability ŷ: 375

L = − (y · log(ŷ) + (1− y) · log(1− ŷ)) (12) 376

3.3 Tuning Method 377

In our approach, we adopt a two-step fine-tuning 378

method. 379

Step 1: LoRA Fine-Tuning. In the first step, 380

we fine-tune the LLM with Lora. The optimization 381

process for fine-tuning the LoRA parameters is as 382

follows: 383

θ∗LoRA = arg min
θLoRA

L(y, ŷ) (13) 384

where L(y, ŷ) is the cross-entropy loss between 385

the true label y and the predicted output ŷ. The 386

fine-tuning process here only updates the LoRA pa- 387

rameters θLoRA, while the original LLM parameters 388

θorig remain frozen. 389

Step 2: Fine-Tuning the UHEM and the Map- 390

ping Modules. In the second step, we freeze the 391

LoRA parameters θLoRA and fine-tune the UHEM 392

and the mapping modules. The optimization for 393

fine-tuning the mapping and compression modules 394

can be written as follows: 395

Θ = argmin
Θ

L(y, ŷ) (14) 396

where Θ = (φ, ω, β), with φ representing the pa- 397

rameters of the visual mapping module, ω denoting 398

the parameters of the collaborative mapping mod- 399

ule, and β referring to the parameters of the GRU. 400
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dataset movie netflix
#User 605 803
#Item 2400 3219
#Positive 15107 21931
#Negative 5641 16808
#Poster 2381 3135
#Train 16598 30991
#Valid 2074 3873
#Test 2076 3875

Table 2: Statistics of the evaluation datasets.

4 Experiments401

4.1 Experimental Setup402

Datasets. We conduct experiments on two real-403

world recommendation datasets, and the statistical404

information of the processed dataset is available in405

Table 2.406

The Movies Dataset 2 is a large-scale dataset407

available on Kaggle, consisting of metadata about408

movies, ratings, URLs and user interactions. We se-409

lected 605 users with at least 5 history interactions.410

For each item, we crawled the corresponding poster411

from the URLs provided in the metadata. User rat-412

ings for the items range from 1 to 5. We classified413

ratings of 2.5 or higher as positive examples, and414

ratings lower than 2.5 as negative examples. In the415

following experiments, we will refer to The Movies416

Dataset as "movie".417

Netflix Prize Data (Wei et al., 2023) provided418

posters for The Netflix Prize dataset 3, which is a419

collection of movie ratings data made available as420

part of the Netflix Prize competition. The dataset421

includes user-item ratings, where users rate movies422

on a scale from 1 to 5. We selected 803 users who423

had at least 10 history interactions. Ratings of 4 or424

higher were classified as positive examples, while425

ratings below 4 were considered negative examples.426

In the following, we will refer to the Netflix Prize427

Data as "netflix".428

Evaluation Metrics. In our work, we primarily429

use two evaluation metrics: AUC and UAUC (Liu430

et al., 2021b). A higher AUC indicates a better-431

performing model in terms of its ability to dis-432

tinguish between positive and negative instances.433

UAUC essentially evaluates how well the model434

can recommend items for each individual user,435

2https://www.kaggle.com/datasets/rounakbanik/
the-movies-dataset

3https://www.kaggle.com/datasets/netflix-inc/
netflix-prize-data/data

rather than across the entire dataset. 436

Compared Methods. The compared methods 437

include both traditional recommendation models 438

and LLM-based recommendation algorithms. 439

• MF (Koren et al., 2009): MF is a classical 440

collaborative filtering technique widely used 441

for recommendation tasks. 442

• SASRec (Kang and McAuley, 2018): SAS- 443

Rec is a sequential recommendation model 444

that leverages the power of self-attention 445

mechanisms to capture user-item interactions 446

over time. 447

• LightGCN (He et al., 2020): LightGCN is 448

a graph-based recommendation model that 449

simplifies traditional graph convolutional net- 450

works by removing unnecessary components. 451

• TALLRec (Bao et al., 2023): TALLRec can 452

learn not only from user-item interactions but 453

also from the rich textual information embed- 454

ded in item titles by fine-tuning the LLM. 455

• CoLLM (Zhang et al., 2023): CoLLM com- 456

bines the traditional collaborative filtering 457

methods like Matrix Factorization with the 458

power of LLMs. 459

In our experiments, both TALLRec and CoLLM 460

are fine-tuned using Vicuna 7B with LoRA. 461

CoLLM utilizes a pre-trained MF model for collab- 462

orative filtering. 463

Implementation Details. Our results are based 464

on the average of five experimental runs. To adapt 465

the model for recommendation purposes, we fine- 466

tune Vicuna 7B with LoRA. For knowledge en- 467

hancement, we require the descriptions generated 468

by FLAN-T5-XXL. For collaborative embedding 469

outputted by MF, we set the embedding dimension 470

d2 to 256. Meanwhile, for visual embeddings, the 471

output dimension d1 of dino_vits16 is 384. For 472

the LLM-based methods, we use the AdamW opti- 473

mizer with a weight decay of 1e-3. For the LoRA 474

module, we follow the same configuration as in the 475

TALLRec paper, setting the rank (r) to 8, the scal- 476

ing factor (alpha) to 16, the dropout rate to 0.05, 477

and the target modules to "[q_proj, v_proj]". We 478

employ Binary Cross-Entropy (BCE) as the opti- 479

mization loss for all methods. For the movie and 480

netflix datasets, we set the number of history inter- 481

actions to 5 and 10, respectively. All experiments 482

are performed using a single NVIDIA A100 device 483

with 80GB of memory. 484
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Dataset movie netflix
Methods AUC AUC Imp. UAUC UAUC Imp. AUC AUC Imp. UAUC UAUC Imp.
MF 0.6781 19.2% 0.6055 13.2% 0.5730 17.9% 0.5711 16.1%
SASRec 0.7464 8.8% 0.6329 8.3% 0.6499 4.0% 0.6493 2.1%
LightGCN 0.7673 5.8% 0.6405 7.0% 0.6594 2.5% 0.6414 3.4%
TALLRec 0.7219 12.4% 0.5293 29.5% 0.6382 5.9% 0.6430 3.1%
CoLLM 0.8052 0.8% 0.6690 2.4% 0.6699 0.9% 0.6613 0.2%
USER-LLM 0.8117 - 0.6852 - 0.6757 - 0.6629 -

Table 3: Overall performance comparison. "Imp." represents the relative improvement of USER-LLM over the
baseline models. Bold text indicates the best results.

4.2 Performance Comparison485

Table 3 provides the overall results of the perfor-486

mance improvements observed across five baseline487

models evaluated on two distinct datasets. Drawing488

from the results, we have the following observa-489

tions:490

Firstly, our proposed USER-LLM model consis-491

tently outperforms all baseline methods across both492

datasets, achieving the highest performance with493

AUC scores of 0.8117 and 0.6757 on the movie and494

netflix datasets respectively. This demonstrates the495

robust generalization capability of our approach496

across different recommendation scenarios.497

Secondly, compared to traditional recommen-498

dation methods (MF, SASRec, and LightGCN),499

USER-LLM shows substantial improvements.500

Specifically, on the movie dataset, USER-LLM501

achieves relative improvements of 19.2%, 8.8%,502

and 5.8% on AUC over MF, SASRec, and Light-503

GCN respectively. Similar patterns are observed504

on the netflix dataset, with improvements of 17.9%,505

4.0%, and 2.5% respectively. This indicates506

that our USER-LLM framework effectively cap-507

tures user preferences better than conventional ap-508

proaches.509

Thirdly, when comparing with LLM-based rec-510

ommendation methods (TALLRec and CoLLM),511

USER-LLM still demonstrates superior perfor-512

mance. On the movie dataset, USER-LLM outper-513

forms TALLRec by 12.4% and CoLLM by 0.8% on514

AUC. The netflix dataset shows similar trends with515

improvements of 5.9% and 0.9% respectively. No-516

tably, LLM-based methods that solely rely on tex-517

tual information, such as TALLRec, fail to outper-518

form traditional models on several metrics, which519

highlights the limitations of depending exclusively520

on textual information.521

4.3 Ablation Study522

To thoroughly investigate the effectiveness of dif-523

ferent components in our USER-LLM framework,524

Dataset movie netflix
Methods AUC UAUC AUC UAUC
USER-LLM 0.8117 0.6852 0.6757 0.6629
w/o UHEM 0.7970 0.6613 0.6678 0.6580
w/o KE 0.8087 0.6707 0.6715 0.6607

Table 4: Results of the ablation studies over USER-
LLM. KE denotes Knowledge Enhancement and UHEM
stands for User History Encoding Module.

Dataset movie netflix
Scenario Methods AUC Imp. AUC Imp.

Short CoLLM-VA 0.8070 0.58% 0.6725 0.48%
USER-LLM 0.8117 - 0.6757 -

Long CoLLM-VA 0.8067 0.63% 0.6668 1.24%
USER-LLM 0.8118 - 0.6751 -

Table 5: Performance comparison on users with short
and long history interactions. "Imp." indicates the rel-
ative performance improvement of USER-LLM com-
pared to CoLLM-VA, which refers to incorporating Vi-
sual Alignment into CoLLM.

we conduct comprehensive ablation studies. The 525

results are presented in Tables 4, leading to several 526

important findings: 527

Comparing the full USER-LLM model with its 528

variants, we observe that our complete framework 529

achieves the best performance across both datasets. 530

When removing User History Embedding Module 531

(UHEM), we notice a performance degradation of 532

approximately 1.8% in AUC and 3.4% in UAUC 533

for the movie dataset, while netflix experiences 534

similar declines of 1.2% and 0.7% respectively. 535

This demonstrates the importance of UHEM in our 536

framework. 537

When the knowledge enhancement is removed 538

(without KE), performance decreases for both the 539

movie dataset and the Netflix dataset, indicat- 540

ing that knowledge enhancement is beneficial for 541

model performance. However, in comparison to 542

the ablation without UHEM, the reduction in per- 543

formance is less severe, suggesting that the UHEM 544

module is more crucial. 545
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Figure 3: Comparison of computational efficiency be-
tween USER-LLM and without UHEM. The left part
represents training time in Step 2, while the right part
shows inference time.

4.4 Performance on Users with Short and546

Long History Interactions547

To comprehensively evaluate our model’s capabil-548

ity in handling users with short and long history549

interactions, We constructed specialized test sets to550

assess performance under different history interac-551

tion lengths.552

For the short-history scenario, we set the number553

of history interactions to 5 and 10 for the movie and554

Netflix datasets, respectively. For the long-history555

scenario, we curated test sets comprising users with556

more extensive history interactions, specifically,557

users with at least 10 history interactions for the558

movie dataset and at least 20 for the Netflix dataset.559

Table 5 presents the comparative results across560

these scenarios. The performance of CoLLM-VA,561

which incorporated visual features into CoLLM,562

implies that overly extended history interactions563

could potentially degrade recommendation effec-564

tiveness. Notably, in the long-history scenario, our565

model maintains robust performance with an AUC566

of 0.8118 on the movie dataset and 0.6751 on the567

netflix dataset. These results empirically validate568

the effectiveness of our framework in adapting to569

varying interaction sequence lengths.570

4.5 Comparison of Computational Efficiency571

To evaluate computational efficiency, we analyze572

both training and inference time costs. Figure573

3 presents the performance comparison between574

USER-LLM and its variant without UHEM, which575

includes knowledge enhancement, visual features,576

and collaborative information but lacks encoded577

and compressed history interactions. During train-578

ing (left part), USER-LLM demonstrates superior579

efficiency on both datasets. For the movie dataset,580

USER-LLM requires 118 minutes compared to 137581

minutes without UHEM. This efficiency advantage582

is more pronounced on the Netflix dataset, where 583

USER-LLM completes training in 153 minutes ver- 584

sus 280 minutes without UHEM. 585

The inference time comparison (right part) 586

shows similar trends. USER-LLM achieves infer- 587

ence times of 107 seconds and 138 seconds on 588

movie and Netflix datasets respectively, while the 589

variant without UHEM requires 123 seconds and 590

299 seconds. 591

The difference in training and inference time be- 592

tween the two methods across different datasets 593

indicates that when history interactions are longer 594

(10 interactions for netflix versus 5 interactions for 595

movie), both training and inference time increase. 596

However, UHEM demonstrates greater improve- 597

ments in computational efficiency when handling 598

longer history interactions, as observed in the net- 599

flix dataset. 600

5 Conclusion 601

In this paper, we introduce USER-LLM, a novel 602

multimodal recommendation framework that lever- 603

ages the capabilities of LLMs to integrate multi- 604

modal data into the recommendation process. We 605

propose UHEM, a module for encoding and com- 606

pressing long sequences of history interactions with 607

both textual and visual features into a single token 608

representation in the semantic space of the LLM, 609

effectively facilitating LLMs in processing user 610

preferences. Our extensive experiments on two 611

real-world datasets demonstrate the effectiveness of 612

USER-LLM, achieving significant improvements 613

in key metrics compared to existing baselines. 614

6 Limitations 615

The current framework is primarily focused on tex- 616

tual and visual modalities. However, the absence 617

of other multimodal information, such as audio, 618

may restrict the model’s ability to fully grasp user 619

preferences. Our upcoming research will concen- 620

trate on integrating additional modalities to enrich 621

recommendation performance. Additionally, the 622

current work employs GRU as an example encoder 623

for UHEM, whose performance compared to other 624

models is yet to be explored. In the future, we 625

aim to delve into alternative encoding architectures, 626

such as transformer-based encoders, in order to 627

select the optimal model. 628
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Figure 4: Prompt of enhancing the title.

Figure 5: Prompt of enhancing the title.

Figure 6: Prompt of enhancing the title.

Figure 4 shows the original prompt of CoLLM.836

Figure 5 is the prompt that we use to incor-837

porate visual features into CoLLM. Figure 6838

shows the prompt of enhancing the title. The839

<TargetItemTitle> should be replaced by the840

item’s title.841
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