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ABSTRACT

Selecting a pretrained large language model (LLM) to fine-tune for a task-specific
dataset can be time-consuming and costly. With several candidate models avail-
able to choose from, varying in size, architecture, and pretraining data, finding the
best often involves extensive trial and error. In addition, the “best” model may
not necessarily be the one with the lowest test loss, as practical considerations
such as deployment costs, inference throughput, and limited search budgets might
also play crucial roles. To address this, we introduce LAMPS (LAnguage Model
Pareto Selection), a novel and open-source multi-objective AutoML framework
that quickly identifies near-Pareto-optimal pretrained LLMs for a task-specific
dataset. It is based on two key ideas: (1) landmark fine-tuning, which generates
early performance indicators of the candidate models, and (2) meta-learning via
reinforcement learning, which learns an effective selection policy from historical
performance data (a meta-dataset). Our results show that, on held-out datasets,
LAMPS reduces search time by an average of 73%71% compared to exhaustive
search, while still covering more than 99%98% of the optimal target space hyper-
volume.

1 INTRODUCTION

Fine-tuning a pretrained large language model (LLM) on task-specific datasets is currently the dom-
inant paradigm for achieving state-of-the-art performance in several natural language processing
(NLP) tasks (Radford et al., 2019), including question answering (Chowdhery et al., 2023), machine
translation (Raffel et al., 2020), summarization (Aghajanyan et al., 2020), and classification (Yang,
2019). However, different pretrained models yield varying downstream performance due to dif-
ferences in size, architecture, pretraining data, and other intrinsic factors. Therefore, as the set of
available pretrained models is already extensive, the important question arises: How can we effi-
ciently find the best model for a task-specific dataset?

A common practice in NLP is to select the largest available model, driven by the belief that larger
models invariably provide better performance (e.g., accuracy, F1, perplexity, cross-entropy, depend-
ing on the downstream task). Although this is generally true, several studies have shown that smaller
models are comparable to or even outperform larger ones for specialized tasks (Ouyang et al., 2022;
Sanh et al., 2020; Hoffmann et al., 2022; Wahba et al., 2023; DeepSeek-AI et al., 2025; Wang et al.,
2025). Moreover, in real-world scenarios, always choosing larger models inevitably leads to higher
operational costs and greater environmental impact. This underscores the need to incorporate addi-
tional factors into the model selection process beyond a single task-specific performance metric.

A multi-objective perspective is, then, essential to capture the broader spectrum of trade-offs that
practitioners face when selecting pretrained LLMs for fine-tuning. In the absence of better alter-
natives, practitioners may turn to exhaustive search. Although theoretically sound, this method
quickly becomes prohibitively expensive for a large number of candidate models, especially for tar-
get datasets with several million examples. As language models continue to expand in scale and
diversity, there is an increasing need for a principled, holistic, and efficient selection strategy, es-
pecially with the growing interest in specialized LLM-based AI agents (Gutowska, 2024; Ma et al.,
2024).

In this paper, we introduce LAMPS (LAnguage Model Pareto Selection), a novel and open-source
multi-objective AutoML framework for selecting LLMs to fine-tune on task-specific datasets. It
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integrates two complementary strategies: (1) landmark fine-tuning, which generates early perfor-
mance indicators for candidate models by evaluating them on incrementally larger subsets of the
training data; and (2) meta-learning via reinforcement learning, which leverages historical model
performance data on multiple datasets to learn how to efficiently allocate training resources for new
datasets. In other words, this process generates a policy that manages the selection and early stop-
ping of candidate models, adjusting its strategy based on both observed and historical performance
to efficiently discard low-potential models and prioritize promising ones.

Our main contributions are as follows: (i) Formulating the language model selection for fine-tuning
explicitly as a multi-objective optimization problem; (ii) Introducing LAMPS, a novel and open-
source AutoML framework combining landmark fine-tuning, meta-learning, and reinforcement
learning to rapidly identify near-Pareto-optimal language models for a new task-specific dataset.

The remainder of the paper is organized as follows. Section 2 reviews relevant related work. Sec-
tion 3 states the multi-objective optimization problem. The method is proposed in Section 5 and
Section 6 presents the experimental setup and main findings. We conclude in Section 7.

2 RELATED WORK

Selecting an appropriate base learner (model, algorithm, pipeline, etc.) for a given task has been
a long-standing research topic and is usually called model selection (Bozdogan, 1987; Maron &
Moore, 1993; McQuarrie & Tsai, 1998; Chapelle et al., 2002; Biem, 2003; Brazdil et al., 2003;
Zhao & Yu, 2006; Adankon & Cheriet, 2009). Among the different approaches available, meta-
learning has been a popular choice (Kalousis & Hilario, 2000; Fürnkranz et al., 2002; Brazdil &
Giraud-Carrier, 2018; Jain et al., 2024; de Amorim et al., 2025; Farhadi et al., 2025), mainly due
to its ability to transfer knowledge from prior learning experiences, reducing the cost of exploration
and improving sample efficiency.

In this section, we provide a brief overview of the related areas that form the foundation of our
LAMPS framework.

Pretrained Model Selection in Deep Learning Fine-tuning pretrained deep learning models for
specific downstream tasks has become the standard approach in both computer vision and natural
language processing. Compared to training from scratch, fine-tuning is far more efficient and re-
quires much less data than pretraining (Hepburn, 2018). For this reason, being able to select the
right pretrained model efficiently is becoming increasingly relevant due to the considerable compu-
tational costs and the rapid introduction of new models with varying sizes, architectures, training
data, and capabilities. To the best of our knowledge, the only work that explicitly addresses the
selection of LLMs for fine-tuning is by Monteiro et al. (2024), but it neither considers the multi-
objective aspects of the model selection nor adjusts its recommendations based on actual fine-tuning
learning curves.

Subsampling Landmarks A sampling landmark is a performance-based meta-feature, represent-
ing the performance of a particular model on samples of available data, providing a quick estimate
of its performance (Brazdil et al., 2022; Pfahringer et al., 2000) and, consequently, allowing indirect
characterization of the target dataset. One variant is called subsampling landmarks, which considers
a sequence of sample sizes in increasing order, effectively representing the early stages of the learn-
ing curve (Soares et al., 2001; Fürnkranz & Petrak, 2001). This is conceptually related to the scaling
laws observed in deep neural networks (Kaplan et al., 2020) and large language models (Zhang
et al., 2024), which describe the predictable relationship between model performance and, among
other factors, dataset size. Subsampling landmarks can thus be viewed as a localized and practi-
cal proxy for these scaling behaviors, enabling performance forecasting without requiring full-scale
training. Similar ideas have been applied for hyperparameter optimization (Domhan et al., 2015;
Jamieson & Talwalkar, 2016; Klein et al., 2017; Li et al., 2018), which use partial learning curves to
stop training poor configurations early. Such methods, however, remain inherently single-objective
and cannot directly address the multi-objective settings considered in this work.

Multi-Task and Meta-Reinforcement Learning Reinforcement learning is a powerful tool for
sequential decision-making problems, but it often struggles with generalization to new (unknown)
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tasks, requiring large amounts of data to readapt effectively. Two areas address these limita-
tions: multi-task reinforcement learning (MTRL) (Teh et al., 2017; Sodhani et al., 2021) and meta-
reinforcement learning (Meta-RL) (Finn et al., 2017; Nichol et al., 2018; Wang et al., 2024). MTRL
trains a single policy across a distribution of tasks, leveraging shared structure to improve general-
ization and learning efficiency. In contrast, Meta-RL focuses on learning a policy that can rapidly
adapt to new tasks using limited data, typically by encoding task-specific information into its in-
ternal state or parameters. In this work, we focus on MTRL, as our goal is to evaluate policies on
previously unseen datasets without further adaptation at test time.

Multi-Objective Reinforcement Learning Multi-objective reinforcement learning (MORL) ex-
tends standard RL by optimizing policies with respect to multiple, often conflicting objectives rather
than a single reward. Prior research on MORL, often combined with meta-learning, has largely
relied on scalarization or objective preferences, requiring weight sweeps across many preferences
to approximate the Pareto front (Lu et al., 2024; Wang et al., 2024; Liu & Qian, 2021; Chen et al.,
2019). Because each weight vector defines a different scalar objective, changing preferences gen-
erally requires another sweep (i.e., additional fine-tuning runs), so computation grows with each
revision. By contrast, we target Pareto coverage in a single, efficient run.

Hyperparameter Optimization Work in hyperparameter optimization (HPO), often overlapping
with neural architecture search (NAS), frequently leverages early training signals to discard low-
promising configurations and reduce computational cost (Falkner et al., 2018; Li et al., 2020; Awad
et al., 2021; Wistuba et al., 2022). Standard HPO methods, however, are fundamentally single-
objective, and extending them to multi-objective settings typically relies on scalarization. As shown
by Schmucker et al. (2021), scalarization-based adaptations usually perform significantly worse than
methods explicitly designed for multi-objective search, highlighting a key limitation of conventional
HPO techniques in scenarios requiring Pareto-efficient model selection.

3 PROBLEM STATEMENT

Consider a target dataset D and a set X of candidate pretrained language models to be fine-tuned.
Then, given n metrics of interest (objectives), the problem can be formulated as the following multi-
objective optimization problem:

min
x∈X

(
f1(x,D), . . . , fn(x,D)

)
s.t. fi(x,D) ≤ fmax

i for all i = 1, . . . , n,
(1)

where fi(x,D) represents the value of the i-th objective function after fine-tuning the pretrained
model x ∈ X on the task-specific dataset D, and fmax

i denotes an arbitrary upper bound for that
objective.

Common objectives may include final test loss, training time (cost), inference throughput, number
of model parameters, and resource usage (i.e., number of GPUs). It is very common that some
objectives conflict with each other. For example, achieving a lower test loss may require longer
training time or more GPUs. For this reason, there is typically no single solution that is optimal
across all objectives. Hence, the notion of optimality is based on Pareto-dominance, or simply
dominance, as defined below.
Definition 1 (Weak dominance). A solution x1 ∈ X weakly dominates another solution x2 ∈ X ,
denoted x1 ⪰ x2, if fi(x1,D) ≤ fi(x2,D) for all i ∈ {1, . . . , n}. That is, x1 is not worse than x2

in all objectives.
Definition 2 (Pareto-dominance). A solution x1 ∈ X dominates another solution x2 ∈ X , denoted
x1 ≻ x2, if fi(x1,D) ≤ fi(x2,D) for all i ∈ {1, . . . , n}, with at least one of these inequalities
holding strictly. That is, there is j ∈ {1, . . . , n} such that fj(x1,D) < fj(x2,D). In other words,
x1 dominates x2 if x1 is not worse than x2 in all objectives, but it is better in at least one of them.
Definition 3 (Pareto-optimal). A model x∗ ∈ X is Pareto-optimal if there is no other x ∈ X that
dominates x∗.

One way to evaluate and compare sets of candidate solutions is to use the hypervolume indica-
tor (Guerreiro et al., 2021; Emmerich et al., 2005), which quantifies the volume of the objec-
tive space weakly dominated by a set of solutions and bounded above by a given reference point
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r = [fmax
1 , . . . , fmax

n ]⊤. For any subset X ⊂ X , the hypervolume indicator is denoted as HD(X, r).
Intuitively, each solution in X defines a box in the objective space, with one corner at the objective
values of the solution and the opposite corner at the reference point r. It is defined formally as
follows:
Definition 4 (Hypervolume indicator). Given a set of points S ⊂ Rn and a reference point r ∈ Rn,
the hypervolume indicator of S is the measure of the region weakly dominated by S and bounded
above by r, i.e.,

H(S, r) = Λ

⋃
p∈S
p≤r

[p, r]

 ,

where Λ(·) denotes the Lebesgue measure and [p, r] = {q ∈ Rn | ∀i = 1, . . . , n : pi ≤ qi ≤ ri}
denotes the box delimited below by p ∈ S and above by r.

It has been shown that maximizing the hypervolume indicator is equivalent to finding the Pareto
optimal set (Guerreiro et al., 2021; Liu et al., 2019). Figure 1 illustrates this with a practical com-
parison, showing that the Pareto-optimal set has the highest hypervolume. Thus, the problem in (1)
can be reformulated as a single-objective problem as follows:

max
X⊂X

HD(X, r) (2)

Figure 1: Illustration of the hypervolume indica-
tor in a bi-objective setting, corresponding to the
shaded areas. Set X2 yields a larger hypervolume
than X1, which is closer to the true Pareto front.

A trivial solution would involve fine-tuning all
models on the target dataset (i.e., X = X ),
but this is computationally intractable. To en-
courage computational efficiency, we introduce
a regularization term penalizing the number of
selected pretrained models:

max
X⊂X

HD(X, r)− λ|X| (3)

where λ > 0 is a user-defined penalty factor. To
ensure that the optimal solution for the prob-
lem in Equation 3 contains exactly all Pareto-
optimal solutions, λ must satisfy the following
theorem, proved in Appendix H:
Theorem 1 (Condition on λ). The optimal so-
lution X∗ ⊂ X of problem 3 contains only and
exactly all Pareto-optimal solutions if and only
if:

0 < λ ≤ min
x∈X∗,X⊆X∗

∆HD(x | X), (4)

where ∆HD(x | X) denotes the incremental
hypervolume obtained by adding the Pareto-optimal solution x to the subset X ⊆ X∗.

In other words, the penalty λ must be smaller than or equal to the smallest incremental hypervolume
gained by including a new Pareto-optimal solution into the subset of selected solution candidates.
If this condition holds, the optimal solution set will include only all Pareto-optimal solutions. The
next sections present empirical strategies for quickly providing near-Pareto optimal solutions.

4 LANDMARK FINE-TUNING

Fine-tuning a pretrained model on a task-specific dataset is inevitable if one desires to evaluate its
true performance and determine its suitability for a given application. However, as discussed earlier,
evaluating every candidate model is computationally expensive. Prior work on hyperparameter op-
timization suggests that evaluating models for only a single epoch can already be a good proxy for
its final performance (Egele et al., 2023). However, training for just one epoch may still consume
significant resources, particularly for large models and datasets.

4
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Figure 2: Landmark fine-tuning on the 20 Newsgroups dataset using K = 8. Larger models start
off worse but eventually outperform smaller ones. Notably, models that improve quickly early on
tend to achieve lower final loss, suggesting that the initial segments of the learning curves can help
predict the overall performance.

To mitigate this inefficiency and allow for even earlier identification of unpromising candidates, we
propose landmark fine-tuning, a lightweight fine-tuning strategy based on subsampling landmarks
to obtain early estimates of objective values fi(x,D) for i ∈ {1 . . . n}.
Given that the target dataset D has a training and a test split, namely Dtrain and Dtest, the core
idea is to split Dtrain into K exponentially larger subsets D1 . . .DK . Each subset Dk contains⌊

1
2(K−k) |Dtrain|

⌋
samples, where Dk ⊂ Dk+1 for k = 1 . . .K − 1.

The process starts by fine-tuning a pretrained model on D1 for a single epoch and evaluating it on
the entire Dtest. Next, it continues the fine-tuning process on the subsequent (larger) subset D2,
repeating this process up to DK (100% of the training dataset). After that, we continue fine-tuning
the model for more epochs until convergence or other stop criterion.

Figure 2 shows a practical example of landmark fine-tuning with K = 8, depicting the learning
curves (test cross-entropy loss) of five different pretrained models fine-tuned on the 20 Newsgroups
dataset. Two non-English LLMs are included to illustrate the performance of less suitable models
on an English dataset. Notice that larger models start with higher losses than smaller ones, but
eventually overtake them, achieving lower final losses. In addition, among the larger models, those
that improve more quickly in the initial steps tend to achieve better final test loss. These observations
support the idea that early segments of the training curve can indeed be predictive of final loss, with
predictions becoming more accurate as additional curve segments are provided.

5 META-LEARNED RESOURCE ALLOCATION VIA REINFORCEMENT
LEARNING

Although landmark fine-tuning provides early performance estimates, it is still necessary to deter-
mine when to continue training a candidate model or not, based on partial information collected so
far. To address this, we train a reinforcement learning agent on a meta-dataset of historical fine-
tuning trajectories, covering a diverse set of pretrained LLMs and downstream tasks. The agent
learns to allocate training resources by tracking how performance evolves across landmark steps,
enabling fast and generalizable identification of near-Pareto-optimal models.

Observation space The observation space defines the information available to the RL agent at
each decision step. At each time step t, the RL agent observes, for every candidate model, the
objectives of interest (e.g., the elapsed training time and test loss), together with the number of
fine-tuning steps that each candidate has completed.
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Action space The action space specifies the set of decisions available to the RL agent at each
step. For each time step t, the agent selects an action at ∈ {1, . . . ,m}, representing the index of a
candidate pretrained model, where m is the total number of candidates. Each action corresponds to
allocating one additional fine-tuning step to the selected model. To improve exploration efficiency,
we apply invalid action masking for terminated models (Huang & Ontañón, 2022). A binary mask
specifies which models remain available for selection. The policy then samples only from this valid
subset by setting the probability of invalid actions to zero. This prevents wasted trials on completed
models and makes the exploration phase more efficient, as the agent can focus its decisions on
candidates that may still yield improvements.

Termination condition An episode corresponds to the full search process and terminates when all
Pareto-optimal models have been fully fine-tuned1, thereby achieving the maximum hypervolume.
This termination condition is only necessary during policy training, where the agent has access
to privileged information that indicates when the Pareto frontier has been fully explored. Thanks
to invalid action masking, the episode is guaranteed to terminate within a finite number of steps,
preventing the agent from getting stuck in infinite allocations to unproductive models.

Training algorithm For training the policy, we adopted a standard multi-task reinforcement learn-
ing setup, in which a single policy is optimized jointly across all training tasks.Distral (distill and
transfer learning), a framework for multi-task RL where the knowledge gained in one task is distilled
into a shared policy, then transferred to other tasks via regularization using a Kullback-Leibler (KL)
divergence. As the underlying optimizer, we adopted Proximal Policy Optimization (PPO) (Schul-
man et al., 2017), which provides stable on-policy updates and performs reliably in multi-task set-
tings.combining its stability with cross-task transfer from Distral.

Rewards The reward function links our multi-objective search problem to the policy’s learning
process. Let Xt ⊆ X be the set of fully fine-tuned models by time step t, and let T be the length of
the episode. Inspired by equation 3, we could initially define a sparse reward function

rt =

{
HD(Xt)− λ|Xt| if t = T

0 otherwise
, (5)

so that PPO would maximize

max
θ

Eρ∼πθ

[
T∑

t=0

γtrt

]
= Eρ∼πθ

[
HD(XT )− λ|XT |

]
, (6)

where ρ is a trajectory sampled using policy πθ, and γ is the discount factor.

Because an episode terminates only after all Pareto-optimal models have been fully fine-tuned,
HD(XT ) is identical for every trajectory and, therefore, constant. The objective thus collapses
to minimizing the expected number of models evaluated, i.e., E[−|XT |]. Notice that λ also vanishes
in this sparse reward setting, so we do not need to estimate it. Finally, to make the reward positive
and incentivize faster convergence to the optimal, we adopted the following sparse reward function:

rt =

{
|X\Xt|

∆t
if t = T

0 otherwise
, (7)

where ∆t is the cumulative wall-clock time spent up to time step t. In other words, we seek to
maximize the number of pretrained models not fully fine-tuned, divided by the time spent to find
all Pareto-optimal models. This produces a positive and well-scaled learning signal and preserves
the optimal solution of equation 3, as the highest reward is obtained when XT = X∗. Appendix D
presents additional evidence showing that the proposed reward signal in equation 7 leads PPO to
converge to the optimal solution during the training phase.

1A model is considered fully fine-tuned when its validation loss stops improving for a fixed number of
consecutive epochs.
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Algorithm 1: LAMPS Search Procedure

Input : Training dataset Dtrain, validation dataset Dval

Input : Policy πθ

Output: Set of non-dominated fine-tuned models X̂⋆

1 Initialize time step t← 0;
2 Initialize the set of selected models X ← ∅;

3 Evaluate candidate models on Dval and construct the initial state s0;

4 while search budget not exhausted do
5 Select action at ← argmaxa πθ(a | st) ;
6 Fine-tune model xat

for one additional fine-tuning step on Dtrain
k+1;

7 Evaluate updated performance on Dval;
8 if stopping criterion met for model xat

then
9 X ← X ∪ {xat

}
10 Update environment state st+1;
11 t← t+ 1;

12 X̂⋆ = {x ∈ X | ∄ y ∈ X : y ≻ x };

13 return X̂⋆;

Meta-dataset To meta-train a policy capable of efficiently identifying (or approximating) the
Pareto-optimal set for new task-specific datasets, we conducted a fine-tuning campaign and con-
structed a meta-dataset containing fully recorded learning curves of 70 pretrained LLMs, each land-
mark fine-tuned on multiple datasets (see Appendix E). This setup enables the agent to query arbi-
trary trajectories during its training, allowing the use of on-policy algorithms such as PPO.

Deployment (search procedure) Given a trained policy πθ and a target dataset D, the search
procedure of LAMPS is outlined in Algorithm 1. The process begins by constructing the initial
state s0 through zero-shot evaluation of all candidate models on the test split. It also serves as a
sanity check to ensure that each model is available, downloaded properly, and compatible with the
available hardware (and drivers) where the search will be performed. The policy then proceeds by
selecting and executing new actions until the search budget is exhausted. In the end, dominated
solutions are filtered out, so that only the best trade-offs are presented to the user.

6 EXPERIMENTS AND RESULTS

This section presents our experimental setup and main findings, demonstrating how well the trained
policy generalizes to held-out datasets. The experiments presented in this sectionAll experiments in
this paper were conducted on eight NVIDIA A100 (40 GB) GPUs.

6.1 EXPERIMENTAL SETUP

Pretrained LLMs We tested 70 different pretrained language models, spanning models from a
few million parameters (ALBERT) to eight billion parameters (DeepSeek-R1). These models cover
languages such as English, Japanese, Chinese, German, Dutch, Spanish, and many of which are
multilingual. The complete list of pretrained models can be found in Appendix F. We did not
considered any Mixture-of-Experts (MoE) models, as they are usually more challenging to fine-tune
and more prone to overfitting (Fedus et al., 2022; Shen et al., 2024).

Fine-tuning Setup We adopted full-model fine-tuning, which updates all parameters of the pre-
trained models. Although parameter-efficient methods such as LoRA (Hu et al., 2022) or layer-
freezing strategies can significantly reduce computational overhead, full fine-tuning often leads to
better downstream performance (Zhang et al., 2024; Shuttleworth et al., 2024). All models were
fine-tuned under identical hyperparameter settings. See Appendix C for details.
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Reinforcement Learning Setup We used the following libraries: Stable-Baselines3 (SB3) for
PPO implementation and invalid action masking (Raffin et al., 2021), and the Gymnasium library
for standardized environment definition (Towers et al., 2024).

Objectives For the optimization criteria, we focus primarily on two objectives: validation loss
(measured via cross-entropy) and model size (in number of parameters)training time required for
completing the fine-tuning. Validation loss is a widely accepted proxy for task-specific performance,
and model sizetraining time serves as a practical and measurable approximation for other metrics,
such as VRAMmodel size, inference throughput, deployment cost, etc. These choices are not fixed
for LAMPS, as the framework is objective-agnostic. Hence, any measurable objectives can be
used2, as long as the corresponding metrics are recorded in the meta-dataset. In Appendix B we
show additional results for machine translation, considering two and three objectives.

Reference point We set the reference point by taking the worst values of the chosen objectives
across the meta-dataset and adding a 10% margin. This reference point is used only during policy
training for computing the hypervolume. It is not required at test time when evaluating the trained
policy (Algorithm 1).

Baselines To our knowledge, no prior work has explored the same multi-objective optimization
problem. Hence, a direct comparison with other existing methods was not possible. For this reason,
We compared LAMPS with fourthree basic baselines:

• Blind: chooses actions at random. Its performance serves as a lower bound on performance
and represents the worst-case scenario.

• Oracle: assumes prior knowledge of the Pareto-optimal models for a given task. The
performance of this approach represents the best-case scenario. In practice, this information
is not available and serves only as a theoretical upper bound.

• ZigZag: a simple heuristic that sorts all candidate models by their number of parameters,
then selects them in an alternating order (from largest to smallest and vice versa) in an
attempt to quickly increase the covered hypervolume.

• MO-ASHA: multi-objective asynchronous successive halving, combined with ϵ-net explo-
ration strategy (Schmucker et al., 2021).

Evaluation Method To evaluate LAMPS’s generalization, we employed leave-one-out cross-
validation (Hastie et al., 2009), where one dataset is held exclusively for testing. For each fold,
the policy is trained on the remaining datasets for a fixed number of steps and then evaluated on the
held-out dataset. This allows us to assess how well the learned policy transfers to previously un-
seen tasks. To ensure robustness, this procedure was repeated five times, and we report the average
performance across these runs.

6.2 RESULTS

To evaluate the generalization of LAMPS to unseen datasets, Figure 3 reports the time required to
reach 99%98% of the optimal hypervolume in each held-out dataset. Recall that, in our problem
formulation, achieving optimal hypervolume corresponds to identifying all Pareto-optimal models.
For reference, we also include the time needed for an exhaustive search to complete. Across the
twelve held-out tasks, LAMPS achieves the best performance in nine datasets (75%), whereas MO-
ASHA wins only three (25%). Although MO-ASHA is the strongest baseline overall, its behavior
is markedly less stable: on several datasets, its search time approaches the BLIND baseline, which
never occurs with LAMPS.

To illustrate the practical implications, consider the Amazon dataset: running an exhaustive search
on a single A100 40GB NVIDIA GPU ($3.67 hourly) would cost $5,141.67, whereas LAMPS

2Choosing only highly correlated objectives collapses the Pareto frontier, effectively reducing a multi-
objective problem to a single-objective one. Since adding objectives increases search complexity, it is important
to select conflicting and informative objectives to make the multi-objective formulation meaningful.
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Figure 3: Mean time cost (in GPU hours) to reach 99%98% of the optimal hypervolume indicator
on held-out datasets. For reference, we also show the time to complete an exhaustive search. On
average, LAMPS reduces the search time by 73.6%71% compared to the exhaustive search, outper-
forming other feasible methods in 9 out of 12 datasets.and being comparable to the ORACLE in 7
out of 9 datasets.

reduces the cost to just $449.58 with only a 1% degradation in the hypervolume. The strongest
competing baseline, MO-ASHA, would cost $845.20 to reach the same performance.

Figure 4 provides further insight by tracking the progression of the average hypervolume over search
time. For comparability, hypervolume values are normalized by the maximum hypervolume, and we
report the hypervolume loss (1−normalized hypervolume) in logarithmic scale to highlight when the
policy reaches optimality. Although LAMPS does not always reach optimality in a timely manner
(compared to the other baselines), it clearly achieves near-optimal solutions quickly, eventually
faster than ORACLE. This ability to deliver high-quality solutions at a fraction of the cost makes
LAMPS the best trade-off between efficiency and solution quality, positioning it as a pragmatic and
strong tool for practitioners.

Moreover, in multi-objective applications, the end user must ultimately select a preferred solution
from the Pareto front, often revisiting trade-offs as requirements, constraints, or business priorities.
By quickly providing a diverse set of strong candidates, LAMPS not only accelerates the search,
but also enables practitioners to reconsider or change their choice later without having to undergo
another expensive search, offering both flexibility and long-term practical value.

7 CONCLUSION

We presented LAMPS, a novel and open-source AutoML framework for efficiently selecting pre-
trained language models for fine-tuning, framing it as a multi-objective optimization problem. By
combining landmark fine-tuning and meta-learning via reinforcement learning, LAMPS signifi-
cantly reduces search costs while maintaining near-optimal performance. Experiments show that
LAMPS reduces search time by 73%71% on average with minimal hypervolume degradation. To
our knowledge, this is the first framework to deliver Pareto-efficient selection and fine-tuning for
LLMs, establishing a new baseline for cost-aware AutoML and paving the way toward sustainable,
high-performance deployment of foundation models.
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A LAMPS: GETTING STARTED

This section demonstrates how to use LAMPS for a new, unseen dataset. The provided policy
was meta-trained across the datasets described in the main paper for a total of 10M45M steps,
minimizing the following objectives: validation loss and model sizetraining time. Before running
it, make sure to have sufficient disk space (at least 2TB) for intermediate storage of models and
checkpoints. In addition, some models hosted on Hugging Face may require license agreements or
explicit acceptance terms. Ensure that the necessary access is granted to your user account prior to
execution.

Listing 1: Running LAMPS for a new dataset.

# Create the Python environment
conda create -n lamps python=3.10
conda activate lamps

# Install dependencies
pip install -r requirements.txt

# Initiate the search using the trained policy
python eval.py --policy "policies/ALL-MTRL-30M_steps.zip" \

--dataset "stanfordnlp/imdb" \
--input-col "text" \
--target-col "label"

B ADDITIONAL EXPERIMENTS: MACHINE TRANSLATION

To further assess the generality, objective-agnosticism, and scalability of LAMPS, we conducted
additional experiments in the domain of machine translation. Using 4x NVIDIA A100 (40GB)
GPUs, we constructed a meta-dataset comprising 38 translation directions from the OPUS Books
corpus, a collection of copyright-free literary texts spanning a wide range of languages (Tiedemann,
2012).

B.1 TWO OBJECTIVES

Table 1 reports the time (in GPU hours) to recover 99.9% of the optimal hypervolume when op-
timizing for model size and evaluation loss. The results show that LAMPS transfers meta-learned
knowledge effectively to the majority of held-out task-specific datasets, being comparable to the
ORACLE in 32 out of 38 cases.

B.2 THREE OBJECTIVES

To evaluate how well LAMPS scales to higher-dimensional objective spaces, we extend our analysis
to a three-objective setting involving model size, evaluation loss, and BLEU score. As shown in
Table 2, the ORACLE requires substantially more time to recover 99.9% of the optimal hypervolume
than in the 2D case. This increase reflects the expansion of the Pareto frontier (now a surface) when
BLEU is added, making the search space more challenging to find or approximate.

Despite this increased complexity, LAMPS remains the strongest overall method by a large margin,
achieving the best search performance on 27 of 38 datasets (71%). Although MO-ASHA becomes
more competitive in this 3D setting, increasing its win rate to 10/38 (26%), its performance also
becomes significantly less stable: on several language pairs, it drops to the level of the BLIND base-
line, which has not been observed in the any of the 2D experiments. This widening performance gap
indicates that LAMPS scales more reliably and consistently as the dimensionality of the objective
space increases.
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Table 1: Time in GPU-hours to recover 99.9% of the optimal hypervolume on held-out datasets,
optimizing for two objectives: model size and evaluation loss.

Dataset Oracle LAMPS (ours) MO-ASHA ZigZag Blind Exhaustive

DE-EN 46.0±6.0 91.1±5.9 50.7±5.9 88.2 121.2±3.2 123.9
DE-ES 18.2±0.0 18.2±0.0 35.5±5.6 53.1 71.3±2.4 73.6
DE-FR 18.4±0.1 18.3±0.1 36.4±2.3 66.1 90.4±3.0 93.0
DE-IT 20.7±0.0 20.7±0.0 38.0±1.8 57.7 76.0±1.7 77.1
DE-NL 12.4±0.0 12.4±0.0 20.2±1.7 33.3 44.3±1.2 45.4
DE-PT 1.6±0.0 1.6±0.0 3.3±0.2 4.7 6.1±0.1 6.2
DE-RU 2.4±1.4 15.6±0.8 8.4±3.0 25.2 39.0±3.9 51.2
EN-ES 62.8±0.2 62.6±0.1 113.6±7.6 180.0 239.4±7.5 245.1
EN-FI 2.6±0.5 3.4±0.0 5.7±0.2 6.1 12.2±0.6 12.6
EN-FR 66.8±0.1 66.5±0.3 92.0±20.2 233.1 260.1±21.4 314.0
EN-IT 22.4±0.0 22.3±0.0 39.3±2.9 65.1 87.0±2.8 89.5
EN-NL 34.2±0.1 34.1±0.0 54.3±3.4 84.1 110.3±2.1 111.7
EN-NO 3.0±0.0 2.9±0.0 3.6±0.9 8.6 8.4±0.9 11.8
EN-PL 1.9±0.3 2.2±0.0 4.1±0.1 6.4 8.7±0.3 9.0
EN-PT 2.2±0.2 1.5±0.0 3.1±0.3 4.5 5.6±0.2 5.8
EN-RU 2.7±0.9 13.2±0.6 5.5±2.4 23.8 30.0±5.1 47.8
EN-SV 3.2±0.6 3.3±0.0 4.0±0.7 8.6 8.7±0.9 11.5
ES-FI 3.4±0.5 3.6±0.0 6.2±0.6 9.1 11.9±0.3 12.2
ES-FR 32.3±0.1 32.2±0.1 53.6±4.8 103.1 116.7±7.8 144.0
ES-IT 24.0±0.0 23.9±0.0 41.5±2.9 62.6 83.4±2.0 85.0
ES-NL 28.7±0.0 28.7±0.0 45.7±3.4 73.2 96.5±2.1 97.8
ES-NO 3.4±0.0 3.4±0.0 3.9±0.7 9.1 8.8±0.9 12.4
ES-PT 1.9±0.0 1.5±0.0 3.0±0.2 4.5 6.2±0.1 6.3
ES-RU 3.6±1.2 15.7±0.0 3.7±2.2 25.9 36.3±4.5 50.5
FI-FR 3.6±0.3 6.0±0.3 10.0±0.3 11.2 10.9±0.4 11.2
FI-NO 4.8±0.3 3.5±0.0 6.1±0.5 9.1 11.4±0.5 12.1
FI-PL 2.8±0.0 2.7±0.0 4.8±0.1 7.8 10.3±0.4 10.6
FR-IT 11.6±0.0 11.5±0.0 20.5±1.4 32.6 43.0±0.9 43.7
FR-NL 30.5±0.0 30.5±0.0 49.2±1.0 82.9 111.5±3.9 114.8
FR-NO 3.1±0.4 3.3±0.0 5.3±0.4 8.6 10.5±0.4 11.4
FR-PL 2.4±0.3 2.6±0.0 4.2±1.0 6.8 9.3±0.3 9.5
FR-PT 1.5±0.0 1.5±0.0 2.9±0.1 4.7 6.2±0.1 6.4
FR-RU 1.6±0.5 7.5±0.4 3.9±0.7 12.5 17.8±2.3 25.0
FR-SV 2.9±0.4 3.1±0.0 3.8±1.2 8.5 8.4±0.6 11.4
IT-NL 2.3±0.0 2.3±0.0 4.2±0.2 6.2 8.7±0.2 8.9
IT-PT 1.8±0.0 1.4±0.0 2.9±0.2 4.7 5.8±0.1 5.9
IT-RU 4.2±0.0 16.2±0.0 4.3±1.6 27.2 37.6±5.1 54.4
IT-SV 3.3±0.2 3.3±0.0 4.7±0.9 8.7 9.1±0.9 11.5

C HYPERPARAMETERS

C.1 FINE-TUNING

We used the Trainer module from Hugging Face’s transformers library for fine-tuning. The key
hyperparameters and settings were as follows:

• Optimizer: AdamW

• Learning rate: 7× 10−6

• Batch size: Automatically determined based on available hardware

• Early stopping patience: 3 epochs

• Mixed precision: Enabled (BF16)

All unspecified settings followed the default values defined in Trainer module.
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Table 2: Time in GPU-hours to recover 99.9% of the optimal hypervolume on held-out datasets,
optimizing for three objectives: model size, evaluation loss and BLEU score.

Dataset Oracle LAMPS (ours) MO-ASHA ZigZag Blind Exhaustive

DE-EN 63.0±3.7 88.9±1.1 94.5±4.5 88.4 120.6±3.3 123.9
DE-ES 30.6±5.1 51.4±0.6 49.0±6.9 53.1 71.4±2.6 73.6
DE-FR 26.0±2.7 62.7±3.2 34.5±5.6 66.1 90.4±2.8 93.0
DE-IT 33.9±1.9 51.8±1.1 54.6±13.3 57.7 76.5±0.9 77.1
DE-NL 29.0±2.5 32.1±0.6 44.0±0.8 45.3 44.9±0.7 45.4
DE-PT 3.7±0.1 4.2±0.1 6.2±0.0 6.2 6.2±0.1 6.2
DE-RU 13.3±1.4 36.1±0.1 17.3±2.4 29.8 49.9±1.4 51.2
EN-ES 62.9±0.1 94.6±35.2 99.3±8.8 180.1 241.7±4.2 245.1
EN-FI 7.3±0.3 8.3±0.1 11.9±0.2 12.6 12.2±0.3 12.6
EN-FR 77.6±3.1 222.4±0.0 126.5±8.9 240.1 309.1±6.3 314.0
EN-IT 23.9±0.0 62.7±2.5 39.5±2.2 65.1 87.0±2.5 89.5
EN-NL 61.4±3.0 81.9±1.3 104.0±4.7 84.1 109.6±2.2 111.7
EN-NO 5.8±0.4 8.9±0.5 11.2±0.1 11.8 11.5±0.3 11.8
EN-PL 4.7±0.0 5.8±0.4 8.7±0.3 9.0 8.7±0.3 9.0
EN-PT 3.2±0.0 3.6±0.0 5.3±1.0 4.5 5.7±0.1 5.8
EN-RU 10.6±0.1 28.4±7.4 17.7±2.9 23.8 46.4±1.5 47.8
EN-SV 5.2±0.3 7.7±0.0 11.0±0.1 11.5 10.2±0.6 11.5
ES-FI 6.8±0.8 8.8±0.3 11.6±0.0 12.2 11.6±0.4 12.2
ES-FR 86.5±1.2 99.4±2.0 143.8±0.0 143.7 142.6±2.2 144.0
ES-IT 43.6±0.7 59.1±1.8 81.8±1.6 64.3 84.4±0.9 85.0
ES-NL 66.5±2.2 81.9±4.9 97.7±0.0 97.7 96.9±1.3 97.8
ES-NO 6.7±0.7 7.5±0.3 12.4±0.0 12.4 11.9±0.5 12.4
ES-PT 3.9±0.1 3.8±0.2 6.3±0.0 6.3 6.3±0.1 6.3
ES-RU 12.5±3.4 34.5±1.1 19.0±0.9 25.9 48.8±1.4 50.5
FI-FR 5.1±0.0 7.0±0.5 10.6±0.1 11.2 10.9±0.3 11.2
FI-NO 8.6±0.3 8.4±0.1 12.1±0.0 12.1 11.9±0.3 12.1
FI-PL 6.6±0.2 7.1±0.4 10.6±0.0 10.6 10.3±0.4 10.6
FR-IT 18.7±0.0 30.5±0.3 20.1±1.5 32.6 42.9±1.1 43.7
FR-NL 74.3±5.2 80.2±1.0 114.8±0.0 114.6 113.9±1.6 114.8
FR-NO 6.2±0.7 6.7±0.4 11.4±0.0 11.4 11.2±0.2 11.4
FR-PL 5.6±0.2 5.9±0.0 9.3±0.2 9.5 9.3±0.2 9.5
FR-PT 3.6±0.2 4.3±0.1 6.4±0.0 6.4 6.3±0.1 6.4
FR-RU 7.3±0.1 13.3±3.1 10.8±0.2 18.6 24.5±0.7 25.0
FR-SV 7.2±0.4 7.7±0.1 11.4±0.0 11.4 11.1±0.3 11.4
IT-NL 6.1±0.2 6.6±0.5 8.9±0.0 8.9 8.8±0.1 8.9
IT-PT 3.8±0.1 4.2±0.1 5.7±0.3 5.9 5.9±0.0 5.9
IT-RU 13.0±1.5 35.3±1.8 11.6±2.7 27.2 50.6±2.6 54.4
IT-SV 6.9±0.4 7.6±0.1 11.5±0.0 11.5 11.2±0.4 11.5

C.2 PPO

For the PPO algorithm, we used the implementation from Stable Baselines3 library. The key hyper-
parameters and settings were as follows:

• Learning rate: 1× 10−4

• Minibatch size: 256
• Num. epochs: 15
• Discount (γ): 0.99
• GAE parameter (λ): 0.97
• Clip range: 0.20
• VF coeff. c1: 0.5
• Entropy coeff. c2: 0.23

All policies were trained using the Gymnasium environment API with invalid action masking.
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D EMPIRICAL CONVERGENCE ANALYSIS OF THE REWARDS

In order to provide additional evidence that the reward function defined in equation 7 effectively
guides the agent toward the optimal solution set, according to the original multi-objective problem
in equation 1, Figure 5 presents a typical reward evolution observed during training, for both single
task and multi-task RL (MTRL) using PPO .

For better interpretability and comparison, reward values are normalized such that a value of 3000
corresponds to the optimal reward, when the agent exclusively evaluates Pareto-optimal solutions,
achieving maximal hypervolume in minimal time. The learned policy exhibits a consistent upward
trend in reward, eventually converging to the optimal value.
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(b) Multi-task PPO.

Figure 5: Normalized reward progression during policy training using PPO algorithm. As expected,
multi-task RL takes longer, but it also converges to the optimal reward.

E DATASETS

This section describes the datasets used in our experiments.

E.1 TEXT CLASSIFICATION

Although the datasets described here correspond to text classification tasks, they cover different NLP
tasks, requiring different linguistic competencies, domain knowledge, and reasoning abilities. This
diversity makes it particularly challenging (and well-suited) for evaluating LAMPS. For datasets
without predefined training and validation splits, we reserve 20% of the data for validation.

TREC A classic question classification benchmark with 6 coarse-grained classes (e.g., abbrevi-
ation, entity, description and abstract concept, human being, location, and numeric value). Task:
Question classification. License: N/A (widely used academic benchmark; originally from UIUC).

Clickbait Contains news headlines labeled as either “clickbait” or “non-clickbait”. Derived from
social media posts (Chakraborty et al., 2016). Task: Binary classification. License: N/A.

20 Newsgroups A collection of 20, 000 newsgroup emails across 20 different topics (Lang, 1995).
Task: Topic classification. License: CC BY 4.0.

Amazon Reviews (cell-phone) Subset of the Amazon Product Review 2013 dataset, filtered for
the “Cell Phone reviews” category. Includes star ratings from 1 to 5 and contains 78, 930 reviews.
Task: Sentiment classification (5 classes). License: N/A (Amazon public data, widely used in
academia).
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Hate Speech and Offensive Language A corpus of over 24,000 tweets manually annotated as
hate speech, offensive but not hateful, or neither (Davidson et al., 2017). Task: Offensive language
classification (3 classes). License: MIT License.

MMLU Massive Multitask Language Understanding, a benchmark covering 57 diverse subject
areas from elementary math to law and philosophy. Task: Multi-choice question answering. License:
MIT License.

Patent Classification Consisting of 35, 000 Patent abstracts labeled with Cooperative Patent Clas-
sification (CPC) codes (9 classes). Task: Topic classification. License: Public domain (based on
USPTO data).

Emotion A dataset of 20, 000 Twitter messages in English annotated with one of six basic emo-
tions (anger, fear, joy, love, sadness, surprise). Task: Emotion classification. License: MIT License.

CoLA Corpus of Linguistic Acceptability, a dataset of English sentences labeled as grammati-
cally acceptable or unacceptable. Task: Acceptability classification (binary). License: Unknown
(academic benchmark from the GLUE suite).

SMS Spam A dataset of SMS messages labeled as spam or ham, widely used in spam detection
research. Task: Binary classification. License: Open for research use.

IMDB A large-scale movie review corpus containing 50K reviews labeled as positive or negative
(Maas et al., 2011). Task: Sentiment classification (binary). License: Permissive research license.

Financial Phrasebank A financial-domain sentiment dataset of short sentences annotated by mul-
tiple experts with high-agreement labels (positive, negative, neutral) (Malo et al., 2014). Task:
Financial sentiment analysis (3 classes). License: Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License.

E.2 MACHINE TRANSLATION

OPUS Books A collection of copyright-free texts translated into multiple languages (Tiedemann,
2012). License: Available for personal, educational and research use.

F PRETRAINED LANGUAGE MODELS

Below is the list of pretrained models used during the experiments of this paper:

F.1 TEXT CLASSIFICATION

BERT:

1. google-bert/bert-large-cased-whole-word-masking
2. google-bert/bert-large-uncased-whole-word-masking-fine-tuned-squad
3. google-bert/bert-large-uncased-whole-word-masking
4. google-bert/bert-large-uncased
5. google-bert/bert-large-cased-whole-word-masking-fine-tuned-squad
6. google-bert/bert-large-cased
7. google-bert/bert-base-uncased
8. google-bert/bert-base-multilingual-uncased
9. google-bert/bert-base-multilingual-cased

10. google-bert/bert-base-german-dbmdz-uncased
11. google-bert/bert-base-german-dbmdz-cased
12. google-bert/bert-base-german-cased
13. google-bert/bert-base-chinese
14. google-bert/bert-base-cased
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GPT:

1. openai-community/gpt2
2. openai-community/gpt2-medium
3. openai-community/gpt2-large
4. openai-community/gpt2-xl

RoBERTa:

1. FacebookAI/roberta-base
2. FacebookAI/roberta-large
3. FacebookAI/xlm-roberta-base
4. FacebookAI/xlm-roberta-large
5. FacebookAI/xlm-roberta-large-fine-tuned-conll02-dutch
6. FacebookAI/xlm-roberta-large-fine-tuned-conll02-spanish
7. FacebookAI/xlm-roberta-large-fine-tuned-conll03-english
8. FacebookAI/xlm-roberta-large-fine-tuned-conll03-german

OPT:

1. facebook/opt-125m
2. facebook/opt-350m
3. facebook/opt-1.3b
4. facebook/opt-2.7b
5. facebook/opt-6.7b

Llama:

1. meta-llama/Llama-3.2-1B
2. meta-llama/Llama-3.2-1B-Instruct
3. meta-llama/Llama-3.2-3B
4. meta-llama/Llama-3.1-8B

DistilBERT:

1. distilbert/distilbert-base-multilingual-cased
2. distilbert/distilbert-base-german-cased
3. distilbert/distilbert-base-uncased-distilled-squad
4. distilbert/distilbert-base-cased-distilled-squad
5. distilbert/distilbert-base-cased
6. distilbert/distilbert-base-uncased
7. distilbert/distilroberta-base
8. distilbert/distilgpt2

ALBERT:

1. albert/albert-xlarge-v2
2. albert/albert-xxlarge-v2
3. albert/albert-xxlarge-v1
4. albert/albert-xlarge-v1
5. albert/albert-large-v2
6. albert/albert-large-v1
7. albert/albert-base-v2
8. albert/albert-base-v1

LUKE:

1. studio-ousia/mluke-large
2. studio-ousia/mluke-large-lite
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3. studio-ousia/mluke-base-lite
4. studio-ousia/mluke-base
5. studio-ousia/luke-japanese-base
6. studio-ousia/luke-japanese-base-lite
7. studio-ousia/luke-japanese-large-lite
8. studio-ousia/luke-japanese-large
9. studio-ousia/luke-large-lite

10. studio-ousia/luke-base-lite
11. studio-ousia/luke-large
12. studio-ousia/luke-base

DeepSeek:

1. deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
2. deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
3. deepseek-ai/DeepSeek-R1-Distill-Llama-8B

Qwen:

1. Qwen/Qwen2.5-0.5B
2. Qwen/Qwen2.5-1.5B
3. Qwen/Qwen2.5-3B
4. Qwen/Qwen2.5-7B

F.2 MACHINE TRANSLATION

Helsinki-NLP:

1. Helsinki-NLP/opus-mt-en-sv
2. Helsinki-NLP/opus-mt-tc-bible-big-deu eng fra por spa-mul

mBART:

1. facebook/mbart-large-50
2. facebook/mbart-large-50-many-to-many-mmt
3. facebook/mbart-large-50-many-to-one-mmt
4. facebook/mbart-large-50-one-to-many-mmt
5. facebook/mbart-large-cc25
6. facebook/mbart-large-en-ro

T5:

1. google-t5/t5-3b
2. google-t5/t5-base
3. google-t5/t5-large
4. google-t5/t5-small
5. google/long-t5-local-large
6. google/long-t5-tglobal-xl

mT5:

1. google/mt5-base
2. google/mt5-large
3. google/mt5-small
4. google/mt5-xl

UMT5:

1. google/umt5-base
2. google/umt5-small
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G ADDING NEW MODELS TO THE META-DATASET

To incorporate a new model into the recommendation pool of LAMPS, it must first be integrated
into the meta-dataset. We refer to this process as model fingerprinting. Because LAMPS relies on
meta-learning, it is necessary to observe the actual performance of the new model on known datasets
before the system can generalize its behavior to unseen datasets. This integration requires two steps:

1. The new LLM must be fine-tuned on all datasets currently included in the meta-dataset,
with all relevant metrics recorded.

2. The reinforcement learning policy must be retrained on the expanded meta-dataset.

Currently, complete retraining is the recommended procedure for reliable integration of new models.
Although incremental training strategies could further reduce the computational overhead, the cost
of full retraining is already negligible compared to the fine-tuning runs required to expand the meta-
dataset.

The ideal number and diversity of datasets in the meta-dataset remains an open research question.
A smaller set of datasets facilitates the addition of new models, since each integration requires
fewer fine-tuning runs. Conversely, a larger and more diverse collection typically improves the
generalization ability of the learned policy to unseen tasks. How to balance these competing goals
remains an open challenge for future work.

H PROOF OF THEOREM 1

Proof. We first prove that the maximizer Xλ = argmaxX⊂X HD(X, r)−λ|X| is a subset of Pareto
solutions X∗, that is, for any λ > 0, Xλ ⊂ X∗. This is proved by contradiction. Suppose that there
exists a x ∈ Xλ that is not Pareto-optimal. Then, there exists a x∗ ∈ X dominating x such that
Λ([x, r]) < Λ([x∗, r]) holds. Denote X∗

λ the set obtained from Xλ by replacing x with x∗. By the
definition of HD, we know HD(Xλ, r) < HD(X

∗
λ, r). Then, it holds

HD(Xλ, r)− λ|Xλ| = HD(Xλ, r)− λ|X∗
λ| < HD(X

∗
λ, r)− λ|X∗

λ|.

This contradicts the assumption that Xλ is the maximizer of problem (3). Hence, for any λ > 0, we
know Xλ ⊂ X∗. Below we prove the if part and the only if part respectively. The if part: In this
part, we prove that if equation 4 holds, then the optimal solution X∗ ⊂ X of problem equation 3 con-
tains only and exactly all Pareto-optimal solutions. Let Xλ = argmaxX⊂X HD(X, r)−λ|X|. From
the above discussion we know Xλ ⊂ X∗. Suppose |X∗| − |Xλ| = s. We denote {xi1 , . . . , xis} ⊂
X∗ the subset of X∗ such that {xi1 , . . . , xis} ∩ Xλ = ∅. We define Xk = Xλ ∪ {xi1 , . . . , xik}
for all k ∈ {0, 1, . . . , s}. Then, we know Xs = X∗, X0 = Xλ and |Xk+1| − |Xk| = 1 for all
k ∈ {0, 1 . . . , s− 1}. Note that

HD(X
∗, r)− λ|X∗| −

(
HD(Xλ, r)− λ|Xλ|

)
= HD(X

∗, r)−HD(Xλ, r)− λ
(
|X∗| − |Xλ|

)
= HD(Xs, r)−HD(X0, r)− sλ

=

s∑
k=1

(
HD(Xk, r)−HD(Xk−1, r)− λ

)
≥

s∑
k=1

(
HD(Xk, r)−HD(Xk−1, r)− min

x∈X,X⊂X∗
∆HD(x|X)

)
≥ 0, (8)

where the last second inequality used equation 4 and the last inequality used the definition of
minx∈X,X⊂X∗ ∆HD(x|X). The only if part: To prove this part of the result, we only need
to show that there exists an optimization problem whose Pareto solution set X∗ with |X∗| = s
satisfies that for any sequence of subsets {Xi}si=1 satisfying Xi ⊂ X∗ and |Xi| = i, it holds

max
i∈{2,...,s}

HD(Xi, r)−HD(Xi−1, r) = min
x∈X,X⊂X∗

∆HD(x|X). (9)
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On the other hand, from equation 8 and the definition of X∗ we know

HD(X
∗, r)− λ|X∗| −

(
HD(Xλ, r)− λ|Xλ|

)
=

s∑
k=1

(
HD(Xk, r)−HD(Xk−1, r)

)
− sλ ≥ 0.

Hence, we have
∑s

k=1

(
HD(Xk, r) − HD(Xk−1, r)

)
≥ sλ. Combining this observation with

equation 9 together, we get
min

x∈X,X⊂X∗
∆HD(x|X) ≥ λ.

The proof is completed by noting that equation 9 always holds for arbitrary X∗ with |X∗| = 2.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models solely for surface-level editing: spelling and grammar correction,
and minor wording improvements. LLMs were not used for idea generation, experiment design,
data analysis, coding, mathematical derivations, or substantive content creation.
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