
Formal Explanations of Neural Network Policies for Planning

This paper is under review for IJCAI. Due to the space limit of the HAXP submission,
we are unable to take into account the comments of the IJCAI reviewers.

Abstract

Deep learning is increasingly used to learn policies for plan-1

ning problems. However, policies represented by neural net-2

works are difficult to interpret, verify and trust. Existing formal3

approaches to post-hoc explanations provide concise reasons4

for a single decision made by an ML model. However, under-5

standing planning policies requires explaining sequences of6

decisions. In this paper, we formulate the problem of finding7

explanations for the sequence of decisions recommended by8

a learnt policy in a given state. We show that, under certain9

assumptions, a minimal explanation for a sequence can be10

computed by solving a number of single decision explanation11

problems which is linear in the length of the sequence. We12

present experimental results of our implementation of this13

approach for ASNets policies for classical planning domains.14

1 Motivation15

Deep learning has become the method of choice in the areas16

of AI that focus on perception, and is rapidly gaining traction17

in other areas that have traditionally been strongholds of rea-18

soning, search, and combinatorial optimisation. In automated19

planning for instance, new work has emerged that uses deep20

learning to learn policies and heuristics in a wide range of21

planning domains. We refer the reader to (Toyer et al. 2018;22

Groshev et al. 2018; Garg, Bajpai, and Mausam 2020; Zhang23

and Geißer 2022; Karia and Srivastava 2022) for examples24

of work aiming at learning policies for planning domains,25

and to (Shen, Trevizan, and Thiébaux 2020; Ferber, Helmert,26

and Hoffmann 2020; Karia and Srivastava 2021; Ferber et al.27

2022; Gehring et al. 2022) as representatives of work on28

learning heuristics to guide the search for a plan.29

As the use of deep learning becomes more widespread in30

planning, the need to understand the solutions it produces31

becomes more pressing. Policies represented by neural net-32

works are notoriously opaque, and difficult to understand,33

verify, and trust (Toyer et al. 2020; Vinzent, Steinmetz, and34

Hoffmann 2022). At the minimum, one would like to be35

able to explain why a particular course of action was recom-36

mended by the policy – by identifying the properties of the37

state of the world prior to the execution of the policy which38

led to that recommendation – so as to help the user decide39

whether this recommendation should be trusted. This is the40

problem addressed in this paper.41
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1.1 Running Example 42

Throughout the paper, we use the example of Yvette who 43

needs to take a turnpike to get to her final destination where 44

she will spend a couple of weeks holidays. The turnpike 45

requires to either purchase a weekly pass online or pay with 46

cash at a toll gate. The pass is expensive and should not be 47

taken unless one expects to use the turnpike multiple times in 48

a single week. In our example, we assume that Yvette does 49

not currently have a pass or cash. Hence, the policy prescribes 50

to drive to an ATM, withdraw some money, drive to the toll 51

gate, pay the toll, and drive to the destination. 52

Why choose this course of action? Firstly because i) Yvette 53

is on the side of the turnpike opposite to her destination. 54

Indeed this course of action would work in any state in which 55

condition i) holds. However, this fails to explain why Yvette 56

should not directly go to the toll gate. This is because ii) she 57

has no pass and iii) she has no money. A correct explanation 58

should therefore include all three conditions. 59

If, instead, Yvette did hold a pass, then the policy would 60

skip the visit to the ATM. The explanation would then men- 61

tion the fact that Yvette holds a pass but would not mention 62

her lack of money as the policy would still have prescribed 63

this course of action even if she had money. 64

Explanations can also expose unexpected reasons for deci- 65

sions. Policies learnt using techniques such as deep learning 66

are not guaranteed to be rational or even valid. They can 67

also expose preferences or bias. For instance, the explanation 68

could include the proposition iv) it is sunny, which implicitly 69

means that the policy would have decided differently if it was 70

not. It is questionable whether iv) is relevant in this context 71

(maybe the idea is that you would not want to make a trip to 72

the ATM under the rain). The neural network could also be 73

prejudiced against certain groups of people and give different 74

advice depending on gender, race, etc. (Darwiche and Hirth 75

2020). 76

1.2 Existing Work 77

The nascent work on explainable planning has been focusing 78

on a different set of problems in a different setting, in partic- 79

ular on model reconciliation and contrastive explanations for 80

conventional model-based planning (Chakraborti, Sreedha- 81

ran, and Kambhampati 2020). In model reconciliation, the 82

aim is to generate explanations allowing a human user to 83

update his model of the planning problem to make it consis- 84

tent with the plan produced by a planning agent (Chakraborti 85

et al. 2017; Sreedharan, Chakraborti, and Kambhampati 2021; 86

Vasileiou et al. 2022). This latter question is concerned with 87



the properties of the planning model, rather than those of88

the policy. The second prominent line of research in the ex-89

plainable planning literature is the generation of contrastive90

explanations outlining why the planner chose a course of ac-91

tion over others within the space of possible plans (Eifler et al.92

2020; Kasenberg, Thielstrom, and Scheutz 2020; Krarup et al.93

2021). These works are concerned with understanding the94

space of possible decisions and their respective merits, rather95

than a particular policy.96

Therefore, as a starting point, we instead turn to prior97

work concerned with explaining deep learning and other data-98

driven models for classification tasks. Existing approaches99

typically either compute simpler models that locally approxi-100

mate the classifier’s behavior (Ribeiro, Singh, and Guestrin101

2016; Lundberg and Lee 2017), or identify sufficient condi-102

tions on the inputs that led the neural network to produce a103

particular output (Ribeiro, Singh, and Guestrin 2018; Ignatiev,104

Narodytska, and Marques-Silva 2019). One approach falling105

into the latter class is to compute abductive explanations that106

are minimal sufficient conditions for the decision. This has107

the advantage of providing formal guarantees of soundness108

and non-redundancy (Ignatiev, Narodytska, and Marques-109

Silva 2019; Darwiche and Hirth 2020; Marques-Silva and110

Ignatiev 2022).111

However, the above approaches are designed to explain a112

single decision, whereas understanding the recommendations113

of a planning policy requires explaining why a particular se-114

quence of decisions was made. The latter is more challenging115

as it involves reasoning about repeated applications of the116

policy network and about the successive changes they induce117

in the state of the world in which the policy is executed.118

1.3 Contribution119

In this paper, we extend abductive explanations from single120

to sequential decisions. We restrict ourselves to classical plan-121

ning policies and explanations of why the policy makes a122

certain sequence of decisions from a given state. We formally123

define explanations for a sequence of decisions, and show124

that, under certain assumptions, the problem of finding an125

explanation for the sequence can be decomposed into that126

of finding explanations for the individual decisions in the127

sequence. We provide an algorithm that exploits this decom-128

position to compute a minimal explanation for a sequence by129

making a number of consistency tests pertaining to individual130

decisions that is at most linear in the length of the sequence131

and in the number of state variables. We then discuss the im-132

plementation of our approach to explain policies represented133

by Action Schema Networks (ASNets) (Toyer et al. 2020)134

and report on its performance on sparse ASNets policies for135

classical planning domains. We conclude by discussing the136

limits of our work and possible extensions.137

2 Background138

We start by introducing the type of planning problems we139

consider, their representation, and our notations.140

Many of the recent work on deep learning for planning141

assume that the model of the planning domain is available142

to the learner. We assume that it is also available to the ex-143

plainer. Here we represent the classical planning instance144

I “ xX,A, gy under consideration using the SAS` formal- 145

ism (Bäckström and Nebel 1995). X is a set of finite-domain 146

state variables, where Dx is the domain of variable x. A 147

partial state (or partial valuation) s is an assignment of value 148

to a subset Xs Ď X of the variables such that srxs P Dx for 149

x P Xs. If Xs “ X then we say that s is a state; we write 150

S for the set of states. A proposition px “ vq is a partial 151

valuation assigning a value to a single variable. 152

The goal g is a partial state. Given two partial states s and 153

s1, we write s Ď s1 when srxs “ s1rxs for all x P Xs. A 154

completion of a partial state s is a state s1 such that s Ď s1. 155

The result of applying a partial valuation e to a partial state s 156

is the partial state s‘e overXsYXe defined by ps‘eqrxs “ 157

erxs if x P Xe and ps‘ eqrxs “ srxs if x P XszXe. We also 158

define the binary operator a over partial states: sa e is the 159

restriction of s to the variablesXszXe. For a variable x P Xs 160

will write s´ x as an abbreviation for sa px “ srxsq. 161

A is the set of actions. Action a P A is characterised by two 162

partial valuations representing its precondition prepaq and its 163

effect effpaq, respectively. We say that the action is applicable 164

in a state s P S iff prepaq Ď s and write Apsq Ď A for the 165

subset of actions applicable in s. Moreover, given a partial 166

state s and an action a, the progression of s through a is the 167

partial state prgapsq “ s‘ effpaq. Note that if s is a state and 168

a P Apsq then prgapsq is the state resulting from applying a 169

in s. 170

A policy for the planning instance is a function π : S ÞÑ A 171

mapping states to applicable actions, i.e. πpsq P Apsq. We 172

define the n-long trajectory τnπ psq induced by π from state s 173

as follows: τnπ psq “ s1
a1
ÝÑ . . .

an
ÝÝÑ sn`1 such that s1 “ s 174

and for all 0 ă i ď n, ai “ πpsiq and si`1 “ prgaipsiq. 175

Finally, the n-long sequence of actions recommended by π 176

in s is πnpsq “ a1, . . . , an, where the ais are the successive 177

actions in τnπ psq. 178

Given a planning instance I , a policy π for I , an initial 179

state s, and an integer n, our problem is to explain why 180

π recommended the sequence of actions πnpsq in s. The 181

explanation is meant to shed light on the appropriateness of 182

the recommendation. 183

The definition of explanations presented in the next section 184

relies on the fact that the policy will recommend the same 185

sequence of actions for certain states. To ensure that for any 186

state s and any length n, a policy can recommend an n-long 187

sequence from s, we make the following assumptions. First, 188

we assume that there is no terminal state, i.e., Apsq ‰ H for 189

all states. This is not a restriction as a default action could 190

be to do nothing. Second, we assume that A includes a spe- 191

cial goal action ag which has no effect and which is only 192

applicable in goal states (this will act as a marker of the goal 193

being reached), and that π is a total function on S such that 194

πpsq “ ag iff g Ď s. This is purely for convenience as poli- 195

cies generally check whether a goal state has been reached 196

before computing the next action. With these assumptions, 197

our theory applies uniformly to any trajectory, regardless of 198

whether it reaches the goal. 199

3 Explanations of Neural-Network Policies 200

An explanation of a decision (or sequence of decisions) in 201

a state is a condition on this state that led to this decision 202



being made: the decision was made because the condition was203

satisfied in this state. Said differently, the same decision would204

have been made in any other state that satisfies this condition.205

We could allow arbitrary conditions; e.g. the explanation206

could be the logical formula that describes exactly all the207

states in which this decision would be taken. However, such208

an explanation would not be very helpful. We aim instead for209

a ‘simple’ explanation, that is, an explanation that mentions210

as few propositions as possible and has the simple structure211

of a conjunction.212

We use a definition similar to that of (Marques-Silva and213

Ignatiev 2022). An explanation is a partial state that entails214

the decision; in logic, this is known as an implicant.215

Definition 1. An explanation of a single decision a for policy216

π is a partial state z such that π yields the same decision for217

all completions of z:218

@s P S. pz Ď sq ùñ πpsq “ a.

When s completes z, we say that z explains decision a in s.219

Our goal is not to explain just the first decision of the220

policy, but the complete sequence of decisions. While the first221

decision was based on the initial state, later decisions were222

made based on the later states. These states, however, are fully223

determined by the initial state and the actions taken. Using the224

planning model, it is therefore possible to trace the sufficient225

condition that led to the full sequence of actions back to the226

initial state.227

Definition 2. An explanation of the n-long sequence of deci-228

sions a1, . . . , an for a policy π is a partial state z such that229

π yields the same sequence of decisions for all completions230

of z:231

@s P S. pz Ď sq ùñ πnpsq “ a1, . . . , an.

Similarly as before, when s completes z, we say that z ex-232

plains the sequence of decisions a1, . . . , an in s. We note that233

if an “ ag is the goal action, then the sequence a1, . . . , an´1234

leads all completions of z to a goal state since π only recom-235

mends applicable actions and ag is only applicable in a goal236

state. The sequence of actions recommended by the policy237

might not lead to the goal; in this case, the loop of the infi-238

nite trajectory induced by the policy does not occur at a goal239

state. If one wants to compute an explanation for this infinite240

sequence, it is possible to use Definition 2 with n “ Lˆ |S|241

where L is the length of the loop and |S| the total number of242

states: if z explains πnpsq, then it explains πn`kpsq for all243

k ě 0. It may be possible to derive better bounds.244

It should be clear that there can be multiple explanations in245

the same state. For instance, in our running example, Yvette246

needs either a pass or some cash to take the turnpike. Both the247

fact that she has a pass and the fact that she has cash would be248

acceptable explanations for driving directly to the toll gate. In249

a state where she has a pass and cash, these two explanations250

are therefore suitable. We also note that explanations enjoy251

monotonic properties: if z is an explanation, any superset of252

z is an explanation. In particular, the complete initial state is253

an explanation, although hardly a useful one.254

Our goal is to compute the ‘best’ explanation for the se-255

quence of decisions made from our initial state. Specifically,256

we want to compute a subset-minimal explanation (akin to 257

a prime implicant in logic), i.e., an explanation z such that 258

no strict subset of z is an explanation. Minimal explanations 259

provide additional benefits: all variables mentioned in the ex- 260

planation are required, in the sense that if any were removed, 261

the partial state would no longer be an explanation. Therefore, 262

seeing a variable that should not be relevant in a minimal ex- 263

planation should raise questions about the policy, while this 264

phenomenon is unsurprising in a non-minimal explanation. 265

Definition 3. Given a policy π, an integer n, and a state s, 266

the minimal explanation problem is to find a minimal partial 267

state that explains the sequence of decisions πnpsq in s. 268

Ignatiev, Narodytska, and Marques-Silva (2019) have 269

shown how to compute explanations for single decisions. The 270

policy is translated into a set of constraints Cπ over a set of 271

variables that includes the state variables X which are the 272

input to the policy, and the variable y which represents its 273

output. The model ofCπ are exactly all the pairs xs, yy, s P S, 274

y “ πpsq. If π is represented by a neural network, Cπ can 275

be formulated as a set of mixed-integer programming or sat 276

modulo theory constraints (see Section 5). In order to decide 277

whether z is an explanation for a decision a, the constraints z 278

and d are added to the set where d ” py “ aq. If the result- 279

ing set of constraints is consistent, then there exists a state s1 280

that completes z and yields a decision different from a; hence, 281

z does not explain a. Otherwise, all states that complete z lead 282

to decision a, and z explains a: 283

z explains a ô  COpCπ ^ z^ dq.

Using monotonicity, it is then possible to greedily search 284

for a minimal explanation. This is done by starting with an 285

existing explanation z, for instance the initial state s, and 286

testing whether for some variable x P Xz, z1 :“ z ´ x 287

remains an explanation. If z1 indeed explains a, we replace 288

z with it; otherwise we move to the next variable x until we 289

tried to remove each variable. The same variable does not 290

need to be tested more than once. 291

4 Computing a Minimal Explanation 292

We now turn to the problem of computing a minimal expla- 293

nation for a sequence of decisions. 294

4.1 Naive Algorithm 295

For completeness, we first consider a naive algorithm, il- 296

lustrated in Figure 1. We expect that this algorithm will be 297

impractical, as it requires testing the consistency of constraint 298

sets involving too many variables. 299

Similarly as in the single decision case, the idea of the 300

algorithm is to build a single set of constraints which is con- 301

sistent iff a specified partial state does not explain a specified 302

sequence of decisions a1, . . . , an. Given an initial state s1, 303

we define the set of constraints Ca1,...,an which computes the 304

states s1
a1
ÝÑ s2

a2
ÝÑ . . .

an´1
ÝÝÝÑ sn reached by applying the 305

successive actions as well as the decisions yi “ πpsiq of the 306

policy in each of these states; we then compare the yis with 307



s1 s2 s3 . . . sn
prga1 prga2 prga3 prgan´1

y1 y2 y3 . . . yn

π π π π π

d
Figure 1: Graphical representation of Ca1,...,an , the set of
constraints used to determine whether a partial state is an
explanation. Nodes of the graph are sets of variables. Arrows
represent constraints defined such that the target variables are
a function of the source variables.

the ai:308

si`1 “ prgaipsiq @i P t1, . . . n´ 1u
yi “ πpsiq @i P t1, . . . nu
di “ pyi “ aiq @i P t1, . . . nu
d “

Źn
i“1 di

Finally, we add the constraints that s1 should complete z and309

that d should be false. The resulting set of constraints,310

Ca1,...,an ^
ľ

xPXz

ps1rxs “ zrxsq ^  d,

is consistent iff there exists a state s1 that completes z for311

which π generates a different sequence of decisions than312

the specified one; i.e., z does not explain a1, . . . , an. As313

before, one can then use a greedy algorithm to compute the314

explanation, starting with z “ s1 and progressively removing315

propositions.316

However in this set of constraints, the variables include n317

duplicates of the set of state variablesX , which are needed to318

represent the successive states s1 . . . sn, as well as the much319

larger set of variables required to represent n duplicates of the320

computation of π (via the constraints Cπ mentioned above).321

This makes testing consistency impractical for anything but322

very small sequences.323

4.2 Forward Decomposition324

We now show that it is possible to decompose the explanation325

so that it is easier to compute a single minimal explanation.326

This decomposition leads to an algorithm that need only solve327

a number of single decision explanation problems that is in328

the worst case linear in the length of the sequence. In the329

following ˝ is the function composition.330

Theorem 1. Let π be a policy, s be a state, and let τnπ psq “331

s1
a1
ÝÑ . . .

an
ÝÝÑ sn`1 be the n-long trajectory induced by π332

from s. Let z Ď s be a partial state and let z1, . . . , zn be a333

sequence of partial states defined by zi`1 “ prgai ˝ ¨ ¨ ¨ ˝334

prga1pzq. Then z explains πnpsq iff for all steps i, zi explains335

ai in si.336

The proof of Theorem 1 is in Appendix A. Theorem 1 gives337

us a clear procedure to verify whether a partial state z is an338

explanation, which is to compute the partial states zi resulting339

from applying the actions from z (note: zi`1 “ prgaipziq)340

and to verify whether each zi explains ai.341

Algorithm 1: Computing a minimal explanation for a se-
quence of decisions.

1: procedure MINIMALEXPLANATION(I, π, n, s)
2: s1

a1
ÝÑ . . .

an
ÝÝÑ sn`1 “ τnπ psq

3: z1 :“ s
4: for i P t1, . . . , n´ 1u do
5: zi`1 :“ prgaipziq
6: for x P X do
7: explains :“ True
8: for i P t1, . . . , nu do Ź Testing condition of Th. 1
9: zi :“ zi ´ x

10: if COpCπ ^ zi ^ diq then
11: explains :“ False
12: break
13: if x P Xeffpaiq

then
14: break Ź Can stop now (cf. Eq. 1)
15: if  explains then ŹMust reinsert x
16: for j P t1, . . . , iu do zj :“ zj ‘ px “ sjrxsq

17: return z1

In the greedy algorithm that we propose next, we use the 342

additional property: for any variable x, prgai ˝¨ ¨ ¨˝prga1pz´ 343

xq “ 344

#

prgai ˝ ¨ ¨ ¨ ˝ prga1pzq if x P Xeffpaiq Y ¨ ¨ ¨ YXeffpa1q
prgai ˝ ¨ ¨ ¨ ˝ prga1pzq ´ x otherwise.

(1)
The first case is useful because it means prgai ˝¨ ¨ ¨˝prga1pz´ 345

xq explains ai`1 iff prgai ˝ ¨ ¨ ¨ ˝ prga1pzq does; so as soon 346

as variable x appears in the effects of ai, we will be able 347

to ignore the condition of Theorem 1 that zk should explain 348

ak in sk for all k ą i. The second case is useful because it 349

makes it easy to compute prgai ˝ ¨ ¨ ¨ ˝ prga1pz ´ xq from 350

prgai ˝ ¨ ¨ ¨ ˝ prga1pzq. 351

Our procedure is described in Algorithm 1. In Lines 3–5, 352

the algorithm initialises the variables zi, mirroring the vari- 353

ables from Theorem 1 for explanation z :“ s. Line 6 starts 354

the loop in which each variable x is tentatively removed from 355

the explanation. The variable explains will record whether 356

z ´ x explains the sequence; until proven otherwise, it is 357

assumed it does. The inner loop from Line 8 verifies the con- 358

dition of Theorem 1. After zi is updated (using the second 359

case of Eq. 1), the condition is verified on Line 10. If zi does 360

not explain action ai, the inner loop is stopped; the loop from 361

Line 16 will then undo the update. Otherwise, the inner loop 362

moves to the next step i` 1 except if variable x is mentioned 363

in the effects of ai in which case the loop can be stopped 364

(first case of Eq. 1). 365

This algorithm requires Opnˆmq calls to the consistency 366

solver where n is the length of the sequence of m is the 367

number of state variables. 368

We illustrate this algorithm with our running exam- 369

ple. We assume the policy described in Fig. 2 is used. 370

The initial state, and so the initial explanation, is z “ 371

tFriday, Sunny,NoMoney,NoPass,AtHome, . . . u. 372

Algorithm 1 starts by removing Friday from the explana- 373

tion. The partial state is therefore z1 “ z11 “ z a tFridayu. 374



1. If has passed the TollGate, has a pass, or has some money,
drive towards the destination.

2. Otherwise, if not at the ATM, drive towards the ATM.
3. Otherwise, if it is sunny, withdraw money.
4. Otherwise, purchase a pass online.

Figure 2: The policy given to Yvette (without goal action ag)

We find that it is impossible to instantiate the only free375

variable (day of the week) in such a way that a decision376

different from DriveToATM is taken; in other words, z11377

explains the first decision. Progressing z11 gives us z12 “378

tSunny,NoMoney,NoPass,AtATM, . . . u. This partial state379

also explains the second decision (WithdrawMoney), and380

so on until the end of the sequence. Therefore, z1 explains381

the whole sequence.382

Then, Algorithm 1 removes Sunny from the explanation.383

The partial state is therefore z2 “ z21 “ z1atSunnyu. Partial384

state z2 explains the first decision (DriveToATM). Progress-385

ing z21 gives us z22 “ tNoMoney,NoPass,AtATM, . . . u. This386

time, we find that a state in which Yvette is at the ATM and387

the weather is rainy will yield a different decision (PurchaseP-388

ass) than the second decision (WithdrawMoney). Therefore,389

z2 does not explain the sequence and Sunny is added back to390

the explanation. Similarly, the algorithm would then try and391

fail to remove the 3 remaining propositions.392

5 Implementation393

We use Algorithm 1 to explain the recommendations of AS-394

Nets policies (Toyer et al. 2018) for classical planning do-395

mains. This requires implementing the consistency test in396

line 10 of the algorithm for ASNets, which have a complex397

structure and nonlinear activation functions. Our encoding,398

presented below, is supported by mixed integer programming399

(MIP) solvers such as Gurobi (Gurobi Optimization, LLC400

2023).401

5.1 ASNets402

ASNets are neural networks dedicated to planning, trained to403

produce policies that apply to any problem instance from a404

given planning domain modelled in (P)PDDL (Younes and405

Littman 2004). An ASNet consists ofL alternating action and406

proposition layers, beginning and ending with an action layer.407

In each action layer (resp. proposition layer), each action408

(resp. proposition) of the planning instance is represented409

by an action module (resp. proposition module). Modules in410

one layer are connected to related modules in the next layer,411

where a proposition p and action a are related, writtenRpa, pq412

iff p appears in the precondition or effect of a. This enables413

relevant information to be efficiently propagated through the414

network.415

ASNets is capable of learning policies that generalise to416

problem instances of different size from the same domain417

thanks to a weight sharing mechanism whereby the action418

(resp. proposition) modules from the same layer that are419

ground instances of the same action schema (resp. the same420

predicate), have the same weights. Here we omit details such421

as the use of skip connections, and the more complex defini- 422

tion of relatedness in (Toyer et al. 2020), but our implemen- 423

tation supports them. 424

Action Layers At layer l, excluding the 1st and last layer, 425

the module for action a takes as input a vector ula which is 426

constructed by enumerating the propositions p1, . . . , pM that 427

are related to a and concatenating the outputs ψl´1
p1 , . . . , ψl´1

pM 428

of these propositions’ modules from the previous layer. That 429

is ula “ rψ
l´1
p1 . . . ψl´1

pM s
T . The output of the module is the 430

vector φla “ fpW l
au
l
a` b

l
aq where W l

a is a weight matrix, bla 431

a bias vector, and f a nonlinearity. ASNets uses exponential 432

linear units (ELU), i.e. fpxq “ x if x ě 0 and ex ´ 1 other- 433

wise. Note that except for the final layer, the output vectors 434

of all modules in the network have the same dimension d. 435

Proposition Layers At layer l, the module for proposition 436

p takes as input a vector vlp constructed by enumerating the 437

actions that are related to the proposition, pooling from the 438

outputs of their modules at layer l if they share the same 439

action schema, and concatenating the results. That is vlp “ 440

rpoolptφla | oppaq “ o1 ^Rpa, pquq . . . poolptφla | oppaq “ 441

oS ^ Rpa, pquqsT , where pool represents max-pooling and 442

oppaq is the action schema of action a. Similarly as for action 443

modules, the output of the proposition module is the vector 444

ψlp “ fpW l
pv
l
p ` b

l
pq. 445

First Layer The input to an action module of the first layer 446

are the boolean values (0 or 1) of all its related propositions in 447

the current state, booleans indicating whether each of these 448

propositions is true in the goal, and a boolean indicating 449

whether the action is applicable. That is the input vector 450

is u1a “ rσ γ εsT where for all propositions p1, . . . , pM 451

related to the action, σ P t0, 1uM with σj “ 1 iff pj P s, 452

γ P t0, 1uM with γj “ 1 iff pj P g, and ε “ 1 iff a P Apsq. 453

Last Layer The output of an action module in the final 454

layer l “ L is a single logit φLa representing the unnormalised 455

probability that this action should be taken in the current state 456

s given as input to the network. When, as in this paper, a 457

deterministic policy is sought, the applicable action a P Apsq 458

with maximum φLa is selected by the policy. 459

5.2 MIP Encoding 460

The main purpose of the encoding is to answer consistency 461

queries where only some of the inputs to the ASNets are 462

given, and its output is constrained. The key decision vari- 463

ables in the MIP model fall into 3 categories: variables rep- 464

resenting the network inputs, its outputs, and the action and 465

proposition modules. As is well known from other MIP en- 466

codings of neural networks, one also needs auxiliary vari- 467

ables to encode the activation functions. Parameters include 468

the weight matrices and bias vectors described above. The 469

MIP has no objective function since we are only testing for 470

consistency. 471

Policy Inputs We encode each element in the input of an 472

ASNet (current state propositions, goal proposition, applica- 473

ble actions) using the following binary variables: Sp is true 474

iff proposition p is true in the current state, Gp is true iff 475

proposition p is in the goal, and Ea is true iff a is applicable 476



in the current state. Since a key feature of the MIP model477

is to allow specifying partial states as input, we must add478

constraints capturing when actions are applicable: action a is479

applicable when Sp “ 1 for all p P prepaq.480

Ea ď Sp @a P A,@p P prepaq
Ea ě 1´ |prepaq| `

ř

pPprepaq Sp @a P A

Moreover, ASNets only supports boolean propositions p ”481

px “ vq for x P X and v P Dx. To encode SAS` state482

variables, we add mutex constraints ensuring that at most one483

proposition assigning a value to a given variable can be true.484

ř

vPDx
Spx“vq ď 1 @x P X

ř

vPDx
Gpx“vq ď 1 @x P X

Action Modules To encode action modules, we define the485

MIP variables pPAClaqi representing the ith element of the486

pre-activation vector (omitting the non-linearity f ) of the487

module for action a in layer l, and pOUTlaqi representing488

the ith element of the output vector φla of this module. For489

an action a with related propositions p1, . . . , pM , we have,490

taking j “ pm´ 1qd` k491

pPAClaqi “
M
ÿ

m“1

d
ÿ

k“1

pW l
aqi,j ¨ pOUTl´1

pm qk ` pb
l
aqi for l ą 1

pPAC1
aqi “

M
ÿ

m“1

pW 1
a qi,m ¨ Spm ` pW

1
a qi,M`m ¨Gpm`

pW 1
a qi,2M`1 ¨ Ea ` pb

1
aqi

Proposition Modules Similarly, we define pPAClpqi and492

pOUTlpqi for each proposition p. For proposition modules we493

additionally need variables pPOOLlp,oqi to represent the ith494

element of the pooled vector over actions related to p sharing495

the action schema o. If related actions belong to S action496

schemas o1, . . . oS , we have, taking j “ ps´ 1qd` k497

pPAClpqi “
S

ÿ

s“1

d
ÿ

k“1

pW l
pqi,j ¨ pPOOLlp,osqk ` pb

l
pqi

pPOOLlp,oqi “maxptpOUTlaqi | oppaq “ o^Rpa, pquq

Activations The encoding of f as the ELU function is very498

similar to the encoding of ReLU in MIP (Fischetti and Jo499

2018) and is the same for proposition and action modules.500

Given a proposition or action b we define the auxiliary vari-501

ables ptlbqi and pslbqi to store the positive and negative com-502

ponent of the variable pPAClbqi, respectively, and pzlbqi which503

is an indicator variable for the sign of pPAClbqi. This leads to504

the following constraints (note that Gurobi linearises the ex-505

ponential, see (Gurobi Optimization, LLC 2023, p584-586))506

pzlbqi “ 1 ùñ ptlbqi ď 0, pzlbqi “ 0 ùñ pslbqi ď 0
ptlbqi ě 0, pslbqi ě 0

pPAClbqi “ pt
l
bqi ´ ps

l
bqi, pOUTlbqi “ pt

l
bqi ` e

´pslbqi ´ 1

Policy Output The chosen action is the applicable action507

a maximising the output φLa of the final layer’s modules.508

We enforce this using the following additional variables: Ca509

which is a binary variable true iff action a is chosen, and510

V max which is the maximal value of φLa for applicable 511

actions. 512
ř

aPA Ca “ 1 @a P A
Ca “ 1 ùñ Ea “ 1 @a P A
Ea “ 1 ùñ V max ě OUTLa @a P A
Ca “ 1 ùñ V max ď OUTLa @a P A

Temporary Constraints The above constraints constitute 513

the encoding Cπ of the ASNet policy and only needs to be 514

built once for a given sets X and A of state variables and 515

actions. For each consistency query involving a planning 516

instance I “ xX,A, gy, an action decision a, and a candidate 517

explanation z, it suffices to temporarily add the following 518

constraints to set g as the goal, prevent a to be chosen by the 519

policy, and look for a possible completion s of z. 520

Ca “ 0
Spx“zrxsq “ 1 @x P Xz

Gpx“grxsq “ 1 @x P Xg
ř

vPDx
Gpx“vq “ 0 @x P XzXg

6 Experimental Results 521

The goal of our experiments is to evaluate how effective 522

abductive explanations are in explaining why a policy rec- 523

ommends a particular course of actions. In particular, we 524

consider what percentage of the input appears in the minimal 525

explanation. The smaller the explanation, the easier it is for a 526

human to interpret. We also focus on the scalability of Algo- 527

rithm 1 as the size of the policy increases. For reproducibility, 528

the repository [omitted for anonymity] provides our algo- 529

rithm implementation, benchmarks used, learnt policies, and 530

the scripts to learn them and run the experiments. 531

6.1 Experimental Setup 532

Hardware All experiments were run on a machine with an 533

AMD Ryzen Threadripper 3990X CPU, with 64 cores/128 534

threads, a clock speed of 2.9 GHz base, 4.3 GHz max boost, 535

and 128 GB of memory. 536

MIP Configuration Gurobi is the MIP solver used for 537

the experiments. To ensure the model is accurate enough 538

for our experiments, we set the integer feasibility tolerance 539

(IntFeasTol) to 10´9 and the error for function approx- 540

imations (FuncPieceError) to 10´6. Presolve is also 541

turned off, as our use case is assessing the feasibility of 542

the model rather than finding an optimal value. If a single 543

call to MIP exceeded 2 hours, the algorithm was terminated 544

for the particular problem instance. 545

ASNet policies We took all deterministic domains and 546

training instances from the code distributions of (Toyer et al. 547

2020) and (Steinmetz et al. 2022). We ran the script provided 548

by Toyer using 1 core, an 8h timeout, and 64gb of memory 549

to learn, from these instances, two-layer (i.e. two proposi- 550

tion layers and three action layers) sparse policies with skip 551

connections and without heuristic inputs. As described in 552

(Toyer et al. 2020, Sec. 6), the `1-regulariser used to train 553

sparse policies results in many modules having coefficient 554

so close to zero that they are insignificant to the output of 555

the network and are prunned by the ASNet sparsification 556

procedure. Hence, these modules do not appear in the MIP 557

model, making a simpler model to solve. 558
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Figure 3: Experimental Results

6.2 Domains and Problems559

We kept the domains for which the learnt policy could solve560

any problem within 150 execution steps, amongst a test set561

of 20 randomly generated small problems for that domain.562

This resulted in 4 policies for the domains of Blocksworld,563

Gripper, n-Puzzle, and Parking, which are present in the564

ASNet distribution. In order to evaluate our approach, we565

randomly generated, for each of these domains, the set of566

problems described below. Explanations were only computed567

for problems where the policy was able to reach the goal.568

Blocksworld Experiments were conducted on 10 problems569

of each size (2, 3, 4 and 5 blocks) for a total of 40 problems.570

The policy was able to solve 90% of problems, and out of571

these, 83% had explanations computed within the time limit.572

Gripper Explanations were computed using problems with573

2 rooms and 1-15 balls. The policy was able to solve all574

problems, and explanations could be computed for 93%.575

n-Puzzle Experiments were conducted on all solvable and576

non-trivial combinations of 3-puzzle problems (on a 2x2577

grid). Out of these 11 problems, the policy was correctly able578

to solve all instances and compute all explanations.579

Parking Problems in the parking domain comprised of 2580

cars and 2-4 curbs. Out of the 22 total problems, the pol-581

icy reached the goal for 55% and we were able to compute582

explanations for 92% of these within the time limit.583

6.3 Results584

Figure 3 shows the size of the explanation as a percentage585

of the input (left-hand side graph), the average number of586

calls to the MIP solver per proposition and step in the plan587

(middle graph), and the CPU time of the algorithm (on a log588

scale) as a function of the size of the neural network policy589

for the problem (right-hand side graph).590

Size of Explanations In all domains except Gripper, Algo-591

rithm 1 produces an explanation smaller than the ASNet’s592

input. For n-Puzzle, its small explanations are due to many593

static propositions. The grid in the problem is defined as594

propositions listing the neighbours of each position. As this595

grid is static, this will not appear in the explanation. On596

the other hand, no non-trivial explanations were found for597

Gripper, as the position of the gripper, the location of the598

balls, and whether or not the gripper is holding anything are 599

all relevant to the plan. Propositions stating which ball the 600

gripper is carrying are not necessary, but they have already 601

been removed from the MIP model due to the sparsity of the 602

network. 603

Number of Consistency Tests. The average number of 604

calls to the MIP solver per proposition and per action in the 605

plan is always between 0 and 1. It represents how long propo- 606

sitions survive through the inner loop before being reinstated 607

in the explanation or definitely ruled out. When that number 608

is low, the algorithm quickly decides to keep the propositions 609

in the explanation because of satisfiable consistency tests, or 610

quickly decides to remove them because they are achieved by 611

the effect of one of the first few actions. Gripper falls in the 612

former camp: propositions are quickly ruled out as needing 613

to be kept by the consistency test. n-puzzle falls in the latter 614

camp: propositions quickly get removed from the explanation. 615

In Blocksworld, and especially Parking, many propositions 616

are removed from the explanation, but this happens much 617

later in the sequence. 618

Scalability Much of the runtime is spent in MIP consis- 619

tency tests. As can be seen from the size of problems we 620

can address, reasoning about neural networks using MIP is a 621

serious bottleneck. Across domains, we have observed that, 622

as input propositions progressively get removed from the 623

explanation, consistency tests generally become harder. This 624

is because proving inconsistency generally becomes harder, 625

whilst consistency becomes easier, but proving consistency 626

leads us to reinsert the proposition, so the algorithm never 627

reaches the easy region of the consistent side of the phase 628

boundary. This behaviour is common with optimisation prob- 629

lems. 630

There are differences in scalability amongst the domains 631

however. Gripper scaled the best, which is due to each it- 632

eration of the inner loop terminating early, as can be seen 633

from the right-hand graph of Figure 3. The many MIP calls to 634

the experiments for Parking problems increased the runtime 635

significantly, resulting in the timeout of larger problems. 636

7 Conclusion, Limits, and Future Work 637

We have extended abductive explanations to sequences of 638

decisions recommended by neural network policies. Our de- 639



composition approach to find a single minimal explanation640

incurs no overahead in comparison with the single decision641

case, once the length of the sequence is factored in.642

Our approach makes a number of limiting assumptions643

which we discuss here together with possible extensions and644

future work. The first assumption is the availability of a645

symbolic planning model. An interesting avenue for future646

work is the extension of this approach to learnt planning647

models, also represented as neural networks.648

We also assumed that actions have simple, unconditional649

effects. Conditional effects can be handled by our naive algo-650

rithm. However, Theorem 1 does not allow for them because651

it is impossible to apply conditional effects to a partial state.652

We assumed that we have no background knowledge, i.e.653

constraints that restrict the set of possible states (Thiébaux,654

Hoffmann, and Nebel 2005; Rintanen 2017). These can655

greatly simplify explanations. Yu et al. (2023) showed that in656

the single decision case, adding the background knowledge657

K as another conjunct to the consistency tests performed658

by the greedy algorithm preserves the minimality of expla-659

nations. This property carries over to the multiple decision660

case and our naive algorithm. However, our decomposition661

algorithm may not return a minimal explanation with this aug-662

mented consistency test, because the set of reachable states663

cannot be represented by intersections of partial states with664

K. We leave an efficient treatment of conditional effects and665

background knowledge for future work.666

We have assumed that the actions and the policy are deter-667

ministic. Handling stochastic actions and/or policies could668

be achieved by generating explanations that pertain to a fi-669

nite tree of actions reachable with non-zero probability from670

the initial state. This would require applying progression671

and consistency tests at each branch of the tree. Handling672

stochastic policies would additionally require a more com-673

plex consistency test, as the decision d becomes a probability674

distribution over actions and the test must establish that it is675

not possible for the policy to return a different distribution.676

Another avenue for future work is the generation of all677

(set-inclusion) minimal explanations and of minimum car-678

dinality explanations. This is likely to require a different679

decomposition of the problem than the one presented here,680

as well as effective heuristics to guide search. Finally, even681

in the single decision case, methods for computing formal682

explanations of neural networks suffer from scalability issues683

due to the expensive consistency test. New breakthroughs in684

MIP and SMT methods for analysing neural networks, new685

problem abstractions, and approximate explanation methods686

will be needed for these approaches to flourish.687
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Bäckström, C.; and Nebel, B. 1995. Complexity Results for689

SAS+ Planning. Comput. Intell., 11: 625–656.690

Chakraborti, T.; Sreedharan, S.; and Kambhampati, S. 2020.691

The Emerging Landscape of Explainable Automated Plan-692

ning & Decision Making. In Proc. IJCAI, 4803–4811.693

Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-694

pati, S. 2017. Plan Explanations as Model Reconciliation:695

Moving Beyond Explanation as Soliloquy. In Proc. IJCAI,696

156–163.697

Darwiche, A.; and Hirth, A. 2020. On the Reasons Behind 698

Decisions. In Proc. ECAI, 712–720. 699

Eifler, R.; Steinmetz, M.; Torralba, Á.; and Hoffmann, J. 700
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A Proof of Theorem 1792

Before proving Theorem 1, we need one additional definition.793

Given a partial state s and an action a such that for all x P794

Xs XXeffpaq. srxs “ effpaqrxs, we define the regression of795

s through a as the smallest partial state in which applying796

action a leads to a state satisfying s:797

regapsq “ psa effpaqq ‘ prepaq

Lemma 1. If z explains a1, . . . , an, then for all i P798

t0, . . . , n´ 1u, zi`1 :“ prgai ˝ ¨ ¨ ¨ ˝ prga1pzq explains ai`1.799

We shall prove that for all i P t0, . . . , n´ 1u, for all state800

si`1 that completes zi`1, there exists si such that i) ai is801

applicable in si, ii) si
ai
ÝÑ si`1 is a transition of the planning802

domain, and iii) si completes zi. By recursion, we end up803

with a state s1 that completes z1 such that s1
a1
ÝÑ s2

a2
ÝÑ804

. . .
ai
ÝÑ si`1. Since s1 completes z1 “ z, we know that805

πnps1q “ a1, . . . , an. Therefore, πpsi`1q “ ai`1. As this is 806

true for all si`1, zi`1 explains ai`1. 807

The proof will be done by induction, i.e., we assume that it 808

is true for i. (Base case for i “ 0 is trivially true as z1 “ z.) 809

Given our state si`1, we choose si as one of the states that 810

complete zi ‘ regaipsi`1q, That is 811

si Ě zi ‘ ppsi`1 a effpaiqq ‘ prepaiqq . (2)

We prove that si satisfies the three points above. 812

i) Eq. 2 clearly enforces the precondition prepaiq, so ai is 813

indeed applicable in si. 814

ii) We note 815

prgaipsiq Ě psi`1 a effpaiqq ‘ prepaiq ‘ effpaiq.

which can be simplified by 816

prgaipsiq Ě si`1 ‘ prepaiq ‘ effpaiq. (3)

We also note that all variables x P X are specified in 817

prgaipsiq, regardless of the choice of si. Consider any vari- 818

able x; does prgaipsiqrxs “ si`1rxs hold? 819

• If x P Xeffpaiq, then prgaipsiqrxs “ effaipxq and, since 820

zi`1 “ prgaipziq, si`1rxs “ zi`1rxs “ effaipxq. 821

• If x P XprepaiqzXeffpaiq, then prgaipsiqrxs “ sipxq “ 822

prepaiqrxs since ai does not modify x and ai is applicable 823

in si. 824

Furthermore, we note that si`1 completes prga1pziq and 825

that zirxs “ prepaiqrxs since (by induction) zi explains 826

ai; therefore si`1rxs “ prepaiqrxs “ prgaipsiqrxs. 827

• If x P XzXprepaiqzXeffpaiq, then prgaipsiqrxs “ 828

sirxs “ si`1rxs. 829

So prga1psiq “ si`1. 830

iii) Does si complete zi? Since, by construction, si completes 831

zi ‘ ppsi`1 a effpaiqq ‘ prepaiqq, the question is whether 832

some assignment in the right operand of zi ‘ contradicts an 833

assignment in si. We know that zi explains ai, so preai will 834

not contradict zi. State si`1 completes zi`1 which differs 835

with zi only on effpaiq. However, the expression above re- 836

moves effpaiq from si`1, so that the right operand does not 837

map any variable to a different value than zi. 838

Lemma 2. Let z be a partial state, and for all i P t0, . . . , n´ 839

1u, zi`1 :“ prgai ˝ ¨ ¨ ¨ ˝ prga1pzq. If for all i, zi explains ai, 840

then z explains a1, . . . , an. 841

Assume that zi explains ai for all i. Let s be a state com- 842

pleting z and let s1
a1
ÝÑ . . .

an
ÝÝÑ sn be the trajectory obtained 843

by applying the sequence of actions a1, . . . , an from s1 “ s. 844

We shall prove πpsiq “ ai for all i (which proves that π 845

recommends a1, . . . , an); this is proven by showing that si 846

completes zi. 847

The state si`1 is defined as prgai ˝ ¨ ¨ ¨ ˝ prga1psq. Do we 848

have @x P Xzi`1
. si`1rxs “ zi`1rxs? Let j be the largest 849

index in t1, . . . , iu such that x P Xeffpajq. If j does not 850

exist, then si`1rxs “ srxs “ zrxs “ zi`1rxs. Otherwise, 851

si`1rxs “ effpajqrxs “ zi`1rxs. Either way, the variables 852

of si`1 map to the same value as those of zi`1. Therefore, 853

zi`1 explains ai`1 in si`1. 854

Theorem 1 is a consequence of Lemmas 1 and Lemma 2. 855


