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Abstract

We study causal, low-latency, sequential video compression when the output is
subjected to both a mean squared-error (MSE) distortion loss as well as a perception
loss to target realism. Motivated by prior approaches, we consider two different
perception loss functions (PLFs). The first, PLF-JD, considers the joint distribution
(JD) of all the video frames up to the current one, while the second metric, PLF-
FMD, considers the framewise marginal distributions (FMD) between the source
and reconstruction. Using information theoretic analysis and deep-learning based
experiments, we demonstrate that the choice of PLF can have a significant effect on
the reconstruction, especially at low-bit rates. In particular, while the reconstruction
based on PLF-JD can better preserve the temporal correlation across frames, it
also imposes a significant penalty in distortion compared to PLF-FMD and further
makes it more difficult to recover from errors made in the earlier output frames.
Although the choice of PLF decisively affects reconstruction quality, we also
demonstrate that it may not be essential to commit to a particular PLF during
encoding and the choice of PLF can be delegated to the decoder. In particular,
encoded representations generated by training a system to minimize the MSE
(without requiring either PLF) can be near universal and can generate close to
optimal reconstructions for either choice of PLF at the decoder. We validate
our results using (one-shot) information-theoretic analysis, detailed study of the
rate-distortion-perception tradeoff of the Gauss-Markov source model as well as
deep-learning based experiments on moving MNIST and KTH datasets. Code will
be available at https://github.com/truongbuu/URDP_flow.

1 Introduction

There is an increasing demand for video compression algorithms that are able to generate visually
pleasing videos at low bitrates. Most of the current video codecs use distortion measures such
as PSNR [1–4], MSE and MS-SSIM [3–5] to generate reconstructions which tend to be blurry at
extremely low bitrates. In recent years, there has been a growing interest (see e.g., [6–10]) in using
deep generative models to make the reconstructions look more realistic. Such techniques introduce an
additional perception loss function that measures a distance between distributions of the source and
reconstruction, with perfect perception corresponding requiring that the two distributions be identical.
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(a) Encoders and decoders for T=3 frames.
(b) Effects of different PLFs on reconstructions for Moving
MNIST and KTH datasets (best view in the monitor).

(c) Error permanence on the UVG dataset. The PLF-JD reconstructions propagate the flaws in the color tone
from the previous I-frame reconstruction while the decoder based on PLF-FMD is able to fix these flaws.

Figure 1: (a) Proposed System Model (b, c) Error permanence phenomenon under different PLFs. High fidelity
but incorrect I-frame reconstruction propagates the error to subsequent P-frames in 0-PLF-JD reconstructions.
The MMSE and 0-PLF-FMD reconstructions do not have this problem.

In compression systems, improving realism comes at the price of increasing distortion. The work of
Blau and Michaeli [11] establishes the theoretical rate-distortion-perception (RDP) tradeoff which has
also been validated in [12–15]. Furthermore universal encoded representations were proposed in [16]
where the representation is fixed at the encoder and the decoder is adapted to achieve a performance
near the optimal RDP tradeoff curve. The extension of these works to video compression involves
many challenges. First, the compression system must not only account for spatial redundancy as
in image compression, but also exploit the temporal redundancy across video frames, making the
system design more complex. Secondly, unlike the case of image compression, there may be no
clear choice of the perception loss function (PLF). Indeed, some prior works [7] consider PLF that
preserves framewise marginal distribution (PLF-FMD) between the source and reconstruction, while
other works consider joint distribution (PLF-JD) across multiple frames [9].

As illustrated in Fig. 1a, we study causal, low-latency, sequential video compression when the output
is subjected to both a mean squared-error (MSE) distortion loss and either a PLF-JD or PLF-FMD
metric for perception loss. Our contributions are as follows:

• Differences in reconstruction quality based on the choice of PLF: We demonstrate that the choice
of PLF can decisively affect the reconstruction quality especially in the low bit-rate regime. We
approximately characterize the operational RDP region on a per-frame basis for a first-order
Markov source model and analyze the special case of Gauss-Markov sources in detail. We show
that there is a significant penalty in distortion when using PLF-JD in the low-rate regime. On
the experimental side, we demonstrate that while PLF-JD preserves better temporal consistency
across video frames, it suffers from the permanence of error phenomenon in which the mistakes
in reconstructions propogate to future frames. On the other hand, the PLF-FMD metric shows

2



more capability in correcting mistakes across frames (see Fig. 1b for visualizations involving
three-frame videos). On the other hand, if the first frame is transmitted at high bit-rate, we
demonstrate that PLF-JD performs better than PLF-FMD.

• Universality of minimum mean square error (MMSE) reconstructions: We demonstrate that
encoded representations generated from an encoder trained to minimize MSE reconstruction
(without considering any PLF) suffice to produce close-to-optimal reconstructions for either choice
of PLF. For general sources, we show that when using PLF-FMD, the MMSE reconstruction
can be transformed to a reconstruction satisfying perfect perceptual quality by increasing the
distortion at most by a factor of two. While a similar result does not hold for PLF-JD in general,
it is satisfied for a special class of encoders which operate in the low-rate regime. For the
Gauss-Markov source model we demonstrate exact universality i.e., encoded representation for
the MMSE reconstruction can be adapted to achieve any other reconstruction in the RDP region.
We also use deep learning based experiments to provide experimental evidence of these results.
We note that the above notion of universal encoded representations based on MSE reconstruction
can have significant advantages in practice. First, although the reconstructions associated with
different choices of PLFs can be visually very different, universal representations delegate the
choice of PLF to the decoder rather than requiring the encoder to commit to a specific PLF.
Secondly, the universality of MMSE reconstructions is far more significant in the context of
learned video compression. Given that perceptual reconstruction frequently generates novel details
not present in the source frame, compressing motion flow vectors between the current frame
and the prior perceptual reconstruction necessitates a higher bit allocation compared to utilizing
the MMSE reconstruction. Hence, a recommended approach is to train end-to-end compression
exclusively to minimize MSE and use our proposed scheme to achieve a (near-optimal) tradeoff
between the distortion and perception losses as desired by the user.

The study of RDP region for learned video compression is considerably more challenging than the
study of RDP function for a single frame in prior works ( [11, 16]). This is because of the fact that
the RDP region (for first-order Markov sources) involves a tradeoff between the compression rate
assigned to each frame imposing a Markov structure on the reconstructions. For Gaussian sources,
the proof of optimality of Gaussian reconstructions does not use the closed form of the RDP region
due to its complexity. As a result, the study of RDP region for various operating regimes is quite
more involved. Furthermore, for the proof of universality, one has to consider the achievability of
the entire RDP region as opposed to just points on the boundary of RDP function in [16]. Finally
the results on the fixed-encoder setup are more general than prior works ( [11, 16]) that required a
characterization of the information RDP region, which we do not require.

Related Work

Perceptual Lossy Video Compression. Distribution preserving framework using Generative Ad-
versarial Networks (GAN) has been widely adopted as a surrogate metric for perceptual quality
in image [12, 17–19] and, recently, video compression [6–9]. Unlike image compression, where
the choice of PLF is straightforward, there is currently no agreed-upon objective for lossy video
compression. For instance, DVC-P [6] employs PLF-FMD to improve the visual quality per frame,
ignoring the temporal coherence. Similarly, Mentzer et al. [7] utilize the per-frame metric with a
conditional GAN model, and found no significant differences when using a GAN objective with
multiple frames. Other works target temporal consistency by incorporating multiple frames in their
GAN objective. This includes the work by Yang et al. [8], where every two consecutive frames are
included, and by Veerabadran et al. [9], where they employ the PLF-JD metric in a non-causal setting.
Unlike previous works, we study the impact of two different perception objectives, i.e. PLF-JD
and PLF-FMD, on reconstructions in the causal setting, presenting theoretical properties that are
verified by deep learning experiments. For the PLF-JD metric, we demonstrate the error permanence
phenomenon, which, unlike the error propagation issue [18, 20], cannot be resolved by increasing the
code rate assigned to the P frames.

RDP Tradeoff and Principle of Universality. Targeting the distribution preserving framework in lossy
image compression, several theoretical works have shown the presence of RDP tradeoff [11, 21–23],
where perfect perception comes at a cost of increasing distortion by at most a factor of 2. Furthermore,
an encoder that generates universal representations exists [16, 24, 25], which enables the decoder to
freely choose the level of distortion-perception tradeoff it desires. Our work explores these avenues
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in the context of causal video compression. As discussed previously we show that the MMSE
representation can be used as a universal representation for both perception metrics which has several
advantages in the context of video compression..

2 System Model

Let (X1, . . . , XT ) ∈ X1 × . . . × XT be T frames in a video (with each Xi ⊆ Rd) distributed
according to PX1...XT

. The frames are available for encoding sequentially; X1 is available first, then
X2 arrives, followed by X3 and so on. There is a shared randomness K ∈ K which is available at
all encoders and decoders. The following (possibly stochastic) mappings define the encoding and
decoding functions:

fj : X1 × . . .×Xj ×K → Mj , j = 1, . . . , T, (1)

gj : M1 ×M2 × . . .×Mj ×K → X̂j , (2)

where Mj ∈ {0, 1}⋆ denotes the set of (variable-length) messages assigned by the jth encoder and
X̂j ⊆ Rd is the j-th reconstruction alphabet (see Fig. 1a). Let PX̂1...X̂T |X1...XT

be the conditional
distribution of the reconstructed video given the original video which is basically determined by the
mappings {fj}Tj=1 and {gj}Tj=1. The above setting is a one-shot setup as only a single source sample
is compressed at a time. For each frame j, a distortion metric is imposed on the output, which we
assume throughout is the mean squared-error (MSE) function i.e. d(xj , x̂j) = ||x− x̂j ||2, which is
commonly used in many applications. From a perceptual point of view, for given probability distribu-
tions PX1...Xj

and PX̂1...X̂j
on the original and reconstructed frame j, let ϕj(PX1...Xj

, PX̂1...X̂j
) be

the perception function capturing the difference between them. Note that the function ϕj is defined
based on the joint distribution of all first j frames. We call this metric as perception loss function
based on joint distribution (PLF-JD). Note that when ϕj(PX1...Xj , PX̂1...X̂j

) = 0, we have:

PX1...Xj
= PX̂1...X̂j

, j = 1, . . . , T. (3)

We refer to this case as zero-perception loss function based on joint distribution (0-PLF-JD). Alterna-
tively, the perception loss function based on framewise marginal distribution (PLF-FMD) is denoted
by ξj(PXj , PX̂j

) and is based on only the marginal distribution of the j-th frame. In particular, note
that 0-PLF-FMD implies that PXj = PX̂j

for each j. In most of the paper, for simplicity of presenta-
tion, we provide some of our results for T = 3 frames. In that case, we use the shorthand notation X
to denote the tuple (X1, X2, X3), e.g., M := (M1,M2,M3), D := (D1, D2, D3), f := (f1, f2, f3).

3 Distortion Analysis for a Fixed Encoder and Zero-perception Loss

In this section, we assume that the encoding functions f are fixed, but the decoding functions g can
be optimized to generate different reconstructions. Equivalently, the distribution PM|XK :=1{M =

f(X,K)} is fixed, while by varying the reconstruction distribution PX̂|MK :=1{X̂ = g(M,K)}, one

attains different reconstructions X̂, where 1{.} denotes the indicator function. Furthermore defining
Dj :=EP [∥Xj − X̂j∥2], we denote D as the achievable distortion tuple associated with PX̂|MK .

One natural choice of reconstructions is the minimum mean squared error (MMSE) reconstruc-
tion function. At step j, the reconstruction, which we denote in this case by X̃j , is obtained by
taking the conditional expectation of Xj given all information at the decoder up to time j i.e.,
X̃j :=EP [Xj |M1 . . .Mj ,K] for each j = 1, 2, 3. It is well known that the MMSE reconstruction
functions minimize the reconstruction distortion i.e., if we define the set

ΦDmin(PM|XK) = {D : Dj ≥ EP [∥Xj − X̃j∥2], j = 1, 2, 3} (4)

then the distortion tuple D associated with any reconstruction PX̂|MK satisfies D ∈ ΦDmin(PM|XK).

The main result of this section is that assuming fixed encoder, the achievable distortions under
0-PLF-FMD is at most twice of that under the MMSE distortion loss alone. The same conclusion
also holds for 0-PLF-JD for a class of encoders operating at low rate. We first consider the case of
0-PLF-FMD.
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Definition 1 (0-PLF-FMD Distortion) For an encoder PM|XK , the set ΦD0(PM|XK) denotes the set
of all distortion tuples D for which there exists a reconstruction PX̂|MK satisfying PXj = PX̂j

for
each j ∈ {1, 2, 3}.

Theorem 1 The set ΦD0(PM|XK) is characterized as follows:

ΦD0(PM|XK) = {D : Dj ≥ EP [∥Xj − X̃j∥2] +W 2
2 (PX̃j

, PXj
), j = 1, 2, 3}, (5)

where W 2
2 (PXj

, PX̂j
) denotes the Wasserstein-2 distance between the two distributions [26]. Fur-

thermore, we also have that:
ΦD0(PM|XK) ⊇ {D : Dj ≥ 2EP [∥Xj − X̃j∥2], j = 1, 2, 3}, (6)

i.e., minimum achievable distortion with 0-PLF-FMD is at most twice the MMSE distortion.

Proof: See Appendix A.

We remark that the proof of Theorem 1, operationally demonstrates that the MMSE reconstruction
can be converted to another reconstruction satisfying 0-PLF-FMD with at-most a factor of 2 increase
in distortion, generalizing the result in [16] for the single frame scenario (see also [21]).

We next consider the case when zero perception loss is satisfied under the PLF-JD metric. Analogous
to ΦD0(PM|XK) in Definition 1, one can define Φjoint

D0 (PM|XK) to be the set of distortions associ-
ated with reconstruction functions that satisfy (3). The analysis of Φjoint

D0 (PM|XK) is discussed in
Appendix B as it is more involved. In general, the factor of two bound as in Theorem 1 cannot be
realized in this case as demonstrated by a counter-example in Appendix B. Nevertheless, for a special
family of encoders we can obtain a counterpart of Theorem 1. In this family of encoders, the source
Xj at time j is nearly independent of the encoder outputs up to and including time j, i.e., we can
express:

P noisy
Xj |M1...MjK

= (1− µ)PXj
+ µQnoisy

Xj |M1...MjK
, j = 1, 2, 3. (7)

where µ is a sufficiently small constant and the distribution Qnoisy(·) could be arbitrary conditional
distribution with same marginal as PXj

. We note that such encoders are studied in a variety of
problems in information theory (see e.g., [27]) that correspond to the low rate operating regime. The
following result states that the factor-two bound holds approximately for such encoders.

Theorem 2 For the class of encoders given by (7), we have

Φjoint
D0 (P noisy

M|XK) ⊇ {D : Dj ≥ 2EP noisy [∥Xj − X̃j∥2] +O(µ), j = 1, 2, 3}. (8)

Proof: See Appendix C.

We note that the low-rate operating regime is practically important, as at higher rates MMSE based
reconstructions can suffice and the use of PLF metrics may be less relevant.

4 Rate-Distortion-Perception Region

In this section, we assume that both the encoder PM|XK as well as the reconstruction PX̂|MK can be
optimized and study the associated rate-distortion-perception (RDP) tradeoff. We remind the reader
that for PLF-JD and PLF-FMD, the PLFs are denoted by ϕj(PX1...Xj , PX̂1...X̂j

) and ξj(PXj , PX̂j
),

respectively. In this case, the operational RDP region in the one-shot setting is defined as follows.

Definition 2 ( Operational RDP region) For a given PX, an RDP tuple (R,D,P) is said to be
achievable for the one-shot setting if there exist an encoder PM|XK and a reconstruction PX̂|MK
satisfying:

E[ℓ(Mj)] ≤Rj , E[∥Xj − X̂j∥2] ≤ Dj , ϕj(PX1...Xj , PX̂1...X̂j
) ≤ Pj , j = 1, 2, 3, (9)

where ℓ(Mj) denotes the length of the message Mj . The closure of the set of all achievable tuples,
denoted by Co

RDP, is the operational RDP region. Moreover, for a given (D,P), the operational DP
rate region, denoted by Ro(D,P), is the closure of the set of all tuples R such that (R,D,P) ∈ Co

RDP.

The region Co
RDP cannot be directly computed as it involves all possible one-shot encoders/decoders.

But for first-order Markov source, it has a tractable approximation in terms of mutual information.
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4.1 RDP Region of First-Order Markov Sources

We first define the first-order Markov sources and then introduce an iRDP region which is computable.

Definition 3 We call X as a first-order Markov source if the Markov chain X1→X2→X3 holds.

Definition 4 (Information RDP region) For first-order Markov sources, the information RDP
(iRDP) region, denoted by CRDP, is the set of all tuples (R,D,P) which satisfy the following

R1 ≥ I(X1;Xr,1), R2 ≥ I(X2;Xr,2|Xr,1), R3 ≥ I(X3;Xr,3|Xr,1, Xr,2) (10)

Dj ≥ E[∥Xj − X̂j∥2], Pj ≥ ϕj(PX1...Xj
, PX̂1...X̂j

), j = 1, 2, 3, (11)

for auxiliary random variables (Xr,1, Xr,2, Xr,3) and (X̂1, X̂2, X̂3) satisfying the following

X̂1 = η1(Xr,1), X̂2 = η2(Xr,1, Xr,2), X̂3 = X3,r, (12)
Xr,1 → X1 → (X2, X3), Xr,2 → (X2, Xr,1) → (X1, X3), (13)
Xr,3 → (X3, Xr,1, Xr,2) → (X1, X2), (14)

for some deterministic functions η1(.) and η2(., .). Moreover, for a given (D,P), the information DP
(iDP) rate region, denoted by R(D,P), is the closure of the set of all tuples R that (R,D,P) ∈ CRDP.

The expression for the iRDP region involves a search over auxiliary random variables Xr and X̂ that
satisfy (12)-(14) subject to the constraints in (10)–(11). For first-order Markov sources, the following
theorem states that the operational DP rate region can be approximated by the iDP rate region.

Theorem 3 For first-order Markov sources, a given (D,P) and R ∈ R(D,P), we have

R+ log(R+ 1) + 5 ∈ Ro(D,P) ⊆ R(D,P). (15)

Proof: See Appendix D.

From Theorem 3, it follows that R(D,P) with overhead log(R+1)+5 is an inner bound to Ro(D,P).
On the other hand, R(D,P) provides an outer bound to Ro(D,P). The two bounds match with each
other in high rates. It can be shown that the overhead also vanishes in the large-blocklength setting
where multiple symbols are encoded at a time. In the remainder of this paper, we will approximate
Ro(D,P) with R(D,P) and use the latter region for our analysis.

Remark 1 (Encoded Representations): The proof of the inner bound in Theorem 3 in Appendix D
provides an operational interpretation to the auxiliary random variables Xr = (Xr,1, Xr,2, Xr,3)
defined in iRDP region in Definition 4. In particular, Xr,j is a lossy version of the source sample Xj

generated by the encoder in step j. It is compressed and transmitted to the decoder at rate Rj in (10).
We refer to Xr as the encoded representation of the source X. The Markov chains (13)–(14) indicate
that without loss of optimality, an encoded representation Xr,j can be computed from the source Xj

and past reconstructions Xr,1, . . . , Xr,j−1 without using past source samples X1, . . . , Xj−1.

Remark 2 (Deterministic Reconstructions): Note that the reconstruction functions generating X̂
in Definition 4 are deterministic functions of the encoded representations (c.f. (12)). In particular,
the shared randomness K is not required in the reconstruction functions. However, as the proof of
the inner bound of Theorem 3 illustrates, the shared randomness is required in the compression and
construction of Xr,j . Moreover, by following the arguments in [28], one can set the reconstruction
function of the last frame to be identity. Thus, in Definition 4, we have set X̂3 = Xr,3 in (12) where
T = 3. In the sequel, for T frames we will set X̂T = Xr,T .

Remark 3 The result in Theorem 3 also holds for the PLF-FMD. That is, one can replace the PLF
in (9) and (11) by ξj(PXj , PX̂j

) and get a similar result (see Appendix D for the justification).

4.2 Gauss-Markov Source Model: RDP Region

In this section, we obtain practical insights through the analysis of the special case of first-order
Gauss-Markov sources. We assume that X1 ∼ N (0, σ2

1),

X2 = ρ1
σ2
σ1
X1 +N1, X3 = ρ2

σ3
σ2
X2 +N2, (16)
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where Nj is independent of Xj with mean zero and variance (1− ρ2j )σ
2
j+1 for j = 1, 2. Note that

the model extends naturally to the case of T time-steps. The perception metric is assumed to be the
Wasserstein-2 distance, i.e., ϕj(PX1...Xj , PX̂1...X̂j

) :=W 2
2 (PX1...Xj , PX̂1...X̂j

). For the PLF-FMD,
the perception metric is given by ξj(PXj , PX̂j

) :=W 2
2 (PXj , PX̂j

).

The following result states that for Gaussian sources, jointly Gaussian reconstructions are optimal.
Thus, for a given tuple (D,P), the characterization of R(D,P) becomes computable.

Theorem 4 For the Gauss-Markov source model, any tuple (R,D,P) ∈ CRDP can be attained by a
jointly Gaussian distribution over Xr and identity mappings for ηj(·) in Definition 4.

Proof: See Appendix E.

Generally, the optimized distribution in the above theorem may not admit a simple form. In the
special case of T = 2 frames, the optimal reconstructions are given in Appendix E. To obtain
practical insights, we consider various asymptotic operating regimes and provide a detailed analysis
in Appendix F for the case of T = 2 frames and with σ2

1 = σ2
2 . A summary of these results is

provided in Table 2 in the same Appendix. We briefly summarize some of these results next.

4.3 Gauss-Markov Source Model: Extremal Rates

One of the key observations of this paper is that the choice of PLF has implication on the rate
allocation across different frames. Specifically, first consider the case when both R1=R2 are small
i.e., R1=R2=ϵ (for small enough ϵ). We discuss how each PLF affects the reconstruction in the
second step. In the first step, we note that reconstruction in both cases must be identical and of
the form X̂G

1 =
√
2ϵ ln 2X1+Z1 where Z1∼N (0, (1−2ϵ ln 2)σ2) is independent of X1; the resulting

distortion is given by D1=2(1−
√
2ϵ ln 2)σ2. However, the reconstructions in the second steps will

be different for the two measures. For simplicity, we consider the extreme case when ρ=1 (i.e.,
when X2=X1). Here, the PLF-JD metric is required to preserve perfect correlation and thus has
to set X̂G

2 =X̂G
1 and results in D2=D1. In other words, the decoder in the second step is unable to

use any information transmitted in the second step as 0-PLF-JD enforces the stringent constraint
X̂G

2 =X̂G
1 . In contrast, for the PLF-FMD metric, it can be shown that the reconstruction in the

second step for ρ=1 reduces to X̂G
2 =

√
2
√
2ϵ ln 2X1+ZFMD and the associated distortion is given by

D2=2(1−
√
4ϵ ln 2)σ2, which is lower than PLF-JD. Extending this example to T steps (with ρ=1),

we note that PLF-JD will always be forced to output X̂1, while the reconstruction using PLF-FMD
will successively improve. The following theorem formalizes this observation.

Theorem 5 For sufficiently small ϵ, let Rj = ϵ and suppose that ρj = ρ and σj = σ, for j =
1, . . . , T . The achievable distortions DFMD,j (for 0-PLF-FMD) and DJD,j (for 0-PLF-JD) are:

DFMD,j = 2(1−∆FMD,j

√
2ϵ ln 2)σ2, DJD,j = 2(1−∆JD,j

√
2ϵ ln 2)σ2, (17)

where ∆FMD,j :=
√
1 + ρ2 (2ρ2)j−1−1

2ρ2−1 and ∆JD,j := ρ2(j−1) + 1{j ≥ 2} ·
√

1− ρ2(
∑j−2

i=0 ρ
2i).

Proof: See Appendix G.

In particular, specializing to ρ = 1, ∆FMD,j = 2
j−1
2 and ∆JD,j = 1. This shows that the decrease

in DFMD,j is exponential at each step which implies the ability of decoder based on 0-PLF-FMD
in correcting mistakes and not propagating them in future reconstructions. However, as discussed
previously the decoder which uses 0-PLF-JD is stuck at X̂j = X̂1 when ρ = 1 and results in no
subsequent improvement in the distortion. We call this behaviour as permanence of error. This
phenomenon is magnified in the case when R1 → 0 and R2 → ∞, treated in Table 2 (Appendix F)
as the PLF-JD severely constrains the decoder to copy the previous noisy reconstruction while the
flexibility provided by PLF-FMD reduces the distortion in the second step.

The case when R1 → ∞ and R2 = ϵ treated in Table 2 in Appendix F corresponds to the case
when X1 is sent at a sufficiently high rate (as is the case with some I-frames) while X2 is sent at
a low rate. Naturally, we have X̂G

1 ≈ X1 for both PLFs. On the other hand, we once again see
a qualitatively different behaviour in the reconstruction of X2. For the case of 0-PLF-FMD, we
have X̂G

2 ≈ (1−O(ϵ))X̂G
1 +O(ϵ)X2, i.e., the decoder essentially copies the previous frame with
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little contribution from the second step. In contrast, for the case of 0-PLF-JD, it can be shown that
X̂G

2 ≈ ρ1X̂
G
1 +O(

√
ϵ)X2 + ZJD, where ZJD is independent Gaussian noise with variance close to

1− ρ2. We note that the PLF-JD metric prevents the decoder from simply “copying” the previous
frame, but instead forces the decoder to generate a more diverse representation consistent with the
joint distribution between the two frames.

4.4 Universal Representations for Gauss-Markov Source Model

In this section, we show that the Gauss-Markov source model admits universal encoded represen-
tations. Such representations can be transformed through appropriate reconstruction functions to
achieve the entire DP rate region. This is the counterpart of the result for general sources in Theorem 1
where it is shown that the MMSE reconstructions can be transformed to some target reconstructions
satisfying the 0-PLF-FMD with at most a factor-2 increase in distortion. In contrast, we demonstrate
that the Gauss-Markov model admits exact universality i.e., target reconstructions proposed in this
section achieve all points in the iDP rate region. Interestingly, the transformation is linear with
possibly some additive noise. First, we formalize the notion of universal representations.

Definition 5 (iDP-Tradeoff) For a given rate tuple R, the optimal iDP-tradeoff is the closure of the
set of all tuples (D,P) such that (R,D,P) ∈ CRDP and is denoted by DP(R).

Definition 6 (Universal Representation) A given encoded representation Xr is called universal
with respect to rate tuple R if it satisfies the rate constraints (10) and the Markov chains in (13)–(14)
and for each (D,P) ∈ DP(R), there exists a reconstruction X̂ generated from PX̂|Xr

achieving it.

For the Gauss-Markov source model, we show that the MMSE reconstruction admits a universal
representation. We consider the reconstruction X̂r that achieves minimum distortion in the DP(R)
region. This point is explicitly characterized in Appendix H.1. Furthermore, following Theorem 4,
since the reconstruction functions ηj(·) are identity, the MMSE reconstruction is equivalent to MMSE
representation i.e., X̂r = XRD

r .The following theorem establishes that any point in DP(R) can be
achieved from X̂r.

Theorem 6 For the Gauss-Markov source model and a given rate tuple R with strictly positive
components, let the MMSE representation be denoted as XRD

r = (XRD
r,1, X

RD
r,2, X

RD
r,3). Let (D,P) ∈

DP(R) and let X̂ = (X̂1, X̂2, X̂3) be the corresponding reconstruction achieving it. Then there exist
κ1, θ1, θ2, ψ1, ψ2 and ψ3 and noise variables (Z1, Z2, Z3) independent of (XRD

r,1, X
RD
r,2, X

RD
r,3), which

satisfy the following

X̂1 = κ1X
RD
r,1 + Z1, X̂2 = θ1X

RD
r,1 + θ2X

RD
r,2 + Z2, X̂3 = ψ1X

RD
r,1 + ψ2X

RD
r,2 + ψ3X̂

RD
r,3 + Z3.

Proof: See Appendix H.2.

The above theorem indicates that the MMSE representation can be linearly transformed to achieve any
point in DP(R). In general the MMSE representation may have to be degraded through additional
noise terms. In the proof of Theorem 6 we identify conditions when such degradation is not needed.

As discussed in Appendix H.2, Theorem 6 holds for both PLFs. This suggests the idea that one
can train an encoder to get MMSE representations which are oblivious to the choice of PLF. Then,
the decoder can generate a reconstruction which satisfies either of PLFs by simply applying a
linear transformation to the MMSE representation. Thus, the task of choosing the right PLF can be
assigned to the decoder based on distortion and perception requirements. We conclude by noting that
Appendix H.3 provides an example where the coefficients in Theorem 6 can be computed explicitly.

5 Experimental Results

We conduct experiments on the MovingMNIST dataset [29] (with 1 digit) using Wasserstein GAN
[30], to verify the implications of our theoretical claims to perceptual video compression. Additional
results on the KTH dataset [31] are available in Appendix J.3. Our compression network is built on
the scale-space flow model [32] and conditional module [33]. For a given rate and PLF, we obtain
different distortion-perception tradeoff points by optimizing the weighted sum between distortion
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(a) Ground-truth GOP and their optimal reconstruc-
tions with different PLFs for R1=R2=R3=12 bits.
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(b) Distortion per frame (Xi − X̂i)
2 for

different rates with i = 1, 2, 3.

Figure 2: Permanence of Error Phenomenon. In (a), we visually compare the reconstructions. Note that X̂1 is
the same for both 0-PLF-JD and 0-PLF-PMD. In (b), we show the framewise distortion for different (R2, R3).

and perception losses. Details about the architecture and training procedure are available in the
Appendix J.1. The experimental setup is focused on validating our theory, rather than proposing state-
of-the-art neural network architectures. Accordingly, we begin by (1) validating Theorems 1 and 2,
which characterize the factor-of-two bounds on the distortion of 0-PLF reconstructions (2) empirically
demonstrating the error permanence phenomenon of the PLF-JD in Section 4.3 and (3) computing
the DP tradeoff function experimentally as well as confirming that the MMSE reconstruction provide
near universal representations, as motivated by the results in Section 4.4.

Table 1: Distortions of optimal reconstructions at different
regime (✓means factor of 2 holds and ✗means otherwise).
Distortion is scaled by 10−2.
R2 MMSE 0-PLF-FMD 0-PLF-JD
1 1.08± 0.01 1.74± 0.02✓ 2.05± 0.03✓
2 0.88± 0.01 1.39± 0.03✓ 1.46± 0.02✓

3.17 0.53± 0.01 0.76± 0.01✓ 0.79± 0.01✓
(a) Case 1: R1=∞ bits

R2 MMSE 0-PLF-FMD 0-PLF-JD
4 1.23± 0.01 2.21± 0.04✓ 2.36± 0.04✓
8 1.04± 0.01 1.78± 0.03✓ 2.28± 0.03 ✗

12 0.89± 0.02 1.43± 0.02✓ 2.26± 0.03 ✗
∞ 0.0 0.0 ✓ 2.18± 0.02 ✗

(b) Case 2: R1=12 bits(ϵ).

As our first experimental result in Ta-
ble 1, we validate the factor of two bounds
in Theorems 1 and 2. We consider the com-
pression of two frames X1 and X2 at rates
R1 and R2 respectively. The compression
of X1 is performed without any prior ref-
erence and corresponds to the compression
of the “I-frame”, while the compression
of X2 corresponds to the “P-frame”, using
X1 as the reference. We consider the cases
when either R1=∞ or R1=12 bits, where
the former corresponds to lossless compres-
sion of X1 and the latter corresponds to the
low rate regime (see Appendix I for a jus-
tification). The average distortion for the
first frame when R1 = 12 is 0.0124 for the MMSE reconstruction and 0.0235 for the 0-PLF re-
construction, thus satisfying the factor of two bound. In compression of X2, we systematically
vary the value of the rate R2∈{4, 8, 12,∞}. Following Table 1b, for 0-PLF-JD reconstruction, only
R2=4 bits (low rate) satisfies the factor of two bounds as expected. Intuitively, even as more bits
are acquired, the 0-PLF-JD criteria actively restricts improving the reconstructions, resulting in
persistently higher distortion. Even when R2 = ∞, the distortion remains non-zero as the decoder is
forced to maintain temporal consistency with X̂1. In contrast, for FMD, the factor of 2 bound holds
at all rates, consistent with Theorem 1.

In Fig. 2, we present our experimental results with a group of pictures (GOP) of size 3 (i.e. one
I-frame followed by two P-frames). In Fig. 2a, we visualize sample reconstructions for MSE, 0-
PLF-FMD and 0-PLF-JD cases when operating in the low-rate regime with Rj=12 bits for j=1, 2, 3.
Note that given an incorrect digit reconstruction in X̂1, the decoder with 0-PLF-JD consistently
produces incorrect digits (or content) while the 0-PLF-FMD gradually “corrects” it, which confirms
the error permanence phenomenon discussed in the theoretical analysis in Section 4.3 and Table 2 in
Appendix F. We also plot the framewise distortion in Fig. 2b to show the difference in achievable
distortion two perception metrics across different values for R2 and R3 as a function of the frame
index. Consistent with Theorem 5, the achievable distortion decreases much faster for 0-PLF-FMD
than 0-PLF-JD for all selection of rates. Finally, we show similar results in Figure 3 for UVG dataset.

In Fig. 4, we plot the tradeoff curves between distortion and perception for the second reconstruction
X̂2 for both optimal (end-to-end) and universal representations for two cases: when R1=∞ and
R1=12 bits and for a range of values for R2. In general, the curves for both universal and optimal
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Figure 3: Error permanence phenomenon on the UVG dataset. The PLF-JD reconstructions propagate the
flaws in the color tone from the previous I-frame reconstruction while the PLF-FMD is able to fix these flaws.
Compression rate for I-frame and P-frame are 0.144bpp (low rate) and 4.632bpp (high rate) respectively.

representations are relatively close to each other at all rate regimes. The general shape of every curve
is relatively similar with the exception of the PLF-JD metric in Fig. 4b, where the curves for different
rates seemingly converge since increasing the rate does not significantly improve the distortion in
this case as noted previously. Finally, as the universal encoders are derived from MMSE solutions,
these results imply that one can simply send the MMSE representation to the decoder and the user
can flexibly change the DP tradeoff up to their requirements. We further note that even when the
end-to-end model targets an operating point different from the MMSE reconstruction, the latter is
still required to estimate the motion flow vectors best. The universal representation provides a natural
way to reconstruct the MMSE reconstruction from the encoder output. In the plots of Fig. 4, we
leverage on established universality results for I-frame compression in prior works [16] to construct
the MMSE representation for motion compensation as we have a GOP of size 2.
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Figure 4: RDP tradeoff curves for end-to-end and universal models. We plot the tradeoff for the two regimes:
R1=∞ and R1=ϵ in (a) and (b) respectively. The universal and optimal curves are close to each other.

Finally in Appendix J.5, we consider the ability of the decoder to generate diverse reconstructions
when operating under either PLF-JD or PLF-FMD. We focus on the case when X1 is transmitted
losslessly and when X2 is compressed at low rates. Consistent with the theoretical analysis in
Section 4.2 and Table 2 in Appendix F, the decoder optimized for PLF-JD is capable of producing
diverse reconstructions by mimicking the actual motion between the frames. The PLF-FMD leads to
reconstructions that are highly correlated and less desirable.

6 Conclusions

This work examines different perception loss functions for causal video coding, establishing its key
theoretical properties such as the operational RDP region and universality principle. Our analysis
highlights that while 0-PLF-JD reconstruction preserves temporal correlation, it is susceptible to the
error permanence phenomenon. Moreover, our investigation of universality reveals that the encoder
can transform the MMSE representation to other points on the DP tradeoffs, irrespective of the
PLF. We suggest future research directions such as exploring region-based perceptual metrics [34],
incorporating image-aware bits allocation, and leveraging conditional perception metric [18].
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A Distortion Analysis for 0-PLF-FMD

Recall the definition of Wasserstein-2 distance [26] as follows. For given distributions PXj
and PX̃j

,
let

W 2
2 (PX̃j

, PXj ) := inf E[∥Xj − X̃j∥2], (18)

where the infimum is over all joint distributions of (Xj , X̃j) with marginals PXj and PX̃j
.

Theorem 1 The set ΦD0(PM|XK) is characterized as follows:

ΦD0(PM|XK) = {D : Dj ≥ EP [∥Xj − X̃j∥2] +W 2
2 (PX̃j

, PXj ), j = 1, 2, 3}, (19)

Furthermore, we also have that:

ΦD0(PM|XK) ⊇ {D : Dj ≥ 2EP [∥Xj − X̃j∥2], j = 1, 2, 3}, (20)

i.e., minimum achievable distortion with 0-PLF-FMD is at most twice the MMSE distortion.

Proof: Define

D0 := {D : Dj ≥ E[∥Xj − X̃j∥2] +W 2
2 (PX̃j

, PXj
), j = 1, 2, 3}. (21)

First, we show that ΦD0(PM|XK) ⊆ D0. For any D ∈ ΦD0(PM|XK), there exists X̂D0 =

(X̂D0
1
, X̂D0

2
, X̂D0

3
) jointly distributed with (M,X,K) such that

E[∥Xj − X̂D0
j
∥2] ≤ Dj , j = 1, 2, 3, (22)

PXj
= PX̂

D0
j

. (23)

Then, for example, the analysis for the second frame is as follows

D2 ≥ E[∥X2 − X̂D0
2
∥2] (24)

= E[∥(X2 − X̃2)− (X̂D0
2
− X̃2)∥2] (25)

= E[∥X2 − X̃2∥2] +E[∥X̃2 − X̂D0
2
∥2] (26)

≥ E[∥X2 − X̃2∥2] +W 2
2 (PX̃2

, PX̂
D0

2

) (27)

= E[∥X2 − X̃2∥2] +W 2
2 (PX̃2

, PX2
), (28)

where (26) holds because both X̃2 and X̂D0
2

are functions of (M1,M2,K) and thus the MMSE
(X2 − X̃2) is uncorrelated with (X̂D0

2
− X̃2); (28) follows because the 0-PLF-FMD implies that

PX̂
D0

2

= PX2
. Following similar steps for other frames, we get ΦD0(PM|XK) ⊆ D0.

Next, we show that D0 ⊆ ΦD0(PM|XK). Assume that D ∈ D0. Let X̂∗
1 be an auxiliary random

variable jointly distributed with (M1,K) such that it satisfies the following conditions

PX̂∗
1
= PX1 , (29)

and

PX̃1X̂∗
1
= arg inf

P̄X̃1X̂∗
1
:

P̄X̃1
=PX̃1

P̄X̂∗
1
=PX̂∗

1

EP̄ [∥X̃1 − X̂∗
1∥2]. (30)

Moreover, let X̂∗
2 be an auxiliary random variable jointly distributed with (M1,M2,K) such that the

following two conditions are satisfied

PX̂∗
2
= PX2

, (31)

and

PX̃2X̂∗
2
= arg inf

P̄X̃2X̂∗
2
:

P̄X̃2
=PX̃2

P̄X̂∗
2
=PX̂∗

2

EP̄ [∥X̃2 − X̂∗
2∥2]. (32)
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Similarly, we define X̂∗
3 . Now, notice that since D ∈ D0, we have:

D2 ≥ E[∥X2 − X̃2∥2] +W 2
2 (PX̃2

, PX2
). (33)

It then directly follows that

E[∥X2 − X̂∗
2∥2] = E[∥X2 − X̃2∥2] +E[∥X̃2 − X̂∗

2∥2] (34)
= E[∥X2 − X̃2∥2] +W 2

2 (PX̃2
, PX̂∗

2
) (35)

= E[∥X2 − X̃2∥2] +W 2
2 (PX̃2

, PX2
) (36)

≤ D2, (37)

where

• (34) follows because X̃2 and X̂∗
2 are functions of (M1,M2,K) and thus the MMSE (X2 −

X̃2) is uncorrelated with (X̂∗
2 − X̃2);

• (35) follows from (32);
• (36) follows because PX̂∗

2
= PX2 .

Following similar steps for other frames, we get D ∈ ΦD0(PXr|X).

Now, notice that W 2
2 (PX̃2

, PX2) ≤ E[∥X2 − X̃2∥2] since the Wasserstein-2 distance takes the
infimum over all possible joint distributions (X2, X̃2), but the expectation inE[∥X2− X̃2∥2] is taken
over the given PX2X̃2

. Thus, we get

E[∥X2 − X̃2∥2] +W 2
2 (PX̃2

, PX2) ≤ 2E[∥X2 − X̃2∥2]. (38)

This concludes the proof.

B Distortion Analysis for 0-PLF-JD

Let X̂∗
1 be defined as in (29)–(30). Moreover, let X̂∗

2 be an auxiliary random variable jointly
distributed with (M1,M2,K) such that the following conditions are satisfied

PX̂∗
2 |X̂∗

1=x1
= PX2|X1=x1

, ∀x1 ∈ X1, (39)

and

PX̃2X̂∗
2 |X̂∗

1=x1
= arg inf

P̄X̃2X̂∗
2 |X̂∗

1=x1
:

P̄X̃2|X̂∗
1=x1

=PX̃2|X̂∗
1=x1

P̄X̂∗
2 |X̂∗

1=x1
=PX̂∗

2 |X̂∗
1=x1

EP̄ [∥X̃2 − X̂∗
2∥2|X̂∗

1 = x1], ∀x1 ∈ X1. (40)

Then, the following result holds.

Theorem 2 We have

Φjoint
D0 (PM|XK) ⊇ {D : D1 ≥ E[∥X1 − X̃1∥2] +W 2

2 (PX̃1
, PX1

),

D2 ≥ E[∥X2 − X̃2∥2] +
∑
x1

PX1
(x1)W

2
2 (PX̃2|X̂∗

1=x1
, PX2|X1=x1

),

D3 ≥ E[∥X3 − X̃3∥2] +
∑
x1,x2

PX1X2
(x1, x2)W

2
2 (PX̃3|X̂∗

1=x1,X̂∗
2=x2

, PX3|X1=x1,X2=x2
)}.

(41)

Proof: Define

D0
joint := {D : D1 ≥ E[∥X1 − X̃1∥2] +W 2

2 (PX̃1
, PX1

),

D2 ≥ E[∥X2 − X̃2∥2] +
∑
x1

PX1
(x1)W

2
2 (PX̃2|X̂∗

1=x1
, PX2|X1=x1

),

D3 ≥ E[∥X3 − X̃3∥2] +
∑
x1,x2

PX1X2
(x1, x2)W

2
2 (PX̃3|X̂∗

1=x1,X̂∗
2=x2

, PX3|X1=x1,X2=x2
)}.

(42)
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Now, assume that D ∈ D0
joint. For the first frame, recall that X̂∗

1 is an auxiliary random variable
jointly distributed with (M1,K) such that it satisfies (29)–(30). From similar steps to (34)–(36), it
then follows that

E[∥X1 − X̂∗
1∥2] = E[∥X1 − X̃1∥2] +W 2

2 (PX̃1
, PX1

) (43)
≤ D1. (44)

For the second frame, since D ∈ D0
joint, we have:

D2 ≥ E[∥X2 − X̃2∥2] +
∑
x1

PX1
(x1)W

2
2 (PX̃2|X1=x1

, PX2|X1=x1
). (45)

Recall that X̂∗
2 is an auxiliary random variable jointly distributed with (M1,M2,K) such that

(39)–(40) hold. It then directly follows that

E[∥X2 − X̂∗
2∥2] = E[∥X2 − X̃2∥2] +E[∥X̃2 − X̂∗

2∥2] (46)

= E[∥X2 − X̃2∥2] +
∑
x1

PX̂∗
1
(x1)E[∥X̃2 − X̂∗

2∥2|X̂∗
1 = x1] (47)

= E[∥X2 − X̃2∥2] +
∑
x1

PX̂∗
1
(x1)W

2
2 (PX̃2|X̂∗

1=x1
, PX̂∗

2 |X̂∗
1=x1

) (48)

= E[∥X2 − X̃2∥2] +
∑
x1

PX1
(x1)W

2
2 (PX̃2|X̂∗

1=x1
, PX2|X1=x1

), (49)

where

• (46) follows because X̃2 and X̂∗
2 are functions of (M1,M2,K) and thus the MMSE (X2 −

X̃2) is uncorrelated with (X̂∗
2 − X̃2),

• (48) follows from (40),

• (49) follows because PX̂∗
1 X̂

∗
2
= PX1X2

.

Following similar steps for the third frame, we get D ∈ ΦD0(PM|XK). This concludes the proof.

B.1 A Counterexample for Factor-Two Bound in Case of 0-PLF-JD

Assume that we have only two frames, i.e., D3 → ∞. Let M1 be independent of X1 and M2 = X2.
Then, we have X̃1 = ∅ and X̃2 = X2. Consider the achievable distortion region of Theorem 2. The
distortion of the first step is given by the following

E[∥X1 − X̃1∥2] +W 2
2 (PX̃1

, PX1) = 2E[X2
1 ]. (50)

For the second frame, we have

E[∥X2 − X̃2∥2] +
∑
x1

PX1
(x1)W

2
2 (PX̃2|X̂∗

1=x1
, PX2|X1=x1

)

=
∑
x1

PX1
(x1)W

2
2 (PX2|X̂∗

1=x1
, PX2|X1=x1

) (51)

=
∑
x1

PX1(x1)W
2
2 (PX2 , PX2|X1=x1

), (52)

where (51) follows because X̃2 = X2 and (52) follows because X2 is independent of X̂∗
1 (M1 is

independent of X1, then X̂∗
1 , which is a function of (M1,K), would be independent of X1 and hence

independent of X2).

Now, notice that the MMSE distortion of the second step is zero since X̃2 = X2. However, the
achievable distortion of the second step for the reconstruction satisfying 0-PLF JD is given in (52)
which clearly does not satisfy the factor-two bound.
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C Fixed Encoders Operating at Low rate regime

We consider the class of noisy encoders where the encoder distribution can be written as follows

P noisy
Xj |M1...MjK

= (1− µ)PXj
+ µQnoisy

Xj |M1...MjK
, j = 1, 2, 3. (53)

where µ is a sufficiently small constant and the distribution Qnoisy(·) could be arbitrary conditional
distribution with same marginal as PXj

.

Theorem 3 For the class of encoders given by (53), we have

Φjoint
D0 (P noisy

M|XK) ⊇ {D : Dj ≥ 2EP noisy [∥Xj − X̃j∥2] +O(µ), j = 2, . . . , 3}. (54)

Proof: We analyze the distortion for the second frame. A similar argument holds for other frames.

Denote the reconstruction of the second step by X̂∗
2 and consider the expected distortion. From a

similar justification starting from (24) and leading to (26), we can write the distortion as follows

E[∥X2 − X̂∗
2∥2] = E[∥X2 − X̃2∥2] +E[∥X̃2 − X̂∗

2∥2]. (55)

Now, we study the expected term E[∥X̃2 − X̂∗
2∥2] as follows

E[∥X̃2 − X̂∗
2∥2] =

∑
x1

PX̂∗
1
(x1)E[∥X̃2 − X̂∗

2∥2|X̂∗
1 = x1]. (56)

In order to analyze the above expression, we first approximate the MMSE reconstruction X̃2 as
follows

X̃2 = EP noisy [X2|M1,M2,K] (57)
= (1− µ)EP [X2] + µEQnoisy [X2|M1,M2,K] (58)
= E[X2] +O(µ), (59)

where (58) follows from (53). Moreover, notice that (59) implies that

E[∥X2 − X̃2∥2] = E[∥X2 −E[X2] + µ(EQnoisy [X2|M1,M2,K]−E[X2])∥2] (60)
= E[∥X2 −E[X2]∥2] +O(µ). (61)

Next, consider the expected term in (56) as follows∑
x1

PX̂∗
1
(x1)E[∥X̃2 − X̂∗

2∥2|X̂∗
1 = x1] =

∑
x1

PX̂∗
1
(x1)E[∥E[X2]− X̂∗

2∥2|X̂∗
1 = x1] +O(µ)

(62)

=
∑
x1

PX̂∗
1
(x1)E[∥E[X2]−X2∥2|X1 = x1] +O(µ)

(63)

=
∑
x1

PX1(x1)E[∥E[X2]−X2∥2|X1 = x1] +O(µ)

(64)
= E[∥E[X2]−X2∥2] +O(µ) (65)
= E[∥X̃2 −X2∥2] +O(µ), (66)

where

• (62) follows from (59);
• (63) follows because the 0-PLF-JD implies that PX̂∗

2 |X̂∗
1
= PX2|X1

and E[X2] is just a
constant;

• (64) follows from 0-PLF-JD where PX̂∗
1
= PX1

;

• (66) follows from (61).

Considering (55) and (66), we get

E[∥X2 − X̂∗
2∥2] = 2E[∥X2 − X̃2∥2] +O(µ). (67)

The proof for the third frame follows similar steps.
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Figure 5: Encoded representations and reconstructions of the iRDP region CRDP.

D Operational RDP Region

Recall the definition of iRDP region CRDP for first-order Markov sources (Definition 4) as follows. It
is the set of all tuples (R,D,P) satisfying

R1 ≥ I(X1;Xr,1), (68)
R2 ≥ I(X2;Xr,2|Xr,1), (69)
R3 ≥ I(X3;Xr,3|Xr,1, Xr,2), (70)

Dj ≥ E[∥Xj − X̂j∥2], j = 1, 2, 3, (71)
Pj ≥ ϕj(PX1...Xj , PX̂1...X̂j

), j = 1, 2, 3, (72)

for auxiliary random variables (Xr,1, Xr,2, Xr,3) and (X̂1, X̂2, X̂3) such that

X̂1 = η1(Xr,1), X̂2 = η2(Xr,1, Xr,2), X̂3 = Xr,3, (73)
Xr,1 → X1 → (X2, X3), (74)
Xr,2 → (X2, Xr,1) → (X1, X3), (75)
Xr,3 → (X3, Xr,1, Xr,2) → (X1, X2), (76)

for some deterministic functions η1(.) and η2(., .).

Theorem 4 For first-order Markov sources, a given (D,P) and R ∈ R(D,P), we have

R+ log(R+ 1) + 5 ∈ Ro(D,P). (77)

Moreover, the following holds:

Ro(D,P) ⊆ R(D,P). (78)

Proof: Before stating the achievable scheme, we first discuss the strong functional representation
lemma [35]. It states that for jointly distributed random variables X and Y , there exists a random
variable U independent of X , and function ϕ such that Y = ϕ(X,U). Here, U is not necessarily
unique. The strong functional representation lemma states further that there exists a U which has
information of Y in the sense that

H(Y |U) ≤ I(X;Y ) + log(I(X;Y ) + 1) + 4. (79)

Notice that the strong functional representation lemma can be applied conditionally. Given PXY |W ,
we can represent Y as a function of (X,W,U) such that U is independent of (X,W ) and

H(Y |W,U) ≤ I(X;Y |W ) + log(I(X;Y |W ) + 1) + 4. (80)

Proof of (77) (Inner bound):

For a given (D,P) and R ∈ R(D,P), let Xr = (Xr,1, Xr,2, Xr,3) be jointly distributed with
X = (X1, X2, X3) where the Markov chains (74)–(76) hold and the rate constraints in (68)–(70)
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X2

Figure 6: Strong functional representation lemma for T = 2 frames.

are satisfied such that there exist (X̂1, X̂2, X̂3) for which distortion-perception constraints (71)–(72)
hold. Denote the joint distribution of (X,Xr, X̂) by PXXrX̂

and notice that according to the Markov
chains in (74)–(76), it factorizes as the following

PXXrX̂
= PX1X2X3

· PXr,1|X1
· PXr,2|Xr,1X2

· PXr,3|Xr,2Xr,1X3

·1{X̂1 = g1(Xr,1)} · 1{X̂2 = g2(Xr,1, Xr,3)} · 1{X̂3 = Xr,3}. (81)

For an illustration of encoded representations Xr and reconstructions X̂ in R(D,P) which are induced
by distribution PXXrX̂

, see Fig. 5.

Now, we show that R+ log(R+ 1) + 5 ∈ R(D,P). The achievable scheme is as follows. Fix the
joint distribution PXr

according to (81) which constructs the codebook, given by

PXr = PXr,1PXr,2|Xr,1
PXr,3|Xr,2Xr,1

. (82)

From the strong functional representation lemma [35], we know that

• there exist a random variable V1 independent of X1 and a deterministic function q1 such
that Xr,1 = q1(X1, V1) and

H(Xr,1|V1) ≤ I(X1;Xr,1) + log(I(X1;Xr,1) + 1) + 4, (83)

which means that the first encoder observes the source X1 and applies the function q1 to get
Xr,1 whose distribution needs to be preserved according to (82) (see Fig. 6);

• according to the conditional strong functional representation lemma, there exist a random
variable V2 independent of (X2, Xr,1) and a deterministic function q2 such that Xr,2 =
q2(Xr,1, X2, V2) and

H(Xr,2|Xr,1, V2) ≤ I(X2;Xr,2|Xr,1) + log(I(X2;Xr,2|Xr,1) + 1) + 4. (84)

At the second step, the representation Xr,1 is available at the second encoder. So, upon
observing the sourceX2, it applies the function q2 to getXr,2 whose conditional distribution
given Xr,1 needs to be preserved according to (82) (see Fig. 6);

• according to the conditional strong functional representation lemma, there exist a random
variable V3 independent of (X3, Xr,1, Xr,2) and a deterministic function q3 such thatXr,3 =
q3(Xr,1, Xr,2, X3, V3) and

H(Xr,3|Xr,1, Xr,2, V3) ≤ I(X3;Xr,3|Xr,1, Xr,2) + log(I(X3;Xr,3|Xr,1, Xr,2) + 1) + 4.

(85)

Now, the encoding and decoding are as follows

• With V1 available at all encoders and decoders, we can have a class of prefix-free binary
codes indexed by V1 with the expected codeword length not larger than I(X1;Xr,1) +
log(I(X1;Xr,1) + 1) + 5 to represent Xr,1, losslessly (see Fig. 6).

• With V2 available at the encoders and decoders, we can design a set of prefix-free
binary codes indexed by (V2, Xr,1) with expected codeword length not larger than
I(X2;Xr,2|Xr,1)+ log(I(X2;Xr,2|Xr,1)+ 1)+ 5 to represent Xr,2, losslessly(see Fig. 6).
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• Similarly, one can represent Xr,3 losslessly with V3 available at the third encoder and
decoder.

• The decoders can use functions X̂1 = η1(Xr,1), X̂2 = η2(Xr,1, Xr,2) and X̂3 = Xr,3 to
get the reconstruction X̂.

This shows that R+ log(R+ 1) + 5 ∈ Ro(D,P).

Proof of (78) (Outer Bound):

For any (D,P), R ∈ Ro(D,P), shared randomness K, encoding functions fj : X1× . . .×Xj ×K →
Mj and decoding functions gj : M1 ×M2 × . . .×Mj ×K → X̂j such that

Rj ≥ E[ℓ(Mj)], j = 1, 2, 3, (86)

and

Dj ≥ E[∥Xj − X̂j∥2], j = 1, 2, 3, (87)
Pj ≥ ϕj(PX1...Xj

, PX̂1...X̂j
), j = 1, 2, 3, (88)

we lower bound the expected length of the messages. Define

Xr,1 := (M1,K), (89)
Xr,2 := (M1,M2,K), (90)

and recall that according to the decoding functions, we have

X̂j = gj(M1, . . . ,Mj ,K), j = 1, 2, 3. (91)

We can write

R1 ≥ E[ℓ(M1)] ≥ H(M1|K) (92)
= I(X1;M1|K) (93)
= I(X1;M1,K) (94)
= I(X1;Xr,1). (95)

Now, consider the following set of inequalities

R2 ≥ E[ℓ(M2)] ≥ H(M2|M1,K) (96)
= I(X1, X2;M2|M1,K) (97)
= I(X1, X2;X2,r|Xr,1). (98)

Similarly, we have

R3 ≥ E[ℓ(M3)] ≥ H(M3|M1,M2,K) (99)
= I(X1, X2, X3;M3|M1,M2,K) (100)
≥ I(X1, X2, X3; X̂3|Xr,1, Xr,2). (101)

Notice that the definitions in (89)–(90) imply the following Markov chains

Xr,1 → X1 → (X2, X3), (102)
Xr,2 → (X1, X2, Xr,1) → X3. (103)

On the other hand, the decoding functions of the first and second steps imply that

X̂1 = g1(M1,K), (104)
X̂2 = g2(M1,M2,K), (105)

where together with definitions in (89) and (90), we can write

X̂1 = g1(M1,K) := η1(Xr,1), (106)

X̂2 = g2(M1,M2,K) := η2(Xr,1, Xr,2), (107)

such that η1(.) and η2(., .) are deterministic functions.
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Now, consider the fact that the set of constraints in (87)–(88), (95), (98), (101) with Markov chains in
(102)–(103) and deterministic functions in (106)–(107) constitute an iRDP region, denoted by C̄RDP,
which is the set of all tuples (R,D,P) such that

R1 ≥ I(X1;Xr,1), (108)
R2 ≥ I(X1, X2;Xr,2|Xr,1), (109)

R3 ≥ I(X1, X2, X3; X̂3|Xr,1, Xr,2), (110)

Dj ≥ E[∥Xj − X̂j∥2], j = 1, 2, 3, (111)
Pj ≥ ϕj(PX1...Xj , PX̂1...X̂j

), j = 1, 2, 3, (112)

for auxiliary random variables (Xr,1, Xr,2) and (X̂1, X̂2, X̂3) satisfying the following

X̂1 = η1(Xr,1), X̂2 = η2(Xr,1, Xr,2) (113)
Xr,1 → X1 → (X2, X3), (114)
Xr,2 → (X1, X2, Xr,1) → X3. (115)

for some deterministic functions η1(.) and η2(., .).

Comparing the two regions C̄RDP and CRDP, we identify the following differences. The Markov chain
in (74) is more restricted comparing to (115). Moreover, the Markov chain (75) does not exist in
C̄RDP. The following lemma states that C̄RDP = CRDP. Now, for a given (D,P), let R̄(D,P) denote
the set of rate tuples R such (R,D,P) ∈ C̄RDP, then this lemma implies that R̄(D,P) = R(D,P)
which completes the proof of the outer bound. Moreover, notice that the above proof only deals with
the statistics of the representations and reconstructions and does not depend on the choice of the PLF.
So, it holds for both PLF-FMD and PLF-JD. This concludes the proof.

We conclude this section by the following lemma.

Lemma 1 For first-order Markov sources, we have

CRDP = C̄RDP. (116)

Proof: This result for the scenario without perception constraint has been similarly observed in [36, Eq.
(12)]. The proof in this section is provided for completeness.

First, notice that the set of Markov chains in (74)–(76) is more restricted than the ones in (114)–(115),
hence CRDP ⊆ C̄RDP. Now, it remains to prove that C̄RDP ⊆ CRDP. Consider the following facts

1. The distortion constraints in (111) depend only on the joint distribution of (Xj , X̂j), and
thus on the joint distribution of (Xj , Xr,1, . . . , Xr,j). So, imposing the Markov chain
Xr,2 → (X2, Xr,1) → X1 does not affect the expected distortion E[∥X2 − X̂2∥2] since it
does not depend on the joint distribution of X1 with (Xr,1, Xr,2, X2). A similar argument
holds for other frames;

2. The perception constraints in (112) depend on the joint distributions PX1...Xj
and PX̂1,...,X̂j

(hence on PXr,1...Xr,j ). Thus, imposing Xr,2 → (X2, Xr,1) → X1 does not af-
fect ϕ2(PX1X2

, PX̂1X̂2
) since it does not depend on the joint distribution of X1 with

(Xr,1, Xr,2, X2). A similar argument holds for other frames;
3. Moreover, the rate constraints in (109) and (110) would be further lower bounded by

R2 ≥ I(X1, X2;Xr,2|Xr,1) ≥ I(X2;Xr,2|Xr,1), (117)

R3 ≥ I(X1, X2, X3; X̂3|Xr,1, Xr,2) ≥ I(X3; X̂3|Xr,1, Xr,2). (118)

Thus, the set of rate constraints is optimized by the set of Markov chains (74)–(76).

4. The mutual information terms I(X1;Xr,1), I(X2;Xr,2|Xr,1) and I(X3; X̂3|Xr,1, Xr,2)
depend on distributions PX1Xr,1 , PXr,1Xr,2X2 and PX3X̂3Xr,1Xr,2

, respectively. So, these
distributions should be preserved by the set of Markov chains. The first two distributions are
preserved by the choice of (73)–(74). Now, since we have first-order Markov sources (see
Definition 3), preserving the joint distributions of PXr,1X1 and PXr,1Xr,2X2 is sufficient to
preserve the distribution PXr,1Xr,2X3 . So, preserving the joint distribution of PX̂3Xr,1Xr,2

is sufficient to keep I(X3; X̂3|Xr,1, Xr,2) unchanged.
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Considering the above four facts, without loss of optimality, one can impose the following Markov
chains

Xr,1 → X1 → (X2, X3), (119)
Xr,2 → (X2, Xr,1) → (X1, X3), (120)

X̂3 → (X3, Xr,1, Xr,2) → (X1, X2). (121)

This concludes the proof for the PLF-JD. For the PLF-FMD, notice that the only difference is the
second fact stated above. But, this also holds since the perception constraints depend only on PXj

and PX̂j
(hence on PXr,1...,Xr,j

).

E Gauss-Markov Source Model

We first remark that the Wasserstein-2 distance can also be replaced by the KL-divergence in most of
the following analysis. The common properties between these two measures are convexity and the
fact that they both depend on only second-order statistics when restricted to Gaussian source model.

Theorem 5 For the Gauss-Markov source model, any tuple (R,D,P) ∈ CRDP can be attained by a
jointly Gaussian distribution over (Xr,1, Xr,2, Xr,3) and identity mappings for ηj(·) in Definition 4.

Proof: First, notice that a proof for the setting without perception constraint is provided in [37]. The
following proof is different from [37] in some steps and also involves the perception constraint.

For a given tuple (R,D,P) ∈ CRDP, let X∗
r,1, X∗

r,2, X̂∗
1 = η1(X

∗
r,1), X̂

∗
2 = η2(X

∗
r,1, X

∗
r,2) and X̂∗

3
be random variables satisfying (73)–(75). Let PX̂G

1 |X1
, PX̂G

2 |X̂G
1 X2

and PX̂G
3 |X̂G

1 X̂G
2 X3

be jointly
Gaussian distributions such that the following conditions are satisfied.

cov(X̂G
1 , X1) = cov(X̂∗

1 , X1), (122)
cov(X̂G

1 , X̂
G
2 , X2) = cov(X̂∗

1 , X̂
∗
2 , X2), (123)

cov(X̂G
1 , X̂

G
2 , X̂

G
3 , X3) = cov(X̂∗

1 , X̂
∗
2 , X̂

∗
3 , X3), (124)

In general, the Gaussian random variables which satisfy the constraints in (122)–(124) can be written
in the following format

X1 = νX̂G
1 + Z1, (125)

X̂G
2 = ω1X̂

G
1 + ω2X2 + Z2, (126)

X̂G
3 = τ1X̂

G
1 + τ2X̂

G
2 + τ3X3 + Z3, (127)

for some real ν, ω1, ω2, τ1, τ2, τ3 where X̂G
1 ∼ N (0, σ2

X̂G
1

), X̂G
2 ∼ N (0, σ2

X̂G
2

), Z1, Z2 and Z3 are

Gaussian random variables with zero mean and variances α2
1, α

2
2, α

2
3, independent of X̂G

1 , (X̂G
1 , X2)

and (X̂G
1 , X̂

G
2 , X3), respectively.

We explicitly derive the coefficients ν, ω1, ω2, τ1, τ2 and τ3 in the following. Multiplying both sides
of (125) by X̂G

1 and taking an expectation, we get

E[X1X̂
G
1 ] = νσ2

X̂G
1

. (128)

According to (122), the above equation can be written as follows

E[X1X̂
∗
1 ] = νE[X̂∗2

1 ]. (129)

Multiplying both sides of (126) by the vector [X̂G
1 X2] and taking an expectation, we have

[E[X̂G
1 X̂

G
2 ] E[X2X̂

G
2 ]] = [ω1 ω2]

(
σ2
X̂G

1

E[X2X̂
G
1 ]

E[X2X̂
G
1 ] σ2

2

)
(130)

Considering the fact that E[X2X̂
G
1 ] = ρ1E[X1X̂

G
1 ] and according to (123), the above equation can

be written as follows

[E[X̂∗
1 X̂

∗
2 ] E[X2X̂

∗
2 ]] = [ω1 ω2]

(
E[X̂∗2

1 ] ρ1E[X1X̂
∗
1 ]

ρ1E[X1X̂
∗
1 ] σ2

2

)
. (131)
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Similarly, multiplying both sides of (127) by the vector [X̂G
1 X̂G

2 X3], taking an expectation and
considering (124), we get

[E[X̂∗
1 X̂

∗
3 ] E[X̂

∗
2 X̂

∗
3 ] E[X3X̂

∗
3 ]] = [τ1 τ2 τ3]

 E[X̂∗2
1 ] E[X̂∗

1 X̂
∗
2 ] ρ1ρ2E[X1X̂

∗
1 ]

E[X̂∗
1 X̂

∗
2 ] E[X̂∗2

2 ] ρ2E[X2X̂
∗
2 ]

ρ1ρ2E[X1X̂
∗
1 ] ρ2E[X2X̂

∗
2 ] E[X̂∗2

3 ]

 .

(132)

Solving equations (129), (131) and (132), we get

σ2
X̂G

1

= E[X̂∗2
1 ], (133)

ν =
E[X1X̂

∗
1 ]

E[X̂∗2
1 ]

, (134)

α2
1 = σ2

1 −
E[X1X̂

∗
1 ]

E[X̂∗2
1 ]

, (135)

ω1 =
νρ1E[X̂

∗
1 X̂

∗
2 ]−E[X2X̂

∗
2 ]

ν2ρ21σ
2
X̂G

1

− σ2
2

, (136)

ω2 =
νρ1σ

2
X̂G

1

E[X2X̂
∗
2 ]− σ2

2E[X̂
∗
1 X̂

∗
2 ]

ν2ρ21σ
4
X̂G

1

− σ2
2σ

2
X̂G

1

, (137)

α2
2 = E[X̂∗2

2 ]− α2
2σ

2
X̂G

1

− ω2
2σ

2
2 − 2ω1ω2ρ1νσ

2
X̂G

1

. (138)

For the third step, the coefficients and noise variance of (127) are given as follows

[τ1 τ2 τ3]

= [E[X̂∗
1 X̂

∗
3 ] E[X̂

∗
2 X̂

∗
3 ] E[X3X̂

∗
3 ]]

 E[X̂∗2
1 ] E[X̂∗

1 X̂
∗
2 ] ρ1ρ2E[X1X̂

∗
1 ]

E[X̂∗
1 X̂

∗
2 ] E[X̂∗2

2 ] ρ2E[X2X̂
∗
2 ]

ρ1ρ2E[X1X̂
∗
1 ] ρ2E[X2X̂

∗
2 ] E[X̂∗2

3 ]

−1

,

(139)
α2
3 = E[X̂∗2

3 ]− τ21E[X̂
∗2
1 ]− τ22E[X̂

∗2
2 ]− τ23E[X

2
3 ]

−2τ1τ2E[X̂
∗
1 X̂

∗
2 ]− 2τ1τ3ρ1ρ2E[X1X̂

∗
1 ]− 2τ2τ3ρ2E[X2X̂

∗
2 ], (140)

where (.)−1 denotes the inverse of a matrix.

Now, we look at the rate constraints.

Rate Constraints:

Consider the rate constraint of the first step as follows

R1 ≥ I(X1;X
∗
r,1) (141)

= H(X1)−H(X1|X∗
r,1) (142)

≥ H(X1)−H(X1|X̂∗
1 ) (143)

= H(X1)−H(X1 −E[X1|X̂∗
1 ]|X̂∗

1 ) (144)
≥ H(X1)−H(X1 −E[X1|X̂∗

1 ]) (145)
≥ H(X1)−H(X1 −E[X1|X̂G

1 ]) (146)
= H(X1)−H(X1 −E[X1|X̂G

1 ]|X̂G
1 ) (147)

= I(X1; X̂
G
1 ) (148)

where

• (143) follows because X̂∗
1 is a function of X∗

r,1;
• (146) follows because for a given covariance matrix in (122), the Gaussian distribution

maximizes the differential entropy;
• (147) follows because the MMSE is uncorrelated from the data and since the random

variables are Gaussian, the MMSE would be independent of the data.
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Next, consider the rate constraint of the second step as the following

R2 ≥ I(X2;X
∗
r,2|X∗

r,1) (149)
= H(X2|X∗

r,1)−H(X2|X∗
r,1, X

∗
r,2) (150)

≥ H(X2|X∗
r,1)−H(X2|X̂∗

1 , X̂
∗
2 ) (151)

≥ H(X2|X∗
r,1)−H(X2|X̂G

1 , X̂
G
2 ) (152)

= H(ρ1X1 +N1|X∗
r,1)−H(X2|X̂G

1 , X̂
G
2 ) (153)

≥ 1

2
log
(
ρ212

2H(X1|X∗
r,1) + 22H(N1)

)
−H(X2|X̂G

1 , X̂
G
2 ) (154)

≥ 1

2
log
(
ρ212

−2R122H(X1) + 22H(N1)
)
−H(X2|X̂G

1 , X̂
G
2 ), (155)

where

• (151) follows because X̂∗
1 and X̂∗

2 are deterministic functions of X∗
r,1 and (X∗

r,1, X
∗
r,2),

respectively;
• (152) follows because for a given covariance matrix in (123), the Gaussian distribution

maximizes the differential entropy;
• (154) follows from entropy power inequality (EPI) [38, pp. 22];
• (155) follows from (142).

Similarly, consider the rate constraint of the third frame as the following,

R3 ≥ I(X3; X̂
∗
3 |X∗

r,1, X
∗
r,2) (156)

= H(X3|X∗
r,1, X

∗
r,2)−H(X3|X∗

r,1, X
∗
r,2, X̂

∗
3 ) (157)

≥ H(X3|X∗
r,1, X

∗
r,2)−H(X3|X̂∗

1 , X̂
∗
2 , X̂

∗
3 ) (158)

≥ H(X3|X∗
r,1, X

∗
r,2)−H(X3|X̂G

1 , X̂
G
2 , X̂

G
3 ) (159)

= H(ρ2X2 +N2|X∗
r,1, X

∗
r,2)−H(X3|X̂G

1 , X̂
G
2 , X̂

G
3 ) (160)

≥ 1

2
log
(
ρ222

2H(X2|X∗
r,1,X

∗
r,2) + 22H(N2)

)
−H(X3|X̂G

1 , X̂
G
2 , X̂

G
3 ) (161)

≥ 1

2
log
(
ρ222

−2R222H(X2|X∗
r,1) + 22H(N2)

)
−H(X3|X̂G

1 , X̂
G
2 , X̂

G
3 ) (162)

≥ 1

2
log
(
ρ21ρ

2
22

−2R1−2R222H(X1) + ρ222
−2R222H(N1) + 22H(N2)

)
−H(X3|X̂G

1 , X̂
G
2 , X̂

G
3 )

(163)

Next, we look at the distortion constraint.

Distortion Constraint: The choices in (122)–(124) imply that

Dj ≥ E[∥Xj − X̂∗
j ∥2] = E[∥Xj − X̂G

j ∥2], j = 1, 2, 3. (164)

Finally, we look at the perception constraint

Perception Constraint:

Define the following distribution

PU∗V ∗ := arg inf
P̃UV :

P̃U=PX1

P̃V =PX̂∗
1

EP̃ [∥U − V ∥2]. (165)

Now, define PUGV G to be a Gaussian joint distribution with the following covariance matrix

cov(UG, V G) = cov(U∗, V ∗). (166)

Then, we have the following set of inequalities:
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P1 ≥W 2
2 (PX1

, PX̂∗
1
) = inf

P̃UV :
P̃U=PX1

P̃V =PX̂∗
1

EP̃ [∥U − V ∥2] (167)

= E[∥U∗ − V ∗∥2] (168)
= E[∥UG − V G∥2] (169)
≥W 2

2 (PUG , PV G) (170)
= inf

P̂UV :
P̂U=PUG

P̂V =PV G

EP̂ [∥U − V ∥2] (171)

= inf
P̂UV :

P̂U=PX1

P̂V =P
X̂G

1

EP̂ [∥U − V ∥2] (172)

=W 2
2 (PX1

, PX̂G
1
), (173)

where

• (168) follows from the definition in (165);
• (169) follows from (166) which implies that (U∗, V ∗) and (UG, V G) have the same second-

order statistics;
• (172) follows because PV G = PX̂G

1
which is justified in the following. First, notice that

both PV G and PX̂G
1

are Gaussian distributions. Denote the variance of V G by σ2
V G and

recall that the variance of X̂G
1 is denoted by σ2

X̂G
1

. According to (166), σ2
V G is equal to the

variance of V ∗. Also, from (165), we know that PV ∗ = PX̂∗
1

, hence the variances of V ∗

and X̂∗
1 are the same. On the other side, according to (122), we know that the variance of

X̂∗
1 is equal to σ2

X̂G
1

. Thus, we conclude that σ2
X̂G

1

= σ2
V G , which yields PV G = PX̂G

1
. A

similar argument shows that PUG = PX1
.

A similar argument holds for the perception constraint of the second and third steps for both PLFs.

Thus, we have proved the set of Gaussian auxiliary random variables (X̂G
1 , X̂

G
2 , X̂

G
3 ) given in (125)–

(127) where the coefficients are chosen according to distortion-perception constraints, provides an
outer bound to CRDP which is the set of all tuples (R,D,P) such that

R1 ≥ I(X1; X̂
G
1 ), (174)

R2 ≥ 1

2
log
(
ρ212

−2R122H(X1) + 22H(N1)
)
−H(X2|X̂G

1 , X̂
G
2 ), (175)

R3 ≥ 1

2
log
(
ρ21ρ

2
22

−2R1−2R222H(X1) + ρ222
−2R222H(N1) + 22H(N2)

)
−H(X3|X̂G

1 , X̂
G
2 , X̂

G
3 ),

(176)
Dj ≥ E[∥Xj − X̂G

j ∥2], j = 1, 2, 3 (177)

Pj ≥W 2
2 (PX1...Xj , PX̂G

1 ...X̂G
j
). (178)

Now, we need to show that the above RDP region is also an inner bound to CRDP. This is simply
verified by the following choice. In iRDP region of (68)–(76), choose the following:

Xr,j = X̂j = X̂G
j , j = 1, 2, 3, (179)

where (X̂G
1 , X̂

G
2 , X̂

G
3 ) satisfy (125)–(127) with coefficients chosen according to distortion-perception

constraints. The lower bounds on distortion and perception constraints in (177) and (178) are
immediately achieved by this choice. Now, we will look at the rate constraints. The achievable rate
constraint of the first step can be written as follows

R1 ≥ I(X1; X̂
G
1 ), (180)
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which immediately coincides with (174). The achievable rate of the second step can be written as
follows

R2 ≥ I(X2; X̂
G
2 |X̂G

1 ) (181)
= H(X2|X̂G

1 )−H(X2|X̂G
1 , X̂

G
2 ) (182)

= H(ρ1X1 +N1|X̂G
1 )−H(X2|X̂G

1 , X̂
G
2 ) (183)

=
1

2
log(ρ212

2H(X1|X̂G
1 ) + 22H(N1))−H(X2|X̂G

1 , X̂
G
2 ) (184)

≥ 1

2
log
(
ρ212

−2R122H(X1) + 22H(N1)
)
−H(X2|X̂G

1 , X̂
G
2 ), (185)

where

• (184) follows because EPI holds with “equality” for jointly Gaussian distributions [38, pp.
22];

• (185) follows from (175).

Thus, the bound in (185) coincides with (155). A similar argument holds for the achievable rate of
the third frame.

Notice that the above proof (both converse and achievability) can be extended to T frames using the
sequential analysis that was presented. Thus, without loss of optimality, one can restrict to the jointly
Gaussian distributions and identity functions η1(.) and η2(., .) in iRDP region CRDP.

For a given rate R, the following corollary provides the optimization programs which lead to the
characterization of the DP tradeoff DP(R) for the Gauss-Markov source model.

Corollary 1 For a given rate tuple R and T = 2 frames, the optimal reconstructions of the DP-
tradeoff DP(R) can be written as follows

X̂G
1 = νX1 + Z1, (186)

X̂G
2 = ω1X̂

G
1 + ω2X2 + Z2, (187)

where Z1 (resp Z2) is a Gaussian random variable independent of X1 (resp (X̂G
1 , X2)) and X̂G

j ∼
N (0, σ̂2

j ) for j = 1, 2, and ν, ω1, ω2, σ̂
2
1 , σ̂

2
2 are the solutions of the following optimization program

for the first step,

min
ν,σ̂2

1

σ2
1 + σ̂2

1 − 2νσ2
1 , (188a)

s.t. ν2σ2
1 ≤ σ̂2

1(1− 2−2R1), (188b)
(σ1 − σ̂1)

2 ≤ P1, (188c)

and the following minimization problem for the second step and PLF-FMD,

min
ω1,ω2,σ̂2

2

σ2
2 + σ̂2

2 − 2νω1ρ1σ1σ2 − 2ω2σ
2
2 , (189a)

s.t. ω2
2σ

2
2(1− 2−2R2

ν2ρ21σ
2
1

σ̂2
1

) ≤ (σ̂2
2 − ω2

1 σ̂
2
1 − 2ω1ω2νρ1σ1σ2)(1− 2−2R2), (189b)

(σ2 − σ̂2)
2 ≤ P2, (189c)

or the following minimization problem for the second step and PLF-JD,

min
ω1,ω2,σ̂2

2

σ2
2 + σ̂2

2 − 2νω1ρ1σ1σ2 − 2ω2σ
2
2 (190a)

s.t. ω2
2σ

2
2(1− 2−2R2

ν2ρ21σ
2
1

σ̂2
1

) ≤ (σ̂2
2 − ω2

1 σ̂
2
1 − 2ω1ω2νρ1σ1σ2)(1− 2−2R2), (190b)

tr(Σ12 + Σ̂12 − 2(Σ
1/2
12 Σ̂12Σ

1/2
12 )1/2) ≤ P2, (190c)

where tr(.) denotes the trace of a matrix and

Σ12 :=

(
σ2
1 ρ1σ1σ2

ρ1σ1σ2 σ2
2

)
, (191)

Σ̂12 :=

(
σ̂2
1 ω1σ̂

2
1 + νω2ρ1σ1σ2

ω1σ̂
2
1 + νω2ρ1σ1σ2 σ̂2

2

)
. (192)
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Proof: We obtain the optimization programs for T = 2 frames as follows.

For a given rate tuple R, the DP-tradeoff DP(R) is given by the set of all tuples (D,P) such that
there exists X̂G satisfying the following Markov chains

X̂G
1 → X1 → X2, (193)

X̂G
2 → (X̂G

1 , X2) → X1, (194)

and the following conditions,

R1 ≥ I(X1; X̂
G
1 ), (195)

R2 ≥ I(X2; X̂
G
2 |X̂G

1 ), (196)

and

Dj ≥ E[∥Xj − X̂G
j ∥2], j = 1, 2, (197)

Pj ≥W 2
2 (PX1...Xj

, PX̂G
1 ...X̂G

j
). (198)

In general, the set of reconstructions that satisfy (193)–(194) can be written as follows

X̂G
1 = νX1 + Z1, (199)

X̂G
2 = ω1X̂

G
1 + ω2X2 + Z2. (200)

Plugging the above into (195) and (196) yields the following rate expressions

1

2
log

σ̂2
1

σ̂2
1 − ν2σ2

1

≤ R1, (201)

1

2
log

σ̂2
2 − (ω1σ̂1 +

ω2νρ1σ1σ2

σ̂1
)2

σ̂2
2 − ω2

1 σ̂
2
1 − ω2

2σ
2
2 − 2ω1ω2νρ1σ1σ2

≤ R2. (202)

Re-arranging the terms in the above constraints yields the conditions in (188b) and (190b). Consider-
ing (197) with (199)–(200) gives the following expressions for distortions

E[∥X1 − X̂G
1 ∥2] = σ2

1 + σ̂2
1 − 2E[X1X̂

G
1 ] = σ2

1 + σ̂2
1 − 2νσ2

1 , (203)
E[∥X2 − X̂G

2 ∥2] = σ2
2 + σ̂2

2 − 2E[X2X̂
G
2 ] = σ2

2 + σ̂2
2 − 2ω1νρ1σ1σ2 − 2ω2σ

2
2 , (204)

which are the objective functions in (188a) and (190a). Now, we evaluate the perception constraint.
Notice that the covariance matrices of (X1, X2) and (X̂G

1 , X̂
G
2 ) are given by Σ12 and Σ̂12 defined

in (191) and (192), respectively. The Wasserstein-2 distance between two Gaussian distributions with
covariance matrices Σ12 and Σ̂12 is given in (190c) as discussed in [26, pp. 18].

Similarly, the expressions in (189) for the decoder based on PLF-FMD can be obtained.

F Gauss-Markov Source Model: Extremal Rates

In this section, we derive the achievable reconstructions for some special cases. We assume that we
have only two frames, i.e., D3, P3 → ∞. Moreover, let σ2

1 = σ2
2 := σ2 for simplicity. In general,

the reconstructions can be written as follows

X̂G
1 = νX1 + Z1, (205)

X̂G
2 = ω1X̂

G
1 + ω2X2 + Z2, (206)

where X̂G
j ∼ N (0, σ̂2

j ) for j = 1, 2. Recall the optimization program of the first step in (188) as
follows

min
ν,σ̂2

1

σ2 + σ̂2
1 − 2νσ2, (207a)

s.t. ν2σ2 ≤ σ̂2
1(1− 2−2R1), (207b)

(σ − σ̂1)
2 ≤ P1, (207c)
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For a given σ̂2
1 , the objective function in (207a) is a monotonically deacreasing function of ν, hence

one can restrict ν to be nonnegative, without loss of optimality. So, the above optimization program
can be written as

min
ν,σ̂2

1

σ2 + σ̂2
1 − 2νσ2, (208a)

s.t. 0 ≤ ν ≤ σ̂1
σ

√
1− 2−2R1 , (208b)

(σ − σ̂1)
2 ≤ P1, (208c)

Optimizing with respect to ν in the above program, we have

ν =
σ̂1
σ

√
1− 2−2R1 , (209)

where the optimization program reduces to

min
σ̂2
1

σ2 + σ̂2
1 − 2σσ̂1

√
1− 2−2R1 , (210a)

s.t. (σ − σ̂1)
2 ≤ P1. (210b)

Next, recall the optimization program of the second step for PLF-FMD in (189) as follows

min
ω1,ω2,σ̂2

2

σ2 + σ̂2
2 − 2νω1ρ1σ

2 − 2ω2σ
2, (211a)

s.t. ω2
2σ

2(1− 2−2R2
ν2ρ21σ

2

σ̂2
1

) ≤ (σ̂2
2 − ω2

1 σ̂
2
1 − 2ω1ω2νρ1σ

2)(1− 2−2R2), (211b)

(σ − σ̂2)
2 ≤ P2, (211c)

Plugging (209) into the above program, we get

min
ω1,ω2,σ̂2

2

σ2 + σ̂2
2 − 2ω1ρ1σ̂1σ

√
1− 2−2R1 − 2ω2σ

2, (212a)

s.t. ω2
2σ

2(1− ρ212
−2R2(1− 2−2R1)) ≤ (σ̂2

2 − ω2
1 σ̂

2
1 − 2ω1ω2ρ1σ̂1σ

√
1− 2−2R1)(1− 2−2R2),

(212b)
(σ − σ̂2)

2 ≤ P2, (212c)

The optimization program for the second step of PLF-JD is similar to the above program (212) when
(212c) is replaced by (190c). In this section, we study different rate regimes and obtain the solutions
of the above optimization programs. In particular, we are interested in two perception thresholds
P2 → ∞ and P2 = 0 where the former corresponds to the classical rate-distortion region and the
latter is the case of 0-PLF. For the 0-PLF-FMD, we have σ̂1 = σ̂2 = σ. For the 0-PLF-JD, in addition
to preserving the marginals, the correlation E[X̂G

1 X̂
G
2 ] = ρ1σ

2 should be satisfied. For each of these
cases, the optimization program in (212) is simplified in the following.

Optimization Program of the Second Step for P → ∞: In this case, there is no perception constraint
in the setting and the optimization program in (212) reduces to the following

min
σ̂2
2 ,ω1,ω2

σ2 + σ̂2
2 − 2ω1ρ1σ̂1σ

√
1− 2−2R1 − 2ω2σ

2, (213a)

s.t. ω2
2σ

2(1− ρ212
−2R2(1− 2−2R1)) ≤ (σ̂2

2 − ω2
1 σ̂

2
1 − 2ω1ω2ρ1σ̂1σ

√
1− 2−2R1)(1− 2−2R2).

(213b)

This case corresponds to the classical rate-distortion tradeoff where it is shown that for a given rate,
the MMSE reconstructions are indeed optimal [28, 37]. The expressions for MMSE reconstructions
are given in Appendix H.1.

Optimization Program of the Second Step for 0-PLF-FMD: In this case, we have σ̂1 = σ̂2 = σ. So,
the optimization program in (212) reduces to the following

min
ω1,ω2

2σ2 − 2ω1ρ1σ
2
√
1− 2−2R1 − 2ω2σ

2, (214a)

s.t. ω2
2(1− ρ212

−2R2(1− 2−2R1)) ≤ (1− ω2
1 − 2ω1ω2ρ1

√
1− 2−2R1)(1− 2−2R2).

(214b)
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Here, ω1 and ω2 only need to satisfy the rate constraint given in (214b) which represents a larger
search space than that of 0-PLF-JD which will be discussed in the following.

Optimization Program of the Second Step for 0-PLF-JD: In this case, in addition to preserving
marginals σ̂1 = σ̂2 = σ, we need to satisfy the constraint E[X̂G

1 X̂
G
2 ] = ρ1σ

2. Thus, the opti-
mization program of this case has an extra condition ω1 + νω2ρ1 = ρ1 comparing to (214) and it is
given as follows

min
ω1,ω2

2σ2 − 2ω1ρ1σ
2
√
1− 2−2R1 − 2ω2σ

2, (215a)

s.t. ω2
2(1− ρ212

−2R2(1− 2−2R1)) ≤ (1− ω2
1 − 2ω1ω2ρ1

√
1− 2−2R1)(1− 2−2R2),

ω1 + νω2ρ1 = ρ1. (215b)

Comparing (215) with (214), we notice that the search space of the optimization program for 0-PLF-
JD is smaller than that of 0-PLF-FMD. Thus, a larger distortion is expected for 0-PLF-JD.

Before studying each case of extremal rates, we introduce another constraint in the optimization
program of all above three cases of perception metrics. We restrict to nonnegative ω1ω2ρ1 and get an
upper bound on the programs (213), (214) and (215). So, in further discussion on these programs,
the constraint ω1ω2ρ1 ≥ 0 will be also considered.

1) R1 = R2 = ϵ for small ϵ:

In the low-rate regime, notice that we can approximate the rate term as follows

1− 2−2ϵ = 2ϵ ln 2 +O(ϵ2). (216)

Plugging the above into (209), we have

ν =
σ̂1
σ

√
2ϵ ln 2 +O(ϵ2). (217)

Also, inserting (216) into the rate constraint of the second step (211c) yields the following

ω2
2σ

2(1− ρ212ϵ ln 2 +O(ϵ2)) ≤ (σ̂2
2 − ω2

1 σ̂
2
1 − 2ω1ω2ρ1σ̂1σ

√
2ϵ ln 2 +O(ϵ2))(2ϵ ln 2 +O(ϵ2)).2

(218)

Re-arranging the terms in the above inequality yields the following

σ̂2
2 ≥ ω2

2σ
2(1− ρ212ϵ ln 2 +O(ϵ2))

2ϵ ln 2 +O(ϵ2)
+ ω2

1 σ̂
2
1 + 2ω1ω2ρ1σ̂1σ

√
2ϵ ln 2 +O(ϵ2) (219)

= ω2
2σ

2

(
1

2ϵ ln 2
+O (1)

)
+ ω2

1 σ̂
2
1 + 2ω1ω2ρ1σ̂1σ

√
2ϵ ln 2 +O(ϵ2) (220)

So, in all of the optimization programs of the case R1 = R2 = ϵ, the above constraint (220) will
replace the rate constraint of the second step.

Now, we consider different cases based on the perception measure.

a) Without a perception constraint: In this case, using (216), the optimization program of the first
step in (210) simplifies to the following

D1 = min
σ̂2
1

σ2 + σ̂2
1 − 2σσ̂1

√
2ϵ ln 2 +O(ϵ2), (221)

which gives us the following optimal solution

σ̂1 =
√

2ϵ ln 2 +O(ϵ2)σ =
√
2ϵ ln 2σ +O(ϵ). (222)

Plugging the above solution into (217) and (221), we get

ν = 2ϵ ln 2 +O(ϵ2), (223)

2The inequalities of the form f(ϵ) + O(ϵ2) ≤ g(ϵ) + O(ϵ2), where f(ϵ), g(ϵ) = Ω(ϵ2), imply that
f(ϵ) ≤ g(ϵ). So, in such inequalities, we work with dominant terms (f(ϵ), g(ϵ)) and ignore the small terms
O(ϵ2). A similar argument holds if we have other orders of ϵ and the functions f(.), g(.) approach zero slower
than them.
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and

D1 = (1− 2ϵ ln 2)σ2 +O(ϵ2). (224)

Now, we look at the optimization program of the second step (213). For a given ω1 and ω2, the
objective function is an increasing function of σ̂2

2 , so optimizing over σ̂2
2 yields the following

σ̂2
2 = ω2

2σ
2

(
1

2ϵ ln 2
+O (1)

)
+ ω2

1 σ̂
2
1 + 2ω1ω2ρ1σ̂1σ

√
2ϵ ln 2 +O(ϵ2). (225)

Thus, the optimization program (213) is further upper bounded by the following

min
σ̂2
2 ,ω1,ω2:

ω1ω2ρ1≥0

σ2 + ω2
2σ

2

(
1

2ϵ ln 2
+O (1)

)
+ ω2

1 σ̂
2
1 − 2(1− ω2)ω1ρ1σ̂1σ

√
2ϵ ln 2 +O(ϵ2)− 2ω2σ

2.

(226)

The optimal solution of the above minimization is given by the following

ω1 = ρ1 +O(ϵ), (227)
ω2 = 2ϵ ln 2 +O(ϵ2). (228)

Thus, considering the dominant terms of (223), (227) and (228), we have

X̂G
1 = (2ϵ ln 2)X1 + Z1, (229)

X̂G
2 = ρ1X̂

G
1 + (2ϵ ln 2)X2 + Z2, (230)

and Zj ∼ N (0, 2ϵσ2 ln 2) for j = 1, 2. Notice that

D1 = (1− 2ϵ ln 2)σ2, (231)
D2 = (1− (1 + ρ21)2ϵ ln 2)σ

2. (232)

b) 0-PLF-FMD: In this case, we have σ̂1 = σ̂2 = σ. For the optimization program of the first step,
(209) reduces to the following

ν =
√
2ϵ ln 2 +O(ϵ), (233)

and D1 is given in the following which is derived by (210)

D1 = 2(1−
√
2ϵ ln 2)σ2 +O(ϵ). (234)

Now, we study the optimization program of the second step. The optimization program of (214) is
further upper bounded by the following

min
ω1,ω2:

ω1ω2ρ1≥0

2σ2 − 2ω1ρ1σ
2
√

2ϵ ln 2 +O(ϵ2)− 2ω2σ
2, (235a)

s.t. 1 ≥
√
ω2
2

(
1

2ϵ ln 2
+O (1)

)
+ ω2

1 + 2ω1ω2ρ1
√
2ϵ ln 2 +O(ϵ2). (235b)

Now, we further simplify the inequality (235b) in the following. Considering the fact that ω1ω2ρ1 ≥ 0,
this inequality implies that

ω2
1 ≤ 1, (236)
ω2
2 ≤ 2ϵ ln 2 +O(ϵ2). (237)

So, using the above inequalities, the RHS of (235b) can be upper bounded as follows√
ω2
2

(
1

2ϵ ln 2
+O (1)

)
+ ω2

1 + 2ω1ω2ρ1
√
2ϵ ln 2 +O(ϵ2)

≤
√
ω2
2

(
1

2ϵ ln 2
+O (1)

)
+ ω2

1 + (ω2
1 + ω2

2)ρ1
√

2ϵ ln 2 +O(ϵ2)

≤
√
ω2
2

(
1

2ϵ ln 2
+O (1)

)
+ ω2

1 +O(ϵ3/2). (238)
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Now, according to (238), the optimization program in (235) is further upper bounded by the following

min
ω1,ω2:

ω1ω2ρ1≥0

2σ2 − 2ω1ρ1σ
2
√
2ϵ ln 2 +O(ϵ2)− 2ω2σ

2, (239a)

s.t. 1 ≥
√
ω2
2

(
1

2ϵ ln 2
+O (1)

)
+ ω2

1 +O(ϵ3/2). (239b)

For a given ω1 (resp ω2), the objective function (239a) is a monotonically decreasing function of ω2

(resp ω1), so the optimal solution is attained on the boundary, i.e.,

1 =

√
ω2
2

(
1

2ϵ ln 2
+O (1)

)
+ ω2

1 +O(ϵ3/2) (240)

Thus, the program (239) further simplifies to the following

min
ω1:

ω1ρ1≥0

2σ2 − 2ω1ρ1σ
2
√
2ϵ ln 2 +O(ϵ2)− 2σ2

√
(1− ω2

1 −O(ϵ3/2))(2ϵ ln 2 +O(ϵ2)).

(241)

The optimal solution of the above program is given by

ω1 =
ρ1√
1 + ρ21

+O (ϵ) , (242)

which together with (240) yields

ω2 =

√
2ϵ ln 2

1 + ρ21
+O(ϵ). (243)

Thus, considering dominant terms of (233), (242) and (243), we get

X̂G
1 =

√
2ϵ ln 2X1 + Z1, (244)

X̂G
2 =

ρ1√
1 + ρ21

X̂G
1 +

√
2ϵ ln 2

1 + ρ21
X2 + Z2, (245)

where Z1 ∼ N (0, (1− 2ϵ ln 2)σ2) and

Z2 ∼ N (0, (1− ρ21
1 + ρ21

− 1 + 2ρ21
1 + ρ21

2ϵ ln 2)σ2). (246)

Notice that

D1 = 2(1−
√
2ϵ ln 2)σ2, (247)

D2 = 2(1−
√
(1 + ρ21)2ϵ ln 2)σ

2. (248)

For the special case of ρ1 = 1, the expressions in (244) and (245) simplify as follows

X̂G
1 =

√
2ϵ ln 2X1 + Z1, (249)

X̂G
2 =

√
2
√
2ϵ ln 2X1 +

1√
2
Z1 + Z2. (250)

Define ZFMD := 1√
2
Z1 + Z2 and notice that ZFMD ∼ N (0, (1− 4ϵ ln 2)σ2). Moreover, we have

D1 = 2(1−
√
2ϵ ln 2)σ2, (251)

D2 = 2(1−
√
4ϵ ln 2)σ2. (252)

c) 0-PLF-JD: In this case, the optimization program of the first step is similar to the previous case.
The optimization program of the second step is given in (215) where the condition ω1 + νω2ρ1 = ρ1
is introduced. According to (233), ν = O(

√
ϵ) which suggests the following form for ω1,

ω1 = ρ1 − δϵ, (253)
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for some small δϵ that goes to zero as ϵ → 0. The parameter δϵ will be determined later. Plugging
ω1 = ρ1 − δϵ into (240), we find out that only the constant term of ω1 contributes to a dominant term
for ω2 which yields the following

ω2 =
√
2ϵ ln 2(1− ρ21) +O(ϵ). (254)

Thus, we have

X̂G
1 =

√
2ϵ ln 2X1 + Z1, (255)

X̂G
2 = (ρ1 − δϵ)X̂

G
1 +

√
(1− ρ21)2ϵ ln 2X2 + Z2, (256)

Now, applying the constraint E[X̂G
1 X̂

G
2 ] = ρ1σ

2, we get

δϵ = ρ1

√
1− ρ21(2ϵ ln 2). (257)

However, notice that since δϵ = O(ϵ), it does not contribute to dominant terms of distortion. So, we
can simply represent X̂G

1 and X̂G
2 as follows

X̂G
1 =

√
2ϵ ln 2X1 + Z1, (258)

X̂G
2 = ρ1X̂

G
1 +

√
(1− ρ21)2ϵ ln 2X2 + Z2, (259)

where Z1 ∼ N (0, (1 − 2ϵ ln 2)σ2) and Z2 ∼ N (0, (1 − ρ21 − (1 − ρ21 + 2ρ21
√

1− ρ21)2ϵ ln 2)σ
2).

The following distortions are also achievable

D1 = 2(1−
√
2ϵ ln 2)σ2, (260)

D2 = 2(1− (ρ21 +
√
1− ρ21)

√
2ϵ ln 2)σ2. (261)

For the special case of ρ = 1, according to (259) and (261), we have X̂G
2 = X̂G

1 and D2 = D1.

2) R1 → ∞, R2 = ϵ for small ϵ: In this case, since R1 → ∞, we have X̂G
1 = X1, D1 = 0, and

we only need to solve the optimization program of the second step. Also, we have the following
approximation

1− 2−2R2 = 1− 2−2ϵ = 2ϵ ln 2 +O(ϵ2). (262)

We consider three different cases based on the perception constraint.

a) Without a perception constraint: In this case, consider the optimization program (213). For a given
ω1 and ω2, the objective function is an increasing function of σ̂2

2 , hence optimizing over σ̂2
2 , we get

σ̂2
2 =

ω2
2σ

2(1− ρ21 +O(ϵ))

2ϵ ln 2 +O(ϵ2)
+ ω2

1σ
2 + 2ω1ω2ρ1σ

2. (263)

The program in (213) is further upper bounded by the following

min
ω1,ω2:

ω1ω2ρ1≥0

σ2 +
ω2
2σ

2(1− ρ21 +O(ϵ))

2ϵ ln 2 +O(ϵ2)
+ ω2

1σ
2 + 2ω1ω2ρ1σ

2 − 2ω1ρ1σ
2 − 2ω2σ

2,

(264)

The solution of the above optimization program is given by the following

ω1 = ρ1 − ρ1(2ϵ ln 2), (265)
ω2 = 2ϵ ln 2. (266)

Thus, we have

X̂G
1 = X1, (267)

X̂G
2 = (ρ1 − ρ1(2ϵ ln 2))X1 + (2ϵ ln 2)X2 + Z2, (268)

where Z2 ∼ N (0, (1− ρ21)σ
22ϵ ln 2). So, the reconstruction of the second frame closely resembles

the first frame. The distortions of the first and second frames are zero and (1−ρ21−(1−ρ21)2ϵ ln 2)σ2,
respectively.
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b) 0-PLF-FMD: In this case, σ̂1 = σ̂2 = σ. Thus, the optimization program in (214) is further upper
bounded by the following

min
ω1,ω2:

ω1ω2ρ1≥0

2σ2 − 2ω1ρ1σ
2 − 2ω2σ

2, (269a)

s.t. ω2
2(1− ρ21 +O(ϵ)) ≤ (1− ω2

1 − 2ω1ω2ρ1)(2ϵ ln 2 +O(ϵ2)). (269b)
For a given ω1 (resp ω2), the objective function (269a) is a monotonically decreasing function of ω2

(resp ω1). So, the optimal solution is attained on the boundary, i.e., (269b) is satisfied with equality
given as follows

ω2
2(1− ρ21 +O(ϵ)) = (1− ω2

1 − 2ω1ω2ρ1)(2ϵ ln 2 +O(ϵ2)). (270)
It can be easily verified that the first-order terms of ω1 and ω2 which optimize the program are 1 and
0, respectively. So, we write ω1 and ω2 in the following form

ω1 = 1 + (2ϵ ln 2)δ1 +O(ϵ2), (271)
ω2 = (2ϵ ln 2)δ2 +O(ϵ2), (272)

for some real δ1 and δ2. Plugging the above (271) and (272) into (270) and considering the dominant
terms, we get

δ22(1− ρ21) = −2δ1 − 2ρ1δ2. (273)
On the other side, we can write the objective function in (269) as follows

2σ2 − 2ω1ρ1σ
2 − 2ω2σ

2

= 2σ2 − 2ρ1ω1σ
2 − 2ω2σ

2 +O(ϵ2) (274)
= 2σ2 − 2ρ1σ

2 − 2(ρ1δ1σ
2 + δ2σ

2)(2ϵ ln 2) +O(ϵ2) (275)
= 2σ2 − 2ρ1σ

2 − (−2ρ21δ2σ
2 − ρ1(1− ρ21)δ

2
2 + 2δ2σ

2)(2ϵ ln 2) +O(ϵ2). (276)
Differentiating the above expression with respect to δ2 and letting it be zero, we have:

δ2 =
1

ρ1
, δ1 = −1 + ρ21

2ρ21
. (277)

Thus, we have
X̂G

1 = X1, (278)

X̂G
2 = (1− (1 + ρ21)2ϵ ln 2

2ρ21
)X̂G

1 +
2ϵ ln 2

ρ1
X2 + Z2, (279)

where Z2 ∼ N (0, (
1−ρ2

1

ρ2
1

)2ϵ ln 2). Again, the reconstruction of the second frame is almost similar to

the first frame and the distortion is 2(1− ρ1 − (
1−ρ2

1

2ρ1
)2ϵ ln 2)σ2.

c) 0-PLF-JD: First consider the case where ρ1 ̸= 1. The optimization program is given in (215)
where the constraint ω1 + νρ1ω2 = ρ1 is introduced. Notice that ω1 can be written in the following
form

ω1 = ρ1 + δϵ, (280)
for some δϵ that goes to zero as ϵ → 0. The parameter δϵ will be determined later. Plugging
ω1 = ρ1 + δϵ into (270) yields the following

ω2 =
√
2ϵ ln 2 +O(ϵ), (281)

which is derived only through the first-order term of ω1 which is ρ1. Now, considering the fact that
E[X̂G

1 X̂
G
2 ] = ρ1σ

2, we obtain
δϵ = −ρ1

√
2ϵ ln 2. (282)

Thus, we have
X̂G

1 = X1, (283)

X̂G
2 = (ρ1 − ρ1

√
2ϵ ln 2)X̂G

1 +
√
2ϵ ln 2X2 + Z2, (284)

where Z2 ∼ N (0, (1− ρ21)σ
2). Here, the reconstruction of the second frame closely resembles the

first frame. The distortion of the second frame is 2(1− ρ21 − (1− ρ21)
√
2ϵ ln 2)σ2.

If ρ1 = 1, we simply have X̂G
2 = X̂G

1 = X1 = X2 which can be derived from (283)–(284) by letting
X1 = X2.

The analysis for the case of R1 = ϵ and R2 → ∞ is similar and is omitted for brevity. The results of
this section are summarized in Table 2.
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Table 2: Achievable reconstructions for extremal rates and different PLFs (The first, second and third rows
represent reconstructions corresponding to the MMSE, 0-PLF-FMD and 0-PLF-JD, respectively).

R1 = R2 = ϵ R1 → ∞, R2 = ϵ R1 = ϵ, R2 = ∞

X̂G
1 =(2ϵ ln 2)X1 + Z1 X̂G

1 =X1 X̂G
1 =(2ϵ ln 2)X1 + Z1

X̂G
2 =ρ1X̂

G
1 + (2ϵ ln 2)X2 + Z2 X̂G

2 =(ρ1 − ρ12ϵ ln 2)X̂G
1 + (2ϵ ln 2)X2 + Z2 X̂G

2 =X2

M
M

S
E

Zj∼N (0, 2ϵσ2 ln 2) Z2∼N (0, (1 − ρ21)2ϵσ
2 ln 2) Z1∼N (0, 2ϵσ2 ln 2)

D1=(1 − 2ϵ ln 2)σ2 D1=0 D1=(1 − 2ϵ ln 2)σ2

D2=(1 − (1 + ρ21)2ϵ ln 2)σ2 D2=(1 − ρ21 − (1 − ρ21)2ϵ ln 2)σ2 D2=0

X̂G
1 =

√
2ϵ ln 2X1 + Z1 X̂G

1 =X1 X̂G
1 =

√
2ϵ ln 2X1 + Z1

X̂G
2 =

ρ1√
1+ρ21

X̂G
1 +

√
2ϵ ln 2
1+ρ21

X2 + Z2 X̂G
2 =(1 −

(1+ρ21)2ϵ ln 2

2ρ21

)X̂G
1 + 2ϵ ln 2

ρ1
X2 + Z2 X̂G

2 =X2

0
-P

L
F

-F
M

D

Z1∼N (0, (1 − 2ϵ ln 2)σ2) Z2∼N (0, (
1−ρ21
ρ21

)2ϵ ln 2) Z1∼N (0, (1 − 2ϵ ln 2)σ2)

Z2∼N (0, (1−
ρ21

1+ρ21

−
1+2ρ21
1+ρ21

2ϵ ln 2)σ2)

D1=2(1 −
√
2ϵ ln 2)σ2 D1=0 D1=2(1 −

√
2ϵ ln 2)σ2

D2=2(1 −
√

(1 + ρ21)2ϵ ln 2)σ2 D2=2(1 − ρ1 − (
1−ρ21
2ρ1

)2ϵ ln 2)σ2 D2=0

X̂G
1 =

√
2ϵ ln 2X1 + Z1 X̂G

1 =X1 X̂G
1 =

√
2ϵ ln 2X1 + Z1

X̂G
2 =ρ1X̂

G
1 +

√
(1 − ρ21)2ϵ ln 2X2 + Z2

a X̂G
2 =(ρ1 − ρ1

√
2ϵ ln 2)X̂G

1 +
√
2ϵ ln 2X2 + Z2 X̂G

2 =ρ1X̂
G
1 +

√
1 − ρ21X2

0
-P

L
F

-J
D

Z1∼N (0, (1 − 2ϵ ln 2)σ2) Z2∼N (0, (1 − ρ21)σ
2) Z1∼N (0, (1 − 2ϵ ln 2)σ2)

Z2∼N (0, (1 − ρ21 − (1 − ρ21)2ϵ ln 2)σ2)

D1=2(1 −
√
2ϵ ln 2)σ2 D1=0 D1=2σ2

D2=2(1 − (ρ21 +
√

1 − ρ21)
√
2ϵ ln 2)σ2 D2=2(1 − ρ21 − (1 − ρ21)

√
2ϵ ln 2)σ2 D2=2(1 −

√
1 − ρ21

−ρ21
√
2ϵ ln 2)σ2

a
As justified in (253)–(259), the coefficient ω1 (the coefficient of X̂G

1 in X̂G
2 ) has some correction terms of O(ϵ) which are ignored in the presentation of

X̂G
2 since they do not contribute to dominant terms of distortion.

G Comparison of PLFs in Low-Rate Regime

Theorem 6 For sufficiently small ϵ, let Rj = ϵ and suppose that ρj = ρ and σj = σ, for j =
1, . . . , T . The achievable distortions DFMD,j (for 0-PLF-FMD), and DJD,j (for 0-PLF-JD) are:

DFMD,j = 2(1−∆FMD,j

√
2ϵ ln 2)σ2, DJD,j = 2(1−∆JD,j

√
2ϵ ln 2)σ2, (285)

where ∆FMD,j :=
√
1 + ρ2 (2ρ2)j−1−1

2ρ2−1 and ∆JD,j := ρ2(j−1) + 1{j ≥ 2} ·
√

1− ρ2(
∑j−2

i=0 ρ
2i).

Proof: We extend the proof in the previous section for the low-rate regime to T frames.

Distortion Analysis for 0-PLF-FMD:

We follow similar steps to (233)–(248) for optimization problems of the third and fourth frames and
then use induction to derive expressions for T frames. For simplicity, we assume that ρj = ρ for all j.
Notice that in the following proof, (X̂G

1 , X̂
G
2 ) are as in (205)–(206) where ν, ω1 and ω2 are already

derived in (233)–(248).

Now, consider the reconstruction of the third frame as follows

X̂G
3 = τ1X̂

G
1 + τ2X̂

G
2 + τ3X3 + Z3, (286)

for some τ1, τ2, τ3, where X̂G
3 ∼ N (0, σ2) and Z3 is a Gaussian random variable independent of

(X̂G
1 , X̂

G
2 , X3). The rate constraint of the third step is given by

R3 ≥ I(X3; X̂
G
3 |X̂G

1 , X̂
G
2 ). (287)
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Evaluating the above constraint with the choice of random variables (X̂G
1 , X̂

G
2 , X̂

G
3 ) and re-arranging

the terms, we get

τ23σ
2(1− 2−2R3(ρ42−2R1−2R2 + ρ2(1− ρ2)2−2R2 − ρ2)) ≤

(1− 2−2R3)(1− τ21 − τ22 − 2τ1τ2ω1ν − 2τ1τ2ω2νρ− 2τ2τ3ω1νρ
2 − 2τ2τ3ω2ρ− 2τ1τ3νρ

2)σ2.

(288)

Similar to (240), considering the dominant terms of the above rate constraint and the fact that the
solution of the optimization problem is attained when the above inequality is satisfied with “equality”,
we get

(1− τ21 − τ22 +O(ϵ3/2))(2ϵ ln 2 +O(ϵ2)) = τ23 (1 +O(ϵ)). (289)

The distortion can be written as follows

E[∥X3 − X̂G
3 ∥2] = 2σ2 − 2τ3σ

2 − 2τ2ω2ρσ
2 − 2τ2ω1νρ

2σ2 − 2τ1νρ
2σ2. (290)

So, the goal is to solve the following optimization problem for the third step

min
τ1,τ2,τ3

2σ2 − 2τ3σ
2 − 2τ2ω2ρσ

2 − 2τ2ω1νρ
2σ2 − 2τ1νρ

2σ2 (291)

s.t. : (1− τ21 − τ22 +O(ϵ3/2))(2ϵ ln 2 +O(ϵ2)) = τ23 (1 +O(ϵ)). (292)

We restrict the search space to τ1, τ2, τ3 ≥ 0 and get an upper bound to the above optimization
program as follows

min
τ1,τ2,τ3≥0

2σ2 − 2τ3σ
2 − 2τ2ω2ρσ

2 − 2τ2ω1νρ
2σ2 − 2τ1νρ

2σ2 (293)

s.t. : (1− τ21 − τ22 +O(ϵ3/2))(2ϵ ln 2 +O(ϵ2)) = τ23 (1 +O(ϵ)). (294)

The above optimization problem is equivalent to the following

min
τ1,τ2≥0

(
2σ2 − 2

√
(2ϵ ln 2 +O(ϵ2))(1− τ21 − τ22 +O(ϵ3/2))

1 +O(ϵ)
σ2

−2τ2ω2ρσ
2 − 2τ2ω1νρ

2σ2 − 2τ1νρ
2σ2

)
. (295)

We proceed with solving the above optimization program. Taking the derivative of the objective
function with respect to η1 and η2 yields the following:

η2√
1− η21 − η22

= ρ
√

1 + ρ2 +O(ϵ), (296)

η1√
1− η21 − η22

= ρ2 +O(ϵ). (297)

Solving the above set of equations, we get

η1 =
ρ2√

1 + ρ2 + 2ρ4
+O(ϵ), (298)

η2 =
ρ
√
1 + ρ2√

1 + ρ2 + 2ρ4
+O(ϵ). (299)

Thus, considering the dominant terms, we get the following reconstruction for the third frame

X̂G
3 =

ρ2√
1 + ρ2 + 2ρ4

X̂G
1 +

ρ
√

1 + ρ2√
1 + ρ2 + 2ρ4

X̂G
2 +

√
2ϵ ln 2√

1 + ρ2 + 2ρ4
X3 + Z3. (300)

The above reconstruction yields the following distortion for the third frame

E[∥X3 − X̂G
3 ∥2] = 2(1−

√
2ϵ ln 2(1 + ρ2 + 2ρ4))σ2. (301)

Finally, consider the reconstruction of the fourth frame as follows

X̂G
4 = λ1X̂

G
1 + λ2X̂

G
2 + λ3X̂

G
3 + λ4X4 + Z4, (302)
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where X̂G
4 ∼ N (0, σ2). The rate constraint of the fourth step implies that

(1− λ21 − λ22 − λ23 +O(ϵ))(2ϵ ln 2 +O(ϵ)) = λ24(1 +O(ϵ)). (303)

The distortion can be written as follows

E[∥X4 − X̂G
4 ∥2] = 2σ2 − 2λ4σ

2 − 2λ3ρτ3σ
2 − 2λ3ρ

2τ2ω2σ
2 − 2λ3ρ

3τ2ω1νσ
2

−2λ3ρ
3τ1νσ

2 − 2λ2ρ
3ω1νσ

2 − 2λ2ρ
2ω2σ

2 − 2λ1ρ
3ν (304)

= 2σ2 − 2
√
(2ϵ ln 2)(1− λ21 − λ22 − λ23)σ

2 − 2λ3ρτ3σ
2

−2λ3ρ
2τ2ω2σ

2 − 2λ3ρ
3τ2ω1νσ

2 − 2λ3ρ
3τ1νσ

2

−2λ2ρ
3ω1νσ

2 − 2λ2ρ
2ω2σ

2 − 2λ1ρ
3ν +O(ϵ). (305)

We take the derivative of the above expression with respect to λ1, λ2 and λ3 and we get

λ1√
1− λ21 − λ22 − λ23

= ρ3 +O(ϵ), (306)

λ2√
1− λ21 − λ22 − λ23

= ρ2
√
1 + ρ2 +O(ϵ), (307)

λ3√
1− λ21 − λ22 − λ23

= ρ
√
1 + ρ2 + 2ρ4 +O(ϵ). (308)

Solving the above set of equations yields the following

λ1 =
ρ3√

1 + ρ2 + 2ρ4 + 4ρ6
+O(ϵ), (309)

λ2 =
ρ2
√
1 + ρ2√

1 + ρ2 + 2ρ4 + 4ρ6
+O(ϵ), (310)

λ3 =
ρ
√
1 + ρ2 + 2ρ4√

1 + ρ2 + 2ρ4 + 4ρ6
+O(ϵ). (311)

Thus, considering the dominant terms, we can write

X̂G
4 =

ρ3√
1 + ρ2 + 2ρ4 + 4ρ6

X̂G
1 +

ρ2
√
1 + ρ2√

1 + ρ2 + 2ρ4 + 4ρ6
X̂G

2

+
ρ
√
1 + ρ2 + 2ρ4√

1 + ρ2 + 2ρ4 + 4ρ6
X̂G

3 +

√
2ϵ ln 2√

1 + ρ2 + 2ρ4 + 4ρ6
X4 + Z4. (312)

The distortion term then becomes:

E[∥X4 − X̂G
4 ∥2] = 2(1−

√
2ϵ ln 2(1 + ρ2 + 2ρ4 + 4ρ6))σ2. (313)

Now, we use induction to derive the terms for T frames. Define

∆FMD,j :=

√√√√1 +

j−1∑
i=1

2j−1−iρ2(j−i), j = 2, . . . , T (314)

=

√
1 + ρ2

(2ρ2)j−1 − 1

2ρ2 − 1
. (315)

Thus, we have

X̂G
j =

j−1∑
i=1

∆FMD,iρ
j−i

∆FMD,j
X̂G

i +

√
2ϵ ln 2

∆FMD,j
Xj + Zj , j = 2, . . . , T, (316)

where Zj is a Gaussian random variable independent of (X̂G
1 , . . . , X̂

G
j−1, Xj) and its variance is such

that E[(X̂G
j )2] = σ2. The distortion is given by the following expression

DFMD,j = E[∥Xj − X̂j∥2] = 2(1−∆FMD,j

√
2ϵ ln 2)σ2, j = 2, . . . , T. (317)
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For the special case where ρ = 1, then the distortion simplifies to the following

E[∥Xj − X̂j∥2] = 2(1− 2
j−1
2

√
2ϵ ln 2)σ2, j = 2, . . . , T, (318)

which shows an exponential decrease at each step.

Distortion Analysis for 0-PLF-JD:

In this case, the proof for T frames is similar to (254)–(261). Thus, we have

X̂G
j = ρX̂G

j−1 +
√

(1− ρ2)2ϵ ln 2Xj + Zj , j = 2, . . . , T, (319)

where Zj is a Gaussian random variable independent of (X̂G
j−1, Xj) and its variance is such

that E[(X̂G
T )2] = σ2. It should be mentioned that preserving the correlation coefficients, e.g.,

E[X̂G
j X̂

G
j−1] = ρ, needs some correction terms of O(ϵ) as discussed in (257). However, as shown in

(261), these correction terms do not contribute to dominant terms of distortion and hence, they can be
ignored in the presentation of (319). Now, define

∆JD,j := ρ2(j−1) +
√
1− ρ2(

j−2∑
i=0

ρ2i), j = 2, . . . , T, (320)

and notice that

DJD,j := E[∥Xj − X̂j∥2] (321)

= 2σ2 − 2E[XjX̂j ] (322)

= 2σ2 − 2E[Xj(ρX̂
G
j−1 +

√
(1− ρ2)2ϵ ln 2Xj)] (323)

= 2σ2 − 2E[Xj(ρ
j−1X1 +

√
1− ρ2(ρj−2X2 + . . .+Xj))]

√
2ϵ ln 2σ2 (324)

= 2(1−∆JD,j

√
2ϵ ln 2)σ2. (325)

For the special case of ρ = 1, we get ∆JD,j = 1 which remains a constant across different steps.

H Universality Statement for Gauss-Markov Source Model

H.1 MMSE Representations for a Given Rate

For a given rate tuple R, the minimum distortions achievable by MMSE representations are derived
in [28, 37] and are given by

Dmin
1 = σ2

12
−2R1 , (326)

Dmin
2 = (ρ21

σ2
2

σ2
1

Dmin
1 + σ2

N1
)2−2R2 , (327)

Dmin
3 = (ρ22

σ2
3

σ2
2

Dmin
2 + σ2

N2
)2−2R3 , (328)

where

σ2
N1

:= (1− ρ21)σ
2
2 , (329)

σ2
N2

:= (1− ρ22)σ
2
3 . (330)

The above distortions are achieved by the following optimal reconstructions X̂r given in [28]. Notice
that the MMSE representation is XRD

r = X̂r, i.e., the functions η1(.) and η2(., .) of iRDP region CRDP

(Definition 4) are identity functions (this statement follows from Theorem 5). Now, we choose the
reconstruction X̂r in the following.

The reconstruction X̂r,1 is chosen such that X̂r,1 → X1 → (X2, X3) holds a Markov chain and

X1 = X̂r,1 + Z1, (331)

where X̂r,1 ∼ N (0, σ2
1 −Dmin

1 ) and Z1 ∼ N (0, Dmin
1 ) are independent random variables. Then,

the reconstruction X̂r,2 is chosen as follows. Let

W2 := ρ1
σ2
σ1
Z1 +N1, (332)
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which is the innovation from X̂r,1 to X2. Now, we find the random variables Ŵ2 and Z2 such that

W2 = Ŵ2 + Z2, (333)

where Ŵ2 ∼ N (0, ρ21
σ2
2

σ2
1
Dmin

1 + σ2
N1

−Dmin
2 ) and Z2 ∼ N (0, Dmin

2 ) are independent from each

other, and the Markov chain Ŵ2 → (X2, X̂r,1) → (X1, X3) holds. Now, define

X̂r,2 := ρ1
σ2
σ1
X̂r,1 + Ŵ2. (334)

Finally, we choose the reconstruction X̂r,3 as follows. Let

W3 := ρ2
σ3
σ2
Z2 +N2, (335)

which is the innovation from X̂r,2 to X3. Now, we find random variables Ŵ3 and Z3 such that

W3 = Ŵ3 + Z3, (336)

where Ŵ3 ∼ N (0, ρ22
σ2
3

σ2
2
Dmin

2 + σ2
N2

−Dmin
3 ) and Z2 ∼ N (0, Dmin

3 ) are independent from each

other, and the Markov chain Ŵ3 → (X3, X̂r,1, X̂r,2) → (X1, X2) holds. Now, define

X̂r,3 := ρ1
σ3
σ2
X̂r,2 + Ŵ3. (337)

Thus, the optimal reconstruction X̂r is chosen and it satisfies the rate constraint R.

H.2 Universality Statement

Theorem 7 For a given rate tuple R with strictly positive components, let the MMSE representation
be denoted as XRD

r = (XRD
r,1, X

RD
r,2, X

RD
r,3). Let (D,P) ∈ DP(R) and let X̂ = (X̂1, X̂2, X̂3) be the

corresponding reconstruction achieving it. Then there exist κ1, θ1, θ2, ψ1, ψ2 and ψ3 and noise
variables (Z1, Z2, Z3) independent of (XRD

r,1, X
RD
r,2, X

RD
r,3), which satisfy the following

X̂1 = κ1X
RD
r,1 + Z1, X̂2 = θ1X

RD
r,1 + θ2X

RD
r,2 + Z2, X̂3 = ψ1X

RD
r,1 + ψ2X

RD
r,2 + ψ3X̂

RD
r,3 + Z3.

For a given positive rate tuple R, let the MMSE representation XRD
r be in the set PRD(R). Also, let

(D,P) ∈ DP(R) and Xr, X̂ be the corresponding representation and reconstruction achieving it.

Proof: First, notice that according to the proof of Theorem 5 for the Gauss-Markov source model,
one can set X̂ = Xr in iRDP region of CRDP, without loss of optimality. So, in the following proof,
the reconstruction Xr and representation X̂ are used interchangeably, in some places.

We show the following statement. If

R1 ≥ I(X1;Xr,1), (338)
R2 ≥ I(X2;Xr,2|Xr,1), (339)
R3 ≥ I(X3;Xr,3|Xr,1, Xr,2), (340)

then, there exist κ1, θ1, θ2, ψ1, ψ2 and ψ3 and noise variables Z1, Z2, Z3 independent of XRD
r,1 ,

(XRD
r,1 , X

RD
r,2), (X

RD
r,1 , X

RD
r,2 , X

RD
r,3), respectively, which satisfy the following

X̂1 = κ1X
RD
r,1 + Z1, (341)

X̂2 = θ1X
RD
r,1 + θ2X

RD
r,2 + Z2, (342)

X̂3 = ψ1X
RD
r,1 + ψ2X

RD
r,2 + ψ3X̂

RD
r,3 + Z3. (343)

If (338)–(340) are satisfied with equality, then the noise random variables in (341)–(343) do not exist
and a linear combination is sufficient for converting (XRD

r,1 , X
RD
r,2 , X

RD
r,3) to (X̂1, X̂2, X̂3).

First, we prove the statement when all of inequalities in (338)–(340) hold with “equality”. We provide
the proof for T = 2 frames. The extension to arbitrary number of frames is straightforward. To that
end, we first prove the following two lemmas.
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Lemma 2 Without loss of optimality, the reconstruction of the first step X̂1 satisfies the following

γ1X̂1 =W1, (344)

where

γ1 :=
E[X1X̂1]

σ2
X̂1

, (345)

and W1 is a Gaussian random variable that its statistics do not depend on the pair (D1, P1).

Proof: According to Theorem 5, we know that (X1, X̂1) are jointly Gaussian. So, we can write X1

as follows

X1 = γ1X̂1 + T1, (346)

where T1 is a Gaussian random variable independent of X̂1 with a constant variance σ2
12

−2R1 . Notice
that (346) can be written as follows

X̂1 = α1(X1 +Q), (347)

where Q is a Gaussian random variable independent of X1 with a zero-mean and variance σ2
12

−2R1

1−2−2R1

and

α1 :=
1

γ1
(1− 2−2R1). (348)

From (347), we get

γ1X̂1 = (1− 2−2R1)(X1 +Q). (349)

Now, defining W1 := (1− 2−2R1)(X1 +Q) yields the desired result.

Lemma 3 Without loss of optimality, the reconstructions of the first and second steps (X̂1, X̂2)
satisfy the following

λ1X̂1 + λ2X̂2 =W2, (350)

where

λ1 :=
ρ1E[X1X̂1]σ̂

2
X2

−E[X̂1X̂2]E[X2X̂2]

σ̂2
X1
σ̂2
X2

−E2[X̂1X̂2]
, (351)

λ2 :=
ρ1E[X1X̂1]E[X̂1X̂2]− σ̂2

X1
E[X2X̂2]

σ̂2
X1
σ̂2
X2

−E2[X̂1X̂2]
, (352)

and W2 is a Gaussian random variable that its statistics do not depend on the pairs (D1, P1) and
(D2, P2).

Proof: According to Theorem 5, we know that (X1, X2, X̂1, X̂2) are jointly Gaussian. So, we can
write X2 as follows

X2 = λ1X̂1 + λ2X̂2 + T2, (353)

where T2 is a Gaussian random variable independent of (X̂1, X̂2) with a constant variance of
σ2
X2|X̂1

2−2R2 where

σ2
X2|X̂1

:=
1

2
log
(
ρ21σ

2
12

−2R1 + 22H(N1)
)
. (354)

Notice that (353) can be written as follows

λ1X̂1 + λ2X̂2 = (1− 2−2R2)(X2 +Q′), (355)

where Q′ is a Gaussian random variable independent of X2 with a zero-mean and variance
σ2
X2|X̂1

2−2R2

1−2−2R2
. Defining W2 := (1− 2−2R2)(X2 +Q′) yields the desired result.
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Now, we proceed with the proof of the theorem. According to Lemma 2, there exist real γ1 and γ′1
such that

γ1X̂1 = γ′1X
RD
r,1 . (356)

Define

κ1 :=
γ′1
γ1
. (357)

Then, according to Lemma 3, there exist λ1, λ2, λ′1 and λ′2 such that

λ1X̂1 + λ2X̂2 = λ′1X
RD
r,1 + λ′2X

RD
r,2 . (358)

The above equation can be written as

X̂2 =
λ′1 − λ1κ1

λ2
XRD

r,1 +
λ′2
λ2
XRD

r,2 (359)

:= θ1X
RD
r,1 + θ2X

RD
r,2 . (360)

A similar justification holds for the third frame.

Next, we prove the statement when at least one of the rate constraints in (338)–(340) hold with strict
inequality. In the following, we construct new reconstructions (X̂ ′

1, X̂
′
2) based on (X̂1, X̂2) such

that they satisfy the rate constraints (R1, R2) with equality. Then, we will be able to apply the two
lemmas we proved to show that (X̂1, X̂2) are linearly related to MMSE reconstructions (XRD

r,1 , X
RD
r,2).

Construction of X̂ ′
1:

Now, let

R̂1 := I(X1; X̂1), (361)

where R̂1 ≤ R1. Also, recall that

R1 = I(X1;X
RD
r,1). (362)

Now, let X̂ ′
1 such that X̂ ′

1 → XRD
r,1 → X1 holds and

X̂ ′
1 = XRD

r,1 +W1, (363)

where W1 ∼ N (0, ν21) independent of X̂1 and ν21 will be determined in the following. Notice that
I(X1; X̂

′
1) is a monotonically decreasing function of ν21 . So, one choose ν21 such that

I(X̂ ′
1;X1) = I(X1; X̂1) = R̂1. (364)

Now, according to Lemma 2, since X̂ ′
1 and X̂1 have the same rates, there exists a coefficient κ′1 such

that

X̂1 = κ′1X̂
′
1 (365)

= κ′1X
RD
r,1 + κ′1W1. (366)

Now, define Z1 := κ′1W1 and notice that

X̂1 = κ′1X
RD
r,1 + Z1. (367)

Construction of X̂ ′
2:

Next, consider the second step. Define

R̂2 := I(X2; X̂2|X̂1), (368)

where R̂2 ≤ R2. Also, recall that

R2 = I(X2;X
RD
r,2 |XRD

r,1). (369)

Define X̃2 := E[X2|XRD
r,1 , X

RD
r,2 ] to be the MMSE reconstruction and consider that

R2 = I(X2;X
RD
r,2 |XRD

r,1) (370)

= I(X2; X̃2|XRD
r,1), (371)
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where the last equality follows because both Markov chains X2 → (XRD
r,1 , X

RD
r,2) → X̃2 and X2 →

X̃2 → (XRD
r,1 , X

RD
r,2) hold where the latter one is satisfied for Gaussian random variables for which

we can write X2 = E[X2|Xr,1, Xr,2] +W ′ such that W ′ is independent of (XRD
r,1 , X

RD
r,2).

Now, we show that I(X2; X̃2|XRD
r,1) ≤ I(X2; X̃2|X̂ ′

1). This is justified in the following

I(X2; X̃2|X̂ ′
1) = I(X2; X̃2|XRD

r,1 +W1) (372)

= H(X2|XRD
r,1 +W1)−H(X2|X̃2, X

RD
r,1 +W1) (373)

≥ H(X2|XRD
r,1 +W1,W1)−H(X2|X̃2, X

RD
r,1 +W1) (374)

= H(X2|XRD
r,1 ,W1)−H(X2|X̃2, X

RD
r,1 +W1) (375)

≥ H(X2|XRD
r,1 ,W1)−H(X2|X̃2) (376)

= H(X2|XRD
r,1)−H(X2|X̃2) (377)

= H(X2|XRD
r,1)−H(X2|X̃2, X

RD
r,1) (378)

= I(X2; X̃2|XRD
r,1), (379)

where (377) follows because W1 is independent of (X2, X
RD
r,1) and (378) follows from the Markov

chain X2 → X̃2 → XRD
r,1 .

Define

R′
2 := I(X2; X̃2|X̂ ′

1), (380)

and consider the fact that R′
2 ≥ R2. Now, we introduce X̂ ′

2 such that X̂ ′
2 → (X̃2, X̂

′
1) → X2 forms

a Markov chain and

X̂ ′
2 = X̃2 + X̂ ′

1 +W2, (381)

where W2 ∼ N (0, ν22) independent of (X̃2, X̂1) and ν22 will be determined in the following. Since
I(X2; X̂

′
2|X̂ ′

1) is a monotonically decreasing function of ν22 , we can choose ν22 such that

I(X2; X̂
′
2|X̂ ′

1) = I(X2; X̂2|X̂1) = R̂2. (382)

Then, according to Lemma 3, there exist λ′1, λ′2, λ̂1 and λ̂2 such that

λ′1X̂
′
1 + λ′2X̂

′
2 = λ̂1X̂1 + λ̂2X̂2. (383)

Plugging (363), (367) and (381) into the above expression and letting X̃2 = αXRD
r,1 + βXRD

r,2 for
some α, β, we get

(λ′1 + (1 + α)λ′2 − λ̂1κ
′)XRD

r,1 + λ′2βX
RD
r,2 + (λ′1 + λ′2)W1 + λ′2W2 − λ̂1Z1 = λ̂2X̂2. (384)

Now define

θ1 :=
λ′1 + (1 + α)λ′2 − λ̂1κ

′

λ̂2
, (385)

θ2 :=
λ′2β

λ̂2
, (386)

Z2 :=
(λ′1 + λ′2)

λ̂2
W1 +

λ′2

λ̂2
W2 −

λ̂1

λ̂2
Z1. (387)

Thus, we have

X̂2 = θ1X
RD
r,1 + θ2X

RD
r,2 + Z2. (388)

Notice that the above proof only uses the information about reconstructions of the operating points in
DP-tradeoff and it does not depend on the choice of PLF. So, it holds for both PLF-JD and PLF-FMD.
This concludes the proof.
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H.3 Gaussian Example

Assume that the sources are symmetric in the sense that σ2
1 = σ2

2 = σ2
3 = 1, ρ1 = ρ2 = ρ3 := ρ for

some 0 < ρ ≤ 1. Also, suppose that the perception thresholds are symmetric, i.e., P1 = P2 = P3 :=
P for some 0 < P ≤ 1. We choose the rate tuple R such that the minimum distortions Dmin

j = D
for j ∈ {1, 2, 3}. According to Appendix H.1, such rates are given by

R1 =
1

2
log

1

D
, (389)

R2 =
1

2
log

ρ2D + (1− ρ)

D
, (390)

R3 =
1

2
log

ρ2D + (1− ρ2)

D
. (391)

The covariance matrix of the MMSE representations cov(XRD
r,1 , X

RD
r,2 , X

RD
r,3) is given by (1 −D)Σ

where

Σ :=

 1 ρ ρ2

ρ 1 ρ
ρ2 ρ 1

 . (392)

If we introduce the 0-PLF while keeping the rates as those of MMSE reconstructions, it can be
shown that the optimal distortions are all equal to D1 = D2 = D3 = 2 − 2

√
1−D. Denote the

reconstructions by (X̂0
D1
, X̂0

D2
, X̂0

D3
) and notice that the covariance matrix of the reconstructions is

equal to that of the sources and is given by Σ. Thus, the covariance matrix of (XRD
r,1 , X

RD
r,2 , X

RD
r,3) is

(1−D) times the covariance matrix of (X̂0
D1
, X̂0

D2
, X̂0

D3
). So, the reconstructions (XRD

r,1 , X
RD
r,2 , X

RD
r,3)

and (X̂0
D1
, X̂0

D2
, X̂0

D3
) can be transformed to each other by the scaling factor 1√

1−D
. This inspires

the idea that reconstructions corresponding to different tuples (D,P) are linearly related to those of
MMSE representations which is the essence of the following Theorem 6. Moreover, both PLFs either
based on FMD or JD perform similarly in this example since individually scaling the reconstruction
of each frame finally ends up in matching the covariance matrix of all frames.

I Justification of low-rate regime for Moving MNSIT

In the MovingMNIST dataset, the digit in I-frame is generated uniformly across the 32×32 center
region in a 64×64 image, meaning that log(32×32)=10 bits are required to localize the digits and any
lower rate would result in much less correlated reconstructions. As such, one can considerR1=12 bits
(2 extra bits for content and style) as a low rate. For P-frames, the movement is uniformly constrained
within a 10×10 region so any rate R2≤ log2(10×10)=6.6 bits (excluding residual compensation)
can be considered a low rate.

J Experiment Details

J.1 Training Setup and Overview

Our compression architecture is built on the scale-space flow model [32], which allows end-to-end
training without relying on pre-trained optical flow estimators. For better compression efficiency,
we replace the residual compression module with the conditioning one [33]. In the following, we
will interchangeably refer X1 as the I-frame and subsequent ones as P-frames. The annotation for
the encoder, decoder, and critic (discriminator) will be referred to as f, g, and h respectively and
their specific functionality (e.g motion compression, joint perception critic) will be described within
context through a subscript/superscript.

Distortion and Perception Measurement: We follow the setup in prior works [16, 21] for distortion
and perception measurement. Specifically, we use MSE loss E[||X−X̂||2] as a distortion metric and
Wasserstein-1 distance as a perception metric, which can be estimated through the WGAN critics
(following the Kanotorovich-Rubinstein duality). For the marginal perception metric, we optimize
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Figure 7: Compression diagram for (a) I-frame (b) P-frame with universal representation and (c) P-frame with
optimized representation. For simplicity, we do not show the shared randomness K.

our critics hm to classify between original image X and synthetic ones X̂ . This will then allow us to
measure W1(PX , PX̂) since:

W1(PX , PX̂) = sup
hm∈F

E[hm(X)]−E[hm(X̂)] (393)

where F is a set of all bounded 1-Lipschitz functions. Similarly, the joint perception metric is realized
through W1(PX1...Xj , PX̂1...X̂j

) by training a critic hj that classifies between synthetic and authentic
sequences:

W1(PX1...Xj
, PX̂1...X̂j

) = sup
hj∈F

E[hj(X1, ..., Xi)]−E[hj(X̂1, ..., X̂i)] (394)

In practice, the set of 1-Lipschitz functions is limited by the neural network architecture. Also,
although our analysis employs the Wasserstein-2 distance as a perception metric, it is worth noting
that the ideal reconstructions (0-PLF) for this metric and the one used in our study should be identical.

I-frame Compressor: We compress I-frames in a similar fashion as previous works [16, 21]. Our
encoder fI and decoder gI in Figure 7a contain a series of convolution operations and we control
the rate R1 by varying the dimension and quantization level in the bottleneck. The model utilizes
common randomness through the dithered quantization operation. For a given rate R1, we vary the
amount of DP tradeoff by controlling the hyper-parameter λmarginal

i in the following minimization
objective L1:

L1 = E[||X1 − X̂1||2] + λmarginal
i W1(PX1

, PX̂1
) (395)

Following the results from Zhang et al. [16], we fix the encoder after optimizing the encoder-decoder
pair for MSE representations. We then fix the encoder and train another decoder to obtain the optimal
reconstruction with perfect perception, i.e, W1(PX , PX̂) ≈ 0. We will leverage these universal
representation results to compress P-frames (both end-to-end and universal).

P-frame Compressor: We describe the loss functions before explaining our architectures. Given
previous reconstructions X̂[i−1]:={X̂1, X̂2, ..., X̂i−1}, one can adjust the distortion-joint perception
tradeoff by controlling the hyper-parameter λjoint

i in the following objective Li.

Ljoint
i = E[||Xi − X̂i||2] + λjoint

i W1(PX[i]
, PX̂[i]

) (396)

Note that in order to achieve 0-PLF-JD, previous reconstructions X̂[i−1] must also achieve 0-PLF-JD,
since it is impossible to reconstruct such X̂i if the previous X̂[i−1] are not temporally consistent3.
For the FMD metric, we use the loss function in (395).

In the universal model in Figure 7b, the motion encoder fmi compresses and sends the quantized
flow fields [Xm

r,i] between the MMSE reconstruction X̃i−1 and Xi. Given [Xm
r,i], the flow decoder

and warping module gmi will transform X̃i−1 into X̃w
i (predicted frame). We use f ci to compress the

3This follows from the inequality: W 2
2 (PX1,X2 , PX̂1,X̂2

)≥W 2
2 (PX1 , PX̂1

)+W 2
2 (PX2 , PX̂2

)
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residual information [Xc
r,i] between Xi and X̃w

i
4, which will be decoded by gci . We note that for

MMSE representation, gci only requires X̃w
i as a conditional input while an additional conditioning

input X̂[i−1] is required when perceptual optimization is involved. Together, fmi , g
m
i , f ci , and gci

are optimized for MMSE reconstructions. To train for different DP tradeoffs, we fix fmi , g
m
i , f

c
i

and adapt the new decoder ĝci (conditioning on X̃w
i , X̂[i−1]). We note that fixing gmi for universal

representation is essential since [Xc
r,i] is dependent on the outputs X̃w

i of gmi .

In the end-to-end model in Figure 7c, we use an MMSE representation to estimate the motion vector,
as in the case of the universal model. The only difference is that the encoder f ci also uses previous
X̂i and the encoders will be jointly trained with the decoders.

J.2 Networks Architecture

In this section, we describe the network architecture for universal and end-to-end P-frame compressor
models. 5. In the architecture layout, we denote BN2D and SN for the Batchnorm2D and Spectral
Normalization layers. Convolutional and transposed convolutional layer are denoted as “conv” and
“upconv” respectively, which is accompanied by number of filters, kernel size, stride, and padding.

Motion Encoder and Decoder. The universal and optimized end-to-end model shares the same
architecture for the motion encoder and decoder. (fmi and gmi respectively). We follow the original
implementations [32] and present the convolutional architecture in Table 3. Different from the original
implementation, however, we replace the last layer with dithered quantization layer (as in [16]) in our
implementation. The output dimension of the motion encoder is denoted as dm.

Table 3: Motion Encoder fm
i and Decoder gmi .

(a) Encoder fmi
Input-64×64×(2×channels)

conv (64:5:2:0), BN2D, l-ReLU
conv (64:5:2:0), BN2D, l-ReLU
conv (64:5:2:0), BN2D, l-ReLU
conv (64:5:2:0), BN2D, l-ReLU

conv (dm:4:2:0), BN2D
Quantizer

(b) Decoder gmi
Input-dm

upconv (64:4:1:0), BN2D, l-ReLU
upconv (64:5:2:0), BN2D, l-ReLU
upconv (64:5:2:0), BN2D, l-ReLU
upconv (64:5:2:0), BN2D, l-ReLU

upconv (3:5:2:0), BN2D

Residual Encoder and Decoder. The architecture of the conditional residual encoder is shown in
Table 4a, where we stack multiple frames along their channel dimension as an input. As described
previously, in the residual encoder, the universal model requires only Xi, X̃

w
i while the end-to-end

model will receive Xi, X̃
w
i and X̂[i−1]. We denote the output dimension of this residual encoder as

dr. In the decoding part, the decoder will first condition all the previous reconstructions X̂[i− 1] by
projecting them into an embedding vector of size 192 (conditioning module in Table 4b). Then we
concatenate this vector with the output of fri . The concatenated vector will be fed into the decoder
(Table 4c) to produce the reconstruction X̂i.

FMD and JD Critics. For the video critics, our PLF-JD critic architecture is inspired by the work
of Kwon and Park [40], where we concatenate frames sequentially along their channel dimensions.
For both PLF-FMD and PLF-JD critics, we add spectral normalization layers for better convergence.
Their architecture is shown in Table 5.

Rate and output dimension The rate R is computed by log2(denc×L), where L is the number of
quantization levels and denc=dr+dm. Table 6 provides configurations of the rate, dm, dr, and L in
the experiment.

Training Details: We use a batch size of 64, RMSProp optimizer with a learning rate of 5×10−5,
and train each model with 360 epochs, where the training set contains 60000 images. To accelerate

4Here, we use conditioning [33] instead of sending Xi − X̃w
i−1 as in the original work [32]

5For the I-frame compressor, we follow the DCGAN implementation by Denton et al [39], adding the
dithered quantization layer in the encoder’s last layer( https://github.com/edenton/svg/blob/master/
models/dcgan_64.py)

44

https://github.com/edenton/svg/blob/master/models/dcgan_64.py
https://github.com/edenton/svg/blob/master/models/dcgan_64.py


Table 4: Residual Encoder, Conditional Module, and Residual Decoder.
(a)Encoder f ci

Input
conv (64:5:2:0), BN2D, l-ReLU
conv (64:5:2:0), BN2D, l-ReLU
conv (64:5:2:0), BN2D, l-ReLU
conv (64:5:2:0), BN2D, l-ReLU

conv (dr:4:1:0), BN2D
Quantizer

(b)Conditional Module
Input

conv (64:5:2:0), BN2D, l-ReLU
conv (64:5:2:0), BN2D, l-ReLU
conv (64:5:2:0), BN2D, l-ReLU
conv (64:5:2:0), BN2D, l-ReLU

conv (192:4:1:0), BN2D

(c)Decoder
Input-(dr+192)

upconv (64:4:1:0) uc4s1, BN2D, l-ReLU
upconv (64:5:2:0), BN2D, l-ReLU
upconv (64:5:2:0), BN2D, l-ReLU
upconv (64:5:2:0), BN2D, l-ReLU

upconv (channels:5:2:0), BN2D

Table 5: PLF-FMD and PLF-JD critic for frame i.
(a) PLF-FMD Critic

Input–64×64×channels
SN, conv (64:4:2:1), l-ReLU
SN, conv (128:4:2:1), l-ReLU
SN, conv (256:4:2:1), l-ReLU

conv (512:4:2:1), l-ReLU
Linear

(b) PLF-JD Critic
Input–64×64×(i×channels)
SN, conv (64:4:2:1), l-ReLU

SN, conv (128:4:2:1), l-ReLU
SN, conv (256:4:2:1), l-ReLU

conv (512:4:2:1), l-ReLU
Linear

training, we pre-train each model for 60 epochs with the MSE objective only. Under WGAN-GP
framework [30], we use the gradient penalty of 10 and update the encoders/decoders for every 5
iterations. The parameters λ controlling the tradeoff are in Table.7. Training takes 2 days per model
on a single NVIDIA P100 GPU. For the MovingMNIST factor of two bound and permanence of
error experiments, we repeat the training 3 times.

Table 6: Rate, embedding dimension dm, dr and quantization level L.

(a) P-frame encoder, R1 = ∞.

R2 dm dr L
1 bit 1 0 2
2 bits 1 1 2

3.17 bits 1 1 3

(b) P-frame encoder, R1 = ϵ (12 bits).

R2 dm dr L
4 bit 2 2 2
8 bits 4 2 2

12 bits 6 2 2

J.3 Permanence of Error on KTH Datasets

The KTH dataset is a widely-used benchmark dataset in computer vision research, consisting of video
sequences of human actions performed in various scenarios. We show more examples supporting
our argument for the permanence of error on this realistic dataset. We use 16 bits for each frame. In
general, the 0-PLF-JD decoder consistently outputs correlated but incorrect reconstructions due to the
error induced by the first reconstructions, i.e., the P-frames will follow the wrong direction induced
from the I-frame reconstruction. Besides the moving direction, we also notice that the type of actions
(i.e. walking, jogging, and running) is also affected. On the other hand, while losing some temporal
cohesion, MMSE and 0-PLF FMD decoders manage to fix the movement error.

Finally, we computed LPIPS [41] in Table 8, which is known as a full-reference perceptual metric for
images. We compare LPIPS for each reconstruction (MMSE, 0-PLF-FMD and 0-PLF-JD) at each
timeframe. This result aligns with our results on distortion loss, as the MMSE and 0-PLF-FMD tend
to correct the reconstruction (so the ground truth and reconstruction look more similar over time). On
the other hand, due to error permanence, the 0-PLF-JD reconstructions become different from their
source sequence, causing the score to go up.
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Table 7: Perception loss and their associated λ
Perception Loss λ× 10−3

Joint Distance (JD) 0.0, 0.7, 1.0, 1.15, 1.2, 1.25, 1.3, 1.5, 1.7
2.0, 3.0, 5.0, 8.0, 10.0, 40.0, 80.0

Frame Marginal Distance (FMD) 0.0, 0.4, 0.7, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 7.0, 10.0, 40.0
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Figure 8: Additional Experimental Results for the Permanence of Error Phenomenon on KTH Dataset.

Table 8: LPIPS score on KTH dataset (lower is better).
MMSE PLF-FMD PLF-JD

1st frame 0.1036 0.0584 0.0584
2nd frame 0.0521 0.0313 0.0594
3rd frame 0.0413 0.0232 0.0613

J.4 RDP Tradeoff for 3 frames

We extend our experimental results for the RDP-tradeoff and the principal of universality to the case
of GOP size 3. As mentioned in the main paper, while the universal model only requires MMSE
representations, the optimal end-to-end model also requires the MMSE reconstructions from previous
frames to provide best estimates for motion flow vectors. Practically, this is challenging for our
employed architecture since only previous X̂1, X̂2 are available. As a result, to compare the RDP
tradeoff between universal and end-to-end model, we also provide the end-to-end model with the
MMSE estimate from previous frames while noting that this is unfeasible in practice. Interestingly,
we show in Figure 9 the RDP tradeoff curves for the third frame X3 and its reconstruction X̂3,
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Figure 9: RDP tradeoff curves for end-to-end and universal models. We plot the tradeoff for the two regimes:
R1=∞ and R1=ϵ in (a) and (b) respectively. The universal and optimal curves are close to each other.

observing that the universal and optimized curves are still relatively close to each other. When
(R1, R2, R3)=(∞, ϵ, ϵ), we note that the distortion for X3 is larger than X2 since the allocated rate is
not enough to correct the motion. Finally, for the case (R1, R2, R3)=(ϵ, ϵ, ϵ), we note that the curves
again converge as in the case of (R1, R2)=(ϵ, ϵ) due to the incorrect reconstruction in the I-frame.

J.5 Diversity and Correlation

When (R1, R2)=(∞, ϵ), our theoretical analysis predicted that the decoder optimized for JD is
capable of producing diverse reconstructions. On the other hand, an optimized decoder for FMD will
tend to produce reconstructions that are highly correlated with the previous reconstruction X̂1

6. In
our experiment, we also observe such behavior, summarized in Table 9 and show several examples
for R2 = 2 bits in Figure 10. We observe that reconstructions from the joint metric deviate more
randomly from X1 than the marginal reconstructions. The marginal reconstructions, on the other
hand, stay much closer to their original reconstruction X̂1.

Figure 10: Diversity in reconstruction X̂2 for 0-PLF-JD and correlation with previous frames X̂1 for 0-PLF-
JMD. We show X1 in the first column. From the second column, the light-dark region represents X1 and the
color digit represents X2, X̂2. For each perception metric, we show two samples.

We measure the diversity in X̂2 reconstruction using E[Var(X̂2|X1, X2)] and the correlation with
X̂1 by E[sim(X̂2,X1)], where sim(u, v) is the cosine distance between u, v. Table 9a shows that as
we increase the number of bits in R2, the diversity decreases as the decoder can reconstruct the frame
more precisely. In Table 9b, we see that the joint metric keeps the correlation relatively constant,
showing that it actually preserves the temporal consistency. On the other hand, as the rate becomes
larger, 0-PLF-FMD reconstruction tends to be less correlated with the previous frame X1. Finally, we
note that our architecture innately utilizes common randomness to produce diverse reconstructions
and does not suffer from mode-collapse behavior in general conditional GAN settings [42].

6X1 = X̂1 in this regime.
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Table 9: Diversity (a) between X̂2 and Correlation Measures (b) between X̂2 and X1.

(a) Diversity Measures ↑.

R2 Joint Marginal
1 bit 0.0096 0.0004
2 bits 0.0082 0.0029

3.17 bits 0.0042 0.0022

(b) Correlation Measures. ↑

R2 Joint Marginal
1 bit 0.5218 0.6202
2 bits 0.5190 0.5969

3.17 bits 0.5205 0.5508

Figure 11: Visualization of error permanence. The PLF-JD reconstructions propagate the flaws in the color tone
from the previous I-frame reconstruction while the PLF-FMD is able to fix such error. Compression rate for
I-frame and P-frame are 0.144bpp (low rate) and 4.632bpp (high rate) respectively.

K Error Permanence on UVG Dataset

We demonstrate the phenomenon of error permanence in a large-scale scenario using the UVG
dataset. Our P-frame compressor is trained on the Vimeo-90k dataset. As illustrated in Figure 11,
when reconstructing I-frames, an inaccurate color tone is introduced, which persists when employing
PLF-JD. However, PLF-FMD effectively rectifies this issue within P-frames. Numerical results are
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Table 10: Distortion (X2 − X̂2)
2 evaluated across 3900 UVG frames. The PLF-JD reconstructions exhibit

notably greater distortion compared to MMSE and PLF-FMD, aligning with our theoretical findings.
MMSE PLF-FMD PLF-JD

Distortion (MSE) 0.0026 0.0032 0.0168

in Table. 10. We note that for the I-frame, we use the pretrained model in [43] that targets high
perceptual quality and is also trained on Vimeo-90k dataset.

L Limitations

This work studies the effects of different perception loss functions, namely the PLF-JD and PLF-FMD,
on the performance of lossy causal video compression. Our theoretical analysis and experiment
reveal the error permanence phenomenon and show the universality principle, suggesting that MMSE
representation can be transformed into other points on the DP tradeoffs.

In practice, one might want to combine these two losses, for example, perfect framewise realism
(0-PLF FMD) while retaining some degree of temporal cohesion (PLF-JD small), which is not
considered in this work. Furthermore, analysis for other types of video compression schemes, such
as with B-frame, and scaling the universality compression architecture to high-definition videos are
also desired.
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