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Abstract
Existing analyses of optimization in deep learning are either continuous, focusing on
(variants of) gradient flow, or discrete, directly treating (variants of) gradient descent.
Gradient flow is amenable to theoretical analysis, but is stylized and disregards
computational efficiency. The extent to which it represents gradient descent is an
open question in the theory of deep learning. The current paper studies this question.
Viewing gradient descent as an approximate numerical solution to the initial value
problem of gradient flow, we find that the degree of approximation depends on the
curvature around the gradient flow trajectory. We then show that over deep neural
networks with homogeneous activations, gradient flow trajectories enjoy favorable
curvature, suggesting they are well approximated by gradient descent. This finding
allows us to translate an analysis of gradient flow over deep linear neural networks
into a guarantee that gradient descent efficiently converges to global minimum
almost surely under random initialization. Experiments suggest that over simple
deep neural networks, gradient descent with conventional step size is indeed close
to gradient flow. We hypothesize that the theory of gradient flows will unravel
mysteries behind deep learning.1

1 Introduction
The success of deep neural networks is fueled by the mysterious properties of gradient-based
optimization, namely, the ability of (variants of) gradient descent to minimize non-convex training
objectives while exhibiting tendency towards solutions that generalize well. Vast efforts are being
directed at mathematically analyzing this phenomenon, with existing results typically falling into
one of two categories: continuous or discrete. Continuous analyses usually focus on gradient flow
(or variants thereof), which corresponds to gradient descent (or variants thereof) with infinitesimally
small step size. Compared to their discrete (positive step size) counterparts, continuous settings are
oftentimes far more amenable to theoretical analysis (e.g. they admit use of the theory of differential
equations), but on the other hand are stylized, and disregard the critical aspect of computational
efficiency (number of steps required for convergence). Works analyzing gradient flow over deep neural
networks either accept the latter shortcomings (see for example [49, 4, 46]), or attempt to reproduce
part of the results via completely separate analysis of gradient descent (cf. [30, 18, 5]). The extent
to which gradient flow represents gradient descent is an open question in the theory of deep learning.

The current paper formally studies the foregoing question. Viewing gradient descent as a numerical
method for approximately solving the initial value problem corresponding to gradient flow, we turn to
the literature on numerical analysis, and invoke a fundamental theorem concerning the approximation
error. The theorem implies that in general, the match between gradient descent and gradient flow is deter-
mined by the curvature around gradient flow’s trajectory. In particular, the “more convex” the trajectory,
i.e. the larger the (possibly negative) minimal eigenvalue of the Hessian is around the trajectory, the bet-

1Due to lack of space, essential portions of this paper were deferred to supplementary material. We refer the
reader to [21] for a self-contained version of the text.
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ter the match is guaranteed to be.2 We show that when applied to deep neural networks (fully connected
as well as convolutional) with homogeneous activations (e.g. linear, rectified linear or leaky rectified lin-
ear), gradient flow emanating from near-zero initialization (as commonly employed in practice) follows
trajectories that are “roughly convex,” in the sense that the minimal eigenvalue of the Hessian along them
is far greater than in arbitrary points in space, particularly towards convergence. This implies that over
deep neural networks, gradient descent with moderately small step size may in fact be close to its contin-
uous limit, i.e. to gradient flow. We exemplify an application of this finding by translating an analysis of
gradient flow over deep linear neural networks into a convergence guarantee for gradient descent. The
guarantee we obtain is, to our knowledge, the first to ensure that a conventional gradient-based algorithm
optimizing a deep (three or more layer) neural network of fixed (data-independent3) size efficiently
converges4 to global minimum almost surely under random (data-independent) near-zero initialization.

We corroborate our theoretical analysis through experiments with basic deep learning settings, which
demonstrate that reducing the step size of gradient descent often leads to only slight changes in its
trajectory. This confirms that, in basic settings, central aspects of deep neural network optimization
may indeed be captured by gradient flow. Recent works (e.g. [8, 33, 53]) suggest that by appropriately
modifying gradient flow it is possible to account for advanced settings as well, including ones with
momentum, stochasticity and large step size. Encouraged by these developments, we hypothesize
that the vast bodies of knowledge on continuous dynamical systems, and gradient flow in particular
(see, e.g., [23, 3]), will pave way to unraveling mysteries behind deep learning.

1.1 Contributions
The main contributions of this work are: (i) we conduct the first formal study for the discrepancy between
continuous and discrete optimization of deep neural networks; (ii) we demonstrate the use of generic
mathematical machinery for translating a continuous non-convex convergence result into a discrete
one; (iii) to our knowledge, the discrete result we obtain forms the first guarantee of random (data-
independent) near-zero initialization almost surely leading a conventional gradient-based algorithm
optimizing a deep (three or more layer) neural network of fixed (data-independent) size to efficiently con-
verge to global minimum; (iv) the fundamental theorem (from numerical analysis) we employ is seldom
used in machine learning contexts and may be of independent interest; and (v) we provide empirical evi-
dence suggesting that gradient descent over simple deep neural networks is often close to gradient flow.

2 Preliminaries: Numerical Solution of Initial Value Problems
Let d∈N. Given a function g : [0,∞)×Rd→Rd (viewed as a time-dependent vector field) and a point
θs∈Rd, consider the initial value problem:

θ(0)=θs , d
dtθ(t)=g(t,θ(t)) for t≥0 . (1)

The following result — an extension of the well known Picard-Lindelöf Theorem — establishes that
local Lipschitz continuity of g(·) suffices for ensuring existence and uniqueness of a solution θ(·).
Theorem 1 (Existence-Uniqueness). Consider the initial value problem in Equation (1), and suppose
g(·) is locally Lipschitz continuous. Then, there exists a solution θ : [0, te) → Rd, where either:
(i) te=∞; or (ii) te<∞ and limt↗te∥θ(t)∥2=∞. Moreover, the solution is unique in the sense that
any other solution θ′ : [0,t′e)→Rd must satisfy t′e≤ te and ∀t∈ [0,t′e) :θ

′(t)=θ(t).

Proof. The theorem is a direct consequence of the results in Section 1.5 of [25].5

It is typically the case that the solution to Equation (1) cannot be expressed in closed form, and a
numerical approximation is sought after. Various numerical methods for approximately solving initial
value problems have been developed over the years (see Chapter 12 in [55] for an introduction). The
most basic one, Euler’s method, is parameterized by a step size η>0, and when applied to Equation (1)
follows the recursive scheme:

2In addition to the minimal eigenvalue of the Hessian, local smoothness and Lipschitz constants also affect
the guaranteed match between gradient descent and gradient flow. However, the impact of these constants is
exponentially weaker than that of the Hessian’s minimal eigenvalue. For details see Theorem 3.

3By data-independence we mean that no assumptions on training data are made beyond it being subject to
standard whitening and normalization procedures.

4We regard convergence as efficient if its computational complexity is polynomial in training set size and
dimensions, as well as the desired level of accuracy.

5A minor subtlety is that in [25] the vector field g(·) is defined over an open domain. To account for this
requirement, simply extend g(·) to the domain (−∞,∞)×Rd by setting g(t,q)=g(0,q) for all t<0, q∈Rd.
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θk+1=θk+ηg(tk,θk) for k=0,1,2,... , (2)

where tk := kη and the initial point θ0 is typically set to θs. The motivation behind Euler’s
method is straightforward — a first order Taylor expansion of the exact solution θ(·) around time tk
yields: θ(tk+1) = θ(tk+η)≈ θ(tk)+η d

dtθ(tk) = θ(tk)+ηg(tk,θ(tk)), therefore if θ(tk) is well
approximated by θk, we may expect θk+1 to resemble θ(tk+1). The numerical solution produced
by Euler’s method may be viewed as a continuous polygonal curve:

θ̄ : [0,∞)→Rd , θ̄(0)=θ0 , d
dt θ̄(t)=g(tk,θk) for t∈(tk,tk+1) , k=0,1,2,... . (3)

The quality of the numerical solution then boils down to the distance between this curve and the exact
solution, i.e. between θ̄(t) and θ(t) for t≥ 0. Many efforts have been made to derive tight bounds
for this distance. We provide below a modern result known as “Fundamental Theorem.”
Theorem 2 (Fundamental Theorem). Consider the initial value problem in Equation (1), and
suppose g(·) is continuously differentiable. Let θ : [0,te)→Rd be the solution to this problem (see
Theorem 1), and let θ̄ : [0,∞)→Rd be a continuous polygonal curve (Equation (3)) born from Euler’s
method (Equation (2)). For any t ∈ [0, te),q ∈ Rd, denote by J(t,q) ∈ Rd,d the Jacobian of g(·)
with respect to its second argument at the point (t,q), and by λmax(t,q) the maximal eigenvalue
of 1

2 (J(t,q)+J(t,q)⊤).6 Let m : [0,te)→R be an integrable function satisfying: λmax(t,q)≤m(t)

for all t∈ [0,te) and q∈ [θ(t),θ̄(t)], where [θ(t),θ̄(t)] stands for the line segment (in Rd) between θ(t)
and θ̄(t). Let δ : [0,te)→R≥0 be an integrable function that meets: ∥ d

dt θ̄(t
+)−g(t,θ̄(t))∥2≤δ(t) for

all t∈ [0,te), where d
dt θ̄(t

+) represents the right derivative of θ̄(·) at time t. Then, for all t∈ [0,te):

∥θ(t)−θ̄(t)∥2≤eµ(t)
(
∥θ(0)−θ̄(0)∥2+∫ t0e−µ(t′)δ(t′)dt′

)
, (4)

where µ(t) :=
∫ t

0
m(t′)dt′.

Proof. The theorem is simply a restatement of Theorem 10.6 in [27].

3 Continuous vs. Discrete Optimization: Match Determined by Convexity
Let f :Rd →R, where d∈N, be a twice continuously differentiable function which we would like
to minimize. Consider continuous optimization via gradient flow initialized at θs∈Rd:

θ(0)=θs , d
dtθ(t)=−∇f(θ(t)) for t≥0 . (5)

This is a special case of the initial value problem presented in Equation (1).7 By Theorem 1, it admits
a unique solution θ : [0,te)→Rd, where either: (i) te=∞; or (ii) te<∞ and limt↗te ∥θ(t)∥2=∞.
Numerically approximating this solution via Euler’s method (Equation (2)) yields a discrete
optimization algorithm which is no other than gradient descent:

θk+1=θk−η∇f(θk) for k=0,1,2,... , (6)

where η>0 is the chosen step size. We may thus invoke the Fundamental Theorem (Theorem 2) and
obtain a bound on the distance between the trajectories of gradient flow and gradient descent.
Theorem 3. Consider the trajectory of gradient flow (solution to Equation (5)) θ : [0, te)→Rd,
and let t̃ ∈ (0, te) and ϵ > 0. Define Dt̃,ϵ :=

⋃
t∈[0,t̃ ]Bϵ(θ(t)), where Bϵ(θ(t))⊂Rd stands

for the (closed) Euclidean ball of radius ϵ centered at θ(t). Let βt̃,ϵ,γt̃,ϵ>0 be such that:
supq∈Dt̃,ϵ

∥∇2f(q)∥spectral≤βt̃,ϵ and supq∈Dt̃,ϵ
∥∇f(q)∥2≤γt̃,ϵ. Let m: [0,t̃ ]→R be an integrable

function satisfying: −λmin

(
∇2f(q)

)
≤m(t) for all t∈ [0,t̃ ] and q∈Bϵ(θ(t)), where λmin

(
∇2f(q)

)
stands for the minimal eigenvalue of ∇2f(q). Then, if the step size η>0 chosen for gradient descent
(Equation (6)) satisfies:

η< inf
t∈(0,t̃ ]

ϵ−e
∫ t
0
m(t′)dt′∥θ0−θ(0)∥2

βt̃,ϵγt̃,ϵ
∫ t

0
e
∫ t
t′m(t′′)dt′′dt′

, (7)

the first ⌊t̃/η⌋ iterates of gradient descent will ϵ-approximate the trajectory of gradient flow up to
time t̃, i.e. we will have ∥θk−θ(kη)∥2≤ϵ for all k∈{1,2,...,⌊t̃/η⌋}.

Proof sketch (for complete proof see Subappendix J.2). The result follows from applying the
Fundamental Theorem (Theorem 2) with δ(·) fixed at βt̃,ϵγt̃,ϵη.

6This maximal eigenvalue is known as the logarithmic norm of J(t,q) (cf. Section I.10 in [27]).
7The vector field in this case is time-independent (given by g(t,q) =−∇f(q) for all t ∈ [0,∞),q ∈Rd).

Initial value problems of this type are known as autonomous.
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Theorem 3 gives a sufficient condition — upper bound on step size η (Equation (7)) — for gradient
descent to follow gradient flow up to a given time t̃. The bound is inversely proportional to smoothness
and Lipschitz constants (βt̃,ϵ and γt̃,ϵ respectively), and more importantly, depends exponentially on
the integral of m(·) along the gradient flow trajectory, where m(·) corresponds to minus the minimal
eigenvalue of the Hessian. The smaller the integral of m(·), i.e. the larger (less negative or more
positive) the minimal eigenvalue of the Hessian around the trajectory is, the more relaxed the bound
will be. That is, the “more convex” the objective function is around the gradient flow trajectory, the
better the match between gradient flow and gradient descent is guaranteed to be.

Corollary 1 below coarsely applies Theorem 3 by fixing m(·) to minus the minimal eigenvalue of
the Hessian across the entire space. If m(·) ≡ m (now a constant) is negative, i.e. the objective
function f(·) is strongly convex, the upper bound on the step size η becomes constant, meaning it
is independent of the time t̃ until which gradient descent is required to follow gradient flow. If m is
equal to zero, i.e. f(·) is non-strongly convex, the upper bound on η mildly decreases with t̃, namely
it scales as 1/t̃. If on the other hand m is positive, meaning f(·) is non-convex, the bound on η shrinks
to zero (becoming prohibitively restrictive) exponentially fast as t̃ grows. This suggests that as opposed
to (strongly or non-strongly) convex objectives, over which gradient descent can easily be made to
follow gradient flow, over non-convex objectives, in the worst case, gradient descent will immediately
divert from gradient flow unless its step size is exponentially small. In Appendix B we present a simple
example of such a worst case scenario. In this worst case, the minimal eigenvalue of the Hessian is
bounded below and away from zero around the gradient flow trajectory. A question is then whether
there are non-convex objectives in which the minimal eigenvalue of the Hessian around gradient flow
trajectories is large enough for them to be followed by gradient descent. We will see that training losses
of deep neural networks can meet this property.

Corollary 1. Assume that the objective function f(·) is non-negative and β-smooth with β > 0.8
Denote m :=−infq∈Rdλmin(∇2f(q)), where λmin(∇2f(q)) stands for the minimal eigenvalue of
∇2f(q). Consider the trajectory of gradient flow (solution to Equation (5)) θ : [0,te)→Rd,9 and let
t̃∈(0,te) and ϵ>0. Then, if the step size η>0 for gradient descent (Equation (6)) satisfies:

η<


c(ϵ−∥θ0−θ(0)∥2)|m| ,if m<0 (strong convexity)

c(ϵ−∥θ0−θ(0)∥2)(1/t̃ ) ,if m=0 (non-strong convexity)

c(ϵ−∥θ0−θ(0)∥2emt̃)(emt̃−1)−1m ,if m>0 (non-convexity)

,

where c :=
(√

2β3f(θ(0))+β2ϵ
)−1

, we will have ∥θk−θ(kη)∥2≤ϵ for all k∈{1,2,...,⌊t̃/η⌋}.

Proof sketch (for complete proof see Subappendix J.3). The result follows from applying Theorem 3
with βt̃,ϵ=β, γt̃,ϵ=

√
2βf(θ(0))+βϵ and m(·)≡m.

4 Optimization of Deep Neural Networks is Roughly Convex
Section 3 has shown that the extent to which gradient descent matches gradient flow depends on “how
convex” the objective function is around the gradient flow trajectory. More precisely, the larger (less
negative or more positive) the minimal eigenvalue of the Hessian is around this trajectory, the longer
gradient descent (with given step size) is guaranteed to follow it.2 In this section we establish that over
training losses of deep neural networks (fully connected as well as convolutional) with homogeneous
activations (e.g. linear, rectified linear or leaky rectified linear), when emanating from near-zero
initialization (as commonly employed in practice), trajectories of gradient flow are “roughly convex,”
in the sense that the minimal eigenvalue of the Hessian along them is far greater than in arbitrary points
in space, particularly towards convergence. This finding suggests that when optimizing deep neural
networks, gradient descent may closely resemble gradient flow. We demonstrate a formal application
of the finding in Section 5, translating an analysis of gradient flow over deep linear neural networks
into a guarantee of efficient convergence (to global minimum) for gradient descent, which applies
almost surely with respect to a random near-zero initialization.

8Namely, ∥∇2f(q)∥spectral≤β for all q∈Rd.
9Lemma 3 in Appendix A shows that in the current context (β-smoothness of the objective function f(·)),

it necessarily holds that te =∞, i.e. the trajectory of gradient flow is defined over [0,∞). For simplicity, the
statement of the corollary does not rely on this fact.
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4.1 Fully Connected Architectures
Consider the mappings realized by a fully connected neural network with depth n ∈ N≥2, input
dimension d0∈N, hidden widths d1,d2,...,dn−1∈N, and output dimension dn∈N:

hθ :Rd0 →Rdn , hθ(x)=Wnσ(Wn−1σ(Wn−2···σ(W1x))···) , (8)

where: Wj ∈Rdj ,dj−1 , j=1,2,...,n, are learned weight matrices; θ∈Rd, with d :=
∑n

j=1djdj−1, is
their arrangement as a vector;10 and σ :R→R is a predetermined activation function that operates
element-wise when applied to a vector.11 We assume that σ(·) is (positively) homogeneous, meaning
σ(cz)=cσ(z) for all c≥0,z∈R. This allows for linear (σ(z)=z), as well as the commonly employed
rectified linear (σ(z)=max{z,0}) and leaky rectified linear (σ(z)=max{z,ᾱz} for some 0<ᾱ<1)
activations.

Let Y be a set of possible labels, and let S=((xi,yi))
|S|
i=1, with xi∈Rd0 ,yi∈Y for i=1,2,...,|S|, be a

sequence of labeled inputs. Given a loss function ℓ :Rdn×Y→R convex and twice continuously differ-
entiable in its first argument (common choices include square, logistic and exponential losses), we learn
the weights of the neural network by minimizing its training loss — average loss over elements of S:

f :Rd→R , f(θ)=
1

|S|
∑|S|

i=1
ℓ(hθ(xi),yi) . (9)

Subsubsections 4.1.1 and 4.1.2 below show (for linear and non-linear activation functions, respectively)
that although the minimal eigenvalue of∇2f(θ) (Hessian of training loss) — denotedλmin(∇2f(θ))—
can in general be arbitrarily negative, along trajectories of gradient flow (which emanate from near-zero
initialization) it is no less than moderately negative, approaching non-negativity towards convergence.
In light of Section 3, this suggests that over fully connected deep neural networks, gradient flow
may lend itself to approximation by gradient descent — a prospect we confirm (for a case with linear
activation) in Section 5.

4.1.1 Linear Activation
Assume that the activation function of the fully connected neural network (Equation (8)) is linear,
i.e. σ(z)=z, and define the end-to-end matrix:

Wn:1 :=WnWn−1···W1∈Rdn,d0 . (10)
The mappings realized by the network can then be written as hθ(x)=Wn:1x, and the training loss
as f(θ)=ϕ(Wn:1), where

ϕ :Rdn,d0 →R , ϕ(W )=
1

|S|
∑|S|

i=1
ℓ(Wxi,yi) (11)

is convex and twice continuously differentiable. Lemma 1 below expresses ∇2f(θ) in this case.

Lemma 1. For any θ ∈ Rd, regard ∇2f(θ) not only as a (symmetric) matrix in Rd,d,
but also as a quadratic form ∇2f(θ)[·] that intakes a tuple (∆W1, ∆W2, ... , ∆Wn) ∈
Rd1,d0 × Rd2,d1 × ··· × Rdn,dn−1 , arranges it as a vector ∆θ ∈ Rd (in correspondence with
how weight matrices W1,W2,...,Wn are arranged to create θ), and returns ∆θ⊤∇2f(θ)∆θ∈R.
Similarly, for any W ∈Rdn,d0 , regard ∇2ϕ(W ) as a quadratic form ∇2ϕ(W )[·] that intakes a matrix
in Rdn,d0 and returns a scalar (non-negative since ϕ(·) is convex). Then, ∇2f(θ) is given by:

∇2f(θ)[∆W1,∆W2,...,∆Wn]=∇2ϕ(Wn:1)
[∑n

j=1Wn:j+1(∆Wj)Wj−1:1

]
(12)

+2Tr
(
∇ϕ(Wn:1)

⊤∑
1≤j<j′≤nWn:j′+1(∆Wj′)Wj′−1:j+1(∆Wj)Wj−1:1

)
,

where Wj′:j , for any j,j′∈{1,2,...,n}, is defined as Wj′Wj′−1···Wj if j≤j′, and as an identity matrix
(with size to be inferred by context) otherwise.
Proof. See Subappendix J.4.
The following proposition makes use of Lemma 1 to show that (under mild conditions) λmin(∇2f(θ))
can be arbitrarily negative, i.e. infθ∈Rdλmin(∇2f(θ))=−∞.
Proposition 1. Assume that the network is deep (n≥ 3), and that the zero mapping is not a global
minimizer of the training loss (meaning ∇ϕ(0) ̸=0).12 Then infθ∈Rdλmin(∇2f(θ))=−∞.

10The exact order by which the entries of W1,W2,...,Wn are placed in θ is insignificant for our purposes — all
that matters is that the same order be used throughout.

11Our analysis can easily be extended to account for different activation functions at different hidden layers.
We assume identical activation functions for simplicity of presentation.

12Both of these assumptions are necessary, in the sense that removing any of them (without imposing further
assumptions) renders the proposition false — see Claim 1 in Appendix F.
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Proof. See Subappendix J.5.
Building on Lemma 1, Lemma 2 below provides a lower bound on λmin(∇2f(θ)).

Lemma 2. For any θ∈Rd:13

λmin(∇2f(θ))≥−(n−1)
√

min{d0,dn}∥∇ϕ(Wn:1)∥Frobenius max
J⊆{1,2,...,n}

|J |=n−2

∏
j∈J

∥Wj∥spectral . (13)

Proof. See Subappendix J.6.
Assuming the training loss is non-constant and the network is deep (n≥3), the infimum (over θ∈Rd)
of the lower bound in Equation (13) is minus infinity. In particular, if θ is not a global minimizer
(∇ϕ(Wn:1) ̸=0) and at least n − 2 of its weight matrices W1,W2, ... ,Wn are non-zero, then by
rescaling the latter it is possible to take the lower bound to minus infinity while keeping the end-to-end
matrixWn:1 (and thus the input-output mappinghθ(·) and the training loss value f(θ)) intact. However,
gradient flow over fully connected neural networks (with homogeneous activations) initialized near
zero is known to maintain balance between weight matrices — see [18] — and so along its trajectories
the lower bound in Equation (13) takes a much tighter form. This is formalized in Proposition 2 below.
Proposition 2. If θ ∈Rd resides on a trajectory of gradient flow (over f(·)) emanating from some
point θs∈Rd, with ∥θs∥2≤ϵ for some ϵ∈

(
0, 1

2n

]
, then:

λmin(∇2f(θ))≥−(n−1)
√

min{d0,dn}∥∇ϕ(Wn:1)∥Frobenius∥Wn:1∥1−2/n
spectral−cϵ1−2/n , (14)

where c := 4n(n−1)
(4n)2/n

√
min{d0,dn}∥∇ϕ(Wn:1)∥Frobeniusmax

{
1,max{∥Wj∥spectral}nj=1

}2(n−2)
.

Proof. See Subappendix J.7.
Assume the network is deep (n≥3), and consider a trajectory of gradient flow (over f(·)) emanating
from near-zero initialization. For every point on the trajectory, Proposition 2 may be applied with
small ϵ, leading the lower bound in Equation (14) to depend primarily on the sizes (norms) of the
end-to-end matrix Wn:1 and the gradient of the loss with respect to it, i.e. ∇ϕ(Wn:1) (see Equations
(10) and (11)). In the course of optimization,Wn:1 is initially small, and (since the loss f(θ)=ϕ(Wn:1)
is monotonically non-increasing) remains confined to sublevel sets of ϕ(·) (which is convex) thereafter.
∇ϕ(Wn:1) on the other hand tends to zero upon convergence to global minimum. We conclude
that the lower bound on λmin(∇2f(θ)) in Equation (14) starts off slightly negative, and approaches
non-negativity (if and) as the trajectory converges to global minimum. In light of Section 3, this implies
that the gradient flow trajectory may lend itself to approximation by gradient descent. Indeed, the
results of the current Subsubsection are used in Section 5 to establish proximity between gradient
flow and gradient descent, thereby translating an analysis of gradient flow into a guarantee of efficient
convergence (to global minimum) for gradient descent.

4.1.2 Non-Linear Activation
Due to lack of space, we defer our analysis for fully connected neural networks with non-linear
activation to Appendix C. This analysis is similar in spirit to the one in Subsubsection 4.1.1 treating linear
activation. In particular, it makes use of the fact that gradient flow initialized near zero maintains balance
between weight matrices — cf. [18]. A key difference brought forth by non-linear activation is that the
training loss f(·) (Equation (9)) is no longer differentiable. We circumvent this challenge by excluding
from the analysis points of non-differentiability, which form a negligible (closed and zero measure) set.

4.2 Convolutional Architectures
We account for convolutional neural networks by allowing for weight sharing and sparsity patterns
to be imposed on the layers of the fully connected model analyzed in Subsection 4.1. Namely, we
consider the exact same mappings as in Equation (8), but now, rather than being learned directly, the
matrices Wj ∈ Rdj ,dj−1 , j = 1,2, ... ,n, are determined by learned weight vectors wj ∈ Rd′

j , with
d′j ∈N, j=1,2,...,n, such that each entry of Wj is either fixed at zero or connected to a predetermined
coordinate of wj (with no repetition of coordinates within the same row). The weight setting θ∈Rd

is then simply a concatenation of the weight vectors w1,w2,...,wn, and its dimension is accordingly
d=
∑n

j=1d
′
j . Our analysis for this model (which includes convolutional neural networks as a special

case) is essentially the same as that presented for fully connected neural networks with non-linear
activation (Subsubsection 4.1.2). In particular, we use the fact that even with weight sharing and
sparsity patterns imposed on the layers of a fully connected neural network (with homogeneous
activation), when initialized near zero, gradient flow over the network maintains balance between
weights of different layers — cf. [18]. For the complete analysis see Appendix D.

13Note that by convention, an empty product (i.e. a product over the elements of the empty set) is equal to one.
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5 Continuous Proof of Discrete Convergence for Deep Linear Neural Networks
Section 3 invoked the Fundamental Theorem for numerical solution of initial value problems (The-
orem 2) to show that, in general, the extent to which gradient descent provably matches gradient flow
is determined by how large (less negative or more positive) the minimal eigenvalue of the Hessian
is around the gradient flow trajectory.2 Section 4 established that for training losses of deep neural
networks, along trajectories of gradient flow emanating from near-zero initialization (as commonly em-
ployed in practice), the minimal eigenvalue of the Hessian is far greater than in arbitrary points in space,
particularly towards convergence. In this section we combine the two findings, translating an analysis of
gradient flow over deep linear neural networks into a convergence guarantee for gradient descent. The
guarantee we obtain is, to our knowledge, the first to ensure that a conventional gradient-based algorithm
optimizing a deep (three or more layer) neural network of fixed (data-independent3) size efficiently
converges4 to global minimum almost surely under random (data-independent) near-zero initialization.

Deep linear neural networks — fully connected neural networks with linear activation (see Subsec-
tion 4.1) — are perhaps the most common subject of theoretical study in the context of optimization in
deep learning. Though trivial from an expressiveness point of view (realize only linear input-output map-
pings), they induce highly non-convex training losses, giving rise to highly non-trivial phenomena under
gradient-based optimization. In recent years, various results concerning gradient flow over deep linear
neural networks have been proven, most notably for the case of balanced initialization (see for exam-
ple [49, 4, 34, 6, 46]). Under the notations of Subsection 4.1 (in particular withW1,W2,...,Wn standing
for network weight matrices), balanced initialization means that when optimization commences:

W⊤
j+1Wj+1=WjW

⊤
j for j=1,2,...,n−1 . (15)

The condition holds approximately with any near-zero initialization, and exactly when the following
procedure (adaptation of Procedure 1 in [5]) is employed.

Procedure 1 (random balanced initialization). With a distribution P over dn-by-d0 matrices of rank at
most min{d0,d1,...,dn}, initialize Wj ∈Rdj ,dj−1 , j=1,2,...,n, via following steps: (i) sample A∼P;
(ii) take singular value decomposition A=UΣV ⊤, where U ∈Rdn,min{d0,dn} and V ∈Rd0,min{d0,dn}

have orthonormal columns, and Σ∈Rmin{d0,dn},min{d0,dn} is diagonal and holds the singular values
of A; and (iii) set Wn≃UΣ1/n,Wn−1≃Σ1/n,Wn−2≃Σ1/n,...,W2≃Σ1/n,W1≃Σ1/nV ⊤, where

“≃” stands for equality up to zero-valued padding.

Compared to gradient flow, little is known about gradient descent when it comes to optimization of
deep (three or more layer) linear neural networks. Indeed, there are relatively few results along this line
(cf. [9, 30, 5]), and these are typically highly specific, built upon technical proofs that are difficult to
generalize. Being able to obtain results via translation of gradient flow analyses is thus of prime interest.

We focus in this section on deep14 linear neural networks trained for scalar regression per least-squares
criterion. In the context of Subsection 4.1, this means that the activation function σ(·) is linear
(σ(z) = z), the output dimension dn is one, and the loss function ℓ(·) is the square loss (i.e. Y =R
and ℓ(ŷ,y) = 1

2 (ŷ−y)2). We assume that training inputs are whitened, i.e. have been transformed
such that their empirical (uncentered) covariance matrix Λxx := 1

|S|
∑|S|

i=1xix
⊤
i ∈Rd0,d0 is equal to

identity. A standard calculation (see Appendix G) shows that in this case the function ϕ(·) defined
by Equation (11) becomes ϕ(W )= 1

2∥W−Λyx∥2Frobenius+c, where Λyx :=
1
|S|
∑|S|

i=1yix
⊤
i ∈R1,d0

is the empirical (uncentered) cross-covariance matrix between training labels and inputs, and c∈R
is a constant (independent of W ). We may thus write the training loss f(·) (Equation (9)) as:

f(θ)=
1

2
∥Wn:1−Λyx∥2Frobenius+c=

1

2
∥Wn:1−Λyx∥2Frobenius+minq∈Rdf(q) , (16)

where Wn:1∈R1,d0 is the network’s end-to-end matrix (Equation (10)). We disregard the degenerate
case where Λyx=0, i.e. where the zero mapping attains the global minimum, and assume that training
labels are normalized (jointly scaled) such that Λyx has unit length (∥Λyx∥Frobenius=1).

Proposition 3 below analyzes gradient flow over the training loss in Equation (16). Relying on a known
characterization for the dynamics of the end-to-end matrix (cf. [4]), it establishes convergence to global
minimum. Moreover, harnessing the results of Section 4, it derives a lower bound on (the integral
of) the minimal eigenvalue of the Hessian around the gradient flow trajectory.

14Our results apply to shallow (two layer) networks as well. We highlight the deep (three or more layer) setting
as it is far less understood (cf. [5]), and arguably more central to deep learning.
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Proposition 3. Consider minimization of the training loss f(·) in Equation (16) via gradient
flow (Equation (5)) starting from initial point θs ∈ Rd that meets the balancedness condition
(Equation (15)). Denote by Wn:1,s the initial value of the end-to-end matrix (Equation (10)), and
suppose that ∥Wn:1,s∥Frobenius∈(0,0.2] (initialization is small but non-zero). Assume that Wn:1,s is
not antiparallel to Λyx, i.e. ν :=Tr(Λ⊤

yxWn:1,s)
/(

∥Λyx∥Frobenius∥Wn:1,s∥Frobenius

)
̸=−1. Then,

the trajectory of gradient flow is defined over infinite time, and with θ : [0,∞)→Rd representing this
trajectory, for any ϵ̄>0, the following time t̄ satisfies f(θ(t̄))−minq∈Rdf(q)≤ ϵ̄:

t̄=
2n
(
max

{
1,

3
2 ·

1−ν
1+ν

})n
∥Wn:1,s∥Frobenius

ln

(
15nmax

{
1,

1−ν
1+ν

}
∥Wn:1,s∥Frobeniusmin{1,2ϵ̄}

)
. (17)

Moreover, under the notations of Theorem 3, for any t > 0 and ϵ∈
(
0, 1

2n

]
with corresponding Dt,ϵ

(ϵ-neighborhood of gradient flow trajectory up to time t), we have the smoothness and Lipschitz
constants βt,ϵ =16n and γt,ϵ =6

√
n respectively, and the following (upper) bound on the integral

of (minus) the minimal eigenvalue of the Hessian:∫ t

0

m(t′)dt′≤
15n3

(
max

{
1,

3
2 ·

1−ν
1+ν

})n
tϵ

∥Wn:1,s∥Frobenius
+ln

(
n2
(
e2max

{
1,

1−ν
1+ν

})5(n−1)/2

∥Wn:1,s∥2
Frobenius

)
, (18)

where the function m : [0,t]→R is non-negative.
Proof. See Subappendix J.8.
Plugging the gradient flow results of Proposition 3 into the generic Theorem 3 translates them to the
following convergence guarantee for gradient descent.
Theorem 4. Assume the same conditions as in Proposition 3, but with minimization via gradient
descent (Equation (6)) instead of gradient flow.15 Then, with θ0,θ1,θ2,... representing the iterates of
gradient descent, Wn:1,0 standing for the end-to-end matrix (Equation (10)) of the initial point θ0, and
ν:=Tr(Λ⊤

yxWn:1,0)
/(

∥Λyx∥Frobenius∥Wn:1,0∥Frobenius

)
, for any ϵ̃>0, if the step size η meets:

η ≤ ∥Wn:1,0∥5
Frobeniusmin{1,ϵ̃}

n17/2e7n+6
(
max
{
1,

1−ν
1+ν

})(11n−5)/2

(
ln

(
15nmax

{
1,

1−ν
1+ν

}
∥Wn:1,0∥Frobeniusmin{1,ϵ̃}

))−2

∈ Ω̃

(
∥Wn:1,0∥5

Frobenius ϵ̃

n17/2
(
poly

( 1−ν
1+ν

))n), (19)

it holds that f(θk)−minq∈Rdf(q)≤ ϵ̃, where:

k=

⌊
2n
(
max

{
1,

3
2 ·

1−ν
1+ν

})n
∥Wn:1,0∥Frobeniusη

ln

(
15nmax

{
1,

1−ν
1+ν

}
∥Wn:1,0∥Frobeniusmin{1,ϵ̃}

)
+1

⌋
∈Õ

(
n
(
poly

( 1−ν
1+ν

))n
ln
( 1
ϵ̃

)
∥Wn:1,0∥Frobeniusη

)
. (20)

Proof. See Subappendix J.9.

Remark 1. Theorem 3 — our generic tool for translating analyses between gradient flow and gradient
descent — allows for the two to be initialized differently. Accordingly, the convergence guarantee
of Theorem 4 may be extended to account for initialization which is not perfectly balanced, i.e. which
satisfies Equation (15) only approximately. For details see Appendix H.
Remark 2. The convergence guarantee of Theorem 4 requires a number of iterates that scales
exponentially with network depth (n). [51] has proven that under mild conditions, for a deep linear
neural network whose input, hidden and output dimensions are all equal to one (i.e., in our notations,
d0=d1= ···=dn=1), such exponential dependence on depth is unavoidable. We defer to future work
the question of whether this also holds in the context of Theorem 4.

Combining Theorem 4 with random balanced initialization (Procedure 1) yields what is, to our
knowledge, the first guarantee of random (data-independent) near-zero initialization almost surely
leading a conventional gradient-based algorithm optimizing a deep (three or more layer) neural
network of fixed (data-independent) size to efficiently converge to global minimum.
Corollary 2. Consider minimization of the training loss f(·) in Equation (16) via gradient descent
(Equation (6)) emanating from a random balanced initialization (Procedure 1) whose underlying
distribution P is continuous and satisfies PrA∼P

[
∥A∥Frobenius ≤ 0.2

]
= 1. Assume d0 (network

input dimension) is greater than one, and let Wn:1,0 and ν be as defined in Theorem 4. Then, almost
surely with respect to (i.e. with probability one over) initialization, for any ϵ̃>0, if the step size η meets
Equation (19), the value of f(·) after k iterates will be within ϵ̃ from global minimum, where k is given
by Equation (20).

Proof. See Subappendix J.10.
15The conditions on θs in Proposition 3 are now satisfied by the initialization of gradient descent, i.e. by θ0.
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Figure 1: Over deep fully connected neural networks, trajectories of gradient descent with conventional step size
barely change when step size is reduced, suggesting they are close to the continuous limit, i.e. to trajectories of
gradient flow. Presented results were obtained on fully connected neural networks as analyzed in Subsection 4.1,
trained to classify MNIST handwritten digits (28-by-28 grayscale images, each labeled as an integer between 0
and 9 — cf. [35]). Networks had depth n=3, input dimension d0=784 (corresponding to 28 ·28=784 pixels),
hidden widths d1=d2=50 and output dimension d3=10 (corresponding to ten possible labels). Training was
based on gradient descent applied to cross-entropy loss with no regularization, starting from a near-zero point
drawn from Xavier distribution (cf. [24]). Separately on each network, we compared runs differing only in the step
size η. Specifically, with η0=0.001 (standard choice of step size) and r ranging over {2,5,10,20}, we compared,
in terms of training loss value and location in weight space, every iteration of a run using η=η0 to every r’th
iteration of a run in which η=η0/r. Left pair of plots reports results obtained on a network with linear activation
(σ(z)=z), while right pair corresponds to a network with rectified linear activation (σ(z)=max{z,0}). In each
pair, left plot displays training loss values, and right one shows (Euclidean) distances in weight space, namely,
distance between initialization and run with η=η0, alongside distances between run with η=η0 and runs having
η=η0/r for different values of r. Horizontal axes represent time in units of η=η0 iterations (meaning each time
unit corresponds to r iterations of a run with η=η0/r). Notice that the drift between runs with different step sizes
is minor compared to the distance traveled. For further implementation details, and results of similar experiments
on convolutional neural networks, see Appendix I.

6 Experiments

In this section we corroborate our theory by presenting experiments suggesting that over simple
deep neural networks, gradient descent with conventional step size is indeed close to the continuous
limit, i.e. to gradient flow. Our experimental protocol is simple — on several deep neural networks
classifying MNIST handwritten digits ([35]), we compare runs of gradient descent differing only in
the step size η. Specifically, separately on each evaluated network, with η0=0.001 (standard choice
of step size) and r ranging over {2,5,10,20}, we compare, in terms of training loss value and location
in weight space, every iteration of a run using η=η0 to every r’th iteration of a run in which η=η0/r.
Figure 1 reports the results obtained on fully connected neural networks (as analyzed in Subsection 4.1),
with both linear and non-linear activation. As can be seen, reducing the step size η leads to only slight
changes, suggesting that the trajectory of gradient descent with η=η0 is already close to the continuous
limit. Similar results obtained on convolutional neural networks (see Subsection 4.2 for corresponding
analysis) are reported by Figure 3 in Subappendix I.1.

Our experimental findings suggest that in practice, proximity between gradient descent and gradient
flow may take place even when the step size of gradient descent is larger than permitted by current
theory. Indeed, the theoretical machinery developed in this paper brings forth upper bounds on step
size that guarantee proximity, and while such upper bounds can be asymptotically tight under worst
case conditions (see Appendix B), they are by no means tight in every given scenario, and therefore
larger step sizes may also admit proximity. For illustration, a step size of η0, which in our experiments
was seemingly sufficient for ensuring proximity, is many orders of magnitude greater than the upper
bound on step size required by Theorem 4 (Equation (19)).

7 Related Work

Theoretical study of gradient-based optimization in deep learning is an extremely active area of
research. While far too wide to fully cover here, we note that analyses in this area can broadly
be categorized as continuous (see for example [49, 4, 34, 6, 1, 20, 57, 46, 31, 47, 60, 7, 62])
or discrete (e.g. [9, 26, 17, 2, 16, 66, 28]). There are works comprising analyses of both types
(cf. [18, 30, 5, 61, 39, 19, 11, 12]), but with these developed separately, wherein continuous proofs
typically serve as inspiration for discrete ones (which are often far more technical and brittle).
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When relating continuous and discrete optimization, the algorithms at play are most commonly gradient
flow and gradient descent. There are however works that draw analogies between other algorithms,
replacing gradient flow on the continuous end and/or gradient descent on the discrete one (see, e.g.,
[54, 58, 59, 45, 50, 37, 52, 63, 22, 43, 40, 8, 33, 53]). The literature includes works which, similarly to
the current paper, provide formal results concerning the accumulated (non-local) discrepancy between
continuous and discrete optimization (cf. [50, 43]). However, such works typically focus on simple ob-
jective functions (for example convex or quadratic), whereas we center on (non-convex and non-smooth)
training losses of deep neural networks. Several recent works (e.g. [8, 33, 14]) also considered continu-
ous vs. discrete optimization of deep neural networks, but they did not provide formal results concerning
the accumulated discrepancy. We are not aware of any study (prior to the current) formally quantifying
the accumulated discrepancy between continuous and discrete optimization of deep neural networks.

With regards to the convergence guarantee we obtain in Section 5 (via translation of gradient flow analy-
sis to gradient descent) — Theorem 4 and Corollary 2 — relevant results are those that establish efficient
convergence4 to global minimum for a conventional (discrete) gradient-based algorithm optimizing
a deep (three or more layer) neural network. Existing results meeting this criterion either: (i) apply
to neural networks (linear or non-linear) whose size depends on the data (i.e. is not data-independent3),
predominantly in an impractical fashion (cf. [65, 17, 2, 19, 64, 42]); or (ii) apply to linear neural
networks of fixed (data-independent) size, similarly to our guarantee. Results of type (ii) often treat the
residual setting, which boils down to (possibly scaled) identity initialization, perhaps with input and/or
output layers initialized differently (see for example [9, 61, 66]). Exceptions include [5], [16] and [28].
[5] allows for random balanced initialization, as we do. Its results account for networks with multi-
dimensional output, and require a number of iterates polynomial in network depth. Our guarantee on the
other hand is limited to networks with one-dimensional output, and calls for a number of iterates scaling
exponentially with network depth. However, while [5] demands that initialization be sufficiently close
to global minimum, thereby excluding the possibility of saddle points being encountered, our guarantee
holds almost surely (i.e. with probability one) under random (data-independent) near-zero initialization.
The fact that we account for evasion of saddle points (in particular that at the origin, which is non-strict16

when network depth is three or more) may be the source of the gap in number of iterates — see Remark 2.
As for the results of [16] and [28], these also hold with high probability under random initialization,
but they require network size to grow towards infinity in order for the probability to approach one.

8 Discussion
Our work puts forth a potential explanation to a puzzling phenomenon in deep learning, namely, the
effect of weight decay (L2 regularization). While traditionally viewed as a regularizer, it is known
(cf. [32]) that in deep learning, weight decay can assist in minimizing the training loss. In light of
our findings, a possible reason for this is that weight decay translates to adding a positive constant
to Hessian eigenvalues, thereby bringing gradient descent closer to gradient flow, which often enjoys
favorable convergence properties. Theoretical and/or empirical investigation of this prospect is a
potential avenue for future work.

Emerging evidence (cf. [38, 36, 29]) suggests that for (variants of) gradient descent optimizing deep
neural networks, large step size is often beneficial in terms of generalization (i.e. in terms of test
accuracy). While the large step size regime is not necessarily captured by standard (variants of) gradient
flow (see [14]), recent works (e.g. [8, 33, 53]) argue that it is captured by a certain modified version
of (variants of) gradient flow. Formally quantifying the discrepancy between gradient descent with
large step size and such modified version of gradient flow is a promising direction for future research.

The demonstration we provided for translation of a gradient flow analysis to gradient descent
(Section 5) culminated in a convergence guarantee, but in fact entails much more information. Namely,
since the translated gradient flow analysis includes a careful trajectory characterization, not only do we
know that gradient descent converges to global minimum (and how fast that happens), but we also have
access to information about the trajectory it takes to get there. This allows, for example, shedding light
on how saddle points (non-strict ones in particular16) are evaded. A nascent belief (cf. [5, 6]) is that
understanding the trajectories of gradient descent is key to unraveling mysteries behind optimization
and generalization (implicit regularization) in deep learning. The machinery developed in the current
paper may contribute to this understanding, by translating results from the vast bodies of literature
on continuous dynamical systems.

16A saddle point is said to be non-strict if its Hessian has no negative eigenvalues. Saddle points that are
non-strict are generally regarded as more difficult to evade — cf. [5].
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