Plug-and-Play Context Feature Reuse for Efficient
Masked Generation

Xuejie Liu'*, Anji Liu? , Guy Van den Broeck?®, Yitao Liang' *
Mnstitute for Artificial Intelligence, Peking University
2School of Computing, National University of Singapore
3Computer Science Department, University of California, Los Angeles
3School of Intelligence Science and Technology, Peking University
xjliu@stu.pku.edu.cn, anjiliu@comp.nus.edu.sg
guyvdb@cs.ucla.edu, yitaol@pku.edu.cn

Abstract

Masked generative models (MGMs) have emerged as a powerful framework for
image synthesis, combining parallel decoding with strong bidirectional context
modeling. However, generating high-quality samples typically requires many iter-
ative decoding steps, resulting in high inference costs. A straightforward way to
speed up generation is by decoding more tokens in each step, thereby reducing the
total number of steps. However, when many tokens are decoded simultaneously, the
model can only estimate the univariate marginal distributions independently, failing
to capture the dependency among them. As a result, reducing the number of steps
significantly compromises generation fidelity. In this work, we introduce ReCAP
(Reused Context-Aware Prediction), a plug-and-play module that accelerates infer-
ence in MGMs by constructing low-cost steps via reusing feature embeddings from
previously decoded context tokens. ReCAP interleaves standard full evaluations
with lightweight steps that cache and reuse context features, substantially reducing
computation while preserving the benefits of fine-grained, iterative generation. We
demonstrate its effectiveness on top of three representative MGMs (MaskGIT [3]],
MAGE [27]], and MAR [29]), including both discrete and continuous token spaces
and covering diverse architectural designs. In particular, on ImageNet256 [7]]
class-conditional generation, ReCAP achieves up to 2.4x faster inference than
the base model with minimal performance drop, and consistently delivers better
efficiency—fidelity trade-offs under various generation settings. Our code is publicly
available at https://github.com/liebenxj/ReCAP,

1 Introduction

The remarkable success of sequence modeling in language generation [41, 42] has inspired
its adoption in image modeling, where transformer-based models [S1} 8, [17] learn the joint
distribution over sequences of visual tokens using either autoregressive [11, [10, 48, 22| 44]]
or non-autoregressive [15, 158, 5, |40] strategies. Among them, Masked Generative Models
(MGMs) [27, 29, 154, 152, 156] have emerged as a particularly compelling framework, achieving
competitive generation quality while supporting efficient parallel decoding. The advantages in both
performance and efficiency have positioned MGMs as a promising alternative to latent diffusion
models [45] 39, 12] for high-resolution image generation, with recent work also extending their success
to text-to-image synthesis [4} [12].

*Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/liebenxj/ReCAP

Figure 1: FID vs. inference time on

2.61 \\ MAR-L ImageNet256 class-conditional generation.
MAR-H . .

VAR-d24° As the number of decoding steps increases,

241 * avaan] MAR [29] achieves better FID but incurs high

221 el inference cost. ReCAP significantly acceler-

o MAR_L+ReCAP(OUrs) ates MAR by replacing part of full-eval steps

w50 MAR-H+ReCAP(Ours) with low-cost steps, achieving 2.4 x faster in-

* ference for MAR-Huge with minimal quality

1.81 2 loss (FID 1.56 vs. 1.57). For fair compari-

son, we adopt the version of REPA without

161 interval guidance [21], as also reported in the

00 05 10 15 20 25 original paper [57]. * denotes the use of KV

Inference Time (sec / image) caching [47] for fast inference.

Despite these promising results, MGMs still face limitations in inference efficiency. As illustrated
in Figure[T] applying MAR [29], a state-of-the-art MGM, to class-conditional image generation on
ImageNet256 [[7] reveals a consistent trade-off: higher sample quality requires more decoding steps,
which results in longer inference time. This limitation becomes even more pronounced in large-scale
models, where each additional step incurs substantial computational overhead.

We attribute this limitation to a fundamental trade-off in the MGM decoding paradigm. To reduce the
total number of generation steps, MGMs decode multiple visual tokens at each step. Ideally, the model
should sample from the joint distribution over all tokens being decoded. However, it can only predict
the univariate marginal distributions for each token independently due to the sequence-to-sequence
nature of Transformers. Therefore, while reducing the number of decoding steps is computationally
appealing, it often results in significant degradation in generation quality. To address this dilemma,
we pursue an orthogonal direction: lowering the computational cost per decoding step while retaining
the advantages of fine-grained iterative updates.

Our approach is motivated by a key empirical finding: when only a small number of tokens are
updated between decoding steps, the Transformer feature embeddings of the previously decoded
context tokens remain largely unchanged. This property is particularly beneficial in settings with
many decoding steps, where each step only decodes a small subset of tokens. We leverage this
insight to design lightweight decoding steps that reuse the feature representations of context tokens
computed during earlier steps. As illustrated in Figure[I] replacing a portion of the full evaluations in
the decoding procedure of MAR [29] with these lightweight steps allows us to substantially reduce
inference time with minimum reduction on generation quality.

In summary, we propose ReCAP (Reused Context-Aware Prediction), a simple yet effective plug-
and-play module for accelerating MGM inference. ReCAP interleaves standard full evaluations with
cheaper partial evaluations that reuse cached attention features for the unchanged context tokens.
We empirically demonstrate that ReCAP consistently improves quality—efficiency trade-offs across
a variety of MGMs, including discrete MGMs (MaskGIT [5], MAGE [27]) and also MGMs with
continuous-valued tokens (MAR [29])), covering different architectural designs and evaluation setups.
Notably, on ImageNet256 class-conditional generation, ReCAP accelerates inference for MAR-Huge
by 2.4 x, while preserving its state-of-the-art FID with no architectural edits or additional training.

2 Related Work

Masked Generative Models (MGMs) originate from non-autoregressive sequence modeling in
machine translation [31} [14], offering parallel decoding and faster inference than autoregressive
models. Recently, MGMs have been successfully adapted to image generation. As a pioneering work,
MaskGIT [5] demonstrated competitive performance on ImageNet using as few as 8 decoding steps,
achieving better quality-efficiency trade-offs than diffusion models. Several works aim to improve
MGM generation quality: Token-Critic [23] introduces an auxiliary model for guided sampling,
MAGE [27]] unifies representation and generation via varied masking ratios, and AutoNAT [36]
and AdaNAT [37] search for better sampling schedules through optimization-based strategy or
reinforcement learning algorithm. However, these methods incur significant cost at longer steps. To
bridge the gap with SoTA continuous diffusion models, MAR [29] extends the MGM framework
to continuous-valued token spaces, mitigating the information loss from discrete tokenization, and
achieves state-of-the-art FID below 2.0 on ImageNet.

Inference Efficiency in Generative Models. Accelerating inference is a key challenge in generative
modeling. In autoregressive models, techniques such as key-value (KV) caching [51}47] and specu-
lative decoding [24] reduce redundant computation. In diffusion models, efficiency has improved
through advanced solvers [33}34], classifier-free guidance [[19], and guidance interval sampling [21]].
While early MGMs benefit from fewer decoding steps and relatively efficient inference [3]], achieving
state-of-the-art performance remains costly. For example, MAR [29] requires 256 decoding steps to
match the quality of leading diffusion models [57, [16], resulting in significant inference overhead.

3 Preliminaries of MGMs

In this framework, a raw image X is first encoded into a sequence of N visual tokens X = (XN,
using a pretrained tokenizer. Most approaches leverage vector-quantized (VQ) autoencoders [S0,
111 143] as tokenizers, which map image patches to indices in a learned codebook, representing each
token X as a categorical variableE] A transformer-based sequence model is then employed to learn
the joint distribution over {X; } ;.

To model the sequence data X, MGMs adopt a masked prediction objective, learning to predict
masked tokens conditioned on a subset of variables termed the context. This training objective
is inspired by masked language modeling tasks used in models like BERT [8 |3, [17]] and discrete
diffusion models [1]. The model minimizes the following cross-entropy loss:

L(x) = ~Epog() e~ () > log po(zilzm) |
ie{i|laM=[MASK]}

where 7 is a sampled masking ratio and ¢, is a masking distribution that replaces an r-fraction of
tokens in & by [MASK]. At test time, the model begins with an empty context (i.e., all tokens are
masked) and gradually decodes a chosen subset of tokens, expanding the context at each step by
incorporating the newly decoded tokens. Notably, each step updates multiple tokens in parallel,
allowing high-quality generation with significantly fewer decoding steps.

Specifically, the decoding procedure begins with a fully masked sequence z(°). At each step

t € {1,...,T}, the model predicts token values based on the current sequence x*~1). We define n,
as the total number of decoded tokens after step ¢, and n; = n; — ns_1 as the number of tokens to be

decoded at t. Let M; = {i | atl(-tfl) = [MASK]} denote the masked positions at the beginning of the
t-th step. The sampler selects a subset S; C M of size 7, either uniformly [29] or proportionally to

the model’s predicted confidence [5,27]] (see Appendix . For each i € S;, the model samples xgt)
from the trained MGM py (X; |m(t*1)).

4 The Inference Challenge of MGMs

MGMs offer a powerful framework for high-quality image generation by progressively refining
predictions through iterative masked sampling. However, as shown in Figure |1} achieving high-
fidelity results typically requires a large number of decoding steps, leading to significant inference
costs. For example, MAR-Large [29], a state-of-the-art MGM, achieves an FID of 1.8 using 128
decoding steps, but its performance deteriorates sharply to an FID of 15.9 when constrained to only
8 steps (measured using the official code). For even larger models such as MAR-Huge, inference
latency can exceed 2 seconds per image when using hundreds of steps, posing a challenge for the
practical deployment of MGMs in latency-sensitive applications.

We attribute this undesirable reliance on numerous decoding steps to the inherent limitations of its
parallel decoding procedure. As illustrated in Section [3] in each step ¢, multiple masked tokens are
sampled independently from the conditional distribution p(x;|(*~1)), neglecting intricate depen-
dencies among simultaneously unmasked tokens. Similar issues have been identified in discrete
diffusion models for masked language modeling [30,32], where multiple refinement steps are needed
to recover coherent outputs due to parallel yet independent updates.

2Although we describe our method in the context of discrete MGMs, our method is directly applicable to
MGMs with continuous-valued tokens (Appendix .

As a result, reducing the number of decoding steps inherently limits the model’s ability to capture
inter-token dependencies, thereby degrading generation quality. Using a large number of steps and
allowing more incremental and context-aware updates helps alleviate this issue, but at the cost of
significant computational overhead. Specifically, unlike causal transformers, which support efficient
reuse of intermediate attention states via key-value caching [47], the bidirectional nature of MGMs
necessitates recomputing the attention-based features over all N tokens in the sequence at each step,
which incurs a O(N?) inference cost in each update.

These challenges can be summarized in one central question in our paper: can we reduce the per-step
computation cost while preserving generation quality? We answer the question in its affirmative by
showing that we can cache and reuse feature embeddings of previously decoded tokens with minimum
performance drop with the so-called cheap update steps. By balancing the regular and cheap steps,
our method achieves a substantially better trade-off between inference speed and generation fidelity.

5 Inference Scaling via Context Feature Reuse

To mitigate the inference inefficiency of MGMs, we aim to construct computationally lightweight
decoding steps that accurately simulate standard many-step MGM decoding at significantly lower
cost. Specifically, we interleave the original T" full evaluation steps with 7" low-cost steps, thereby
increasing the number of decoding steps without increasing computational burden proportionally.
This allows the model to better capture inter-token dependencies, which leads to better speed—fidelity
trade-offs. Importantly, our method requires no change to the model architecture and introduces no
additional training cost, making it a simple plug-in mechanism applicable to a broad range of existing
MGM frameworks.

In each decoding step, the model has to re- K=2 K=8 —e— K=24 —e— K=48 —e— K=96
compute Transformer feature embeddings for K=4 —e— K=16 —e— K=32 —e— K=64 —e— K=128
all tokens in the sequence, even though onlya g 1.0
small subset of these tokens are actually modi- 2
. . © 0.9

fied/unmasked between consecutive steps. This @
is necessary because the applied bidirectional £0.8
attention mechanism allows every token’s rep- £
resentation to depend on all others; thus, even § 0.7
a small input change can, in principle, propa- EO'G
gate globally and alter all token embeddings. £
However, we hypothesize that when only a few 2 0.5
tokens are newly updated, the feature embed- £

. . 9 0.4
dings of the previously decoded context tokens 22 24 26
change only slightly, reducing the need for fre- Number of Updated Tokens

quent recomputation.) . o
Figure 2: Context feature stability during itera-

To validate this hypothesis, we analyze the (jve decoding. We measure similarity between con-
representations computed by a pretrained (ex¢ representations before and after token updates,
MaskGIT [5] model on 50K samples from the yging a pretrained MaskGIT on 50K ImageNet256
ImageNet256 validation set. For each sample, gamples. At each decoding stage, we extract the
we randomly select K tokens as context and jnput embeddings to the attention module for the
masl; the reme.lining ones, simulating an inter- f¢ already-decoded tokens. These are average-
mediate decoding state with K already-decoded pooled within each layer to obtain an aggregated
tokens. As shown in Figure[2] each curve corre- context vector. Cosine similarity is computed be-
sponds to a different value of K, and the 2-axis tween these vectors before and after updates and
denotes the number of masked tokens subse- ayeraged across layers; shaded regions indicate
quently unmasked. layer-wise standard deviation. Greater stability at

To quantify how the context features evolve dur- larger K supports reusing cached features in later
ing decoding, we incrementally unmask/update decoding stages.

a growing number of masked tokens, corre-

sponding to increasing positions along the x-axis, and measure how the feature embeddings of
the K given tokens change as a result. Specifically, we extract the input embeddings to the attention
module (i.e., pre-QKYV projection features), average-pool them across the K context tokens at each
layer, and compute the cosine similarity between these aggregated features before and after each

Context tokens Masked tokens Decoded target tokens Masked target tokens

Full-FE Local-FE Local-FE

(t.0) (t2)

® ®
step #T
KV Cache
wmy, Reuse

Grouped Decoding Pipeline

Recomputed QKV Cached KV @ Concatenation

Figure 3: Grouped Decoding Pipeline with Cached Attention. Inference is organized into T'
groups, each performing one Full-FE and several Local-FE steps. In the Full-FE, full attention is

computed over the entire sequence, and KVs for the static context tokens (") and other masked
tokens (%) are cached. In each Local-FE, only the QKVs of the target tokens (*) are recomputed

("), while the cached KVs () are reused to form the full attention context. The context feature
reuse mechanism effectively reduces computation cost in local evaluation steps.

update (y-axis). We repeat this process for multiple values of K € {2,4,8,...,128} to simulate
decoding states at various stages.

The results in Figure [2] provide strong empirical support for our hypothesis. Across all values of K,
when only a small number of tokens are updated (left side of the x-axis), the cosine similarity remains
close to 1, indicating that the representations of previously decoded tokens change minimally. This
suggests that attention features for the decoded context can be safely cached and reused in subsequent
steps, enabling more efficient computation.

Moreover, we can observe in Figure[2]that as decoding progresses and the context becomes richer with
K increases, the extent of feature drift further diminishes, suggesting that the internal representations
associated with context tokens become increasingly stable. This empirical evidence suggests that
cached context embeddings can be increasingly reused in later decoding steps, with minimal fidelity
loss introduced. Building on these observations, we propose a grouped decoding strategy that
interleaves full and partial function evaluations to enable context feature reuse and improve inference
efficiency. The overall pipeline is illustrated in Figure[3] Intuitively, the key idea is to cache and reuse
the Transformer feature embeddings of unchanged tokens. We implement this by caching and reusing
their corresponding key-value (KV) pairs in attention computation, as detailed in the following.

Grouped Decoding Pipeline. As illustrated on the left of Figure} we organize the MGM inference

process into 1" grouped decoding stages, where masked tokens (%) are progressively converted into

decoded context tokens () over time. The detailed structure of each grouped step ¢ is shown in
the central gray box of Figure[3] Within each group ¢, a target set of masked tokens S; is selected

and decoded using multiple light-weight steps. These target tokens are marked in red (") and are
initially masked (). As decoding progresses, they are gradually replaced with decoded tokens ().

Each group consists of a Full Function Evaluation (Full-FE) at sub-step (¢, 0), followed by /; Local
Function Evaluation (Local-FE) sub-steps (¢,1), ..., (¢,l;). At each sub-step j € [0,], a disjoint

subset St(j) C &; is decoded and used as context in later sub-steps. At the end of group ¢, all tokens
in §; will be unmasked, serving as the input context for the next group ¢ + 1.

Full-FE with Cache Construction. At sub-step (¢,0), i.e., the “Full-FE” panel of Figure 3| we

perform a full attention computation over the current sequence & *~1). This includes computing QKV
representations for all tokens. We then cache the KVs for the complement set S;, which consists of

the context tokens (-) and unselected masked tokens (%). These cached KVs (highlighted in),
denoted as kfgi‘:hed, vg‘fhed, will be reused in subsequent Local-FEs. Next, we decode the first subset

St(o) by sampling from the model distribution p(X; | (*~1)), producing the updated sequence a*?).
Local-FE with Reused KVs. In each Local-FE sub-step (t, j) for j € [1, 1], we decode the subset

St(j) based on the current sequence x(*7 1) Instead of recomputing attention for all tokens, we only

recompute the QKVs for the target subset St(j) (highlighted in =). These are then concatenated with
the cached KVs to form the full attention context:

qs(j)kIN
attng() = Softmax | ———— | vi.n,
t

Vi,

S0 kg—"fhed), Vi:N = COHCHt(VStu) , vg‘fhed), dj, denotes the dimensionality

of the key/value vectors. Each Local-FE then produces 2:(*-/) by sampling from the model distribution
conditioned on & (*/—1) This process continues until all I, Local-FEs are completed. While the initial
Full-FE incurs a full O(N?) cost, each subsequent Local-FE performs a much cheaper update with

where kq.y = Concat(k

complexity O(; - N), where 7, = |St(j)| < N. Group ¢ then concludes by setting (¥ := (k).

Efficiency and Fidelity Trade-off. Overall, our method realizes a (T + T"”)-step generation process,
where 7" = > I, denotes the number of inserted Local-FEs. This strategy effectively adapts the
KV caching mechanism to the bidirectional masked generation. Unlike autoregressive transform-
ers—where each decoding step is inherently cache-friendly due to causal masking—bidirectional
MGMs require periodic full evaluations to prevent error accumulation. Our grouped decoding frame-
work interleaves exact (Full-FE) and approximate (Local-FE) steps, offering a flexible trade-off
between inference speed and generation fidelity.

6 Experiment

Our method ReCAP (Reused Context-Aware Prediction) is a plug-and-play approach that can be
seamlessly integrated into the inference pipeline of existing MGMs. By interleaving full and partial
attention computations, ReCAP significantly reduces the per-step inference cost. In this section, we
evaluate whether the use of Local-FEs can effectively lead to efficiency gains and, more importantly,
whether it can achieve better trade-offs between generation quality and inference speed.

To this end, we apply ReCAP to three representative MGM baselines and conduct a thorough
evaluation. Our experiments span a diverse set of settings, varying in task (class-conditional vs.
unconditional generation) and model architecture (decoder-only vs. encoder-decoder). The selected
baselines are: i) MaskGIT [5]: A widely-used discrete MGM that uses a VQGAN tokenizer [11]],
followed by a Transformer trained with a BERT-style masked modeling objective, as described in
Section 3] ii) MAR [29]: A state-of-the-art continuous-valued MGM designed to avoid quantization
artifacts by operating on latent embeddings. It reconstructs masked tokens via a per-token diffusion
loss. (see Appendix D)) iii) MAGE [27]: A discrete MGM improving MaskGIT by incorporating a
variable mask ratio training objective, which serves as a strong unconditional generation baseline that
does not rely on pretrained self-supervised features [28} [38]].

Among these, MaskGIT uses an decoder-only architecture, while MAR and MAGE adopt an encoder-
decoder architecture following the Masked Autoencoders (MAE) [[17]. As demonstrated in the
following sections, ReCAP is model-agnostic and can be effectively applied across diverse model
designs. We report Fréchet Inception Distance (FID) [[18] and Inception Score (IS) [46] following
common practice [9]]. All inference times are re-evaluated using the official implementations on a
single NVIDIA A800 GPU with a default batch size of 200 and reported as time per image.

Table 1: Performance of MaskGIT w/ and w/o ReCAP on ImageNet256 class-conditional gen-
eration w/o CFG [19]. # Steps =T + T’ denotes the total number of decoding iterations. u is the
number of initial grouped steps without Local-FEs when applying ReCAP. Results show that ReCAP
reliably reduces inference time while maintaining competitive FID.

4t MaskGIT-r (Full only) MaskGIT-r+ReCAP

eps

P FID| Time] w #Full-FE(T) #Local-FE(T") FID] Time]

16 4.46 0.095 0 8 8 502 0.055

8 12 4 450 0.076

20 4.18 0.118 10 15 5 423 0.094

24 4.09 0.142 10 16 8 4.09 0.107

32 3.97 0.189 12 22 10 398 0.137

6.1 Improving MaskGIT with ReCAP

MaskGIT adopts a cosine decoding schedule and a confidence-based token sampler. When adapting
ReCAP, we use the same token sampler to obtain S; after each Full-FE step (see Appendix [B).

Following the decoding schedule used in MaskGIT, early decoding steps reveal only a small number of
tokens, while later steps decode progressively more. Recall in Figure 2] we show that context features
become more stable as more tokens are decoded. Therefore, we introduce Local-FEs primarily in
the later grouped steps. Specifically, for MaskGIT+ReCAP, let T denote the number of grouped
decoding steps, which also corresponds to the number of Full-FEs (recall from Figure [3]that each
group begins with a Full-FE). We define u as the number of initial steps that only perform Full-FE,
i.e., l1., = 0. After step u, we insert one Local-FE per step, i.e., ly11..+77 = 1, where T” is the total
number of Local-FEs and the total number of decoding steps equals T' + T".

To assess the impact of ReCAP, we conduct a controlled

7.0 Ours
experiment by fixing the total number of decoding steps MaskGIT-r
T 4 T’ and adjusting the allocation between Full- and 6.5 MaskOIT
Local-FEs for ReCAP via the parameter u. As a base- 6.0 bt Mot
line, we replace all Local-FEs with Full-FEs, denoted A —o— MAR-B
MaskGIT-r (Full only), which serves as a principal “up- i >° U-WIT-HT

per bound” in performance but incurs higher inference 5.0
cost. Here, MaskGIT-r represents our re-implemented

MaskGIT with an enhanced sampling schedule, demon- 4 *
strating improved inference scaling with increasing de- 4.0
coding steps compared to the original MaskGIT in Fig- 005 008 01 0.5 0.2

Inference Time (sec / image)

ure [d (see Appendix [A)). The FIDs and the corresponding
runtimes per image of both methods are presented in Ta- Figure 4: FID vs. inference time for
ble E} In each row using a certain number of total steps, MaskGIT variants and comparative mod-
MaskGIT-r+ReCAP achieves notable inference speedups els. *: taken from the MaskGIT pa-
by replacing a subset of Full-FEs with cheaper Local-FEs. per [3]. : with CFG [19]]. U-ViT [Z]
For example, with 32 total steps, ReCAP reduces inference adopts 7 sampling steps in this figure.
time from 0.189s to 0.137s per image while maintaining a

nearly identical FID (3.97 vs. 3.98). With 20 steps, although the FID slightly increases from 4.18
to 4.23, the inference time drops to match that of the 16-step baseline—while significantly outper-
forming it (FID 4.46). These results demonstrate that ReCAP effectively improves quality-speed
trade-offs of the base MaskGIT, achieving comparable or better performance at lower cost. For a
more detailed ablation study of the hyperparameters, e.g., , 7', 7”, and [, please refer to Appendix [E.4}

We further visualize this improvement in Figure[d comparing ReCAP against various strong baselines.
The “MaskGIT-r (Full only)” and “MaskGIT-r+ReCAP” in Table[I|correspond to MaskGIT-r and
Ours in Figure[d] respectively. By substantially reducing inference time while preserving generation
quality, ReCAP enhances the base model’s inference-scaling behavior. Moreover, without relying
on classifier-free guidance (CFG) [19]], our ReCAP-augmented model achieves a more favorable
quality—efficiency trade-off compared to advanced continuous diffusion models such as U-ViT-
HT [2], which incorporate both DPM solvers [33}134] and CFG. Our performance is also comparable
to AutoNAT [36], which improves sampling via an extensive hyperparameter search. However,
AutoNAT does not generalize well to longer decoding schedules. In contrast, ReCAP is broadly
applicable as long as the performance of the base model improves as we increase the number of steps.

21
2.4 [MAR-H-+ReCAP(Ours)
MAR-L+ReCAP(Ours) 20 N \%}R-_:m*
MAR-L *
2.2 VAR-d24° 1.9 R
a * VAR-d30° a - REPA'
o B DIT-XL T 18 * *
2.0 U-ViT-H E
4+ REPA 17 \
* % REPA! PN
1.6
1.8 »® + i
0.050.2 0.4 0.6 1.0 0.0 0.5 1.0 1.5 2.0 2.5
Inference Time (sec / image) Inference Time (sec / image)

Figure 5: Speed/Performance trade-off for MAR variants and SoTA baselines. ReCAP consistently
improves inference efficiency of MAR-Large and -Huge. VARs [48]] are SOTA AR models performing
next-scale prediction, * denotes the use of KV caching [47]. REPA [57], a SoTA flow-matching
model relying on vision foundation models [38]], ¥ denotes the use of advanced guidance interval
sampling [21]. DPM solvers [33}134]] augment DiT [39] and U-ViT [2].

We provide a comprehensive comparison against more strong generative baselines in Appendix
such as Token-Critic [25] and DPC [26] with learnable guidance, StralT employing hierarchical
modeling [40]. Notably, our MaskGIT-r baseline—obtained by simply adjusting the sampling
schedule and increasing decoding steps—already outperforms these approaches with more complex
architectures or guidance mechanisms. ReCAP further improves MaskGIT-r by offering plug-and-play
efficiency gains, requiring no additional training or architectural modifications.

6.2 ReCAP for Continuous-Valued MGMs

We further adapt ReCAP to the state-of-the-art continuous-valued MGMs, MAR [29]]. Unlike
MaskGIT, MAR adopts a MAE-style [17] encoder-decoder architecture, where the encoder operates
only on unmasked tokens, while the decoder process the full sequence. Both components employ
bidirectional full attention. To fully improve efficiency, we incorporate ReCAP into both the encoder
and decoder of MAR-Large and MAR-Huge. For sampling, MAR uses a random sampler for token
selection, and additionally requires a denoising MLP process for token reconstructionE] Following
Section we set 1., = 0and ly41.yy7 = 1 with u = T%T/ by default. Other sampling
configurations, such as the CFG scale, all follow the official MAR codebase.

As shown in Figure 5] MAR-L and MAR-H require many decoding steps to achieve state-of-
the-art FID, resulting in considerable inference cost. Augmenting with ReCAP offers substantial
speedup—achieve up to 2~2.4 x faster inference while maintaining the performance (£0.01 FID) to
their original counterparts. Furthermore, MAR+ReCAP matches the best performance of REPA [57],
which is obtained by adopting the advanced guidance interval sampling [21]]. Notably, REPA
is a leading flow-matching model that leverages self-supervised features from vision foundation
models [38]] for training. While autoregressive models like VAR [48]] remain more efficient due to
the use of KV caching [47], MAR+ReCAP outperforms them in generation quality.

We further benchmark our method against a wide range of state-of-the-art generative models un-
der classifier-free guidance, as shown in Figure[5] Our ReCAP-augmented variants demonstrate
substantial improvements in inference efficiency. For instance, MAR-H+ReCAP with (96+32) de-
coding steps, i.e., 96 Full-FEs and 32 Local-FEs, achieves a FID of 1.57—<closely matching the
original MAR-H at 256 steps (FID 1.56)—while reducing inference time from 2.4s to 1.0s per image.
Likewise, MAR-L+ReCAP with (64+20) steps achieves a FID of 1.80 in just 0.33s, outperforming
the baseline MAR-L (FID 1.83 at 64 steps) while incurring only an additional 0.02s of inference
time from 20 local evaluations. These results highlight the plug-and-play effectiveness of ReCAP
in accelerating inference for continuous-valued masked models, enabling strong efficiency—quality
trade-offs even when using classifier-free guidance. To further validate ReCAP’s generality, we

3In MAR, inference cost stems from both transformer attention and the per-token diffusion MLP. A detailed
cost breakdown is provided in Appendix [E.2}

Table 2: Benchmarking with state-of-the-art models on ImageNet256 class-conditional generation
with classifier-free guidance. We compare ReCAP against representative diffusion baselines such as
U-ViT[2], DiT[39], and REPA[57], each evaluated under varying sampling steps to illustrate their
step-scaling behavior. Notably, to achieve a FID of 1.8, the original MAR-L requires ~0.6s per
image, whereas our MAR-L+ReCAP only needs 0.33s, outperforming the SOTA REPA?! (0.35s).
denotes the use of interval guidance [21]]

Method #Params NFE FID| ISt Time (s)] Method #Params NFE FID| ISt Time (s)|
Diffusion Models VARs
ADM-G [9] 554M 250%2 459 186.7 _ GIVT-Causal-L+A [49] 1.67B 256x2 2.59 - -
VDM++ [20] 2B 512x2 212 2677 _ VAR-d20 [48 600M 10x2 2.57 302.6 -
LDM-4-G [45] 400M 250%2 3.60 2477 _ VAR-d24 [48] 1B 10x2 2.09 3129 0.03
U-ViT-H/2 [2] 501M 50x2 229 2639 033 VAR-d30 [43] 2B 10x2 192 3231 0.04
25x2 2.64 2629 022 MGMs
) i 7x2 403 2345 014 MAR-L [29] 479M 256x2 176 2942 120
DiT-XL/2 [39 675M 250x2 227 2762 171 1282 179 2942 060
150x2 239 2716 1.03 64x2 183 2027 031
. 50x2 375 2435 035 20x2 312 2767 014
DiffiT [T6 561M 250x2 173 2765 - MAR-H [29 943M 256x2 156 3016 240
MDTv2-XL/2 [I3] 676M 250x2 1.58 3147 - 1282 159 3001 120
CausalFusion-H [6] 1B 250%2 1.64 - - 48%2 1.69 2925 0.47
Flow-Matching Models Ours
SIT-XL [675M 250x2 2.06 2703 - MAR-L+ReCAP 479M (T2424)x2 177 2939 037
REPA [57] 675M 250x2 1.80 2840 176 (64+20)x2 180 2939 033
REPA! [57 675M 250x1.4 142 3057 1.50 (20+8)x2 241 2748 0.145
100x2 1.49 299.7 0.56 MAR-H+ReCAP 943M (96+32)x2 1.57 3006 1.00
60x1.4 180 2912 0.35 (36+12)x2 1.69 2919 040

applied it to a text-to-image (T2I) model at a higher 512x512 resolution [53]. Detailed results are
presented in Appendix [E.3]

6.3 MAGE with ReCAP for Unconditional Generation

We further evaluate ReCAP on MAGE [27]], a state-of-

the-art MGM for unconditional generation without con- 9.0 MAGE+ReCAP(Ours) |
ditioning on self-supervised representations [28]. MAGE MAGE

operates on discrete visual tokens using a confidence- 85

based sampling strategy similar to MaskGIT, but adopts o

an encoder-decoder architecture akin to MAR. Accord- * 8°

ingly, we apply ReCAP in the same manner as in previous

experiments. Specifically, we set v = 0, meaning that e
each grouped decoding step consists of a Full-FE followed 712
immediately by a Local-FE. 03 05 08 1.0 15

Inference Time (sec / image)
The original MAGE paper only reports performance at
20 decoding steps with FID=9.1, already surpassing prior Figure 6: FID vs. inference time for un-
unconditional models (see Appendix [E3). As shown in conditional generation on ImageNet256.
Figure 6] extending the number of decoding steps to 128 ReCAP consistently achieves lower in-
leads to significant FID improvements (down to 7.12), but ference cost across decoding steps, while
also incurs substantial inference cost (0.25s — 1.5s per matching or improving FID.
image). After incorporating ReCAP, we observe a clear
improvement in efficiency scaling: inference time is significantly reduced across all steps with
negligible performance loss. Detailed FID/IS/time values and sampling configurations are provided
in Appendix [E.3] These results align well with our findings in Section[6.1]and Section [6.2] which
further highlight the general applicability of ReCAP.

7 Limitation and Discussion

Our work presents ReCAP, a plug-and-play module designed to accelerate MGM inference. When
plugged into a base MGM, ReCAP effectively amplifies the model’s inference scaling capability,
achieving stronger generation quality at reduced cost. However, this also implies that ReCAP’s
effectiveness depends on the base model already exhibiting meaningful improvements via scaling
decoding steps. Moreover, its assumption of stable context features holds best in high-step regimes,
making it more beneficial for large models or long-sequence generation tasks.

Furthermore, our core idea is to construct low-cost steps for non-autoregressive (NAR) masked
generation, with ReCAP serving as a simple yet effective instantiation. This opens several promising
directions for future work. One is to make the insertion of cheap partial evaluations more adaptive
and informed, potentially by some learning strategies. Another is to explore principled ways of
combining the outputs from full and partial evaluations to further close the performance gap. More
broadly, the concept of constructing low-cost steps could be extended beyond attention reuse.

Finally, we note that ReCAP is a general framework for accelerating NAR sequence models. While
this paper focuses on image generation, we envision extending ReCAP to other domains, such as
language modeling, protein and molecule generation, and beyond.

Acknowledgements. This work was supported in part by the National Science and Technology Major
Project (2022ZD0114902); the DARPA ANSR, CODORD, and SAFRON programs under awards
FA8750-23-2-0004, HR00112590089, and HR00112530141; NSF grant [IS1943641; the National
University of Singapore under its Start-up Grant (Award No: SUG-251RES2505); gifts from Adobe
Research, Cisco Research, and Amazon; and a grant from the CCF Baidu Open Fund. Approved for
public release; distribution is unlimited.

10

References

(1]

2

—

3

—

[4

—

(5

—

[6

—_

[7

—

[8

—_—

9

—

(10]

(11]

[12]

(13]

[14]

(15]

(16]

(17]

(18]

(19]

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in neural information processing systems,
34:17981-17993, 2021.

Fan Bao, Chongxuan Li, Yue Cao, and Jun Zhu. All are worth words: a vit backbone for score-based
diffusion models. In NeurIPS 2022 Workshop on Score-Based Methods, 2022.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers. In
International Conference on Learning Representations (ICLR), 2022.

Huiwen Chang, Han Zhang, Jarred Barber, Aaron Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang,
Kevin Murphy, William T. Freeman, Michael Rubinstein, Yuanzhen Li, and Dilip Krishnan. Muse: Text-to-
image generation via masked generative transformers. In Proceedings of the 40th International Conference
on Machine Learning (ICML), pages 4055-4075. PMLR, 2023.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. Maskgit: Masked generative image
transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 11315-11325, 2022.

Chaorui Deng, Deyao Zhu, Kunchang Li, Shi Guang, and Haoqi Fan. Causal diffusion transformers for
generative modeling. arXiv preprint arXiv:2412.12095, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 41714186, 2019.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANSs on image synthesis. 2021.

Patrick Esser, Robin Rombach, Andreas Blattmann, and Bjorn Ommer. Imagebart: Bidirectional context
with multinomial diffusion for autoregressive image synthesis. Advances in neural information processing
systems, 34:3518-3532, 2021.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
12873-12883, 2021.

Lijie Fan, Tianhong Li, Siyang Qin, Yuanzhen Li, Chen Sun, Michael Rubinstein, Deqing Sun, Kaiming
He, and Yonglong Tian. Fluid: Scaling autoregressive text-to-image generative models with continuous
tokens. arXiv preprint arXiv:2410.13863, 2024.

Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Mdtv2: Masked diffusion transformer
is a strong image synthesizer. arXiv preprint arXiv:2303.14389, 2023.

Jiatao Gu and Xiang Kong. Fully non-autoregressive neural machine translation: Tricks of the trade. arXiv
preprint arXiv:2012.15833, 2020.

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and Baining Guo.
Vector quantized diffusion model for text-to-image synthesis. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 10696-10706, 2022.

Ali Hatamizadeh, Jiaming Song, Guilin Liu, Jan Kautz, and Arash Vahdat. Diffit: Diffusion vision
transformers for image generation. In European Conference on Computer Vision, pages 37-55. Springer,
2024.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dolldr, and Ross Girshick. Masked autoencoders
are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 15979-15988, 2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs
trained by a two time-scale update rule converge to a local nash equilibrium. In NIP, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv:2207.12598, 2022.

11

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

Diederik Kingma and Ruiqi Gao. Understanding diffusion objectives as the elbo with simple data
augmentation. Advances in Neural Information Processing Systems, 36:65484-65516, 2023.

Tuomas Kynkéddnniemi, Miika Aittala, Tero Karras, Samuli Laine, Timo Aila, and Jaakko Lehtinen.
Applying guidance in a limited interval improves sample and distribution quality in diffusion models. arXiv
preprint arXiv:2404.07724, 2024.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
generation using residual quantization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11523-11532, 2022.

Doyup Lee, Chiheon Kim, Saechoon Kim, Minsu Cho, and WOOK SHIN HAN. Draft-and-revise: Effective
image generation with contextual rq-transformer. Advances in Neural Information Processing Systems,
35:30127-30138, 2022.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pages 19274-19286. PMLR, 2023.

José Lezama, Huiwen Chang, Lu Jiang, and Irfan Essa. Improved masked image generation with token-
critic. In European Conference on Computer Vision, pages 70-86. Springer, 2022.

Jose Lezama, Tim Salimans, Lu Jiang, Huiwen Chang, Jonathan Ho, and Irfan Essa. Discrete predictor-
corrector diffusion models for image synthesis. In The Eleventh International Conference on Learning
Representations, 2022.

Tianhong Li, Huiwen Chang, Shlok Kumar Mishra, Han Zhang, Dina Katabi, and Dilip Krishnan. Mage:
Masked generative encoder to unify representation learning and image synthesis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 12345-12355, 2023.

Tianhong Li, Dina Katabi, and Kaiming He. Return of unconditional generation: A self-supervised
representation generation method. Advances in Neural Information Processing Systems, 37:125441—
125468, 2024.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image generation
without vector quantization. Advances in Neural Information Processing Systems, 37:56424-56445, 2024.

Anji Liu, Oliver Broadrick, Mathias Niepert, and Guy Van den Broeck. Discrete copula diffusion. arXiv
preprint arXiv:2410.01949, 2024.

Marjan Ghazvininejad Omer Levy Yinhan Liu and Luke Zettlemoyer. Maskpredict: Parallel decoding of
conditional masked language models. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing.—-2019, 2019.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios of the
data distribution. arXiv preprint arXiv:2310.16834, 2023.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode
solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural Information
Processing Systems, 35:5775-5787, 2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast solver
for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095, 2022.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Saining
Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant transformers. In
European Conference on Computer Vision, pages 23—40. Springer, 2024.

Zanlin Ni, Yulin Wang, Renping Zhou, Jiayi Guo, Jinyi Hu, Zhiyuan Liu, Shiji Song, Yuan Yao, and Gao
Huang. Revisiting non-autoregressive transformers for efficient image synthesis. In Proceedings of the
IEEFE/CVF Conference on Computer Vision and Pattern Recognition, pages 7007-7016, 2024.

Zanlin Ni, Yulin Wang, Renping Zhou, Rui Lu, Jiayi Guo, Jinyi Hu, Zhiyuan Liu, Yuan Yao, and Gao
Huang. Adanat: Exploring adaptive policy for token-based image generation. In European Conference on
Computer Vision, pages 302-319. Springer, 2024.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin EI-Nouby, et al. Dinov2: Learning robust visual
features without supervision. arXiv preprint arXiv:2304.07193, 2023.

12

(39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

(52]

(53]

[54]

[55]

[56]

[57]

(58]

William Peebles and Saining Xie. Scalable diffusion models with Transformers. 2023.

Shengju Qian, Huiwen Chang, Yuanzhen Li, Zizhao Zhang, Jiaya Jia, and Han Zhang. Strait: Non-
autoregressive generation with stratified image transformer. arXiv preprint arXiv:2303.00750, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding
by generative pre-training. OpenAl, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models
are unsupervised multitask learners. 2019.

Ali Razavi, Adron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vg-vae-2.
In Advances in Neural Information Processing Systems (NeurIPS), volume 32, pages 14837-14847, 2019.

Sucheng Ren, Qihang Yu, Ju He, Xiaohui Shen, Alan Yuille, and Liang-Chieh Chen. Beyond next-token:
Next-x prediction for autoregressive visual generation. arXiv preprint arXiv:2502.20388, 2025.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-resolution
image synthesis with latent diffusion models. 2022.

Tim Salimans, lan Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training GANs. 2016.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. Advances in neural information processing systems,
37:84839-84865, 2024.

Michael Tschannen, Cian Eastwood, and Fabian Mentzer. Givt: Generative infinite-vocabulary transformers.
In European Conference on Computer Vision, pages 292-309. Springer, 2024.

Adron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning. In
Advances in Neural Information Processing Systems (NeurIPS), volume 30, pages 63066315, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, volume 30, pages 5998-6008, 2017.

Mark Weber, Lijun Yu, Qihang Yu, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh Chen.
Maskbit: Embedding-free image generation via bit tokens. arXiv preprint arXiv:2409.16211, 2024.

Size Wu, Wenwei Zhang, Lumin Xu, Sheng Jin, Zhonghua Wu, Qingyi Tao, Wentao Liu, Wei Li, and
Chen Change Loy. Harmonizing visual representations for unified multimodal understanding and genera-
tion. arXiv preprint arXiv:2503.21979, 2025.

Zebin You, Jingyang Ou, Xiaolu Zhang, Jun Hu, Jun Zhou, and Chongxuan Li. Effective and efficient
masked image generation models. arXiv preprint arXiv:2503.07197, 2025.

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong Xu,
Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan. arXiv preprint
arXiv:2110.04627, 2021.

Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong Cheng,
Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion—tokenizer is key to
visual generation. arXiv preprint arXiv:2310.05737, 2023.

Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and Saining
Xie. Representation alignment for generation: Training diffusion transformers is easier than you think.
arXiv preprint arXiv:2410.06940, 2024.

Yixiu Zhao, Jiaxin Shi, Feng Chen, Shaul Druckmann, Lester Mackey, and Scott Linderman. Informed
correctors for discrete diffusion models. arXiv preprint arXiv:2407.21243, 2024.

13

Supplementary Material

A Implementation Details of MaskGIT-r

First, we adopt the pretrained MaskGIT from [36]], with the Transformer architecture following
U-ViT [2] (25 layers, 768 embedding dimensions).

As reported in the original MaskGIT paper [5], performance does not improve consistently when using
more decoding steps, but instead peaks at a “sweet spot” (typically 8—12 steps) before deteriorating.
We observe the same trend in Figure [under the default sampling configuration:

* Constant sampling temperature 71 (¢) = 1.0 (no temperature scaling)
* Choice temperature 72 (¢) initialized at 75(1) = 4.5 with linear decay

* Unmasking schedule following cosine function:

ng = \‘cos (;;) -LJ , t€{0,1,..,T—1})

where T is the total generation steps and L is the sequence length. The definitions of temperature
parameters 7; and 7 are detailed in Appendix[C]

The original paper [S]] hypothesizes that such sweet spots exist because excessive iterations may
discourage the model from retaining less confident predictions, thereby reducing token diversity. We
observe that the lack of performance improvement with more decoding steps stems from suboptimal
sampling schedules, which obscure the scaling trend. To address the diversity issue, we propose the
following modifications for longer decoding steps (16, 20, 24, 32):

* Increased initial choice temperature to 75 (1) = 5.5 (still with linear decay)

* Temperature scaling for token sampling (71 ()):
T1(t) = Tiow + (1 — t°)(1.0 — 7i0w) 2)

where Tyign = 1.0 and 70y takes values 0.65/0.68/0.72/0.75 for 16/20/24/32 steps respec-
tively.

* Polynomial unmasking schedule (replacing cosine):
ne=[(1—-¢*%)-L|)

As demonstrated in Figure] our revised sampling schedule in MaskGIT-r partially mitigates the
diversity issue, enabling consistent improvements from 12 to 32 steps.

B Implementation Details of ReCAP

When applying ReCAP to both MaskGIT-r and MAGE, we maintain the original confidence-based
sampling approach where token selection occurs after each full forward pass (Full-FE). Since
confidence scores C’i(t) =logp(X; = acgt) |x(*=1)) depend on realized token values, we first sample
all masked tokens X; ~ p(-[x(*~1)) (with fixed temperature 7; = 1.0) before selecting subset
S; using the choice temperature schedule from MaskGIT-r (see Appendix [C|for sampling details).
The target subsets {St] }é-tzo are then constructed by: (1) sorting S; by descending confidence, (2)
partitioning sequentially according to the polynomial unmasking schedule in Equation [3| and (3)
sampling each Stj using MaskGIT-r’s sampling temperature schedule, i.e., Equatio This preserves
the original scheduling behavior while adapting to ReCAP’s grouped decoding framework.

C Confidence-based Token Sampler

Unlike random selection, the confidence-based token sampler prioritizes tokens based on their
(®

confidence scores. Since confidence depends on token values x, *, the method first performs parallel

14

Table 3: System-level comparison on ImageNet256 conditional generation w/o CFG. Our enhanced
baseline, MaskGIT-r, achieves competitive performance compared to more complex approaches.
When augmented with ReCAP, MaskGIT-r+ReCAP achieves comparable or better FID with reduced
runtime, offering a plug-and-play efficiency boost. Step counts for ReCAP-enhanced models are
reported as T+7", indicating the number of Full-FEs and Local-FEs, respectively.

Method #Params NFE FID| IS{ Time per image (ms))
ARs
VQGAN [[L1] 1.4B 256 1578 743 -
RQTran. [22] 3.8B 68 7.55 134.0 -
ViTVQ [55] 1.7B 1024 4.17 1751 -
Discrete diffusion models
VQ-Diffusion [[15]] 518M 100 11.89 - -
Informed corrector [58]] 230M 17 645 1859 -
Masked models
MaskGIT [5] 227TM 8 6.18 182.1 0.05
MAGE [27] 230M 20 6.93 - -
Draft-and-revise [23] 371M 64 545 172.6 -
StralT [40] 863M 12 397 214.1 -
w/ learnable guidance
DPC [26] 391M 180 445 244.8 -
MaskGIT + Token-Critic [25] 422M 36 469 1745 -
w/ sampling hyperparameter search
MaskGIT +AutoNAT 194M 12 445 1933 0.07
w/ continuous-valued tokens
MAR-B [29] 208M 64 433 1724 0.18
MDTv2-XL/2 [13]] 676M 250 5.06 155.6 -
MaskGIT + GIVT [49] 304M 16 4.64 - -
Ours
MaskGIT-r 194M 12 549 205.6 0.07
16 446 196.3 0.10
20 4.18 194.0 0.12
24 4.09 1884 0.14
32 397 1849 0.19
MaskGIT-r(cache)+ReCAP 194M 8+8 5.02 166.6 0.05
12+4 450 192.1 0.08
15+5 423 1934 0.09
16+8 4.09 186.5 0.11
22+10 3.98 183.8 0.14

sampling of all masked tokens from the conditional distribution p,, (1) (X; | x*~1), where 7 (¢) is
the sampling temperature scheduling function.

For each masked position 7 € M, the confidence score is computed as:
P =logp(X; = 2" | x(t=1) @

The subset S; is then sampled without replacement from M, according to the normalized probabili-

ties:
c®
Softmax | —— 5
) (Tz(t)> ©)

where 75 (-) is the choice temperature scheduling function. In practice, this sampling procedure is
efficiently implemented using the Gumbel-Top-£ trick, which provides a numerically stable way
to sample from a categorical distribution while preserving the original ranking based on confidence
scores.

15

D Continuous-valued MGMs

Apart from discrete-valued tokenizers, some approaches omit the quantization step and directly
generate continuous-valued tokens [29]], where each X; is a continuous embedding. For modeling,
continuous-valued MGMs additionally incorporate a diffusion process for reconstructing the masked
tokens. Specifically, the transformer first produces continuous embeddings z1.x = fum(ZMm) €
RN >4 At masked positions 7, the embedding z; serves as a noisy latent variable from which the
ground-truth token z; is reconstructed by modeling the conditional probability p(x;|z;) using a
per-token diffusion loss:

L(zis@s) = Eey |lle =& O(ailta, 50|

where t4 is the diffusion timestep, ¢ ~ N (0,), and 6 denotes a denoising MLP model. The gradients
from this loss with respect to z; are backpropagated to update the parameters of Transformer.

E Additional Experiment Results

E.1 System Comparison on Class-conditional Generation w/o CFG

Table|3| compares our method with a wide range of strong generative baselines. MaskGIT-r, obtained
by simply increasing the number of decoding steps and adjusting the sampling schedule, already
outperforms many approaches with sophisticated designs, such as Token-Critic [25] and DPC [26]],
which require additional modules or learnable guidance. Remarkably, at 32 steps, MaskGIT-r matches
the performance of StralT [40]—a significantly larger model that performs hierarchical modeling.
Crucially, our ReCAP-enhanced variant further improves upon MaskGIT-r, improving efficiency for
free without retraining or architectural modifications.

E.2 Cost Breakdown of MAR

Table 4: Cost Breakdown of MAR Models. Diff Time denotes the time spent on denoising MLP per
image. ReCAP configurations show the (#Full-FE + #Local-FE) steps structure.

Model #Params NFE FID Time(s) Diff Time(s)
MAR-L 479M 2562 1.76 1.20 0.47
128x2 1.79 0.60 0.25
64x2 1.83 0.31 0.14
20%x2 3.12 0.14 0.086
MAR-L+ReCAP (72+24)x2 1.77 0.37 0.16
(64+20)x2 1.80 0.33 0.14
(20+8)x2 241 0.145 0.08
MAR-H 943M 2562 1.56 2.40 1.03
128x2 1.59 1.20 0.54
48x2 1.69 0.47 0.23
MAR-H+ReCAP 96+32)x2 1.57 1.00 0.46
(B6+12)x2 1.69 0.40 0.20

As shown in Table 4] the original MAR architecture uses 100 denoising MLP steps, while our
ReCAP implementation reduces this to 50 steps for Local-FE for further acceleration. The remaining
computation time primarily comes from attention operations in Transformer blocks, which constitutes
the main optimization target of ReCAP. The table demonstrates that ReCAP maintains comparable
FID scores while significantly reducing inference time, with the denoising MLP accounting for a
consistent portion of the total latency across different configurations.

16

Figure 7: Selected qualitative examples of class-conditional image generation on ImageNet256
using our MAR-L+ReCAP model with (64+20)x2 NFE configuration (FID 1.80, IS 293.9).

E.3 Detailed Results of MAGE and MAGE+ReCAP

As presented in Table[5} we evaluate the unconditional generation performance of both MAGE and
our proposed MAGE+ReCAP on ImageNet 256 x256. The table demonstrates that MAGE+ReCAP
achieves comparable FID and IS scores to the original MAGE while maintaining faster generation
speed. Both MAGE and MAGE+ReCAP employ the confidence-based token sampler with linearly
decaying choice temperature, where the initial temperature is scaled according to the total NFE:
Tmit = {6.0,6.5,7.0,8.0,8.5,9.0,9.5,12.0,13.0} for NFE € {20, 30, 40, 50, 60, 70, 80, 100, 128}
respectively. This progressive temperature scheduling strategy enhances diversity in early generation
steps while maintaining sample quality in later stages. The (#Full-FE + #Local-FE) step configuration

17

Table 5: Unconditional generation performance on ImageNet 256 x256. Results compare MAGE and
MAGE+ReCAP across different number of function evaluations (NFE), showing Fréchet Inception
Distance (FID |), Inception Score (IS 1), and generation time. ReCAP configurations show (#Full-FE
+ #Local-FE) steps structure.

Method #Params NFE FID IS Time(s)
ADM 554M - 26.2 39.70 -
MaskGIT 203M - 20.7 42.08 -
MAGE 439M 20 9.10 105.1 0.245

30 8.44 116.1 0.366
40 8.04 1223 0487
50 7.66 1239 0.608
60 747 1257 0.729
70 742 1273 0.85
80 7.33 1283 0971
100 729 1246 1215
128 7.12 1254 1.56

MAGE+ReCAP 20+20 8.26 1102 0.271
25+25 7.89 1173 0.335
30430 7.57 1174 0.399
35435 746 121.8 0.463
40440 738 1249 0.527
50+50 7.25 1243 0.654
80+48 7.14 1262 1.018

in ReCAP provides flexible trade-offs between quality and speed, with all variants outperforming
previous baselines like ADM and MaskGIT.

E.4 Hyperparameter Ablations

We provide a more detailed analysis of the key hyperparameters in ReCAP, namely the number of
Full-FE (T") and Local-FE (T") steps, as well as the Local-FE insertion length . Overall, we observe
that ReCAP’s performance is robust across a wide range of hyperparameter settings. Even under
more aggressive caching configurations (e.g., | = 3), ReCAP consistently outperforms naive step
reduction in terms of quality—efficiency trade-offs.

Setup. Let u denote the point where Local-FE begins to be inserted, and [control the number of
Local-FE steps inserted per grouped decoding step. These implicitly determine 7" and 7" via:
S —
T=ut+t2"2 T =5-T
[+1
where S is the total number of sampling steps. In the main paper, we used a simple setting of

U= T+TT and [= 1. All inference times reported below are measured on an NVIDIA RTX 4090
GPU with a batch size of 32.

Baseline. Table 6l shows the results of MaskGIT-r without ReCAP.

Table 6: MaskGIT-r (baseline).
#Step (S) FID] Time (s) |

12 5.49 0.042
16 4.46 0.054
20 4.19 0.069
24 4.09 0.083
32 3.97 0.110

18

Effect of w and I. We next vary u and [to study their influence on ReCAP’s behavior.

Conclusion 1. ReCAP consistently improves the quality—efficiency trade-off across different w,
showing robustness to scheduling. Smaller u favors efficiency but may slightly degrade quality
since earlier cached features are less stable. As u increases, cached representations stabilize and the
improvement becomes more pronounced.

Table 7: Results for 1.7/ = 1.

#Step(S) w FID| Time(s)|
16 0 5.02 0.032
2 5.01 0.035
4 478 0.038
6 4.52 0.042
8 4.50 0.044
20 0 4.61 0.040
2 4.54 0.043
4 4.50 0.046
6 4.39 0.049
8 4.33 0.051
10 4.23 0.054
24 0 4.57 0.047
4 4.42 0.054
8 423 0.058
10 4.14 0.062
12 4.09 0.065
32 0 4.34 0.061
4 4.24 0.068
8 4.20 0.073
10 4.13 0.077
12 3.98 0.080

Conclusion 2. Increasing ! further enhances efficiency while maintaining competitive quality. Even
with aggressive caching (I = 3), ReCAP still outperforms simple step reduction. However, larger
increases sensitivity to u, requiring careful scheduling to avoid cache degradation.

Table 8: Results for [. = 2.

’
u.u-‘r%

#Step(S) w FID| Time(s)|

16 4 582 0.034
7 4.62 0.041
10 4.50 0.045
20 8 451 0.048
11 436 0.054
14 427 0.058
24 9 442 0.055

12 418 0.061
15 415 0.065
32 14 4.07 0.075
17 3.97 0.081

Reducing Full-FE Steps. While our default configuration in the main paper employs more Full-FE
than Local-FE steps, this already yields substantial improvements, underscoring ReCAP’s practicality
even under a balanced schedule. We further explore dynamic caching strategies that reduce the
number of Full-FE steps to less than half of the total while maintaining or even improving generation
quality.

19

Table 9: Results for lu_u+ﬂ =3.
: 3
#Step(S) w FID| Time(s)|

16 4 6.33 0.035

8 4.55 0.043

20 4 5.65 0.039

8 4.63 0.048

12 4.24 0.055

24 8 5.06 0.053

12 424 0.061
16 4.08 0.068
32 12 442 0.069
16 4.10 0.076
20 3.99 0.084

Motivated by our previous findings that later-stage features are more stable and cacheable, we adopt
a hybrid cache schedule in MAGE+ReCAP for unconditional generation. Specifically, we set u = 0
and adaptively increase [from 1 to 2 when the number of remaining masked tokens falls below
128 (half of the 256-token sequence). Table [10[compares the baseline, static ReCAP (I = 1), and
hybrid ReCAP (I € {1,2}).

Table 10: Hybrid scheduling enables fewer Full-FE steps while preserving quality.

Steps (base) FID Time ReCAP(=1)Steps FID Time ReCAP(l € {1,2})Steps FID Time
20 9.10 0.15 - - - - - -
30 8.44 0.23 - - - - - -
40 8.04 0.31 20+20 826 0.17 18+22 824 0.16
50 7.66 0.38 25+25 7.89 0.21 23+27 8.01 0.20
60 747 046 30+30 7.57 0.26 27+33 7.59 0.24
70 742 054 35+35 7.46 0.30 32+38 747 027
80 7.33 0.60 40+40 7.38 0.34 36+44 7.38 031
100 729 0.75 50+50 725 042 45+55 726 039

Summary. The results demonstrate that:

* ReCAP with hybrid scheduling achieves comparable or better FID with lower latency.

» At 80 total steps, hybrid ReCAP attains 7.38 FID in 0.31s, outperforming the baseline (8.04
FID, 0.31s) and static ReCAP (7.38 FID, 0.34s).

* As the total step count increases, the efficiency benefit scales further, indicating potential for
even larger gains on longer sequences.

These findings confirm that ReCAP’s efficiency gain is not inherently bounded by the number of
Full-FE steps. Instead, adaptive scheduling of Local-FE insertions enables significant acceleration
with minimal quality loss, highlighting ReCAP’s flexibility and extensibility for future generative
models.

E.5 Extension to Text-to-Image Models

We further evaluate the generality of ReCAP by applying it to the Harmon-0.5B text-to-image (T2I)
model [53]] at a higher 512x 512 resolution on the MJHQ-30k benchmark.

Baseline. We reproduce the baseline results using the official implementation, measuring inference
time on an NVIDIA A800 GPU with a batch size of 50. To ensure a fair comparison, the latency
of the denoising MLP module is excluded from all measurements. Table|l1|reports the baseline
performance of Harmon-0.5B without ReCAP.

20

Table 11: Baseline performance of Harmon-0.5B T2I model at 512x512 resolution.
#Step FID | Time (s) |

32 6.519 0.325
48 6.481 0.490
64 6.461 0.657

Applying ReCAP. We apply ReCAP with varying (u,) configurations, where 7" and 7" denote the
number of Full-FE and Local-FE steps, respectively. Results are summarized in Table[12}

Table 12: Harmon-0.5B with ReCAP at 512x512 resolution. 7" = #Full-FE, 7" = #Local-FE.
#Step (u,l) T T FID] Time(s)|

48 (24,2) 32 12 6489 0.299
48 (16,1) 32 16 6.483 0.318
64 (16,2) 32 32 6.467 0.347
64 (32,1) 48 16 6.463 0.453

Conclusions. ReCAP consistently enhances the quality—efficiency trade-off of the base Harmon
model:

» Compared to the 64-step baseline (FID 6.461, 0.657s), ReCAP (32 + 32) achieves compara-
ble quality (FID 6.467) with nearly 2 x faster inference (0.347s).

* With the same number of Full-FE steps (T = 48), ReCAP (48 + 16) attains a slightly
better FID (6.463 vs. 6.481) and is faster (0.453s vs. 0.490s) than the 48-step baseline.
The improvement likely arises because the Harmon model incorporates a causal LLM
component—although 7" remains fixed, the input token lengths to the LLM differ, reducing
computation under ReCAP.

* In the first three configurations, a larger 7" under the same T consistently yields better FID
with only marginal latency increases, demonstrating the effectiveness of more aggressive
caching (larger [).

Summary. These results further confirm that ReCAP generalizes well to high-resolution and multi-
modal text-to-image models, maintaining strong generation quality while substantially improving
inference efficiency.

21

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly articulate the core contributions of the
paper: introducing ReCAP, a plug-and-play module that accelerates masked generative
model (MGM) inference by interleaving standard full evaluations with lightweight partial
evaluations that reuse cached attention features. These claims are substantiated in Sections
5, and supported by extensive empirical results across three diverse MGM architectures
(MaskGIT, MAGE, MAR) in Section 6. The reported improvements in inference cost and
efficiency—fidelity trade-off directly reflect the paper’s scope and contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations of ReCAP are explicitly discussed in section [7] (Limitations
and Discussion).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

22

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: the paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed descriptions of the ReCAP method, including its
integration with various MGM architectures (MaskGIT, MAGE, MAR) and the grouped
decoding strategy used for partial evaluations in section[5]and section[6] The paper provides
comprehensive implementation details to support reproducibility of the main results. More-
over, the Appendix includes specific hyperparameter configurations (e.g., number of full vs.
local evaluations, sampling schedules, temperature settings) for all experiments. Inference
speeds are benchmarked consistently using official baseline code on a single NVIDIA A800
GPU with a fixed batch size. Together, these details allow faithful reproduction of the results
and validation of the paper’s core claims.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

23

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: While the code and data are not yet publicly released, the paper provides all
necessary method details in section 3] section[6]and appendix to support faithful reproduction
of the main results. If accepted, we will release the full codebase to facilitate reproducibility.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper clearly specifies all relevant training and testing details necessary to
interpret the results. Since ReCAP is an inference-time module, no additional model training
is required. All experiments are conducted using pretrained baselines (e.g., MaskGIT,
MAGE, MAR), with publicly available checkpoints and official implementations. The paper
provides information on evaluation datasets (ImageNet 256 x 256), number of decoding steps,
unmasking schedules, confidence sampling temperatures, and Full/Local-FE configurations.
These hyperparameters and decoding setups are detailed in the Appendix. For fairness,
inference is evaluated under consistent conditions (same GPU, batch size) across models.
As no new model is trained, optimizer details are not applicable.

Guidelines:

* The answer NA means that the paper does not include experiments.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In fig. 2| we report error bar to justify our hypothesis. For FID and IS score,
we run on large samples S0K and do not report error bar following common practice.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All the speed reported are tested on a single NVIDIA A800 GPU, as mentioned
in section

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

25

https://neurips.cc/public/EthicsGuidelines

10.

11.

Justification: The research presented in this paper complies with the NeurIPS Code of
Ethics. It does not involve human subjects, personal or sensitive data, or unethical use of Al
technologies. All models and datasets used are publicly available and commonly adopted
in the generative modeling community. The proposed method aims to improve inference
efficiency and does not introduce misuse risks.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work focuses on foundational machine learning research in efficient
inference for masked generative models.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

26

12.

13.

14.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets used in this work—such as pretrained models, datasets, and
baseline implementations—are publicly available and properly cited in the paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The method introduced in this paper, ReCAP, is an inference-time plug-and-
play module and does not require training new models or creating new datasets.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:

27

paperswithcode.com/datasets

15.

16.

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

28

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminaries of MGMs
	The Inference Challenge of MGMs
	Inference Scaling via Context Feature Reuse
	Experiment
	Improving MaskGIT with ReCAP
	ReCAP for Continuous-Valued MGMs
	MAGE with ReCAP for Unconditional Generation

	Limitation and Discussion
	Implementation Details of MaskGIT-r
	Implementation Details of ReCAP
	Confidence-based Token Sampler
	Continuous-valued MGMs
	Additional Experiment Results
	System Comparison on Class-conditional Generation w/o CFG
	Cost Breakdown of MAR
	Detailed Results of MAGE and MAGE+ReCAP
	Hyperparameter Ablations
	Extension to Text-to-Image Models

