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GLoMo: Global-Local Modal Fusion for Multimodal Sentiment
Analysis
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ABSTRACT
Multimodal Sentiment Analysis (MSA) has witnessed remarkable
progress and gained increasing attention in recent decades, thanks
to the advancements in deep learning. However, current MSA
methodologies primarily rely on global representation extracted
from different modalities, such as the mean of 𝑎𝑙𝑙 token representa-
tions, to construct sophisticated fusion networks. These approaches
often overlook the valuable details present in local representations,
which consist of fused representations of consecutive 𝑠𝑒𝑣𝑒𝑟𝑎𝑙 to-
kens. Additionally, the integration of multiple local representations
and the fusion of local and global information present significant
challenges. To address these limitations, we propose the Global-
Local Modal (GLoMo) Fusion framework. This framework com-
prises two essential components: (i) modality-specific mixture of
experts layers that integrate diverse local representations within
eachmodality, and (ii) a global-guided fusionmodule that effectively
combine global and local representations. The former component
leverages specialized expert networks to automatically select and
integrate crucial local representations from each modality, while
the latter ensures the preservation of global information during
the fusion process. We extensively evaluate GLoMo on various
datasets, encompassing tasks in multimodal sentiment analysis,
multimodal humor detection, and multimodal emotion recognition.
Empirical results demonstrate that GLoMo outperforms existing
state-of-the-art models, validating the effectiveness of our proposed
framework.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Informa-
tion systems → Multimedia information systems; • Sentiment
analysis;

KEYWORDS
multimodal sentiment analysis; multimodal fusion; multimodal
representation learning

1 INTRODUCTION
Multimodal Sentiment Analysis (MSA), which aims to infer human
emotions by leveraging signals from various modalities [11], has
witnessed remarkable progress and gained increasing attention,
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thanks to the surge of videos and advancements in deep learn-
ing [2, 26, 43, 58]. Most current research is focused on developing
complex fusion networks that integrate multimodal representa-
tions from heterogeneous sources. These include models that fuse
representations across modalities using MLP and attention-based
mechanisms [25, 46], as well as methods that employ LSTM [44],
or transformer encoder [49] techniques.

Although these methods have been quite successful, they either
focus only on the global representation of each modality, such as
pooling or averaging all tokens for audio and image modalities
[51, 64], using BERT’s [𝐶𝐿𝑆] token [20] to represent the entire text
modality [15, 41], or they concentrate solely on token-level fusion
[24, 55, 59]. For instance, representations of each token from various
modalities are merged and then averaged [7, 59]. These approaches
overlook the local representations, which consist of fused represen-
tations of consecutive several tokens. Local representations contain
a wealth of detailed information, such as the nuanced changes
in mouth movements in videos, which can significantly enhance
sentiment analysis and effectively capture certain details [18, 31].
Furthermore, how to integrate multiple local representations and
how to better fuse local representations with global information, a
‘few-to-many tokens’ fusion, remains an open question.

To tackle these challenges, we propose the Global-Local Modal
Fusion (GLoMo) framework for multimodal sentiment analysis.
GLoMo is characterized by two salient attributes. Firstly, it can au-
tonomously fuse multiple local representations to derive the most
suitable local representations for each modality. This is achieved
through a modality-specific mixture of experts (MoEs) layer [45],
which comprises various experts that focus on different aspects of
the local presentations. It automatically integrate the outputs from
the most relevant experts. Secondly, considering the ‘few-to-many
token’ relationship between local and global representations, it is
necessary to maintain the dominant influence of global represen-
tations during the fusion process. In other words, modalities that
are dominant in global representations should also be dominant in
local representations, to keep the consistency. GLoMo integrates
the fusion of local representations into global ones, ensuring that
global context is preservedwhile local details are assimilated. Specif-
ically, we have designed a global-guided fusion module that ini-
tially merges local and global representations within each modality,
then blends all local and global representations to derive attention
weights. The attention weights derived from the global feature fu-
sion of the three modalities, are used as mixup weights to merge
the modality-specific representations, thus safeguarding the signif-
icance of the original modalities in the composite representation.

The key contributions of our work are as follows:

• We introduce the GLoMo, a global-local modal fusion frame-
work formultimodal sentiment analysis, which autonomously
fuses local representations using modality-specific mixture

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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of experts layers, enhancing the model’s ability to capture
nuanced sentiment cues from different modalities.

• We introduce an innovative global-guided fusion module
adept at navigating the ‘few-to-many token’ relationship be-
tween local and global representations, thereby maintaining
the primacy of global representations throughout the fusion
process.

• Extensive experiments on various datasets demonstrate the
superior performance of the GLoMo, with ablation studies
validating the effectiveness of the GLoMo’s components.

2 RELATEDWORK
2.1 Multimodal Sentiment Analysis
Multimodal sentiment analysis aims to leverage heterogeneous
data sources, such as audio, image frames, and textual informa-
tion from videos, to assess the emotional state and intensity of the
individuals depicted [11, 58]. Existing methods can be generally
categorized based on the granularity of representations used from
each modality into two types: utterance-level and inter-utterance
contextual approaches. The former primarily leverages the global
representation of modalities, which is typically obtained through
averaging or pooling all tokens [64], capturing the final token from
a temporal convolution [36, 40], or employing methods such as
LSTM or BERT to acquire an overall representation for each modal-
ity [15, 56]. On the other hand, inter-utterance contextual methods
emphasize the exploration of relationships between tokens across
different modalities [24, 55]. For instance, GME-LSTM [7] and DFG
[59] perform fusion across tokens from each modality, whereas
RAVEB [24] employs an RNN-based approach to capture represen-
tations between modalities. ScaleVLAD [31] concentrates on fusing
local representations of each modality at various granularities and
optimizes them using supervised clustering algorithms.

The aforementioned studies highlight the significant roles of
both global representations and local token representations in mul-
timodal sentiment analysis. However, each of these works has fo-
cused exclusively on one type of representation. Our work is an
integrated approach that considers both global and local represen-
tations simultaneously, aiming to harness the combined strengths
of both. Moreover, fusing all token representations can be time-
consuming and may introduce redundant and noisy data, as noted
in [64]. To address this issue, we incorporate a MoEs layer that
employs multiple experts to concentrate on different local rep-
resentations [45], thereby reducing computational overhead and
potential errors.

2.2 Multimodal Representation Learning
Due to the heterogeneity of data sources, existing multimodal af-
fective computing approaches can be categorized into three main
types based on different fusion strategies. The first type involves
designing various networks to directly fuse representations from
each modality, including techniques such as low-rank order tensor
fusion [29, 57], high-order polynomial fusion [19], gated fusion
[1, 50], mlp fusion [46], fusion with multimodal transformer en-
coder [12, 44] and complex fusion [5, 17]. The second type aligns
the modalities before fusing them, employing methods like MULT
[49] and AcFormer [64] that use transformers to align any two

modalities, or HYCON [40] and MCL [36] which utilize supervised
contrastive alignment of corresponding modalities, followed by
fusion strategies as in the first type. The third type deconstructs
the representations of each modality into shared and unique infor-
mation. For instance, MISA [15] projects the representation of each
modality into modality-specific and modality-variant subspaces,
while FACTORCL [23] decomposes the representations into task-
relevant shared and unique representations, and PID [22] extends
this decomposition to include unique, redundant, and synergistic
multimodal information.

Our method bears some resemblance to the third category, as it
also partitions modalities. However, unlike the aforementioned ap-
proaches which further partition based on the same granularity of
global representations [15, 23, 33], our focus is on leveraging both
global and local representations of different granularities. More-
over, a distinctive aspect of our work is the role that local and
global representations play in the overall classification of infor-
mation. Our proposed global-guided fusion module is designed to
use local representations as an auxiliary to the dominant global
representations.

3 APPROACH
3.1 Task Setup
Multimodal sentiment analysis aims to predict the sentiment inten-
sity or emotion category of the given utterances, which involves
information across texts (𝑡 ), audios (𝑎) and videos (𝑣) [42]. To facili-
tate this analysis, we represent the sequences from each modality
as 𝑈𝑚 ∈ R𝑇𝑚×𝑑𝑚 , where𝑚 ∈ {𝑡, 𝑎, 𝑣} denotes the modality, and
𝑑𝑚 and 𝑇𝑚 represent the respective dimensionality and sequence
length, respectively.

3.2 GLoMo
Model Overview. The diagram of GLoMo is illustrated in Fig.
1. It consists of three modules, namely unimodal coding module,
modality-specific MoEs module and global-guided fusion module.
The detailed introduction of each module can be found in following
subsections.

3.3 Unimodal Coding Module
Unimodal coding module aims to extract the global and local rep-
resentations of the each modality in the given utterance. To be
consistent with prior research [15, 36, 40, 56], we adopt the similar
way to extract the global representations. For global text represen-
tations 𝑋𝑔

𝑡 , we take the representation of the [𝐶𝐿𝑆] token of the
last layer in BERT [20], denoted as 𝐶𝐿𝑆−1, followed by a feedfor-
ward layer to project the dimension into a hidden dimension 𝑑 , as
delineated in the following expression:

𝑋
𝑔
𝑡 = FF

(
𝐶𝐿𝑆−1 (𝑈𝑡 )

)
(1)

To capture the local representations of the textual modality, we
concatenate the tokens from the last two layers of BERT, denoted
as [𝐵𝐸𝑅𝑇 −2, 𝐵𝐸𝑅𝑇 −1], and feed them into a temporal convolu-
tional (Conv1D) layer to obtain contextual information for each
token. Subsequently, the extracted representations are subjected to
adaptivemaxpooling layer to acquire 𝑛 local representations. These
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Figure 1: The diagram of the GLoMo. The text, video and audio representations are firstly processed by modality-specific
encoders to get the global representations, followed by modality-specific MoEs layers to get the local representation of each
modality. The global and local representations of the three modalities are then fed into the global-guided fusion module for
prediction.

representations are then concatenated. For simplicity, we denote
this concatenated vector as 𝑋 𝑙

𝑡 :

𝑋 𝑙
𝑡 = CONCAT

(
AdaMaxPool𝑛

(
Conv1D

(
[𝐵𝐸𝑅𝑇 −1, 𝐵𝐸𝑅𝑇 −2]

)))
(2)

For acquiring the global representations of the audios and videos
𝑋
𝑔
𝑚 , 𝑚 ∈ {𝑎, 𝑣}, the Conv1D and transformer encoder are also

adapted as in [33, 38]. Specifically, we process the representations of
videos and audios 𝑈𝑚 by sequentially feeding them into a Conv1D
layer, followed by transformer encoder layers to capture contextual
information. We then apply maxpooling layer to aggregate a global
representation from all tokens, as delineated in the subsequent
expression:

𝑋
𝑔
𝑚 = MAX (TE (Conv1D (𝑈𝑚))) (3)

here𝑀𝐴𝑋 (·) means the MaxPooling layer, TE(·) is short for Trans-
former Encoder,𝑚 ∈ {𝑎, 𝑣} .

While for local representations of the audios and videos, we
modify the approach by replacing the final maxpooling layer with
adaptivemaxpooling to get 𝑛 local representations. This allows us to
extract multiple local representations instead of a single global one.
To maintain consistency across modalities, we utilize the same num-
ber of local representations, denoted as 𝑛, for all three modalities.
The 𝑛 local representations of modality𝑚 are finally concatenated,

denoted as 𝑋 𝑙
𝑚 ,𝑚 ∈ {𝑎, 𝑣}. The equations can be seen as follows:

𝑋 𝑙
𝑚 = CONCAT (AdaMaxPool𝑛 (TE (Conv1D (𝑈𝑚)))) (4)

Thus, the global representations of the three modalities share
the same dimension 𝑋

𝑔
𝑚 ∈ R𝑑 ,𝑚 ∈ {𝑡, 𝑎, 𝑣}, so do the local repre-

sentations𝑋 𝑙
𝑚 ∈ R𝑛𝑑 ,𝑚 ∈ {𝑡, 𝑎, 𝑣}. Here 𝑛 is the hyperparameter to

determine the number of the local representations of each modality
in the given utterance.

3.4 Modality-Specific MoEs Module
Inspired by the successful application of sparse MoEs in areas such
as bot detection [27] and large language models [10, 65], we capi-
talize on the principle of processing inputs through distinct experts
followed by a cohesive combination. Recognizing the distinct value
of each local representation in multimodal sentiment analysis and
their variable importance across samples, we refine the combined
local representation using a MoEs layer. This layer is crafted to se-
lectively activate relevant experts, thus recognizing the importance
of individual local representation and aiding in their combined
analysis for a holistic understanding.

For simplicity, all modality-specific MoEs layers share the same
number of the experts, denoted as 𝑠 . Each modality-specific MoEs
layer consists of a set of 𝑠 expert networks, 𝐸1, ..., 𝐸𝑠 , and a gating
network 𝐺 with a sparse 𝑠-dimensional vector output [45]. The
local representations 𝑋 𝑙

𝑚 ∈ R𝑛𝑑 ,𝑚 ∈ {𝑡, 𝑎, 𝑣} are firstly fed into the
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gate network 𝐺 , which can be seen in:

𝐺 (𝑋 𝑙
𝑚) = Softmax(KeepTopK(𝑊𝑔𝑋

𝑙
𝑚 ,k)) (5)

where𝑊𝑔 ∈ R𝑛𝑑×𝑠 denotes the learnable parameters, KeepTopK(·)
denotes the function to choose the top 𝑘 higheset values given the
input 𝑋 𝑙

𝑚 . Then the outputs of all experts of the inputs 𝑋 𝑙
𝑚 are

calculated as follows:

𝑋 𝑙
𝑚 =

𝑠∑︁
𝑖=1

𝐺 (𝑋 𝑙
𝑚)𝑖𝐸𝑖 (𝑋 𝑙

𝑚) (6)

where 𝐺 (𝑋 𝑙
𝑚)𝑖 denotes the possibility to assign local representa-

tions of modality𝑚 to 𝑖-th expert and 𝐸𝑖 (𝑋 𝑙
𝑚) denotes the output

of the 𝑖-th expert. In another word, the most 𝑘 relevant experts will
be selected to fuse and form the final refined local representation
𝑋 𝑙
𝑚 ∈ R𝑑 using the weights from gate values.
In order to better regularize the MoEs layers and encourage all

experts to have equal importance, following prior research [27, 45],
for modality𝑚, an additional loss L𝑚

𝑀𝑜𝐸
(𝑋 𝑙

𝑚) is added:

L𝑚
𝑀𝑜𝐸 (𝑋

𝑙
𝑚) = 𝜔 · (CV(Importance(𝑋 𝑙

𝑚))2 + CV(Load(𝑋 𝑙
𝑚))2) (7)

where CV(·) denotes the coefficient of variation, Importance(·)
refers to theweighted importance scores of various expert networks,
which is the output of gating network 𝐺 , and Load(·) calculates
the number of load samples currently present in each of the expert
networks, which is defined in [45],𝜔 is hyperparameter with default
value 1𝑒 − 2.

3.5 Global-guided Fusion Module
Due to the ‘few-to-many’ tokens relation, local representations
do not contain as much information as global presentations, and
their predictive power is not the same [31]. Moreover, the con-
tribution of different representations and modalities to the final
outcome is not uniform; hence, it’s vital to preserve the significance
of each modality provided by global representations during fusion.
To tackle these challenges, we have designed a global-guided fu-
sion module that initially merges local and global representations
within each modality, then blends all local and global representa-
tions to derive attention weights. The attention weights derived
from the global feature fusion of the three modalities, are used
as mixup weights to merge the modality-specific representations,
thus safeguarding the significance of the original modalities in the
composite representation.

Specifically, global and local representations corresponding to
the three modalities are first stacked into a matrix𝑀 ∈ R6×𝑑 , then
fed into the transformer encoder, which can be defined as follows:[

𝑍
𝑔
𝑡 , 𝑍

𝑔
𝑎 , 𝑍

𝑔
𝑣 , 𝑍

𝑙
𝑡 , 𝑍

𝑙
𝑎, 𝑍

𝑙
𝑣

]
= Transformer Encoder (𝑀) (8)

here denotes 𝑍𝑔
𝑚 ∈ R𝑑 , 𝑍 𝑙

𝑚 ∈ R𝑑 denotes the refined global and
local representations of the modality𝑚,𝑚 ∈ {𝑡, 𝑎, 𝑣}, respectively.

These representations are then fused according to modality and
the richness of the information they hold. Specifically, for modality
𝑚, a MLP layer is used to integrate the local and global representa-
tions to get the modality representation:

𝑍𝑚 = MLP
( [
𝑍
𝑔
𝑚, 𝑍 𝑙

𝑚

] )
∈ R𝑑 ,𝑚 ∈ {𝑡, 𝑎, 𝑣} (9)

For global and local information, we apply attention functions [54]
to individually merge three global representations and three local
representations, obtaining the fused global representation 𝑍𝑔 and
fused local representation 𝑍𝑙 :

𝑊𝑟 , 𝑍𝑟 = ATTN
( [
𝑍𝑟
𝑡 , 𝑍

𝑟
𝑎, 𝑍

𝑟
𝑣

] )
∈ R𝑑 , 𝑟 ∈ {𝑔, 𝑙} (10)

here𝑊𝑟 denotes the attention weights of 𝑟 representations, and 𝑍𝑟
denotes fused representations of 𝑟 representations, respectively.

After that, another MLP layer is used to fuse the 𝑍𝑔 and 𝑍𝑙 :

𝑍1 = MLP
( [
𝑍𝑔, 𝑍𝑙

] )
∈ R𝑑 (11)

For the modality representations, the mixup [28] is adapted to
fuse these embeddings, with the weights from the𝑊𝑔 , which keeps
the modality importance among all modalities:

𝑍2 = MIXUP
(
(𝑍𝑡 , 𝑍𝑎, 𝑍𝑣) ,𝑊𝑔

)
∈ R𝑑 (12)

Finally, we use a MLP layer to get the prediction 𝑦 based on the
concatenation of the 𝑍1 and 𝑍2:

𝑦 = MLP ( [𝑍1, 𝑍2]) (13)

3.6 Optimization Object
The overall training of the GLoMo is perfomed by minimizing the
following loss:

L = L𝑡𝑎𝑠𝑘 + L𝑡
𝑀𝑜𝐸 + L𝑎

𝑀𝑜𝐸 + L𝑣
𝑀𝑜𝐸 (14)

here L𝑡𝑎𝑠𝑘 involves regression and classification tasks. For regres-
sion task, following prior research [35, 39], the L1 loss, defined as
the absolute difference between the predicted value 𝑦 and the true
label 𝑦, is used:

Lreg =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 | (15)

while for classification, the standard cross-entropy loss is used:

Lcla =
1
𝑛

𝑛∑︁
𝑖=1

−𝑦𝑖𝑙𝑜𝑔 (𝑦𝑖 ) (16)

where 𝑛 is the number of the samples.

4 EXPERIMENTS
4.1 Datasets
GLoMo is evaluated on multiple tasks, including multimodal senti-
ment analysis, multimodal humor detection and multimodal emo-
tion recognition. The widely-used datasets, CMU-MOSI [58], CMU-
MOSEI [59], CHERMA [47], UR-FUNNY [14] and MUStARD [6]
are adapted. Due to the space limitation, the introduction of these
datasets can be found in Appendix.

4.2 Evaluation Criteria
To comprehensively assess the performance of the proposedGLoMo,
we adopt a set of widely-recognized metrics. The performance
indicators utilized are as follows: (1) Accuracy-7 (Acc-7): This metric
represents the accuracy over seven distinct sentiment intensity
classes; (2) Binary Accuracy (Acc-2): This is the accuracy for binary
classification tasks; (3) F1 Score: The F1 score is calculated for each
sentiment category to provide a balance between precision and
recall; (4) Mean Absolute Error (MAE): This represents the average
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magnitude of errors in a set of predictions; (5) Correlation (Corr):
This denotes the Pearson correlation between the predicted values
and the ground-truth values. For the CMU-MOSI and CMU-MOSEI
datasets, the Acc-2 and F1 score are reported in two forms using
the segmentation marker ‘-/-’: the former score is negative/non-
negative socre while the latter one is the score for negative/positive.
The difference between the non-negative and positive is that the
former are based on scores ≥ 0, while the latter containing scores
> 0.

4.3 Feature Extraction
For fair comparison, we apply the same word-aligned embeddings
as in [15, 38, 40].

Text Features.We utilize BERT [20], which has been established
as the standard in prior research [15, 36, 40, 56]. Specifically, we
employ the BERT [20] model for the CMU-MOSI, CMU-MOSEI,
UR-FUNNY, and MUStARD datasets, and the Chinese BERT-base
model [8] for the CHERMA.

Audio Features. We extract features such as Mel-frequency
cepstral coefficients and pitch using COVAREP [9] for the MOSI,
MOSEI, UR-FUNNY, and MUStARD datasets. For CHERMA, we use
the pre-trained wav2vec model for feature extraction [62].

Video Features. We apply the Multitask Cascaded Convolu-
tional Networks (MTCNN) [63] and OpenFace frameworks [3, 4]
to detect faces and extract features such as facial action units, head
pose, gaze orientation, and eye gaze from the CMU-MOSI, CMU-
MOSEI, UR-FUNNY, MUStARD. For CHERMA datasets, we use
MTCNN for face alignment and a pre-trained Resnet-18 model
[16], which has been trained on the RAF-DB dataset, for feature
extraction [21].

The extracted features vary in dimension across different datasets
due to the diverse extraction methods and lengths of the utterances.
For instance, in CMU-MOSI, the dimensions for text, acoustic, and
visual features are 768, 74, and 47, respectively. In contrast, for CMU-
MOSEI, they are 768, 74, and 35, respectively. The dimensions for
UR-FUNNY and MUStARD are 768 for text, 81 for acoustic, and 91
for visual modalities. For CHERMA, the corresponding dimensions
are 1024, 1024, and 2048.

4.4 Baselines
In our study, we have selected a variety of multimodal fusion meth-
ods as baselines to conduct a comprehensive comparison. These
methods include models such as TFN [57], LMF [29], MFM [52],
GFN [35], and ICCN [48], which directly fuse the global representa-
tions of the three modalities. Additionally, we consider approaches
like the MULT [50] and BBFN [13], M3SA [60] algorithms, which
first fuse pairs of global representations before integrating them
together. We also explore methods like MISA [15], which partition
the modalities’ global representations into modality-specific and
modality-common components. Furthermore, we investigate the
importance of modality-specific tokens within each modality using
algorithms such as Prisa [33], compare with CubeMLP [46] that use
toekn-level fusion strategies and the state-of-the-art C-MIB [38]
that use the mutual inforamtion for denoising.

4.5 Implementation Details
All experiments are conducted with the PyTorch framework on
GTX3090 with CUDA 11.5 and torch version of 1.12.1. To ensure
fair and consistent comparison, our proposed GLoMo is trained
using AdamW [30] optimizer with a with a fixed random seed of
5576 [36, 40]. In all datasets, we consistently employed the same
number of experts 𝑠 , and the same quantity of local representations
𝑛. Specifically, all MoEs layers contained 3 experts, and the number
of local representations for each modality was also set to 3. How-
ever, the learning rate and the hidden layer dimension were varied
according to the dataset. For the MOSI dataset, the learning rate
was set at 4𝑒 − 5 with a hidden layer dimension of 48. In contrast,
for the MOSEI dataset, the learning rate was reduced to 1𝑒 − 5, and
the hidden layer dimension was increased to 192. For the other
datasets, such as UR-FUNNY, MUSTARD, and the remaining ones,
the learning rate was standardized at 2𝑒 − 5, but the hidden layer
dimensions differed, being 112, 160, and 256 respectively. More
details can be found in Appendix.

5 RESULTS AND ANALYSIS
5.1 Quantitative Results
Multimodal Sentiment Analysis Table 1 presents a comparison
between our proposed GLoMo model and other baselines, with the
best results highlighted in bold and the second-best underscored.
As observed from Table 1, GLoMo surpasses all other models across
all classification metrics on both datasets, achieving a new state-
of-the-art. Specifically, GLoMo has improved by over 1% on the
MOSI dataset for both Acc-2 and F1 positive metrics, even out-
performing PRISA, which utilizes regression labels for supervised
contrastive learning. This emphatically demonstrates the effective-
ness of GLoMo’s comprehensive utilization of global and local
representations from various modalities, and underscores that local
representations can enhance the provision of auxiliary information
crucial for better emotion category recognition.

However, in terms of MAE and Corr, only PRISA outperforms
GLoMo on both metrics across the datasets. This is attributed to
PRISA’s use of label information for supervised contrastive learning,
which effectively increases the sample size. This highlights that
without additional data, relying solely on global representations
may result in lower MAE or higher correlation. The integration of
local representations, on the other hand, can serve as a trade-off
between these two aspects, elevating the model’s performance to a
desirable level.

Multimodal Humor Detection and Multimodal Emotion
Recognition Tables 2 and 3 showcase the performance of the
GLoMo model on the multimodal humor detection and multimodal
emotion recognition tasks, respectively. Notably, GLoMo has out-
performed the existing best models on all three benchmarks, set-
ting a new state-of-the-art. Specifically, on the UR-FUNNY dataset,
GLoMo achieved an improvement of 2.52%, and on the MUStARD
dataset, it recorded a significant gain of 7.39%. Furthermore, GLoMo
demonstrated superior performance in all seven distinct emotion
categories on the CHERMA dataset, with an overall enhancement
of 3.08% in the F1 score. This improvement may be attributed to
the focus of these three datasets on detecting specific emotions,
rather than the general sentiment polarity classification as seen
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Table 1: Performances of multimodal models in MOSI and MOSEI. ♦ from [61], ♠ from [64].

Models
CMU-MOSI CMU-MOSEI

MAE (↓) Corr (↑) ACC-2 (↑) F1(↑) ACC-7 (↑) MAE (↓) Corr (↑) ACC-2 (↑) F1(↑) ACC-7 (↑)
TFN [57]♠ 0.901 0.698 -/80.8 -/80.7 34.9 0.593 0.700 -/82.5 -/82.1 50.2
LMF [29]♠ 0.917 0.695 -/82.5 -/82.4 33.2 0.623 0.677 -/82.0 -/82.1 48.0
MFM [52]♠ 0.877 0.706 -/81.7 -/81.6 35.4 0.568 0.717 -/84.4 -/84.3 51.3
GFN [35]♦ 0.736 0.790 -/84.3 -/84.3 47.0 0.611 0.774 -/85.0 -/85.0 51.8
MULT [50]♦ 0.767 0.799 -/83.7 -/83.7 41.5 0.625 0.775 -/84.7 -/84.6 50.7

MAGBERT [44]♦ 0.790 0.769 -/83.5 -/83.5 42.9 0.602 0.778 -/85.0 -/85.0 51.9
M3SA [60]♦ 0.730 0.793 -/85.3 -/85.3 45.5 0.599 0.781 -/85.2 -/85.1 52.5
ICCN [48]♦ 0.860 0.710 -/83.0 -/83.0 39.0 0.565 0.713 -/84.2 -/84.2 51.6

CubeMLP [46] 0.770 0.767 -/85.6 -/85.5 45.5 0.529 0.760 -/85.1 -/84.5 54.9
MISA [15] 0.783 0.761 81.8/83.4 81.7/83.6 42.3 0.555 0.756 83.6/85.5 83.8/85.3 52.2
BBFN [13] 0.776 0.755 -/84.3 -/84.3 45.0 0.529 0.767 -/86.2 -/86.1 54.8
PriSA [33] 0.714 0.792 83.4/85.5 83.2/85.5 47.3 0.523 0.772 82.8/85.9 83.2/85.9 54.7
C-MIB [38] 0.728 0.793 -/85.2 -/85.2 48.2 0.584 0.789 -/86.2 -/86.2 53.0
GLoMo 0.718 0.782 84.1/86.7 83.9/86.6 48.3 0.539 0.771 83.7/86.5 84.0/86.4 55.0

Table 2: The comparison with baselines on UR-FUNNY and
MUStARD, in terms of ACC-2. Models in parentheses indi-
cates the textual features used.

UR-FUNNY (↑) MUStARD (↑)
MISA [15] (BERT) 69.62 66.18

MISA [15] (ALBERT) 69.82 66.18
MAGBERT [44] (ALBERT) 67.20 69.12
MAGBERT [44] (XLNet) 72.43 76.47

GLoMo (BERT) 74.95 83.86

in CMU-MOSI and CMU-MOSEI. The detection of various specific
emotions requires leveraging different local representations from
each modality to aid in differentiation. GLoMo’s utilization of mul-
tiple experts appears to effectively address this challenge, resulting
in significant performance gains.

5.2 Ablation Study
In this section, we conduct ablation studies on the individual com-
ponents of GLoMo, including the modalities, the application of
MoEs, the roles of local and global representations, various fusion
strategies, and the efficacy of global-fusion, as illustrated in Table
4.

(a) all embeddings (b) w/o local embeddings(c) w/o global embeddings

Figure 2: t-SNE plot of the global and local representations
of the three modality of MOSI, where 𝐺𝑚 and 𝐿𝑚 denote
the global and local representations of the modality𝑚,𝑚 ∈
{𝑡, 𝑎, 𝑣}

5.2.1 Role of Modalities. As observed in Table 4, the performance
of GLoMo diminishes to varying extents upon the removal of any
modality, with a particularly notable decline of over 20% on both
CMU-MOSI and CMU-MOSEI datasets when textual modality is
excluded. This significant drop may be attributed to the dominant
role that text plays in these datasets, while the representations of
the other two modalities exhibit a considerable amount of over-
lap and redundancy, corroborating previous findings [34, 37, 64].
Consistent with prior studies [64], on the CMU-MOSI and CMU-
MOSEI datasets, the performance degradation caused by omitting
the visual modality is more pronounced than that caused by dis-
carding the auditory modality. This could be due to the extensive
redundancy between audio and visual representations, as depicted
in Fig. 2, and the possibility that the visual modality encompasses
more informative cues than the auditory modality. In contrast, the
impact of removing a single modality is less severe in CHERMA,
which might be linked to the fact that features from each modality
are extracted using pretrained models, thus retaining a richer set
of modality-specific information.

5.2.2 Role of MoEs. In this section, we examined the role of the
MoEs layer and the impact of varying the number of modality-
specific experts. We introduced MLP_𝑀 , which utilizes one-layer
modality-specific MLP in place of modality-specific MoEs layer for
the fusion of local representations. As indicated in Table 4, substi-
tuting MoEs with MLPs led to a slight decline in the classification
performance of GLoMo across three datasets; however, the perfor-
mance remained superior to most models that rely solely on global
representations as listed in Table 1 and 3. This underscores the
effectiveness of incorporating local representations for enhanced
feature representation. Furthermore, we investigated whether an
increase in the number of experts in MoEs layer would enhance
model performance. We conducted experiments with varying num-
bers of experts for text, visual, and audio modalities, set at 1, 2,
3, and 4, resulting in a total of 64 different configurations. The
mean F1 scores for each modality and number of experts on the
datasets are depicted in Fig. 3b, with detailed results available in
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Table 3: The comparison with baselines on CHERMA in terms of F1-score. The results are from [47].

Happiness (↑) Sadness (↑) Fear (↑) Anger(↑) Surprise (↑) Disgust (↑) Neutrality (↑) overall (↑)
TFN [57] 74.91 75.56 66.15 74.41 66.29 43.34 65.60 68.37
LMF [29] 74.52 75.83 66.73 74.55 65.08 45.70 65.64 68.23
EFT [47] 74.98 76.88 67.32 74.85 66.73 47.48 64.60 68.72
LFT [47] 75.07 76.29 66.80 74.88 66.67 47.74 65.97 69.05

MULT [49] 76.18 76.88 67.36 74.85 68.18 46.96 65.26 69.24
PMR [32] 75.68 76.46 67.97 75.43 67.37 48.93 66.59 69.53

LFMIM [47] 76.6 77.83 69.44 75.32 69.83 50.20 68.24 70.54
GLoMo 81.73 81.33 74.92 77.48 70.63 50.88 70.13 73.62

Table 4: Ablation studies for modules in GLoMo on MOSI,
MOSEI and CHERMA datasets. T=text, A=audio and V=video.

Configs CMU-MOSI CMU-MOSEI CHERMA
ACC-2(↑) F1(↑) ACC-2(↑) F1(↑) F1 (↑)

Role of Each Modality
V+A 55.2/55.9 54.9/55.7 69.6/65.5 66.3/61.0 71.03
V+T 82.3/84.9 82.1/84.8 82.5/86.0 83.0/86.0 67.48
A+T 82.5/84.1 82.5/84.2 81.3/85.4 81.9/85.5 68.72

V+A+T 84.1/86.7 83.9/86.6 83.7/86.5 84.0/86.4 73.62
Role of MoEs

MLP𝑀 83.1/85.7 82.9/85.6 83.2/85.9 83.5/85.8 72.91
Role of Representations

Global 81.9/83.7 81.8/83.7 83.5/85.4 83.7/85.3 72.39
Local 82.3/83.7 82.3/83.6 81.5/85.8 82.0/85.8 72.37

Role of Fusion
SUM 82.3/83.8 82.2/83.8 81.4/85.6 82.0/85.6 70.60
CON 83.2/84.9 83.2/84.9 82.3/85.8 82.8/85.8 72.60

ATTN𝐹 82.6/85.5 82.4/85.3 82.1/85.8 82.6/85.7 73.21
MUL 81.5/82.8 81.5/82.8 82.0/85.6 82.5/85.5 72.27

Role of Global-guided Fusion
ATTN𝐺 82.9/85.3 82.7/85.2 83.2/85.9 83.5/85.8 72.89
MLP𝐺 83.1/85.2 83.0/85.2 81.9/85.6 82.4/85.6 72.93
ReAt𝐺 83.2/85.5 83.1/85.4 83.5/86.3 83.8/86.2 73.35

Appendix. As observed from Fig. 3b, model performance improved
with an increase in the number of experts for each modality. This
improvement may be attributed to the task involving the classifi-
cation of seven categories of emotions, where a greater number of
experts can better capture the local representations necessary for
various emotional states. When any one of the modalities had four
experts, the mean F1 score exceeded 73, surpassing the performance
achieved with MLPs. This finding highlights the MoE’s superior
capability in local representations.

5.2.3 Role of Representations. In this module, we analyze both
global and local representations and their performance within the
GLoMo framework. Moreover, we aim to investigate if an increase
in the number of local representations across different modalities
leads to an enhancement in model performance. Consistent with
prior research [40], we map the global and local representations of
each modality to a two-dimensional space and visualize them using
t-SNE [53], as shown in Fig. 2. As observed in Fig. 2a, the global
representations and local representations for each modality tend to

(a) Number of Local Representations (b) Number of Experts

Figure 3: Ablation studies on the number of local representa-
tions and experts on CHERMA.

focus on different segments of information with little to no over-
lap. Additionally, global representations appear more concentrated,
whereas local representations are dispersed into several clusters.
This dispersion occurs because global representations are derived
from max pooling across all tokens, whereas local representations
are aggregated through multiple experts. Since we use three ex-
perts for each modality, focusing on different local representations,
the local representations form three clusters of varying sizes. This
clustering demonstrates the effectiveness of employing MoEs to
concentrate on distinct local representations.

For a more intuitive understanding of the importance of global
and local representations, we conduct ablation experiments, as
shown in Table 4. Here, "Global" indicates the use of only global
representations, and "Local" refers to the exclusive use of local rep-
resentations. The results show that on the MOSI dataset, using only
local representations yields better classification results. Conversely,
on the MOSEI dataset, global representations perform better in
classifications that include zero, while local representations excel
in classifications excluding zero. On the CHERMA dataset, both fea-
ture types are equally effective. Furthermore, we explore whether
an increase in the number of local representations correlates with
improved model performance. As illustrated in Fig. 3a, having more
local representations does not necessarily equate to better classi-
fication outcomes, as an excess of local representations can also
introduce more redundant information.

5.2.4 Role of Fusion. In this module, we explore the impact of sub-
stituting the global-guided fusion module with alternative global
and local fusion strategies, as shown in Table 4. The ‘SUM’ strategy
involves a straightforward addition of all representations, while
‘CON’ refers to concatenating them before merging using a MLP.
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‘ATTN𝐹 ’ employs an attention mechanism to fuse the representa-
tions, and ‘MUL’ simply multiplies the representations together. It
is evident that the ‘SUM’ and ‘MUL’ methods treat all representa-
tions as equally important, which can lead to the loss of diverse
feature information, resulting in subpar performance across all
three datasets. Conversely, the ‘ATTN𝐹 ’ and ‘CON’ strategies, de-
spite being simple rather than sophisticated, demonstrate superior
performance on all three datasets, even surpassing the majority of
the baselines. This suggests the significance of local representations
and the effectiveness of employing MoEs.

5.2.5 Role of Global-guided Fusion. In this module, we will analyze
various variants of the global-guided fusion strategy. As shown in
Table 4, ‘ATTN𝐺 ’ denotes the use of attention as a substitute for
MIXUP, while ‘MLP𝐺 ’ indicates the replacement of MIXUP with
a MLP layer, and ‘ReAt𝐺 ’ signifies the application of local-guided
fusion, that is, employing the attention weights of local represen-
tations to perform MIXUP. It is evident that the performance of
using ‘MLP’ to replace MIXUP is the least effective, even falling
behind the ‘ATTN𝐹 ’ model, which further underscores the differing
significance of global and local representations. The ‘ReAt𝐺 ’ strat-
egy demonstrates only a slight decrease compared to the original
GLoMo on the CMU-MOSEI dataset, and it also exhibits the best
results among the three on the CMU-MOSI and CHERMA datasets.
This suggests the guiding role of different local representations,
particularly in text-dominant scenarios like MOSEI and MOSI, hint-
ing at the importance of utilizing global-guided fusion during the
integration process.

(a) GLoMo Embeddings (b) w/o MoEs

(c) w/o Global-guided Fusion (d) w/o Local representations

Figure 4: t-SNE of the fused representations on CMU-MOSI,
where ‘0’ indicates samples with labels less than zero and ‘1’
denotes samples with labels greater than zero.

5.2.6 Visualizating Representations. In order to provide a more
intuitive comparison of the representations obtained by GLoMo,
we visualized the integrated representations using t-SNE, as shown
in Fig. 4. Fig. 4a depicts the final representation acquired by GLoMo,
Fig. 4b shows the representation using an MLP layer in place of

Table 5: Comparison of parameters and running time for
different models on the MOSI dataset.

# params (↓) running time (↓)
MAGBERT [44] 110,705,665 549s

MISA [15] 110,620,273 535s
C_MIB [38] 109,835,748 480s
TFN [57] 161,409,399 275s
GLoMo 109,818,887 481s

MoEs layer, Fig. 4c illustrates the representation without the use of
Global-guided fusion, and Fig. 4d presents the representation that
excludes local representations. It is evident that replacing MoEs
layer with MLP layer leads to a noticeable dispersion in the rep-
resentations, suggesting that MoEs enhances the representational
and discriminative capabilities, and indicating that the application
of MoEs captures more relevant local information for the respective
categories. The representations without the global-guided fusion
module are particularly scattered, with a significant amount of
overlap, demonstrating that global-guided fusion effectively guides
the integration of global and local representations to achieve more
distinctive representations. The representations excluding local
representations are even more dispersed than those without global
fusion, with increased overlap, implying that incorporating local
representations enhances the discriminative power and category-
specific representational ability.

5.2.7 Complexity Analysis. In this section, we measure the com-
plexity of GLoMo. To provide a clear presentation and facilitate
comparison, we perform a comparative analysis of the model’s com-
plexity, taking into account both the spatial and temporal dimen-
sions. This analysis involves GLoMo and a variety of benchmark
models on the MOSI dataset, the details of which are presented in
Table 5. When evaluating spatial complexity, we use the number of
parameters as the key metric. It is noted that GLoMo has the fewest
parameters compared to the other methods. Regarding temporal
complexity, we assess the running time of the models by conducting
each for 100 epochs, which allows for a standardized comparison.
Our findings indicate that GLoMo generally requires less time than
both MAGBERT and MISA, and its running time is comparable to
that of C_MIB. From the perspective of both spatial and temporal
resource consumption, GLoMo demonstrates a lower number of
parameters and reduced usage time, highlighting its lightweight
nature and efficiency.

6 CONCLUSION
In this paper, we present GLoMo, a global-local modal fusion frame-
work for multimodal sentiment analysis that integrates the multi-
ple local representations and the global representations. GLoMo’s
tailored use of modality-specific experts finetunes local representa-
tions, while its innovative global-guided fusion module ensures a
balanced integration, honoring the inherent ‘few-to-many token’
relationship. The framework’s outstanding performance across di-
verse datasets and the validation provided by rigorous ablation
studies highlight its robustness and the effective collaboration of
its components.
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