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Abstract

Mitigating the detrimental effects of noisy labels
on the training process has become increasingly
critical, as obtaining entirely clean or human-
annotated samples for large-scale pre-training
tasks is often impractical. Nonetheless, existing
noise mitigation methods often encounter limita-
tions in practical applications due to their task-
specific design, model dependency, and signifi-
cant computational overhead. In this work, we
exploit the properties of high-dimensional orthog-
onality to identify a robust and effective bound-
ary in cone space for separating clean and noisy
samples. Building on this, we propose One-Step
Anti-noise (OSA), a model-agnostic noisy label
mitigation paradigm that employs an estimator
model and a scoring function to assess the noise
level of input pairs through just one-step inference.
We empirically validate the superiority of OSA,
demonstrating its enhanced training robustness,
improved task transferability, streamlined deploy-
ment, and reduced computational overhead across
diverse benchmarks, models, and tasks. Our code
is released at https://anonymous.4open.
science/r/CLIP_OSN-E86C.

1. Introduction

Noise mitigation aims to handle the detriment of noisy labels
encountered during the training process. The advancement
of large-scale pre-training has significantly increased data
scale to the trillion level, but also inevitably introduced
considerable noise due to the collection from the internet,
severely impeding the training process. This poses a sub-
stantial challenge for robust model training in various tasks,
such as cross-modal matching (Huang et al., 2021; Zhang
et al., 2024), image classification (Sun et al., 2021; Yu et al.,
2019), and image retrieval (Liu et al., 2021).
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Traditional noise mitigation approaches encounter several
limitations that constrain their practical applicability: 1)
Task specificity: Existing methods (Huang et al., 2021; Sun
et al., 2021; Ibrahimi et al., 2022a) are tailored to specific
tasks, limiting their applicability across different tasks. 2)
Model dependency: Most noise mitigation techniques (Liu
et al., 2021; Yang et al., 2023a) are tightly coupled with
specific models, requiring extensive modifications for adap-
tation to different models. 3) Computational cost: Nu-
merous existing methods necessitate dual-model collabora-
tions (Huang et al., 2021; Yu et al., 2019) or multiple train-
ing passes (Huang et al., 2021), i.e., they require at least
two backward passes per training step, effectively doubling
the computational expense and substantially increasing the
training burden (see Figure. 1a). Benefiting from the remark-
able generalization capabilities demonstrated by multimodal
pre-trained models such as CLIP (Radford et al., 2021), sev-
eral studies (Feng et al., 2024; Wei et al., 2024; Zhang et al.,
2024; Liang et al., 2023) have emerged to leverage these
pre-trained models for noise mitigation. However, these
approaches still suffer from aforementioned limitations, in-
cluding task specificity (Feng et al., 2024; Wei et al., 2024;
Liang et al., 2023), model dependency (Wei et al., 2024)
and excessive computational demands (Zhang et al., 2024),
making them hard to utilize in practical scenarios. Most
importantly, these methods share a common oversight in
that they do not fully explore the potential of pre-trained
models for noise detection.

To tackle these challenges, we use an external estimator to
assess the noise level of each sample, ensuring the target
model-agnostic. This estimator reduces the influence of
noisy samples by reducing their weights of training loss
closer to zero. We leverage multimodal pre-trained models
as the estimator due to their revealed strong semantic capa-
bilities and task transferability. For instance, CLIP (Radford
et al., 2021) unifies the paradigms of image-text retrieval
and image classification through a shared embedding space
(see Figure. 1b). It converts category labels into sentences
and then calculates the cosine similarity with the image
representation to perform image classification. In this case,
only one additional inference process is required for each
sample, significantly reducing the computational overhead
compared to performing an extra backward pass.

Nonetheless, this paradigm introduces a new challenge: how
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Figure 1: (a) The current anti-noise paradigm with multiple backward significantly enhances the training overhead. (b)
CLIP unifies the framework of image-text matching and image classification through a shared space. (c-f) Cosine similarity

distribution of noise and clean data with 50% noise.

to accurately identify noise based solely on cosine similarity
scores inferenced by estimators. An ideal solution is to find
a decision boundary in cosine space that can separate clean
and noisy samples. Existing methods (Huang et al., 2021;
Li et al., 2020; Feng et al., 2024; Zhang et al., 2024) typi-
cally attempt to build this boundary within the loss space,
an isotropic space with uniform distribution, which creates
only a narrow gap between noisy and clean samples. More
critically, the coarse handling of overlaps by integrating
multi-model predictions often results in an unstable deci-
sion boundary. In contrast, the shared embedding space of
pre-trained models is a high-dimensional space, and its cor-
responding cosine similarity space is an anisotropic space
with an imbalanced distribution. Thus, a consideration is
whether the properties of imbalanced anisotropic space can
help to identify a more precise and robust decision boundary.

In this work, we delve into the issue of decision boundary
selection in anisotropic cosine spaces for pre-trained mod-
els being efficient noise estimators. Theoretically, a cosine
similarity of zero—i.e., an orthogonal boundary—should
serve as a natural decision threshold in isotropic cosine
spaces to separate clean and noisy samples. To validate
this hypothesis, we empirically analyze the cosine similar-
ity distributions of clean and noisy samples using multi-
modal pre-trained models CLIP (Radford et al., 2021) and
ALIGN (Jia et al., 2021) across two datasets: MSCOCO
and SDM (Stable Diffusion Model (Rombach et al., 2022)),
both with a 50% noise ratio. The SDM dataset, comprising
images generated in uncommon artistic styles (see Figure 4),
is designed to test the robustness of pre-trained models in
distinguishing noisy samples from unseen domains.

Surprisingly, as shown in Figure. 1c-1f, the empirically
optimal decision boundary deviates significantly from the
theoretical orthogonal threshold zero, limiting its usage in
practical applications. Despite this deviation, there are also
two interesting observations: (1) the intersection points of
clean and noisy distributions remain consistent for the same
model across different datasets, suggesting the existence of
a stable, dataset-irrelevant boundary. (2) even on the SDM
dataset—where models encounter unfamiliar domains—the
overlap between clean and noisy distributions remains mini-
mal, indicating the boundary’s robustness in distinguishing
noisy samples.

Building on these two observations, we aim to reveal the
underlying mechanisms and provide a theoretical guidance
for fully exploiting the potential of pre-trained models in
noise mitigation. Our key contributions are as follows:

1. We figure out the origin of the intersection, attributing it
to the shift of orthogonal boundaries induced by the cone
effect. Furthermore, we provide a theoretical framework
that proves and elaborates the stability and accuracy of this
boundary in separating noisy and clean samples.

2. Building on our findings, we develop One-Step Anti-
noise (OSA), an efficient and model-agnostic paradigm
for noise recognition that requires just one-step inference.
Specifically, we utilize a pre-trained model as the estimator
to maintain a task unification and model-agnostic frame-
work. Then, we design a non-linear scoring function based
on the shifted orthogonal boundary properties to balance
the training process of overlapped ambiguous samples and
positive samples by re-weighting their loss. This inference-
based approach could significantly reduce the additional
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overhead in noise mitigation.

3. We conduct comprehensive experiments across a vari-
ety of challenging benchmarks, models, and tasks, demon-
strating the effectiveness, generalization capabilities, and
efficiency of our findings and introduced methods.

2. Boundary Principle Analysis

In Figure. 1c-1f, we observe a natural boundary emerging in
the pre-trained model’s ability to distinguish between clean
and noisy samples. In this section, we explain the principle
of boundary forming from high-dimensional perspectives,
and how robust it is in general noise mitigation.

2.1. Hypothesis: Intersection Boundary is Shifted from
Orthogonal Boundary

We first elaborate on the gap extent between the positive
and negative sides kept by the orthogonal boundary. Then,
we present the reasoning behind the hypothesis that the
intersection boundary in Figure. 1 is a shifted orthogonal
boundary in the cone space.

The orthogonal boundary largely separates the positive
and negative sides. High-dimensional orthogonality is a
general phenomenon caused by dimension disaster, where
the angles between randomly selected vectors typically ap-
proximate 90 degrees, suggesting the cosine similarity that
trends toward zero. For instance, in a 1024-dimensional
space, the probability of two random vectors having a co-
sine similarity within [—0.1,0.1] is approximately 99.86%
(details in Appendix. D.1). This creates a natural boundary
at zero cosine similarity, effectively separating the positive
and negative sides with a large gap.

Table 1: The mean and variance of cosine similarity between
randomly generated pairs.

Model ‘ Mean Var
CLIP 0.215 0.024
ALIGN 0.087 6e-4

Cone effect may induce orthogonal boundary shift. Re-
cent literature (Liang et al., 2022a; Bogolin et al., 2022;
Ethayarajh, 2019) has demonstrated that the cone effect is
a general phenomenon in deep neural networks, where the
learned embedding subspace forms a narrow cone and the or-
thogonal boundary encounters a positive shift. Based on this,
a hypothesis is that the intersection boundary in Figure. 1 is
the shifted orthogonal boundary. To prove this, we simulate
the process of selecting random vectors in high-dimensional
space and randomly generate thousands of pairs mapped
into the shared embedding space. We find that all similarity
of these random vector pairs tends to a fixed value, with the

low-variance cosine similarity almost lying in the middle
of clean and noise distributions (see Table. 1). An interest-
ing phenomenon is that if we compare the mean with the
intersection points in Figure. 1c-1f, we find they are almost
identical, suggesting that the intersection boundary is highly
likely to be a shifted orthogonal boundary in cone space.

2.2. Theoretical Verification of Intersection Origin

Here, we theoretically investigate whether the origin of the
intersection boundary is a shifted orthogonal boundary. We
first show that (i) contrastive learning separates clean and
noisy samples on opposite sides of the orthogonal boundary
and (ii) The relative relationships of pairs’ cosine similar-
ity stays unchanged after transmitting into the narrow cone
space. Based on (i) and (ii), we can confirm that the in-
tersection boundary at the center of the clean and noisy
distributions is the shifted orthogonal boundary.

Contrastive learning empowers the separation of clean
and noisy samples. For an initialized model to learn an
embedding space, both clean and noisy samples are treated
as orthogonal random vectors since lacking semantic percep-
tion ability in the initial space. During contrastive training
process, given N sample pairs {(z;, y;)}Y.;, the embedding
space is optimized through the cross-entropy loss:

1 & exp(mi;)
»Cce = N ZIOg ZN
i=1

j=1 exp(mi;)

ey

where M € RN XN represents the cosine similarity matrix
of N sample pairs during training process. Each element
m,; € M denote the cosine similarity between x; and y;.
The diagonal elements m;; denote the cosine similarities of
positive pairs, while the non-diagonal elements m;; repre-
sent the cosine similarities of negative pairs.

To minimize L. during training, two subprocesses occur:
the diagonal elements of the matrix (i.e., clean pairs) are
optimized to the positive side of the orthogonal boundary,
while the non-diagonal elements (equivalent to noise pairs)
are optimized to the negative side. Consequently, the distri-
butions of these two types of samples are on opposite sides
of the orthogonal boundary.

Relative relationship unchanged in transmitting process.
We study how the boundary shifts from the entire space to
the narrow cone in the neural network. The following theo-
rem shows that the cosine similarity will be proportionally
scaled to the target narrow cone, while still maintaining a
boundary with properties similar to the orthogonal bound-
ary. In other words, vectors with cosine similarity smaller
than the orthogonal boundary in the original space remain
smaller than the shifted boundary in the narrow cone space,
while those larger remain larger.

Theorem 2.1 (Proportional shift of boundary). Let R%»
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be the original space before being transmitted in a neural
network. Suppose u,v € R%" are any two random vec-
tors with cos(u,v) ~ 0. u.,v. € R%" is a pair of clean
vectors with cos(uc,v.) > 0, while up,v, € R%" is a
noisy pair with cos(un, v,) < 0. Given a Neural Network
F(x) = fi(fic1(... f2(f1(2)))) € Reut with t layers.
filx) = 0;(W;z + b;) denotes it" layer, where o (-) indi-
cates activation function. W; € Rut*%in is a random
weight matrix where each element Wf L N0, 1/,
fork ¢ [dfmt}, le [dzn] and b; € R%ut is a random bias
vector such that bY ~ N(0,1/d.,,) for k € [d,]. Then,
there always be a boundary (3, satisfying:

cos(F (uy,), F(v,)) < cos(F(u), F(v))

~ B < cos(F(ue), F(ve)). @

Theorem. 2.1 shows the pairs’ relative relationship in the
original entire space remain unchanged after transmitting
to the narrow cone space of the trained model, and there is
always a boundary (3 concentrated on most random vectors.
Appendix. D.2 provides a detailed statement and proof.

2.3. Qualitative analysis of robustness and applicability

Next, we perform a qualitative analysis to explore (i) the
robustness and generality of the boundary in distinguishing
between clean and noisy samples, and (ii) how the bound-
ary’s properties can be leveraged to achieve more reasonable
and precise overlap handling.

How about the boundary robustness even in unfamil-
iar domains? Although the boundary’s ability to distin-
guish clean and noisy samples is proven, its robustness and
generality still require further exploration. For practical
pre-training, it must maintain accuracy and robustness even
in unfamiliar domain datasets. Since the capabilities of
the pre-trained model are difficult to quantify, we conduct
a qualitative analysis from the perspective of pre-trained
model inference. The models pre-trained on millions of
samples already possess somewhat semantic understanding
capabilities. Given a positive pair from an unseen domain,
due to the contrastive learning process during pre-training,
it still has a strong likelihood of moving toward the positive
side of the boundary, while the negative pair tends toward
the negative side. Although the cosine similarity differ-
ence might be slight, as we have shown in Section. 2.1, the
boundary constructs a significant gap from the perspective
of high-dimensional orthogonality.

How to handle the overlaps through imbalanced prob-
ability? Since orthogonal boundary properties, as cosine
similarity decreases and approaches zero from the positive
side, the probability of positive samples sharply decreases.
Therefore, we can design a scoring function to annotate
the cleanliness of samples. This function should satisfy

two requirements: for samples with cosine similarity less
than or equal to zero, which are almost certainly noise, the
function should assign them a weight of zero. For samples
with cosine similarity greater than zero, the function gradi-
ent should increase rapidly as the cosine similarity moves
further from zero.

3. Method

In this section, we present our One-Step Anti-noise (OSA)
paradigm with a workflow shown in Figure. 2. We first
define the pair-based noise mitigation tasks in Sec. 3.1. Af-
terward, we clarify OSA in Sec. 3.2.

3.1. Task Definition

Let D = {(z4,v:,¢;)} Y, denote a paired dataset, where
(24, y;) represents the i-th pair in the dataset, and ¢; indicates
a noise label for that pair. Specifically, when ¢; = 0, (z;, ¥;)
forms a correct (paired) match, while ¢; = 1 denotes an in-
correct (unpaired) match. The objective of noise mitigation
in contrastive learning is to construct a shared embedding
space that brings x; and y; closer when ¢; = 1. In different
tasks, x; and y; are distinct data types. For instance, in the
image-text retrieval task, z; and y; represent images and
texts, respectively. In the image classification task, z; and
y; represent images and categories, respectively. In the im-
age retrieval task, z; and y, represent images and relevant
images, respectively. The paired sample (z,y) could be
encoded into a shared embedding space by corresponding
encoders ¢, (-) and ¢, (-). Afterward, the cosine similarity
s(x,y) is calculated through Eq. 3 as semantic relevance of
(z,y) to guide the training.

I CONA )
@) = T by (I

3.2. One-step Anti-Noise

3

The workflow of our noise mitigation approach OSA is de-
picted in Figure. 2. Initially, we utilize an estimator model
to encode the input pair to a shared embedding space and
continue to compute the cosine similarity between the paired
embedding. Afterward, the cosine similarity is converted to
a cleanliness score w;, (0 < w; < 1) through a scoring func-
tion designed based on orthogonal properties (Section. 2.3).
This score quantifies the clean degree of the sample, the
smaller w; is, the noisier the sample.

During the target model training phase, this cleanliness
score is used as a weight, directly multiplied by the loss
of the corresponding sample to facilitate selective learning.
This noise mitigation process, being solely dependent on
the estimator model, is readily adaptable to the training of
various target models by simply adding an extra coefficient
to the loss function, ensuring the model-agnostic property.
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Figure 2: Two phases in the OSA workflow: In the Scoring
Phase, a pair is mapped to a shared space by estimators.
Then the cosine similarity is debiased based on the orthogo-
nal boundary and transformed to a weight w by a scoring
function. In the Training Phase, the weight w is directly
multiplied with the loss to instruct the optimization.

Therefore, the key of our noise mitigation approach revolves
around the estimator model and noise score assessment.

3.2.1. ESTIMATOR MODEL

Estimator model selection. In our approach, the Estimator
Model must satisfy two critical requirements: 1) effectively
mapping input pairs into a unified embedding space and 2)
possessing basic semantic understanding capabilities. To
meet these requirements, we employ CLIP (Radford et al.,
2021), a commonly used multimodal pre-trained models, as
our estimator model. It is equipped with a text encoder ¢ (-)
and an image encoder ¢,(-), enabling it to perform basic
zero-shot tasks efficiently.

Domain adaptation (Optional). While we have performed
a qualitative analysis of the zero-shot pre-trained model’s
robustness on out-of-domain data in Section. 2.3, and shown
strong robustness for edge cases in Figure. 1, considering
the domain diversity in real-world scenarios, we provide
an optional Domain Adaptation (DA) approach to enhance
the estimator model’s adaptability when encountering edge
domains. Following NPC (Zhang et al., 2024), we first em-
ploy a Gaussian Mixture Model (GMM) coupled with strict
selection thresholds to ensure the absolute cleanliness of
the chosen samples. We afterward implement a warm-up
phase with few steps, allowing the estimator model to better
understand the semantics of the target domain. Notably, this
trick is only optional for our methods. Through multiple
experiments, we found that even without domain adapta-
tion, the zero-shot CLIP model performs exceptionally well
across various scenarios.

3.3. Comparisons with State of The Arts

3.3.1. NOISE SCORE ASSESSMENT

Spatial Debiasing. The cone effect phenomenon has been
demonstrated as a general phenomenon for deep neural net-
works, typically resulting in a narrow embedding space that
causes a shift of space center to a narrow cone center (Liang

et al., 2022a). Specifically, when paired randomly generated
inputs are mapped into a shared embedding space through
model encoders, the resultant vectors exhibit an average
cosine similarity that deviates from zero and tends to an-
other fixed angle. To counteract this shift and mitigate its
impact on the estimator’s ability to accurately recognize
noises through high-dimensional orthogonality, a random
sampling method is developed. We begin by constructing K
random sample pairs R = {(z;,y;) | j =1,2,..., K} and
processing them through the estimator’s encoder to generate
a set of vectors. Then the average cosine similarity among
these vectors will be calculated as the space shift 3 through:

K
Zj:l s(xj,Y5)

= K

“

Scoring Function. After spatial debiasing, we employ
a scoring function w(-) to evaluate the cleanliness of the
input pair (x, y). In section. 2.3, we have elaborate how to
handle overlaps based on the orthogonal boundary property.
For an estimator model trained on millions of samples us-
ing contrastive learning, clean pairs (diagonal elements) are
optimized to positive side, while noise pairs (non-diagonal
elements) are optimized to negative side. Given unfamil-
iar pairs, the model also tends to map clean pairs towards
positive and noisy pairs towards negative. Despite the poten-
tially slight similarity difference between clean and noisy
pairs, high-dimensional orthogonality ensures a substantial
gap between them. In this case, a negative cosine similar-
ity s(z,y) computed by the estimator, indicating the pair
is almost certainly noise, should be assigned a weight of
zero. For samples with s(z, y) greater than the orthogonal
boundary f3, the probability of the sample being positive
sharply decreases as the cosine similarity approaches or-
thogonal boundary from the positive side. Therefore, the
function gradient should increase rapidly as the cosine sim-
ilarity moves further from 3. To systematically score the
noise, we utilize §, , = s(z,y) — § to indicate the debi-
ased cosine similarity score, and then, the scoring function
for re-weighting can be designed as (more scoring function
exploration in Appendix. F.1):

( 8) 0 Szy <0 )
w\r,y, =
Y — (82,4)%(32 — 1) ,otherwise

Re-weight Training. After scoring, the target model can
selectively learn from the samples by re-weighting the loss.
Noise samples with smaller weights will have a reduced
impact on model updates and will be effectively mitigated.
For a sample (z,y), let £, , denote its loss, the re-computed
loss L,.. is defined as:

Lre = w(m,y,b’) X Em,y' (6)
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Table 2: Comparison on noisy MS-COCO.

MS-COCO 1K MS-COCO 5K
Noise ratio | Method i2t t2i i2t 2i
R@1 R@5 R@10 R@1 R@5 R@10 | R@l R@5 R@I0 R@1 R@5 R@I10

VSEoo 82.0 972 989 | 690 926 968 | 623 87.1 933 |482 767 855
PCME++ | 81.6 972 99.0 | 69.2 928 97.1 | 62.1 868 933 |438.1 76.7 855

PAU 80.4 962 985 | 677 91.8 96.6 | 63.6 852 922 | 468 744 837

0% NPC 822 965 987 | 683 920 987 | 654 873 931 |485 754 844
CLIP 80.1 957 982 | 671 914 96.6 | 629 849 91.6 | 465 738 829

+0SA | 822 965 98.7 | 688 92.1 967 | 65.6 868 929 |49.1 762 84.8

ALIGN 849 973 99.0 | 70.5 92.8 972 | 69.6 899 945 | 505 775 857

+OSA | 853 974 990 | 714 931 973 | 698 899 948 |514 782 863

VSEoo 784 943 97.0 | 655 89.3 94.1 | 586 834 899 |450 729 817
PCME++ | 784 959 984 | 649 90.8 96.1 |57.7 839 91.0 |432 723 824

PAU 782 952 98.1 | 645 900 954 |593 829 904 |442 713 813

20% NPC 799 959 984 | 663 908 984 | 61.6 854 91.6 | 460 734 829
CLIP 760 943 975 | 634 89.0 948 |553 79.1 869 |41.0 688 793

+0SA | 81.6 962 985 | 689 92.0 96.6 | 658 864 925 | 487 76.1 845

ALIGN 794 957 982 | 662 90.8 96.1 | 609 845 91.0 | 463 73.6 823

+OSA | 85.1 974 991 709 93.0 973 | 69.7 90.0 947 | 509 77.8 86.2

VSEoo 443 76.1 869 | 340 692 845 |224 482 61.1 | 158 388 521
PCME++ | 748 943 977 | 604 887 950 | 525 79.6 884 |386 680 79.0

PAU 764 941 976 | 623 885 946 | 573 815 888 |419 694 79.6

50% NPC 782 944 977 | 63.1 89.0 97.7 | 599 829 89.7 | 430 702 80.0
CLIP 739 93.0 972 | 60.1 873 940 |541 785 86.6 |397 672 715

+0SA | 814 96.5 98.6 | 684 92.0 96.6 | 647 868 924 | 48.6 759 84.6

ALIGN 78.0 958 985 | 654 903 96.0 | 60.1 843 912 |452 728 821

+0SA | 843 97.0 989 | 700 925 97.0 | 685 892 942 | 500 77.0 854

4. Experiments

In this section, we present experiments on multiple datasets
with label noise, demonstrating the effectiveness of our
methods. Firstly, we describe the datasets, metrics, and im-
plementation details. Then, we report our results on several
downstream tasks. Lastly, we conduct ablation studies to
show how each part of our method contributes and examine
how these parts interact. The literature involved in our exper-
iments and richer related work are detailed in Appendix. C.

4.1. Evaluation Setting

In this section, we briefly introduce the datasets and eval-
uation metrics used in the experiments. For more dataset
and implementation details, please refer to Appendix. B.
Datasets. We evaluate our method on three downstream
tasks with noisy labels, including one multimodal task and
two visual tasks. For the cross-modal matching task, we
perform experiments on the MSCOCO (Lin et al., 2014)
and Flickr30K (Young et al., 2014) datasets. Following
NPC (Zhang et al., 2024), we further carry out evaluations
on a real-world noisy dataset CC120K. For image classifi-
cation tasks, experiments are conducted under three subsets
of WebFG-496 (Sun et al., 2021)—Aircraft, Bird, and Car.
For image retrieval tasks, we conduct experiments on the
CARS98N dataset under PRISM (Liu et al., 2021) setting.

Evaluation Metrics. For the image-text matching task, the
recall value of the top-K retrieved results (R@K) is used.
For classification tasks, accuracy serves as the evaluation
metric. For the image retrieval task, we use Precision@1

and mAP@R for evaluation.

Results on MSCOCO. To fairly demonstrate the effec-
tiveness of our method, we compare OSA with various
robust learning image-text matching approaches using the
same ViT-B/32 CLIP as backbone, including VSEco (Chen
et al., 2021), PCME++ (Chun, 2023), PAU (Li et al., 2023),
NPC (Zhang et al., 2024). Besides, we separately employ
OSA on both CLIP (Radford et al., 2021) and ALIGN (Jia
et al., 2021). The results in Table. 2 show that OSA outper-
forms all previous approaches on all metrics with a huge
gap. In the more challenging MS-COCO 5K set with 50%
noise ratio, OSA surpasses the SOTA method NPC in the
R@1 for both image-to-text (i2t) and text-to-image (t2i)
matching by 8.6% and 7.0%, respectively. Another phe-
nomenon is that as the noise ratio increases from 0% to
50%, all other methods encounter severe performance drop,
with an averaging drop of 5.05% for NPC across four R@1
metrics. In contrast, OSA exhibits only a slight decrease of
1.275%, showcasing the accuracy and robustness of OSA in
anti-noise tasks.

Results on Flickr30K. To further demonstrate the general-
ization ability of OSA, we evaluate on the Flickr30K dataset
and compare with several anti-noise methods, including
NCR (Huang et al., 2021), DECL (Qin et al., 2022), Bi-
Cro (Yang et al., 2023a), and NPC (Zhang et al., 2024). The
results are presented in Table. 7 of Appendix. It is evident
that OSA consistently outperforms all models on the R@ 1
metric. Notably, compared with the baseline CLIP, training
with OSA at a 60% noise ratio achieves 20.9% R@1 im-
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provement for i2t and a 22.3% R @1 improvement in t2i, fur-
ther indicating the effectiveness of OSA on noise mitigation.
Additionally, OSA demonstrates similar noise robustness on
the Flickr30K dataset as observed on MSCOCO, with only
1.4% R@1 drop on i2t and 1.2% R@]1 drop on t2i ranging
from 0% noise to 60% noise, while all of the other anti-
noise approaches hardly resist the detriment from high-ratio
noise. All of these results demonstrate the effectiveness and
robustness of OSA on anti-noise tasks.

Results on CC120K. To further verify the reliability of
OSA in real scenarios, we conduct evaluations on a large-
scale real-world noisy dataset, CC120K, with 3%-20% noise
ratio. The results in Table. 8 of Appendix indicate that OSA
outperforms the current state-of-the-art method NPC, even
in real-world domains. This demonstrates the feasibility and
generality of OSA even in practical training scenarios.

Results on Other Downstream Tasks. To validate the
transferability of OSA across different tasks, we evaluate
it on two additional tasks: image classification and image
retrieval. The results are presented in Table. 3. The baseline
method for both tasks leverages contrastive learning. In
the image classification task, OSA outperforms the baseline
by 7.74%, 8.21%, and 4.28% on the Aircraft, Bird, and
Car subsets, respectively. In the image retrieval task, OSA
improves performance by 6.76% in precision and 6.83%
in mAP. These improvements demonstrate the strong task
transferability and generality of OSA.

Table 3: Results of other image-based tasks.

Image Classification | Image Retrieval
Method | Aircraft Bird Car
Acc Acc  Acc
65.44 6229 7590|71.69 18.16
73.18 70.50 80.19|78.45 24.99

Prec. mAP

Baseline
+0OSA

4.2. Target Model-Agnostic Analysis

OSA is an architecture-agnostic paradigm easily adaptable
to various models. To verify this, we evaluate it across
different architectures and apply it to other anti-noise models
to demonstrate its generalization in noise mitigation.

Architecture-agnostic Analysis. The effectiveness of OSA
on Vision Transformer (ViT) has been proven in Section. 3.3.
We further explore the generality of OSA on target mod-
els with other architectures. Specifically, we deploy OSA
above the VSE++ (Faghri et al., 2018) model with two dif-
ferent architecture types: ResNet-152 (He et al., 2016) and
VGG-19 (Simonyan & Zisserman, 2014). These two archi-
tectures are highly sensitive to noise (Huang et al., 2021).
In this experiment, all estimator models employ zero-shot
CLIP and we utilize the original VSE++ as our baseline.
The results in Table. 4 indicate a significant performance

Table 4: The results of the target model with different archi-
tectures on noisy MSCOCO 1K.

- . 2t i
Noise ratio{Method Architecture R@I1 R@5 R@IO\R@I R@5 R@10
Baseline | o o)[589 869 938 [442 779 88.3

0% +OSA|NESNE152158 9 862 937 (443 77.9 87.9
Baselie | ygpo |496 794 89.1(380 729 847

+OSA 19 150.1 80.0 893 [38.3 73.0 846

Baseline 458 703 83.7 |36.1 684 79.7

209 +OSA ReSNe"ISZ‘ss.l 86.1 932 ‘43.4 76.8 87.2
Baselie | ygpo |332 671 815(259 580 714

+OSA 19 1493 791 886 (372 719 838

Baseline 284 612 752 |52 140 195

509% +OSA ReSNe"ISZ‘ss.o 84.0 92.0 ‘40.7 747 85.6
Baseline 25 98 16201 05 10

+osa| VOG-19 ‘47.1 717 87.6 |357 703 82.8

degradation emerged for the baseline methods in noisy set-
ting, while a stable performance is achieved after employing
OSA. The stable performance on these two noise-vulnerable
architectures fully demonstrates that OSA possesses the
architecture-agnostic property.

Adaptability to Other Anti-Noise Models. Theoretically,
OSA is adaptable to any target model. However, can OSA
further enhance the robustness of models specifically de-
signed for noise mitigation? To investigate this, we applied
OSA to the current state-of-the-art model, NPC (Zhang
et al., 2024). As shown in Table. 9 of Appendix, even for
noise-mitigating models, OSA consistently improves train-
ing robustness. This finding further demonstrates the broad
adaptability of OSA across different model types.

4.3. Estimator Model Analysis.

The estimator model is the basis of OSA’s anti-noise capa-
bility. In this section, we explore the impact of different
estimator models on noise mitigation, and examine the im-
pact of domain adaptation in noise mitigation. In Table. 10
of Appendix, we investigate four types of estimators: “None”
refers to training CLIP directly without using OSA. “CLIP
(w/o DA)” and “ALIGN (w/o DA)” represent using CLIP
and ALIGN without domain adaptation as estimators, re-
spectively, i.e., zero-shot CLIP and ALIGN. “CLIP (w DA)”
indicates the CLIP with domain adaptation. The target mod-
els are all CLIP. We can observe that both of CLIP and
ALIGN as estimators significantly enhance the target model
performance stability when learning with noise, indicating
that the choice of estimator is very flexible. Both CLIP and
ALIGN demonstrate exceptional performance when served
as estimators. The other phenomenon is that the zero-shot
CLIP model shows comparable performance to the domain-
adapted CLIP with a even better performance at lower noise
ratios. This indicates that zero-shot CLIP, as an estimator, al-
ready performs exceptionally well in noise mitigation. The
domain adaptation is unnecessary. This further enhances
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the deployment convenience of OSA.

Table 5: ACC and recall of noise detection.

. 20% noise 50% Noise
Estimator Type
Acc. Recall Acc. Recall
CLIP (w/o DA) 93.88 97.49 9391 99.35

CLIP (wDA)  97.68 97.18 98.14 99.24

4.4. Noise Assessment Accuracy

Noise Detection Accuracy Analysis. To figure out how
accurate OSA is in recognizing noise, we evaluate the accu-
racy and recall on CLIP without Domain-Adaptation (w/o
DA) and CLIP with Domain-Adaptation (w DA) on noisy
MSCOCO. We utilize zero as the threshold to roughly di-
vide pairs into noise and clean sets, respectively. Concretely,
we classify scores less than or equal to 0 as noise, and scores
greater than O as clean. The Accuracy means the proportion
of the clean pairs correctly classified into the clean set, while
the Recall indicates the noisy pairs correctly classified into
the noisy set. The results presented in Table. 5 indicates the
powerful noise recognizing capability of OSA. The remark-
able performance on CLIP (w/o DA) fully demonstrates the
generality of OSA. Another notable phenomenon is that all
recall scores converge towards 100, suggesting that OSA
can almost entirely eliminate the impact of noise on training.

Noise Re-weighting Accuracy Comparison. Some anti-
noise methods, like NPC, also employ loss re-weighting
for optimization. To assess whether our method assigns
relatively smaller weights to noise than these methods, we
first analyze the weights generated by NPC and OSA. Due
to differences in weight scales across methods, a direct
comparison is unfair. We therefore adopt a ranking-based
approach, sorting weights in descending order and calculat-
ing the Mean Noise Rank to unify the scale. This metric
evaluates whether smaller weights are consistently assigned
to noisy samples relative to clean ones. Our experiments
use 2,000 randomly selected samples from the MSCOCO
dataset under two noise conditions: 20% noise (370 noisy
samples) and 50% noise (953 noisy samples). The theoreti-
cal optimal Mean Noise Ranks, where all noisy weights are
ranked last, are 1815.5 and 1524.0, respectively. Results pre-
sented in Table. 11 of Appendix show that OSA achieves a
higher Mean Noise Rank compared to NPC, demonstrating
greater accuracy in re-weighting. Moreover, OSA’s rankings
are nearly optimal (20% noise: 1809.1 for OSA vs. 1815.5
optimal; 50% noise: 1520.7 for OSA vs. 1524.0 optimal).
This near-perfect alignment indicates that OSA effectively
places almost all noisy samples behind the clean ones.

4.5. Computational Cost Analysis

Cost in Pre-training. To evaluate the practicality of OSA
in a real-world pre-training scenario, we estimate the addi-
tional computational cost for processing 1 billion data points.
Using an NVIDIA RTX 3090 with an inference batch size
of 4096, utilizing about 24 GB of GPU memory, processing
the MS-COCO dataset consisting of 566,435 pairs takes
approximately 153 seconds. At this inference rate, process-
ing 1 billion data points would require approximately 75
hours on a single RTX 3090. This cost is negligible for
large-scale pre-training, especially with multiple GPUs for
parallel inference.

Time Cost Comparison. To further examine the computa-
tional efficiency of our method compared to other anti-noise
techniques, we evaluate training time against two represen-
tative approaches: CLIP and NPC. CLIP, which serves as
the baseline, is trained directly without any additional tech-
nique. NPC, the current state-of-the-art, also uses CLIP as
its backbone but applies an anti-noise technique by estimat-
ing the negative impact of each sample, necessitating double
backward passes. The training time comparison, presented
in Table. 12 of Appendix, shows that our method intro-
duces only a minimal increase in training time compared
to direct training, requiring just one-tenth of the additional
time needed by NPC. This highlights the efficiency of OSA,
making it well-suited for large-scale robust training tasks.

5. Conclusion

In this work, we investigated the potential of anti-noise
techniques for practical large-scale training, uncovering the
underlying mechanisms of orthogonal boundary shifts in
pre-trained models. We provide theoretical guidance for
fully harnessing the capabilities of pre-trained models in
noise mitigation. Building on these insights, we introduced
a novel model-agnostic anti-noise paradigm that offers key
advantages, including task transferability, model adaptabil-
ity, and minimal computational overhead. By leveraging the
properties of high-dimensional orthogonality, we designed a
robust decision boundary to effectively distinguish between
noisy and clean samples. Through rigorous theoretical anal-
ysis and comprehensive experiments, we demonstrated the
efficacy and robustness of OSA for general noise mitiga-
tion. While our primary focus was on adapting to large-
scale training scenarios, OSA also achieves state-of-the-art
performance in standard anti-noise settings. To our knowl-
edge, this is the first work to explore noise mitigation in
large-scale training and to fully leverage the potential of
pre-trained models in this context, as well as the first to
propose a general anti-noise approach.
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Impact Statement

This paper presents work whose goal is to advance the field
of robust learning in noisy correspondences. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.

References

Albert, P., Ortego, D., Arazo, E., O’Connor, N. E., and
McGuinness, K. Addressing out-of-distribution label
noise in webly-labelled data. In WACYV, pp. 2393-2402,
2022.

Albert, P., Arazo, E., Krishna, T., O’Connor, N. E., and
McGuinness, K. Is your noise correction noisy? PLS:
robustness to label noise with two stage detection. In
WACYV, pp. 118-127, 2023.

Bogolin, S., Croitoru, L., Jin, H., Liu, Y., and Albanie, S.
Cross modal retrieval with querybank normalisation. In
CVPR, pp. 5184-5195, 2022.

Chen, J., Hu, H., Wu, H,, Jiang, Y., and Wang, C. Learning
the best pooling strategy for visual semantic embedding.
In CVPR, pp. 15789-15798, 2021.

Chun, S. Improved probabilistic image-text representations.
arXiv preprint arXiv:2305.18171, 2023.

Diao, H., Zhang, Y., Ma, L., and Lu, H. Similarity reasoning
and filtration for image-text matching. In AAAI pp. 1218-
1226, 2021.

Ethayarajh, K. How contextual are contextualized word
representations? comparing the geometry of bert, elmo,
and GPT-2 embeddings. In EMNLP, pp. 55-65, 2019.

Faghri, F., Fleet, D. J., Kiros, J. R., and Fidler, S. VSE++:
improving visual-semantic embeddings with hard nega-
tives. In BMCV, pp. 12, 2018.

Feng, C., Tzimiropoulos, G., and Patras, I. Clipcleaner:
Cleaning noisy labels with CLIP. In ACM MM, pp. 876—
885, 2024.

Ghosh, A., Kumar, H., and Sastry, P. S. Robust loss func-
tions under label noise for deep neural networks. In
Proceedings of the Thirty-First AAAI Conference on Ar-
tificial Intelligence, February 4-9, 2017, San Francisco,
California, USA, pp. 1919-1925. AAAL, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, pp. 770-778,
2016.

Huang, Z., Niu, G., Liu, X., Ding, W., Xiao, X., Wu, H.,
and Peng, X. Learning with noisy correspondence for
cross-modal matching. In NeurlIPS, pp. 29406-29419,
2021.

Ibrahimi, S., Sors, A., de Rezende, R. S., and Clinchant, S.
Learning with label noise for image retrieval by selecting
interactions. In WACYV, pp. 468-477, 2022a.

Ibrahimi, S., Sors, A., de Rezende, R. S., and Clinchant, S.
Learning with label noise for image retrieval by selecting
interactions. In WACV, pp. 468-477, 2022b.

Jia, C., Yang, Y., Xia, Y., Chen, Y., Parekh, Z., Pham, H., Le,
Q. V., Sung, Y., Li, Z., and Duerig, T. Scaling up visual
and vision-language representation learning with noisy
text supervision. In /ICML, volume 139, pp. 49044916,
2021.

Lee, K., Chen, X., Hua, G., Hu, H., and He, X. Stacked cross
attention for image-text matching. In ECCV, volume
11208, pp. 212-228, 2018.

Li, H,, Song, J., Gao, L., Zeng, P, Zhang, H., and Li, G. A
differentiable semantic metric approximation in proba-
bilistic embedding for cross-modal retrieval. In NeurIPS,
volume 35, pp. 11934-11946, 2022.

Li, H, Song, J., Gao, L., Zhu, X., and Shen, H. Prototype-
based aleatoric uncertainty quantification for cross-modal
retrieval. In NeurIPS, 2023.

Li, J., Socher, R., and Hoi, S. C. H. Dividemix: Learning
with noisy labels as semi-supervised learning. In ICLR,
2020.

Li, K., Zhang, Y., Li, K., Li, Y., and Fu, Y. Visual semantic
reasoning for image-text matching. In ICCV, pp. 4653—
4661, 2019.

Liang, C., Zhu, L., Shi, H., and Yang, Y. Combating label
noise with A general surrogate model for sample selection.
CoRR, abs/2310.10463, 2023.

Liang, W., Zhang, Y., Kwon, Y., Yeung, S., and Zou, J. Y.
Mind the gap: Understanding the modality gap in multi-
modal contrastive representation learning. In NeurlIPS,
2022a.

Liang, X., Yao, L., Liu, X., and Zhou, Y. Tripartite: Tackle
noisy labels by a more precise partition. CoRR, 2022b.

Lin, T., Maire, M., Belongie, S. J., Hays, J., Perona, P,
Ramanan, D., Dollar, P., and Zitnick, C. L. Microsoft
COCO: common objects in context. In ECCV, volume
8693, pp. 740-755, 2014.

Liu, C., Yu, H.,, Li, B., Shen, Z., Gao, Z., Ren, P., Xie,
X., Cui, L., and Miao, C. Noise-resistant deep metric
learning with ranking-based instance selection. In CVPR,
pp. 6811-6820, 2021.



Submission and Formatting Instructions for ICML 2025

Lu, Y., Ma, C, Lu, Y, Lu, J., and Ying, L. A mean field
analysis of deep resnet and beyond: Towards provably
optimization via overparameterization from depth. In
ICLR, volume 119, pp. 6426-6436, 2020.

Menon, A. K., van Rooyen, B., Ong, C. S., and Williamson,
B. Learning from corrupted binary labels via class-
probability estimation. In ICML, volume 37, pp. 125-134,
2015.

Natarajan, N., Dhillon, I. S., Ravikumar, P., and Tewari, A.
Learning with noisy labels. In NeurIPS, pp. 1196-1204,
2013.

Patrini, G., Rozza, A., Menon, A. K., Nock, R., and Qu,
L. Making deep neural networks robust to label noise:
A loss correction approach. In CVPR, pp. 2233-2241,
2017.

Qin, Y., Peng, D., Peng, X., Wang, X., and Hu, P. Deep
evidential learning with noisy correspondence for cross-
modal retrieval. In ACM MM, pp. 4948-4956, 2022.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever, 1. Learning transferable

visual models from natural language supervision. In
ICML, volume 139, pp. 8748-8763, 2021.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In CVPR, pp. 1067410685, 2022.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Sirignano, J. and Spiliopoulos, K. Mean field analysis of
neural networks: A central limit theorem. Stochastic Pro-
cesses and their Applications, 130(3):1820-1852, 2020.

Song, Y. and Soleymani, M. Polysemous visual-semantic
embedding for cross-modal retrieval. In CVPR, pp. 1979—
1988, 2019.

Sun, Z., Yao, Y., Wei, X., Zhang, Y., Shen, F., Wu, J,,
Zhang, J., and Shen, H. T. Webly supervised fine-grained
recognition: Benchmark datasets and an approach. In
ICCV, pp. 10582-10591. IEEE, 2021.

Sun, Z., Shen, F., Huang, D., Wang, Q., Shu, X., Yao, Y.,
and Tang, J. PNP: robust learning from noisy labels by
probabilistic noise prediction. In CVPR, pp. 5301-5310,
2022.

Wang, D. and Tan, X. Robust distance metric learning via
bayesian inference. IEEE Trans. Image Process., 27(3):
1542-1553, 2018.

10

Wang, X., Hua, Y., Kodirov, E., Clifton, D. A., and Robert-
son, N. M. Imae for noise-robust learning: Mean absolute
error does not treat examples equally and gradient magni-
tude’s variance matters. arXiv preprint arXiv:1903.12141,
2019a.

Wang, Y., Ma, X., Chen, Z., Luo, Y., Yi, J., and Bailey, J.
Symmetric cross entropy for robust learning with noisy
labels. In ICCV, pp. 322-330, 2019b.

Wei, T., Li, H., Li, C., Shi, J., Li, Y., and Zhang, M. Vision-
language models are strong noisy label detectors. CoRR,
abs/2409.19696, 2024.

Xia, X., Liu, T., Wang, N., Han, B., Gong, C., Niu, G., and
Sugiyama, M. Are anchor points really indispensable in
label-noise learning? In NeurlPS, pp. 6835-6846, 2019.

Xu, Y., Cao, P, Kong, Y., and Wang, Y. L_dmi: A novel
information-theoretic loss function for training deep nets
robust to label noise. In NeurlPS, pp. 6222-6233, 2019.

Yang, S., Xu, Z., Wang, K., You, Y., Yao, H., Liu, T., and Xu,
M. Bicro: Noisy correspondence rectification for multi-
modality data via bi-directional cross-modal similarity
consistency. In CVPR, pp. 19883—-19892, 2023a.

Yang, X., Wang, H., Sun, J., Zhang, S., Chen, C., Hua,
X., and Luo, X. Prototypical mixing and retrieval-based
refinement for label noise-resistant image retrieval. In
ICCV, pp. 11205-11215, 2023b.

Yao, Y., Sun, Z., Zhang, C., Shen, F., Wu, Q., Zhang, J., and
Tang, Z. Jo-src: A contrastive approach for combating
noisy labels. In CVPR, pp. 5192-5201, 2021.

Yi, K. and Wu, J. Probabilistic end-to-end noise correction
for learning with noisy labels. In CVPR, pp. 7017-7025,
2019.

Young, P., Lai, A., Hodosh, M., and Hockenmaier, J. From
image descriptions to visual denotations: New similarity
metrics for semantic inference over event descriptions.
Trans. Assoc. Comput. Linguistics, 2:67-78, 2014.

Yu, X., Han, B., Yao, J., Niu, G., Tsang, I. W., and
Sugiyama, M. How does disagreement help generaliza-
tion against label corruption? In ICML, pp. 7164-7173,
2019.

Zhang, X., Li, H., and Ye, M. Negative pre-aware for noisy
cross-modal matching. In AAAI pp. 7341-7349, 2024.

Zhang, Z. and Sabuncu, M. R. Generalized cross entropy
loss for training deep neural networks with noisy labels.
In NeurlPS, pp. 8792-8802, 2018a.

Zhang, Z. and Sabuncu, M. R. Generalized cross entropy
loss for training deep neural networks with noisy labels.
In NeurIPS, pp. 8792-8802, 2018b.



Submission and Formatting Instructions for ICML 2025

Appendix
A. Limitations and Future Works

Limited by the significant computational cost of pre-training, it is difficult for us to evaluate in a real pre-training process.
Instead, we simulate large-scale pre-training processes to the greatest extent possible, such as evaluating on the real-world
noisy dataset CC120K, which shares similar domains with mainstream pre-training datasets like CC4M and CC12M.
Exploring the broad domain adaptability of OSA in real pre-training scenarios will be a valuable direction for future work.

B. Details of Implementation

Dataset Details. MSCOCO is widely used for noisy cross-modal matching, with each image accompanied by five descriptive
captions. Following the setting of Huang et al. (2021), we utilize 113,287 images for training, 5,000 for validation, and
5,000 for testing. The Flickr30K dataset encompasses 31,783 image-text instances, each image paired with five textual
annotations. Adhering to the NCR (Huang et al., 2021), we use 29,783 images for training and 1,000 images each for
validation and testing. Regarding noise splits, following the NCR categorization, we conduct experiments at noise ratios
of 0%, 20%, 40%, and 60%. CC120K is a real-world multimodal noisy dataset collected by Zhang et al. (2024) from the
Internet, with about 3%-20% noise ratio. There are 118,851 image-text pairs for training, 1,000 for validation, and 1,000 for
testing.

The Aircraft, Bird, and Car we used in the image classification task are three non-overlapping subsets of the WebFG-496 (Sun
et al., 2021) dataset. WebFG-496 consists of 53,339 images, totaling 496 subcategories. This dataset is annotated using a
webly supervised approach, which leverages resources from web search engines (e.g., Google Image Search Engine, Bing
Image Search Engine) to expand the annotated image dataset.

For the image retrieval task, we conduct experiments on the CARS98N dataset under PRISM’s setting (Liu et al., 2021). We
utilize 9,558 car-related images sourced from text-based searches on Pinterest as the training set, and employ the remaining
98 categories from CARS, unsearched on Pinterest, as a clean test set. The dataset’s noise is inherently real-world, with its
creators estimating a noise ratio of approximately 50%.

Implementation Details. To demonstrate the effectiveness of the OSA, we incorporate an estimator, built around the core
of CLIP, and re-weighting operations based on the Estimator’s outcomes into numerous downstream tasks. In the principal
task of cross-modal image-text retrieval, we employ CLIP with ViT-B/32 as the baseline and target model by default. All
experiments are conducted on a single RTX 3090 GPU using the AdamW optimizer. During both training phases, the model
is trained for five epochs with a batch size of 256 and 500 warmup steps.

For the image classification task on the WebFG dataset, we align with the field’s prevalent models for a fair comparison by
employing the ResNet-50 model enhanced by CLIP for feature extraction and the CLIP image encoder as our estimator.
Training and testing are executed on single RTX 3090 GPU, with an input image resolution of 448 x 448. The batch size and
initial learning rate are specified as 64 and le-5, respectively. In the first phase, the estimator is trained with data modeled by
a Gaussian Mixture Model (GMM), which considers the classification and matching losses of all training samples, with the
GMM probability threshold of 0.95. The classification task leverages the CLIP protocol, where a fixed prompt (“This is a
picture of”’) is prepended to category texts.

For the image retrieval task, we use CLIP ViT-B/32 as the baseline, with a batch size set to 128, an initial learning rate
of 5e-6, and the number of epochs set to 10. Following the setup of the PRISM (Liu et al., 2021), we set the parameter
for sampling positive examples by the random sampler of the dataloader to 4, and adjust the number of positive examples
sampled per epoch to one-fourth of the original parameter according to the increase in batch size. In this task, we also adopt
a two-stage training approach. The strictly clean in-domain training data for the first stage is obtained using a GMM model
with a probability setting of 0.8.

C. Related work
C.1. Noise Mitigation in Cross-Modal Matching

The cross-modal matching task (Lee et al., 2018; Song & Soleymani, 2019; Li et al., 2019; 2022; Diao et al., 2021) serves
as a fundamental component in multimodal learning. However, the inherent difference in information density between
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these modalities leads to high annotation costs and inconsistent annotation quality, rendering cross-modal tasks particularly
vulnerable to label noise. Some approaches explicitly identify and correct noisy samples through cross-prediction between
concurrently trained dual models (Huang et al., 2021; Yang et al., 2023a; Liang et al., 2022b), while others (Zhang et al.,
2024; Qin et al., 2022) implicitly estimate the probability of sample noise, reducing its training impact by adjusting the loss
function. NCR (Huang et al., 2021) employs the memorization capacity of its counterpart model for simple clean samples to
rectify the output results. BiCro (Yang et al., 2023a) utilizes the consistency of similarity score distributions from a Siamese
model ensemble on noisy data, alongside anchors modeled on the loss distribution via a Beta-Mixture-Model (BMM), to
filter out noisy samples. NPC (Zhang et al., 2024), deviating from the dual-model training schemes, introduces a two-stage
single-model training approach that reduces training overhead by replacing two backward passes with one forward and one
backward pass. Specifically, the first stage estimates the impact of potentially noisy samples on model performance by
constructing a high-quality clean sample bank; the second stage then utilizes these estimates to reweight the loss function.
However, current methods for distinguishing clean from noisy samples rely on numerous hyperparameters that are closely
linked to dataset size and model capacity. This dependency not only limits their adaptability to various downstream tasks
but also makes them challenging to deploy in real-world applications.

C.2. Noise Mitigation in Image Classification

Image classification is vulnerable to training data noise, due to varied noise types and strong model memorization. Noise
in datasets manifests in two primary forms: synthetic alterations and those arising from real-world scenarios. The former
typically involves shuffling the labels of a subset of the data or retaining the labels while introducing corresponding category
images from external datasets. The latter entails substituting images for a random selection of data points with those sourced
from image search engines. Existing approaches are categorized based on their operational focus: loss correction (Yi
& Wu, 2019; Zhang & Sabuncu, 2018a; Menon et al., 2015; Natarajan et al., 2013; Patrini et al., 2017; Xia et al., 2019;
Ghosh et al., 2017; Wang et al., 2019a;b; Xu et al., 2019; Zhang & Sabuncu, 2018b) and sample selection (Sun et al., 2022;
Albert et al., 2023; Yao et al., 2021; Li et al., 2020; Albert et al., 2022). Loss correction methods typically incorporate a
regularization term into the loss function, implicitly reweighting clean and noisy samples within the loss. Sample selection
strategies, in contrast, explicitly differentiate between clean and noisy samples, applying distinct processing to each category
during loss computation. Representative for the loss correction category, (Zhang & Sabuncu, 2018a) aims to generalize
ordinary Cross-Entropy loss and MAE loss by setting the loss threshold to iid and ood noisy samples. DivideMix (Li
et al., 2020) concurrently trains two networks, each utilizing the data partitioning from the other network to distinguish
between clean and noisy samples based on loss values, thereby mitigating the influence of confirmation bias inherent within
each network. PNP (Sun et al., 2022) framework employs a unified predictive network to estimate the in-distribution (iid),
out-of-distribution (ood), and clean probabilities for a given sample. Co-training trained on a sample that has a lower loss,
and with the different predictions by its siamese network.

C.3. Noise Mitigation in Image Retrieval.

Although image retrieval tasks focus on pairwise relationships, the noise predominantly originates from image categorization
errors. Analogous to image classification tasks, this can be bifurcated into in-domain (Wang & Tan, 2018) and open-set
noise (Liu et al., 2021). In terms of task configuration, noise retrieval typically operates at the category level, treating
images within the same category as positive instances. PRISM (Liu et al., 2021) tries to find noisy image samples by
finding the outliers score in the whole similarity matrix from the same category. The generalization ability of the image
feature is ensured by a broader query bank restored multi-view of it. TITAN (Yang et al., 2023b) utilizes prototypes to
be representative of the anchor of the clean and noisy samples and then generates synthetic samples by a combination
of prototypes for substitution of noisy samples. T-SINT (Ibrahimi et al., 2022b) utilizes more negative samples by the
interaction between noisy samples and negative samples that belong to another category.

D. Proofs
D.1. Proof of High-dimensional Orthogonality

Suppose u,v € R? are any two random vectors. The cosine similarity cos(u,v) ~ N(0,d~1). The probability that
cos(u, v) is within a specific range [—a, a] is denoted as:

P(~a < cos(u,v) < a) = ® (“) ) (‘“) , @

S S

12



Submission and Formatting Instructions for ICML 2025

where ® represents the CDF of the standard normal distribution, and ¢ = % is the standard deviation of the cosine similarity.
When d = 1024 and a = 0.1, there are

1 1
= = —, 8
NN T YD) ®)
and
P(—0.1 < cos(u,v) <0.1) = 1N g (201 < 09986, )
= s =B =T 132 1/32) 7~
D.2. Proof of Theorem 1

In the Section. 2.2, we propose that Theorem 1 about the relative relationship of pairs in the original entire space, will not
change after transmitting to the narrow cone space of the trained model, and there is always a boundary r concentrated on
most random vectors.

To prove this Theorem, we first introduce a useful lemma of monotonicity of cosine similarity proposed by Liang et al.
(2022a), indicating that the cosine similarity between two vectors increases with a high probability after one feedforward
computation consisting of a linear transformation and ReLU computation.

Lemma D.1. Suppose u,v € R4 are any two fixed vectors such that ||u|| = r ||v|| for some r > 0, W € Rdewt*din js q
random weight matrix where each element Wy, ; ~ N'(0,d,.},) for k € [dout), | € [din], and b € Rt is a random bias
vector such that by, ~ N(0,d,.;) for k € [dous]. If cos(u,v) < (3(r + 2))7L, then the following holds with probability at
least 1 — O(1/dout).

cos(c(Wu +b),0(Wov + b)) > cos(u, v). (10)

Proof of Theorem. 2.1. Let R%" be the original space before being transmitted in a neural network. Suppose u,v € R
are any two random vectors with cos(u,v) & 0. u.,v. € R%" is a pair of clean vectors with cos(u.,v.) > 0, while
Up, vy, € R% is a noisy pair with cos(u,,v,) < 0. Given a Neural Network F(z) = fi(fi—1(... f2(f1(z ) € Rdout
with ¢ layers. f;(z) = o;(W;z + b;) denotes i layer, where o(-) indicates activation function. W; € R%ut*din is a
random weight matrix where each element W' ~ A/(0,1/d:,,,) for k € [d,,], 1 € [d,], and b; € R%ut is a random

out n
bias vector such that b¥ ~ N(0,1/d¢,,) for k € [di,,]. We would like to prove that there are always be a boundary 3,
satisfying:

cos(F(up), F(vy)) < cos(F(u), F(v)) = B < cos(F(u.), F(ve)), (11)
which is equivalent to proving.

cos(fi(un), fi(vn)) < cos(fi(u), fi(v)) = B; < cos(fi(ue), fi(ve)), (12)
where ; is the boundary of i*" layer.

We first consider the cosine similarity between u and v as:

u-v
cos(u,v) = T———. (13)
[ullllv]
After a linear transformation of i layer, the cosine similarity of cos(W;u + b;, W,;v + b;) denotes:
i b, iU+ by
cos(W;u+b;, W;u+b;) = (Wiu+by) - (Wiv + b) (14)

Wi+ by[[ [ Wiv + by[|

Since b; has a mean of zero and is independent from W ,u and W v, the expectation of b; and (W;u + b;) - W;v + b;)
can be signified as:
E[b;] =0, (15)

n

E[(W;u+b;)- (Wiv+b;)] =E[(W => dl URvE = il (u-v). (16)

i—1 i=1 out out

13
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Additionally, we have

Due to b¥ ~ N(0,1/d!,,), as dut increases, the term of 2W;u - b; and b; - b; become negligible, which implies
[Wiu+ b2 ~ Wu - Wu = Z(Wiu)Q. (18)
i=1
Therefore, the expectation of ||[W;u + b;||? is approximate to

n

E (W] =S up = 1ol (19)

k=1 out douf

and
VE[[Wiu + b [PJE[[Wv + b;|2]

d"l (u “) (20)

a—|lvl?
= cos(u,v).

cos(Wiu + bi, Wﬂ) + bz)

Q

Based on Eq. 20, with cos(u,, vy,) < cos(u,v) = 0 < cos(u,, v.), there are
cos(W,u, + b;, W;u,b;) < cos(W;u + b;, W;v 4+ b;) < cos(W;u. + b;, W,u. + b;). 2D
Since the activation function o is a monotonically increasing function, it follows
cos(fi(un), fi(vn)) < cos(fi(u), fi(v)) < cos(fi(uc), fi(ve))- (22)

Due to Lemma. D.1, cos(f;(u), fi(v)) will be increase with the transmitting layers, and cos(f;(u), f;(v)) will always be a
B; > 0, to satisfy:

cos(fi(un), fi(vn)) < cos(fi(u), fi(v)) = Bi < cos(fi(uc), fi(ve))- (23)

After transmitting each layer, Eq. 23 are always satisfied. When transmitting a neural network with ¢ layers, we have
cos(F (uy), F(vy)) < cos(F(u), F(v)) = B < cos(F(u.), F(ve)). (24)
O

D.3. Proof of Orthogonality Validity in Cone Space

Although we have demonstrated in Appendix. D.1 that in the original high-dimensional space, the cosine similarity between
two randomly selected vectors—each dimension following a Gaussian distribution—typically converges near the orthogonal
boundary, this property may not necessarily extend to the subspace of the shared embedding space maintained by the trained
models. Specifically, for real image-text pairs, the subspace may deviate from the orthogonal characteristics observed in the
original space. Thus, it is essential to investigate whether the orthogonality property holds within the cone space for the
image-text subdomain post-training.

To explore this, we first analyze the distribution of several dimensions of image and text features from the CC120K dataset,
as illustrated in Figure. 3. The results reveal that all vector dimensions, including trained parameters, exhibit a Gaussian
distribution with near-zero means. This phenomenon arises from the convergence properties in two-layer networks that
adhere to the central limit theorem (Sirignano & Spiliopoulos, 2020), which, through the application of mean-field analysis,
has been extended to neural network architectures (Lu et al., 2020). Consequently, the model parameters exhibit an overall
Gaussian distribution, leading to Gaussian features. If the dimensions of the trained embedding space follow Gaussian
distributions, the process of selecting random vectors within this space would be analogous to that of the original space,
thereby preserving the orthogonality property. Here, we present the following theorem: The output features of large-scale
models tend to Gaussian distribution. The detailed theorem and proof are provided below.

14
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CLIP parameter Distribution 128-th dimension distribution of CLIP image space 256-th dimension distribution of CLIP image space 512-th dimension distribution of CLIP image space

¢ =24 ¢ =001 4000 ¢ =005 1000 ¢ = -0.07
4 2= 1e3 4000 %= 0.06 %= 0.08 2= 007
Z 3000 3000
El El El El
Ez g’zooo EZUUD gzuuu
1 1000 1000 1000
0 ! ! 0 [ 0
-0.100 -0.075 -0.050 -0.025 0.000 0.025 0.050 0.075 0.100 -15 -1.0 -0.5 0.0 05 1.0 15 -1.5 -1.0 -05 0.0 05 1.0 15 -15 -1.0 -05 0.0 05 1.0 15
Parameter Values Element Values Element Values Element Values
(a) parameters (b) 128-th dim of image (c) 256-th dim of image (d) 512-th dim of image
128-th dimension distribution of CLIP text space 256-th dimension distribution of CLIP text space 512-th dimension distribution of CLIP text space
6000 ¢ = -0.03 5000 ¢ = -0.00 5000 ¢=-011
5000 0?=0.04 4000 0% =005 4000 0?=0.06
54000 z 3
§ $ § 3000
%3000 %3000 %
s 2000 £ 2000 & 2000
1000 1000 ||| 1000 l"'
0 _al . 0 ..|I|| ||I| 0 v b
-1.5 -1.0 -05 0.0 05 1.0 15 -15 -1.0 1.0 15 -15 -1.0 0.5 0.0 05
Element Values E\emenlvalues Element Values
(e) 128-th dim of text (f) 256-th dim of text (g) 512-th dim of text

Figure 3: The illustrations of several distributions on CC120K. (a) The parameter distribution. (b-d) The distribution of
image features for the 128th, 256th, and 512th dimensions. (e-g) The distribution of text features for the 128th, 256th, and
512th dimensions.

Theorem D.2 (Output features tends to Gaussian). Given a Neural Network F(z) = {fi(fi—1(... f2(f1(2))))} € Rout
with t layers. fi(x) = ¢(Wix + by) denotes the I'" layer, where ¢(-) indicates the activation function, and the final
layer fi(x) = Wyx + by is a fully-connected layer without an activation function for common space projection. Let
2% € R be the sample feature that will be transmitted into the k" layer, where x' denotes the original feature with an
unknown distribution x* ~ (ji,,02%). Wy, € Réour % is a random weight matrix where each element w¥ o~ N(0,02) for

i€[dr,) j€ldr,), andby, € Réout is a bias vector such that b ~ N(0,02) fori € [d~,,]. In such a neural network,
linear layers lead features x gradually to a Gaussian distribution from any mltml distribution, and as |d;,| is sufficiently

large, F(x) ~ N(0,02).

Proof of Theorem. D.2. For the k" layer (k € [t]), we first calculate the expectation and variance of the linear combination

k
Zj , wi;z¥. For the expectation, since wy; and ¥ are independent and w; ~ N(0, ﬁ), we have:
dr
2 |3 vt = 3 stu o) =300 - o
=1

For variance, since wf] and xf are independent, we have:

sz ;C ZV&I‘ Wi J ZE )2]

d;z
=Y E[(wh)? E [(z})?]
j=1

: (26)
— 72 o2y (Var(zh) + (E[25])?)

k.,
—Zowk g k"‘,um)_dm Ok (Uik +Mik)~
Jj=1

Since wfj are independently distributed Gaussian random variables, and :C;f has a known mean and variance, the sum of

15
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wfj xf can apply to a generalized Central Limit Theorem. We have

VA 37

4k ok
\/Var (Z] LW

k k
z;lgl wka* — R [Z;jml wk. ok

} 4 N(0,1), Q27)

which is equivalent to

ik ok
Z] 1 Wiy 1_0

4 N(0,1). (28)
\/dm wk zk +ka)
Therefore,
dr
wajx L N(0,d5, 02 (0% + ). (29)
=1
Due to b* ~ N(0,02), we finally get
Zw@xf—i—bk—w\/(O A o2 (02 + pi2) + of) (30)

Although activation functions truncate the Gaussian distribution after each linear layer, the samples still gradually approach
a Gaussian distribution from the initial unknown distribution as they pass through the layers. Furthermore, because there is a
fully connected layer ( layer) without an activation function before mapping to the final common space, the final feature
distribution will approximate a Gaussian distribution, as follows:

F(z) ~ N(0,d},00: (020 4 pie) + 7). (31)

E. SDM Visualization

We visualize some representative samples from our synthetic domain originating from COCO by using SDM. The results are
shown in Figure. 4. We generate two styles of image based on the MSCOCO caption, and then use pre-trained multimodal
models to calculate cosine similarity with the SDM-generated image and original caption.

16
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E—"
-
A kitchen counter with dirty A couple of young men playing a A wooden kitchen table with
dishes near sink. game of frisbee. three wooden chairs.

aamy

A woman in a young girl Miscellaneous kitchen Skier standing for picture on a
inside of the cabin. utensils on a wooden shelf. gentle slope.

Figure 4: Examples of generated SDM dataset. The first row is in sketch style, while the second row is in cartoon style.

F. Additional Experimental Results
F.1. Exploration of Different Scoring Function

In Section 3.3.1, we introduce a scoring function designed to handle overlaps effectively and re-weight samples based
on their cosine similarity. This section explores several scoring functions, including the Linear, Cosine, and High-degree
functions. The functions are presented individually as follows:

Linear Function.

0 By <0
Y =9 - ' 32
wz,y,8) {sg;y ,otherwise G2
Cosine Function.
0 WSy <0
ZU(xa Y, ﬂ) = COS(W(gx,y — 1)) +1 otherwise (33)
2 )
High-degree Function.
=1 o =0 (34)
w x’ 7 = ~ ~
Y —(82.9)*(Bzy — 1) ,otherwise

The results presented in Table. 6 indicate that the High-Degree Function outperforms the others across all evaluation metrics.

17
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This superior performance can be attributed to the rapid gradient changes near the decision boundary, which align better
with the tendency of orthogonal boundaries. As a result, we adopt the High-Degree Function as our scoring function.

Table 6: Comparison of different scoring function.

MS-COCO 1K MS-COCO 5K
Noise ratio | Method i2t 2i i2t t2i
R@1 R@5 R@10 R@l R@5 R@10|R@]1 R@5 R@I0 R@1 R@5 R@I0
Linear Function 804 962 986 | 678 91.6 964 | 640 855 919 |479 746 838

50% 80.8 96.3 98.5

814 96.5 98.6

67.7 91.6 963

. 644 862 923
684 92.0 96.6

. 48.0 749 839
64.7 86.8 924

Cosine Function .
48.6 759 84.6

High-Degree Function

Table 7: Comparison on noisy Flickr30K.

Method | Noise rat 2t 12i Noise rati 2t 12i
ethod| Noiseratio| p @1 R@5 R@10|R@1 R@5 R@10|\°¢1° p@] R@5 R@10|R@1 R@5 R@10
NCR 773 940 975 |59.6 844 89.9 735 932 96.6 | 569 824 885
DECL 79.8 949 974 |59.5 839 895 775 93.8 97.0 |56.1 81.8 88.5
BiCro | o |817 953 984 616 856 90.8 | o, |78.1 944 97.5 |60.4 844 899
NPC °© 1879 981 994 |75.0 93.7 972 © 1873 975 98.8 |72.9 92.1 958
CLIP 862 97.6 992 |72.9 923 96.0 823 955 983 |66.0 88.5 93.5
+OSA 88.6 97.7 99.3 |75.6 93.6 96.8 889 977 99.1 |75.6 93.3 96.9
NCR 68.1 89.6 94.8 |51.4 784 848 139 37.7 505 |11.0 30.1 414
DECL 727 923 954|534 794 864 652 834 940 |46.8 740 82.2
BiCro | oo | 746 927 962|555 8L1 874 | . |67.6 90.8 944|512 776 847
NPC © 1856 975 984 |71.3 913 953 © 1830 959 986 |68.1 89.6 942
CLIP 762 933 96.5 |59.4 850 90.9 663 87.3 93.0 |52.1 788 874
+OSA 87.3 97.6 993 | 742 93.1 96.7 87.2 98.1 99.6 | 744 929 96.4

Results on CC120K. To further verify the reliability of OSA in real scenarios, we conduct evaluations on a large-scale
real-world noisy dataset, CC120K, with 3%-20% noise ratio. The results in Table. 8 indicate that OSA outperforms
the current state-of-the-art method NPC, even in larger-scale real-world domains. This demonstrates the feasibility and
generality of OSA even in practical training scenarios.

Table 8: Comparison on real-world noisy dataset CC120K.

i2t t2i

Method R@1 R@5 R@10|R@1 R@5 R@10
NPC 71.1 920 96.2 | 73.0 90.5 94.8
CLIP 68.8 87.0 929 |67.8 864 90.9
+OSA (731 922 957 |73.9 912 947

Table 9: The results of other methods employing OSA on MSCOCO 1K.

i2t t2i

Noise Ratio | Method R@1 R@5 R@10|R@1 R@5 R@10
0% NPC 822 96.5 98.7 | 683 92.0 98.7
+OSA | 824 96.4 98.6 | 685 91.8 98.7

20% NPC 799 959 984 |663 905 984
+OSA | 81.2 96.0 98.6 | 669 91.2 98.6

50% NPC 782 944 977 |63.1 89.0 977
+OSA | 793 956 982 | 668 90.8 98.2
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Table 10: Ablation study of estimator type on noisy MS-COCO.

MS-COCO 1K MS-COCO 5K
Noise ratio | Estimator 12t 21 it 2i
R@] R@5 R@10 R@1 R@5 R@10|R@1 R@5 R@10 R@1 R@5 R@I10
None 80.1 957 982 |67.1 914 966 |629 849 91.6 |465 738 829
0% CLIP (w/o DA) | 82.6 96.7 98.7 |68.5 921 96.7 |66.2 87.0 933 |48.6 757 84.8
ALIGN (w/o DA)| 81.9 96.7 98.7 | 689 922 969 |64.8 86.6 92.7 [49.0 759 84.7
CLIP (wDA) 822 96.5 987 |68.8 92.1 96.7 | 656 86.8 929 [49.1 76.2 84.8
None 76.0 943 975 |63.4 89.0 948 553 79.1 86.9 |41.0 68.8 793
20% CLIP (w/oDA) |81.8 96.1 98.7 682 919 96.5 | 648 86.6 923 |48.3 754 84.1
ALIGN (w/oDA)| 81.2 96.0 98.6 | 67.7 91.5 964 |64.8 86.2 923 |47.8 749 83.9
CLIP (wDA) 81.6 96.2 985 [68.9 92.0 96.6 | 658 864 92.5 |48.7 76.1 84.5
None 73.9 93.0 972 |60.1 87.3 94.0 |54.1 785 86.6 |39.7 672 715
50% CLIP (w/oDA) |79.6 956 98.4 | 659 90.8 959 |62.4 848 90.8 [457 73.1 825
ALIGN (w/o DA)| 80.4 956 98.3 | 66.0 90.5 958 |62.0 849 91.8 [457 732 825
CLIP (wDA) 81.4 96.5 98.6 | 684 92.0 96.6 | 64.7 868 92.4 |48.6 759 84.6

Table 11: Mean Noise Rank Comparison between OSA and NPC.

Noise Ratio | Method | Mean Noise Rank? | Optimal Rank | Noise Number | Sample Number
20% NPC 1641.3 1815.5 370 2,000
(%
OSA 1809.1 1815.5 370 2,000
50% NPC 1456.2 1524.0 953 2,000
0
OSA 1520.7 1524.0 953 2,000

Table 12: Overhead Comparison.

Model Time Extra Cost

CLIP 97 min 0 min
NPC 323 min 226 min
OSA 118 min 21 min
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