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Abstract

Large language models (LLMs) are increasingly applied to tasks involving causal
reasoning. However, current benchmarks often rely on string matching or surface-
level metrics that fail to assess whether a model’s output is formally valid under
causal semantics. We propose DoVerifier, a symbolic verification framework that
checks whether LLM-generated causal expressions are derivable from a given
causal graph using rules from do-calculus and probability theory. This allows us to
recover correct answers that would otherwise be marked incorrect due to superficial
differences. Evaluations on synthetic data and causal QA benchmarks show that
DoVerifier more accurately captures semantic correctness than standard metrics,
offering a more rigorous and informative way to evaluate LLMs on causal tasks.

1 Introduction

Causal reasoning enables humans to explain effects, predict interventions, and reason about counter-
factuals. As large language models (LLMs) OpenAI [2024], Team [2025], DeepSeek-AI [2025] are
increasingly applied in science, medicine, and policy, the ability to generate and verify causal claims
is critical for trustworthy AI Doshi-Velez and Kim [2017]. An LLM that distinguishes correlation
from causation could support tasks from experimental design to hypothesis generation.

Recent benchmarks such as CLadder Jin et al. [2023] and CausalBench Wang [2024] evaluate LLMs
on causal question answering. Yet their evaluation relies on surface-level metrics (e.g., exact match,
BLEU, token-level F1, BERTScore), which reward string similarity rather than semantic correctness.
As a result, logically valid expressions that differ syntactically are penalized, while invalid ones may
score high, leaving causal validity untested.

This limitation reflects a broader gap: causal inference depends on symbolic semantics. The validity
of P (Y | (X)) is determined not by its string form but by derivability from a causal graph using
probability rules and do-calculus Pearl [1995]. Unlike mathematical reasoning tasks Gao et al. [2025],
Fan et al. [2024], Cobbe et al. [2021], Hendrycks et al. [2021], where correctness can often be checked
numerically, causal reasoning rarely permits substitution into a full joint distribution.

We propose DoVerifier, a symbolic verification framework that checks whether LLM-generated
causal expressions are derivable using do-calculus. This approach captures equivalences missed by
string metrics and provides a principled basis for evaluating causal reasoning. Our experiments show
that DoVerifier recovers semantically correct outputs overlooked by existing benchmarks, enabling
more rigorous assessment of LLM causal ability.
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2 Related Work

Evaluation of causal QA in LLMs has largely relied on surface similarity. Benchmarks such as
CLadder Jin et al. [2023] and CausalBench Wang [2024] probe associational, interventional, and
counterfactual queries, but scoring is based on string overlap (e.g., BLEU Papineni et al. [2002],
token-level F1, BERTScore Zhang et al. [2020]). Such metrics often misclassify outputs: logically
equivalent expressions may be penalized, while semantically wrong answers can score high due to
token overlap.

In causal inference, do-calculus Pearl [1995] and the ID algorithm Shpitser and Pearl [2008], Tikka
et al. [2021] provide sound procedures for determining whether a causal effect is identifiable and, if
so, deriving its estimand. One might suggest using ID to simplify each expression and then compare
whether the simplified results are equal. However, this approach is limited to identifiable cases:
if a query is unidentifiable, ID returns failure rather than a transformed expression. In contrast,
DoVerifier is designed to reason symbolically about equivalence even when effects are unidentifiable
but simplifiable through valid applications of do-calculus. For example,

E1 = P (Y | do(X), do(W ), Z) and E2 = P (Y | do(X), Z) (1)
are unidentifiable under many graphs, yet DoVerifier can still establish their equivalence by recog-
nizing that W is irrelevant given Z. Thus, our framework generalizes beyond identification to the
broader task of verifying semantic equivalence between causal expressions. There has been recent
work that aligns answers with causal graphs using templates Sheth et al. [2025], but without symbolic
derivability.

Related efforts in mathematical reasoning also explore formal verification. Systems like Lean and
Isabelle have been used to check proofs Ren et al. [2025], Wang et al. [2024], while SMT-based
approaches assess equivalence in geometry and logic Murphy et al. [2024], Li et al. [2024]. We
build on this paradigm but extend it to causal inference, where correctness depends on do-calculus
derivability in a causal DAG.

3 DoVerifier: Causal Symbolic Verification Framework

3.1 Preliminaries

Let G = (V,E) be a causal DAG over a finite set of observed variables V . We consider a symbolic
language of causal expressions defined as follows.
Definition 3.1 (Causal Expression and Language). A causal expression is any term of the form

P (Y | Z) or P (Y | Z, do(X)), (2)
where Y,Z,X ⊆ V are disjoint variable sets and do(X) denotes interventions on X. The set
of all well-formed expressions under G is denoted Lcausal. Two expressions E1, E2 ∈ Lcausal are
equivalent under G, written E1 ≡G E2, if and only if each can be derived from the other through
valid applications of do-calculus and probability rules consistent with G.

We write Einit ⊢G Etarget to denote that Etarget is derivable from Einit via a finite sequence of
rule applications, while respecting the conditional independencies encoded by G. Intuitively, ⊢G
represents the entailment relation induced by the causal graph: if Einit ⊢G Etarget, then the two
expressions are semantically consistent with the same underlying causal structure.

Problem Statement. Given a causal DAG G and two expressions E1, E2 ∈ Lcausal, our goal is to
determine whether they are causally equivalent under G. Formally, we seek a verifier

F : Lcausal × Lcausal × G → [0, 1], (3)
such that F(E1, E2, G) = 1 iff E1 ⊢G E2. This problem formulation underpins DoVerifier, a
system that symbolically checks causal equivalence by searching for valid derivations under the rules
of do-calculus and probability theory. A summary of the desired properties of a sound verifier is
provided in Appendix A.

Example. Consider E1 = P (F | do(A), do(B), C) and E2 = P (F | do(B)) under a graph where
A only affects F through B. A string-based metric would reject equivalence, but E1 ⊢G E2 holds by
do-calculus.
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Do-calculus rules (sketch) Do-calculus provides three transformation rules governing inser-
tion/deletion of observations and actions. These rules allow us to reduce interventions or exchange
them with observations under appropriate d-separation conditions. We use them as the basis of
symbolic proof search in DoVerifier. (Full formal statements are given in Appendix B.)

3.2 Method

We define DoVerifier, a symbolic verification framework for assessing equivalence between causal
expressions derived from natural language. Given a causal DAG G (which may be generated by
the model) and two expressions Einit, Etarget ∈ Lcausal, DoVerifier determines whether Etarget is
derivable from Einit under the axioms of do-calculus and standard probability theory. The system
enumerates proof sequences through a structured search procedure, as detailed in Appendix C. In
essence, DoVerifier performs a breadth-first search (BFS) over symbolic transformations represented
as custom Python objects.

The framework consists of two modules. The expression parser converts causal expressions from
natural language or symbolic text into normalized structured representations in Lcausal. It recognizes
both observational terms such as P (Y | X) and interventional ones such as P (Y | do(X), Z),
converting them into canonical symbolic objects built on SymPy. These objects support equivalence
checks invariant to variable ordering or formatting. When a causal graph is provided, it is parsed into
a standard NetworkX DAG to interface with the proof engine. This step ensures that LLM-generated
text can be directly analyzed in symbolic form.

The proof search module then determines whether a valid derivation exists from Einit to Etarget. It
performs a BFS over the space of expressions reachable under do-calculus and probability rules,
applying all valid transformations at each step and enqueuing unseen expressions. The search
proceeds until the target is found or a predefined depth limit (typically 20 steps) is reached. Within
this bounded space, the algorithm guarantees completeness: if a valid derivation exists within the
limit, it will be discovered. This procedure allows DoVerifier to serve as a sound, automated checker
of causal equivalence between LLM-generated and reference expressions.

3.3 Soundness and completeness of DoVerifier

We view symbolic verification as reachability in a finite-branching derivation graph whose nodes are
causal expressions and edges are valid rule applications (probability rules + do-calculus). Because G
has finitely many variables and each rule touches bounded subsets, the branching factor is finite.

Proposition 3.1 (Soundness and completeness of DoVerifier). Let G be a causal DAG and let
Einit, Etarget ∈ Lcausal. The BFS-based verifier in DoVerifier is sound: if the system outputs that
Einit ⊢G Etarget, then the derivation is valid under the rule setR (do-calculus and probability rules).
When the search depth is bounded by d, the verifier is complete up to depth d: if a valid derivation of
length ≤ d exists, it will be found. If the depth bound is removed and cycle detection is enforced, the
verifier is both sound and complete.

Implementation details are provided in Appendix C. A proof sketch of completeness is given below;
full proofs are in Appendix D.

Proof. Modify the algorithm such that whenever an expression E is expanded, any successor E′

already appearing in the current path π from Einit to E is discarded. This ensures acyclicity. Because
the variable set V and the rule set R are both finite, the space of possible expressions Lcausal is
finite, and so is the search space S(Einit). Breadth-first search with cycle avoidance will therefore
enumerate all reachable expressions in finitely many steps. If Etarget is reachable from Einit, BFS
will eventually visit it and return a valid derivation, establishing completeness. Soundness follows
directly from the correctness of each inference rule inR. ■
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Model String Match LLM-as-a-judge BLEU Token-F1 DoVerifier (Ours)
Llama3.1-8B 0.57 0.60 0.36 0.57 0.73
Mistral-7B 0.58 0.80 0.33 0.58 0.94
Llama3.1-8B-Instruct 0.88 0.66 0.46 0.70 0.90
Gemma-7B-it 0.80 0.58 0.19 0.55 0.84

Table 1: DoVerifier recovers more correct causal expressions than string match, LLM-as-a-judge,
BLEU, or token-level F1 across four LLMs on CLadder. Our method identifies semantically valid
expressions missed by surface-level metrics.

4 Experiments and Results

4.1 Synthetic Data Test

To verify the internal consistency of the verifier, and to show that existing metrics fail in cases where
syntactically different expressions are the same semantically, we construct a synthetic dataset of over
10,000 expression pairs (Einit, Etarget) such that Etarget is provably derivable from Einit under a known
DAG G. We provide the sampling procedure details in Appendix F. Our symbolic verifier achieves
100% precision and recall under depth limit d = 5, demonstrating correctness of the derivation
engine, while other methods such as string match, or token-level F1 performed poorly due to Einit
and Etarget being too distinct syntactically.

4.2 LLM Causal Reasoning Evaluation

We evaluate how well large language models (LLMs) perform on causal reasoning tasks and how
our symbolic verifier (DoVerifier) improves their evaluation. Specifically, we ask: Can our method
recover correct answers that naive metrics miss?

Setup. We evaluate models on the CLadder benchmark Jin et al. [2023], a suite of causal
questions grounded in known DAGs, each paired with a ground-truth causal expression. Four
models are tested—Llama-3.1-8B, Llama-3.1-8B-Instruct Grattafiori et al. [2024],
Mistral-7B Jiang et al. [2023], and Gemma-7B-it Team et al. [2024]. For each question,
the model output is parsed into a symbolic form and compared to the ground truth using multiple
evaluation schemes. String Match counts a prediction correct only if it exactly matches the nor-
malized reference. LLM-as-a-judge uses GPT-4o OpenAI [2024] to assess whether the predicted
and reference expressions are equivalent given the DAG. BLEU and Token-F1 serve as standard
text-similarity baselines measuring n-gram or token overlap. Finally, Symbolic (Ours) deems an
answer correct if it can be derived from the reference through valid applications of do-calculus and
probability rules within 20 inference steps.

Results. As shown in table 1, DoVerifier consistently recovers additional correct answers across
all models. Many LLM outputs are causally correct yet fail under string or lexical metrics due to
minor differences in syntax, variable order, or formatting. Our verifier restores these missed cases by
checking semantic equivalence rather than surface form, running efficiently in milliseconds.

High-performing models such as Llama3.1-8B-Instruct benefit less because their outputs
already align with reference syntax, while mid-performing models (Mistral-7B, Llama3.1-8B)
gain the most—showing that symbolic verification is especially valuable when models grasp causal
logic but produce alternative formulations. Unlike LLM-as-a-judge, our method guarantees sound-
ness2, avoiding overinterpretation or inconsistency introduced by large evaluators.

Limitations of Alternative Metrics. Conventional similarity metrics such as BLEU, token-level
F1, and BERTScore fail to capture causal correctness because they evaluate surface similarity rather
than semantic validity. BLEU, which measures n-gram precision, is unstable for short expressions
and penalizes harmless reorderings or equivalent reformulations, often rewarding spurious token
overlaps instead of genuine equivalence. Token-level F1 performs slightly better but still ignores

2String match is sound but incomplete.
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structure—expressions such as P (Y ), P (Y | X), and P (Y | do(X)) share most tokens yet differ
fundamentally in meaning.

BERTScore Zhang et al. [2020] extends these metrics by comparing contextual embeddings of tokens,
computed as

BERTScore(ϕpred, ϕgold) = F1BERT(hϕpred , hϕgold), (4)

where hϕ are contextualized embeddings from a pretrained language model. However, these embed-
dings contain no notion of causal semantics—tokens like P, (, or do are treated as similar regardless
of their logical role. Consequently,

BERTScore(ϕpred, ϕgold) > 0.9 ̸⇒ ϕpred ≡G ϕgold. (5)

In contrast, our verifier defines causal equivalence through derivability:

ϕ1 ≡G ϕ2 ⇐⇒ ϕ1 ⊢G ϕ2 ∧ ϕ2 ⊢G ϕ1, (6)

which grounds evaluation in the formal semantics of do-calculus. This guarantees both soundness
and completeness with respect to the causal graph, providing a principled alternative to metrics that
reward syntactic or embedding-level similarity without causal validity.

5 Discussions

This work formalizes the task of verifying causal correctness in language model outputs as a symbolic
inference problem. The primary objective of the study is the derivation graph S(Einit) induced by
the application of a finite rule setR (comprising do-calculus and probability transformations) to an
initial causal expressions.

Semantic Equivalence as Proof-Theoretic Reachability We define semantic equivalence with
respect to a causal graph G as the symmetric closure of the derivability relation:

E1 ≡G E2 ⇐⇒ (E1 ⊢G E2 ∧ E2 ⊢G E1) (7)

This defines a family of equivalence classes [E]≡G
⊂ Lcausal, where each class represents all

expressions that are equivalent iff they encode the same interventional distribution in all causal
models consistent with G. Empirically, we observe that LLM-generated outputs frequently fall
into these equivalence classes without being string-identical to reference answers. For instance,
expressions like P (Y | X,Z) and P (Y | do(X), Z) are lexically distinct but often semantically
equivalent, conditional on specific d-separation statements. Our symbolic verifier resolves this not
via heuristics, but by computing membership in the equivalence class through derivation.

Failure Types Align with Non-derivability The most common model failures (e.g., using P (Y |
X) when X is a collider, or omitting confounders) correspond to derivations that fail d-separation
conditions. For instance, symbolic proof fails when:

(Y ̸⊢ Z | X)GX
=⇒ P (Y | X,Z) ̸≡G P (Y | do(X), Z) (8)

These cases, which account for a significant portion of the errors in the models, are not just empirically
incorrect but provably invalid under our formal system. This illustrates how symbolic reasoning
captures not only surface alignment but deep structural correctness.

6 Conclusion

We introduced DoVerifier, a formal verification framework that evaluates the causal validity of LLM-
generated expressions by modeling causal reasoning as a symbolic derivation task using do-calculus
and probability rules. Our approach recovers semantically correct answers that are missed by standard
metrics, improves recall on causal benchmarks, and enables structured feedback to refine model
outputs.

These findings reveal a significant gap in current evaluation methods and highlight the importance of
symbolic verification for building reliable causal reasoning systems. By connecting natural language
generation with formal inference, DoVerifier offers a principled step toward evaluating models based
on what they truly understand rather than how they phrase it.
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A Desired Properties of a Good Verifier

A central question in the design of verifiers for symbolic causal reasoning F is: what kinds of
differences between derivations should not affect the evaluation? In other words, what transformations
should a good evaluator be invariant to. In this section, we formalize the invariance and sensitivity
properties that an ideal evaluator should satisfy. These properties are motivated both by formal
semantics and by practical considerations in modeling causal reasoning.

Given an initial expression ϕ0, a target expression ϕ∗, and a derivation sequence D =
(ϕ0, ϕ1, . . . , ϕk = ϕ∗), the evaluator should assign a score s(D) ∈ R that reflects the logical
correctness, minimality, and interpretability of the derivation.

Definition (Syntactic Equivalence). Let ϕ and ϕ′ be probability expressions. We write ϕ ≡syn ϕ′

if they differ only by a syntactic permutation that preserves semantic content, such as reordering
terms in a conditioning set:

P (Y | X,Z) ≡syn P (Y | Z,X) (9)

Desideratum 1 (Syntactic Invariance). Let D be a derivation and D′ a derivation obtained by a
sequence of syntactic equivalences to the intermediate steps. Then:

s(D) = s(D′) (10)
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Definition (α-Renaming). Let ϕ contain a variable V that does not appear free in other parts of
the expression. Let ϕ′ be the result of replacing V by V ′, where V ′ is a fresh variable name. Then
ϕ ≡α ϕ′.

Desideratum 2 (α-Renaming Invariance). The evaluator must satisfy
s(D) = s(D′) if each ϕ′

i ≡α ϕi for all i (11)

Definition (Well-Typed Step). A step ϕi → ϕi+1 using do-calculus Rule r ∈
{Rule14,Rule15,Rule16} is valid if an only if the required graphical conditional independence
is entailed by DAG G associated with the problem.

Desideratum 3 (Rule Sensitivity). If D and D′ differ only in that D′ includes a rule application r
that violates the required independence, then:

s(D′) < s(D) (12)
This ensures the evaluator penalizes logically invalid or unsound reasoning.

Definition (Commutativity of Independent Steps). Let ϕi → ϕi+1 → ϕi+2 be two derivation
steps, each applying a rule to a disjoint subformula of the expression. If D1 and D2 are derivations
that only differ in the order of these two steps, then they are commutative.

Desideratum 4 (Step Order Invariance). We want s(D1) = s(D2) if D1,D2 are commutative of
independent steps to ensure the evaluator does not privilege arbitrary ordering of logically independent
rule applications.

Definition (Derivational Equivalence). Let D1 and D2 be distinct derivations from ϕ0 to ϕ∗,
where each step in both sequences is valid, though possibly differing in the choice or order of applied
rules.

Desideratum 5 (Robustness to Valid Alternatives). The evaluator should satisfy ∀ε > 0:
|s(D1)− s(D2)| ≤ ε (13)

This encourages diversity in valid derivations without heavily penalizing alternative but correct
reasoning paths.

B Do-Calculus

Unlike factual QA, causal evaluation is not always numeric: we cannot simply plug in values to verify
an answer. Instead, we must determine whether an expression like P (Y | (X)) follows logically
from a known graph structure.

To determine whether E1 ⊢G E2 holds, we rely on the rules of do-calculus and standard probability
theory Pearl [1995]. These rules define how causal expressions in Lcausal can be transformed while
preserving validity under a given causal graph G. Since causal expressions may involve interventions
(via do(·)), simple syntactic matching is insufficient. Instead, entailment depends on the structure of
G and the conditional independencies it encodes.

Do-calculus provides a sound and complete set of transformation rules for this purpose. In our setting,
these rules form the basis for reasoning about equivalence between expressions and are central to
how we define and implement F .

We now introduce the formal rules that underpin our verification method. These rules form the core
component of DoVerifier. Do-calculus consists of three rules that specify when we can remove or
add terms to a conditional distribution involving interventions Pearl [1995].

The Rules of do-calculus Let X,Y, Z, and W be arbitrary disjoint sets of nodes in a causal directed
acyclic graph (DAG) G 3. Following the notation of Pearl [2012], we denote:

3In do-calculus, X , Y , Z, and W are disjoint sets of variables representing interventions (X), outcomes (Y ),
observed variables (Z), and other variables (W ). These sets can be empty which allows the rules to generalize
to many causal inference scenarios.
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• GX the graph obtained from G by removing all the edges pointing to the nodes in X .
• GX the graph obtained by deleting all the edges emerging from the nodes in X .
• GXZ the graph obtained by deleting edges into X and out of Z.

Each rule applies only if a certain d-seperation condition holds in the modified graph.

Rule 1 (Insertion/deletion of observations):
P (y | do(x), z, w) = P (y | do(x), w)

if (Y ⊥⊥ Z | X,W )GX
(14)

This allows us to add or remove observed variables Z from the conditioning set if they are
irrelevant to Y once X and W are known (after intervention X).

Rule 2 (Action/observation exchange):
P (y | do(x), do(z), w) = P (y | do(x), z, w)

if (Y ⊥⊥ Z | X,W )GXZ
(15)

This allows us to replace an intervention do(Z) with a simple observation, if Z behaves like
a non-manipulated variable under this graphical condition.

Rule 3 (Insertion/deletion of actions):
P (y | do(x), do(z), w) = P (y | do(x), w)

if (Y ⊥⊥ Z | X,W )G
XZ(W )

(16)

This allows us to ignore an intervention on Z when it has no causal effect on Y , given the
rest of the variables.

Notation: Z(W ) is the set of Z-nodes that are not ancestors of any W -node in GX . This restrictions
ensures we only remove do-interventions that don’t "leak" back into relevant parts of the graph. The
notation (Y ⊥⊥ Z | X,W )G represents d-separation in graph G, meaning all paths between Y and Z
are blocked by conditioning on X and W .

A→ D, A→ G, B → F, B → G,

C → E, D → E, F → G.

C Implementation Details of DoVerifier

Our implementation converts abstract causal expressions into concrete computational objects that can
be manipulated through rule applications. The core components are implemented as follows:

Expression Representation We represent causal expressions using a symbolic framework
built on SymPy. Each causal probability expression P (Y | do(X), Z) is represented as a
CausalProbability object with an outcome variable and a list of conditioning factors, which
may include both observational variables and interventional variables (wrapped in Do objects). This
representation allows for:

• Unique identification of expressions through consistent string conversion
• Distinction between interventional and observational variables
• Manipulation of expressions through rule applications

Causal Graph Representation Causal graphs are represented using NetworkX directed graphs,
where nodes correspond to variables and edges represent causal relationships. For each rule applica-
tion, we create modified graph structures according to the do-calculus definitions:

• For Rule 1, we remove incoming edges to intervention variables using GX

• For Rule 2, we remove both incoming edges to primary interventions and outgoing edges
from secondary interventions using GXZ

• For Rule 3, we perform the appropriate graph modifications for G
XZ(W )

as specified by
Pearl
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Algorithm 1 Causal Expression Equivalence Verification
1: Initialize queue Q← [(Einit, [])] ▷ (expression, proof path π)
2: Initialize visited set V ← {Einit}
3: while Q not empty do
4: (E, π)← Q.dequeue()
5: if E = Etarget then
6: return π ▷ Found equivalence
7: end if
8: if | π |< d then
9: for each applicable rule r do

10: E′ ← apply(r, E)
11: if E′ ̸∈ V then
12: V.add(E′)
13: Q.enqueue((E′, π + [r]))
14: end if
15: end for
16: end if
17: end while
18: return None ▷ No equivalence found within depth d

D-separation Testing To determine rule applicability, we implement d-separation tests using
NetworkX’s built-in is_d_separator function. For each potential rule application, we:

1. Create the appropriate modified graph based on the rule
2. Identify the variables that need to be tested for conditional independence
3. Perform the d-separation test with the appropriate conditioning set
4. Apply the rule only if the independence condition is satisfied

For example, when applying Rule 1 to remove an observation Z from P (Y | do(X), Z), we test
whether Y and Z are d-separated given X in the graph GX .

Search Algorithm Optimization To make the breadth-first search efficient, we implement several
optimizations:

• Expression normalization: We convert expressions to canonical string representations with
consistent ordering and whitespace removal.

• Memoization: We cache the results of d-separation tests to avoid redundant graph opera-
tions.

• Early termination: We immediately return a proof path when the target expression is
found.

• Visited set tracking: We maintain a set of already-visited expressions to avoid cycles and
redundant exploration.

Handling Incomplete Knowledge A key innovation in our implementation is the ability to work
with incomplete causal knowledge. When the full DAG structure is unknown, our system can:

• Work with explicitly provided independence pairs between variables
• Infer independence relationships from partial graph information
• Explore potential equivalences under different assumptions

Scope of Verification While our implementation includes representations for both probability
distributions (P ) and expectations (E), our current verification framework focuses on causal expres-
sions involving probabilities. This focus aligns with Pearl’s do-calculus, which was formulated for
probability distributions. The identification of causal effects fundamentally involves transforming
interventional probabilities into expressions based on observed data.
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The framework can be extended to handle expectations directly, as we have implemented the necessary
data structures and fundamental operations for expectation expressions. However, since expectations
are functionals of probability distributions, verifying equivalence at the probability level is sufficient
for most practical causal inference tasks. Once the correct probability expression is identified,
expectations and other functionals can be derived through standard statistical methods.

D Proofs

Proposition D.1 (Derivation Graph). Let Einit ∈ Lcausal. Define a directed graph S(Einit) where:

• Each node is a unique causal expression derivable from Einit;

• An edge E → E′ exists if E′ can be obtained from E by applying a single valid transforma-
tion.

Then S(Einit) is a well-defined, finite-branching graph.

Proof. Let G be a causal DAG with finite node set V . Let Lcausal denote the set of well-formed causal
expressions over V , where each expression is of the form P (Y | Z) with Y ⊆ V and Z containing
observed or interventional variables (i.e., elements of V or do(V )). Because V is finite, so is the set
of possible subsets and intervention/observation combinations, hence Lcausal is countable.

LetR be the set of valid transformation rules (e.g., the three rules of do-calculus and standard rules
of probability). Each rule r ∈ R is modeled as a partial function:

r : Lcausal → Lcausal, (17)

where r(E) is defined if the syntactic and graphical preconditions (e.g., d-separation in G) for
applying r to E are satisfied.

Define the derivation relation⇒ on Lcausal by:

E ⇒ E′ ⇐⇒ ∃r ∈ R such that r(E) = E′.

We now define the derivation graph S(Einit) as a directed graph (V, E), where:

• V is the set of expressions reachable from Einit via a finite sequence of ⇒ steps (i.e.,
derivable expressions);

• E contains an edge (E,E′) if E ⇒ E′.

To prove the theorem, we must show two things:

(1) Well-definedness. The graph S(Einit) is well-defined because:

• Each expression in Lcausal has a canonical syntactic representation.

• Each rule r ∈ R is a well-defined partial function whose domain is determined by decidable
conditions (syntactic and graphical).

• The derivation relation⇒ is therefore well-defined and finitely composable.

(2) Finite branching. For any node E ∈ V:

• The number of rule applications is finite, because:

– The number of rules inR is finite.
– Each rule r examines a finite number of subsets of V (e.g., X , Y , Z, W ), which are at

most 2|V | in number.
– Rules act on bounded-size fragments of expressions and generate outputs in Lcausal,

which is countable.

• Thus, from any E, only finitely many E′ satisfy E ⇒ E′, i.e., OutDegree(E) is finite.
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Hence, S(Einit) is a well-defined, finite-branching directed graph. ■

We formally prove the soundness and completeness of our verification framework by modeling it as a
symbolic derivation system over a finite-branching graph induced by transformation rules.

Proposition D.2 (Soundness & Completeness of Proof Search). Let G be a causal DAG, and let
Einit, Etarget ∈ Lcausal. If Einit ⊢G Etarget, then Algorithm 1 returns a valid proof sequence within
depth d, for some finite d. Conversely, if no such derivation exists within depth d, Algorithm 1 returns
None.

First we show that DoVerifier is sound. Suppose we are trying to find a proof sequence starting from
Einit to Etarget.

Proof. Assume for contradiction that DoVerifier is not sound. Then there exists some proof path
π = ⟨E1, E2, . . . , Ek⟩ returned by the algorithm such that π is not a valid derivation from Einit to
Etarget. This implies that at least one of the following holds:

1. E1 ̸= Einit, i.e., the path does not start at the initial expression.

2. Ek ̸= Etarget, i.e., the path does not end at the target expression.

3. There exists some i ∈ {1, . . . , k − 1} such that Ei+1 is not derivable from Ei via any valid
transformation rule admissible under G.

We now show that none of these cases can occur under the design of DoVerifier:

• By construction, the algorithm initializes the search frontier with {Einit}, so the first element
of any returned path is necessarily Einit.

• The algorithm terminates only upon finding an expression that is syntactically equal to
Etarget, so Ek = Etarget.

• The algorithm only expands nodes via valid applications of transformation rules from the
set R, which includes do-calculus and standard probability rules. Each edge in the path
corresponds to a rule in R, and such rules are only applied if their preconditions (e.g.,
d-separation) hold in G.

Thus, any returned path must be a valid sequence of derivations from Einit to Etarget, contradicting our
assumption. Therefore, DoVerifier is sound. ■
Now we show DoVerifier is complete:

Proof. Suppose Einit ⊢G Etarget. Then by definition of ⊢G, there exists a finite sequence of rule
applications (i.e., a path in S(Einit)) from Einit to Etarget. Let the length of this shortest such sequence
be d∗. Since S(Einit) is a well-defined, finite-branching graph (proposition D.1), BFS explores all
nodes reachable from Einit up to depth d in increasing order of path length.

Therefore:

• If d ≥ d∗, then Etarget will be reached and returned as part of a valid proof sequence.

• If d < d∗, then Etarget is not reachable within the bounded depth, and the algorithm correctly
returns None.

Thus, the algorithm is complete up to the given depth d. ■
We can further argue that in the case of unbounded depth, if the algorithm terminates upon reaching
an expression that is the same as its ancestors, our algorithm is still complete.

Proof. Assume the algorithm is modified so that whenever an expression E is expanded, any
successor E′ that is already present in the current path π from Einit to E is discarded. This prevents
cycles. Since Lcausal is finite for a fixed set of variables and the rule setR is finite, the search space
S(Einit) is also finite. BFS with cycle avoidance will explore all reachable expressions in a finite
number of steps. If Etarget is reachable, BFS will eventually visit it (since BFS is exhaustive in a finite
acyclic search space), and return a valid derivation. ■
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E Practical Considerations

Fact E.1 (Complexity). The time complexity of BFS is O(bd) where b is the maximum branching
factor and d is the depth limit.

While theoretically sound, practical implementations must consider several optimizations:

1. Expression normalization to avoid revisiting equivalent states (e.g., removing redundant
conditions, standardizing variable order)

2. Efficient d-separation testing for determining rule applicability

3. Memoization of independence tests to avoid redundant graph operations

4. Strategic ordering of rule applications to potentially find solutions faster

5. Bidirectional search from both Einit and Etarget to reduce the effective search depth

These optimizations preserve the theoretical guarantees while making the approach computationally
feasible for practical use in evaluating causal reasoning in language models.

F Sampling Procedure

Let V = {v1, . . . , vn} be a finite set of variables, and let G = (V,E) be a randomly sampled acyclic
graph. We sample the directed edges independently as P(vi → vj) = p for i < j where p ∈ (0, 1) is
the edge probability, and the ordering ensures the graph is acyclic. In our experiments, we fix n ≤ 10
and p = 0.5 to balance expressivity and tractability. We first construct

e1 = P (Y | do(X1), . . . , do(Xk), Z1, . . . , Zm) (18)

where Y ∈ V is chosen uniformly at random, a subset of V \{Y } is chosen as intervention variables
{Xi} and additional variables {Zj} are included as conditioning set as observation. To ensure
structural diversity, the number of intervention variables Xi and observational variables Yi is randomly
chosen per sample, subject to DAG constraints. Then, we define a symbolic derivation process π
consisting of a sequence of rule applications:

e1
r1→ e2

r2→ . . .
rn→ en+1 (19)

where each ri ∈ {Rule 14, Rule 15, Rule 16} ∪P . Rule applications are randomized but constrained
to only apply when valid under the conditional independencies induced by G. Then, we set Einit = e1
and Etarget = en+1.

The mean number of edges is 7 (min. 3, max. 10). Rule 14 was used 21172 times, rule 15 was used
29563 times, and rule 16 was used 22508 times.

F.1 Data Samples of Synthetic Data

To support the evaluation of causal inference methods, we construct synthetic datasets using directed
acyclic graphs (DAGs) that encode assumed causal relationships among variables. Each DAG consists
of nodes representing variables and directed edges representing direct causal influences. These graphs
serve as the basis for simulating both observational and interventional data.

The data samples are designed to validate derivations using do-calculus. Each example contains:

• A DAG representing the underlying relationships.

• A pair of probability expressions (Ea, Eb) where Ea is an interventional expression involv-
ing do-operators and Eb is an equivalent or simplified observational expression.

• A proof showing the sequence of do-calculus rules (Rule 14, Rule 15, Rule 16) applied
to reduce Ea to Eb. These synthetic samples are not drawn from real-world distributions,
but they adhere strictly to the independence constraints implied by the DAGs, ensuring the
theoretical correctness of all derivations.
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G Prompt Examples

To evaluate and guide language model performance on causal reasoning tasks, we designed a two-shot
prompt that consists of: A set of instructions, two fully worked examples, a new query prompt for the
model to solve in the same format.

## I n s t r u c t i o n s :
1 . For each problem , i d e n t i f y t h e c o r r e c t e x p r e s s i o n t h a t
r e p r e s e n t s t h e que ry
2 . Draw t h e g r a p h i c a l r e p r e s e n t a t i o n as a t e x t d e s c r i p t i o n o f edges
3 . Show your m a t h e m a t i c a l r e a s o n i n g s t e p by s t e p
4 . P r o v i d e a f i n a l yes / no answer
5 . Keep your r e s p o n s e c o n c i s e and f o c u s e d on t h e s o l u t i o n

## Examples :

Example 1 :
Prompt : Imagine a s e l f − c o n t a i n e d , h y p o t h e t i c a l wor ld wi th on ly t h e f o l l o w i n g
c o n d i t i o n s , and w i t h o u t any unment ioned f a c t o r s o r c a u s a l r e l a t i o n s h i p s :
P o v e r t y has a d i r e c t e f f e c t on l i k i n g s p i c y food and c h o l e r a .
Water company has a d i r e c t e f f e c t on l i k i n g s p i c y food . L i k i n g
s p i c y food has a d i r e c t e f f e c t on c h o l e r a .
P o v e r t y i s u n o b s e r v e d .
The o v e r a l l p r o b a b i l i t y o f l i k i n g s p i c y food i s 81%. The p r o b a b i l i t y o f n o t
l i k i n g s p i c y food and c h o l e r a c o n t r a c t i o n i s 13%.
The p r o b a b i l i t y o f l i k i n g s p i c y
food and c h o l e r a c o n t r a c t i o n i s 17%.
I s t h e chance o f c h o l e r a c o n t r a c t i o n l a r g e r
when o b s e r v i n g l i k i n g s p i c y food ?
Le t V2 = w a t e r company ; V1 = p o v e r t y ; X = l i k i n g s p i c y food ; Y = c h o l e r a

E x p r e s s i o n : P (Y | X)
G r a p h i c a l R e p r e s e n t a t i o n : V1−>X, V2−>X, V1−>Y, X−>Y
Reason ing : P (X = 1 , Y = 1 ) / P (X = 1) − P (X = 0 , Y = 1 ) / P (X = 0)
P (X=1) = 0 . 8 1
P (Y=1 , X=0) = 0 . 1 3
P (Y=1 , X=1) = 0 . 1 7
0 . 1 7 / 0 . 8 1 − 0 . 1 3 / 0 . 1 9 = −0.44
−0.44 < 0
F i n a l Answer : No

Example 2 :
Prompt : Imagine a s e l f − c o n t a i n e d , h y p o t h e t i c a l wor ld wi th on ly t h e f o l l o w i n g
c o n d i t i o n s , and w i t h o u t any unment ioned f a c t o r s o r c a u s a l r e l a t i o n s h i p s :
P o v e r t y has a d i r e c t e f f e c t on l i k i n g s p i c y food
and c h o l e r a .
Water company has a d i r e c t e f f e c t on l i k i n g s p i c y food .
L i k i n g s p i c y food has a d i r e c t e f f e c t on c h o l e r a . P o v e r t y i s u n o b s e r v e d .
For p e o p l e s e r v e d by a l o c a l w a t e r company , t h e p r o b a b i l i t y o f c h o l e r a c o n t r a c t i o n
i s 64%.
For p e o p l e s e r v e d by a g l o b a l w a t e r company ,
t h e p r o b a b i l i t y o f c h o l e r a c o n t r a c t i o n i s 66%.
For p e o p l e s e r v e d by a l o c a l w a t e r company ,
t h e p r o b a b i l i t y o f l i k i n g s p i c y food i s 50%.
For p e o p l e s e r v e d by a g l o b a l w a t e r company ,
t h e p r o b a b i l i t y o f l i k i n g s p i c y food i s 45%.
Wi l l l i k i n g s p i c y food d e c r e a s e t h e chance o f c h o l e r a c o n t r a c t i o n ?

Le t V2 = w a t e r company ; V1 = p o v e r t y ; X = l i k i n g s p i c y food ; Y = c h o l e r a .
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E x p r e s s i o n : E [Y | do (X = 1 ) ] − E [Y | do (X = 0 ) ]
G r a p h i c a l R e p r e s e n t a t i o n : V1−>X, V2−>X, V1−>Y, X−>Y
Reason ing : E [Y | do (X = 1 ) ] − E [Y | do (X = 0 ) ]
[ P (Y= 1 | V2=1) −P (Y= 1 | V2 = 0 ) ] / [ P (X= 1 | V2=1) −P (X= 1 | V2 = 0 ) ]
P (Y=1 | V2=0) = 0 . 6 4
P (Y=1 | V2=1) = 0 . 6 6
P (X=1 | V2=0) = 0 . 5 0
P (X=1 | V2=1) = 0 . 4 5
( 0 . 6 6 − 0 . 6 4 ) / ( 0 . 4 5 − 0 . 5 0 ) = −0.39
−0.39 < 0
F i n a l Answer : Yes

## Your Task :
So lve t h e f o l l o w i n g problem
u s i n g t h e f o r m a t above .
Begin your r e s p o n s e wi th " S o l u t i o n : "
and p r o v i d e on ly t h e e x p r e s s i o n ,
g r a p h i c a l r e p r e s e n t a t i o n , r e a s o n i n g , and f i n a l answer .
Prompt : { d e s c r i p t i o n }

H Frequently asked questions

What problem does DoVerifier actually solve? DoVerifier addresses the gap between surface-
form evaluation of causal reasoning in LLM outputs (e.g., string match, BLEU, BERTScore) and
semantic correctness under causal inference rules. It checks whether a model’s predicted causal
expression is formally derivable from a given causal graph using do-calculus and probability rules,
recovering correct answers that naive metrics miss.

Does DoVerifier require the ground truth answer? For evaluation, yes - the framework needs
the correct expression to compare against. However, for feedback and self-correction, it can operate
without the ground truth by checking the model’s answer against the DAG and suggesting corrections.

Can’t we just use the ID algorithm by Shpitser and Pearl [2008] to see if both are identifiable,
and then compare? There are cases when the expressions are unidentifiable but can be simplified
such as

E1 = P (Y | do(X), do(W ), Z)

E2 = P (Y | do(X), Z)

under specific DAGs, which can be easily constructed to satisfy do-calculus rule 3.

How is DoVerifier different from Lean or other proof assistants? Lean is a general-purpose
formal proof assistant used to verify mathematical theorems in a wide range of domains. It requires
users to construct complete proofs in a formal language. DoVerifier is a domain-specific verifier for
causal inference. It operates only on causal expressions, uses a fixed set of rules from do-calculus
and probability theory, and performs automated proof search to determine equivalence between
expressions given a causal graph. Users do not supply the proof steps; the system infers them
automatically.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim we improve verification on causal statements generated by LLMs we
provide a sound and complete algorithm that does so, proves it correct and shows emprical
improvements.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [No]
Justification: Main limitation is due to a lack of dataset, CLadder being the only one that
provides a natural question, formal form, and DAG.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: They are proved in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide library used, and details of a pseudocode, the core idea is BFS,
which can be easily implemented.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

17



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We specify our data generation process.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: No training.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Not applicable to these type of results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the models used, the computer resources is irrelevant.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: N/A.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: No societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We are transparent on how we prompt the pretrained models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not plan to release code during the review phase.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All details provided in appendix.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: N/A.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: N/A.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: We only used it to improve the writing of the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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