
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BRIDGING THE REALISM GAP: GENERATING FORMALLY VERI-
FIED VULNERABILITY DATASETS FROM REAL-WORLD CODE

Anonymous authors
Paper under double-blind review

ABSTRACT

The advancement of machine learning for vulnerability detection is critically hampered by the ab-
sence of datasets that are simultaneously large-scale, accurately labeled, and realistic. Existing
benchmarks impose a trade-off: large, real-world datasets suffer from noisy labels and contami-
nation, while manually curated datasets are too small to train robust models. Synthetic datasets,
although formally verifiable, typically lack the structural complexity of production code, resulting
in a significant “realism gap”. To overcome these limitations, we introduce ApproxVul, a framework
and dataset that unites real-world code realism with the mathematical certainty of formal verification.
Our framework leverages Large Language Models (LLMs) to systematically mutate code snippets
from real-world projects, introducing a diverse range of subtle and complex vulnerabilities. Each
resulting program, along with its safe counterpart, is then formally verified to establish ground-truth
labels, eliminating label noise. This process yields ApproxVul, a new dataset of over 104,000 com-
pilable and verifiable programs, featuring minimally different vulnerable/safe pairs derived from
real-world code. Through comprehensive evaluation, we demonstrate that ApproxVul achieves bet-
ter cross-dataset generalization than purely synthetic training datasets and slightly outperforms noisy
real-world training data. While fine-tuning alone remains insufficient for project-level generaliza-
tion, ApproxVul’s inter-procedural and verifiable structure makes it a crucial stepping stone toward
more advanced vulnerability detection approaches.

1 INTRODUCTION

The growing use of deep learning models for code has started a new era of automated software security, with a strong
focus on vulnerability detection. The effectiveness of these models, however, is limited by the quality and scale of
the datasets they are trained on. A key challenge in the field is the shortage of datasets that are large-scale, accurately
labeled, and sufficiently realistic to effectively train models capable of addressing the complexities of real-world
software.

This shortage forces researchers into a trade-off, as existing datasets only partially satisfy the key requirements for
high-quality and effective vulnerability detection. On one hand, large-scale datasets derived from real-world software
projects, such as BigVul (Fan et al., 2020) and DiverseVul (Chen et al., 2023), offer breadth but often lack labeling
accuracy or consistency (Ding et al., 2024; Risse et al., 2025). To address these quality concerns, recent work has
aimed at enhancing the fidelity of real-world datasets. For example, ICVul (Lu et al., 2024) applies advanced filtering
methods to mitigate label noise. Meanwhile, datasets such as SVEN (He & Vechev, 2023) achieve higher label
accuracy through manual verification, though this approach is prohibitively costly to scale for training large models.

Other datasets contribute valuable inter-procedural context. For example, ARVO (Mei et al., 2024) builds a dataset of
over 5,000 reproducible vulnerabilities from fuzzer-generated bug reports, each with a triggering input and recompil-
able code. While such approaches advance beyond earlier efforts, they face scalability limitations. To address the need
for verifiable labels at scale, synthetic datasets like FormAI (Tihanyi et al., 2023) have been introduced; however, they
often fall short in realism, as they generate simple code from scratch and fail to capture the complexity of production
software.

At the heart of this challenge lies the prohibitive cost and difficulty of obtaining ground-truth labels at scale. Man-
ual verification by security experts remains the gold standard for accuracy, but it is impractical for constructing large
datasets. This limitation has driven the community toward automated methods, which to date have not resolved the
fundamental trade-off. Mining real-world code provides realism but often compromises label quality. In contrast,
synthetic dataset generation has emerged as an attempt to solve the labeling problem. For example, FormAI (Tihanyi
et al., 2023) generates code from scratch and applies formal verification to achieve perfectly accurate labels at scale.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

However, this introduces a significant realism gap: formal verifiers are most effective on small, self-contained pro-
grams, leading to generated code that is overly simplistic. Such code typically omits the complex constructs (such
as intricate data types, macros, and conditional compilation directives “#ifdef”) that are pervasive in production
software yet notoriously difficult to verify. Consequently, while these datasets are verifiable, they fail to capture the
complexity of real-world vulnerabilities.

To address this trade-off, we introduce ApproxVul, a new framework for generating a large-scale, formally verified
dataset that combines real-world realism with the certainty of formal methods. Unlike prior approaches that synthesize
code from scratch, ApproxVul begins with real-world code fragments and leverages large language models (LLMs) to
introduce a diverse set of both subtle and complex vulnerabilities. Each resulting program is then subjected to formal
verification tools, which determine with certainty whether it is free of memory vulnerabilities. This pipeline produces a
dataset that is simultaneously large, accurately labeled, and faithful to the structural complexity of real-world software.

Our main contributions are summarized as follows:

1. We propose a scalable and flexible framework for generating formally verified vulnerability datasets. The
framework supports multiple programming languages, vulnerability types, and complexity levels.

2. We construct ApproxVul, a large-scale dataset of over 104,000 formally verified C/C++ programs. It also
includes closely matched vulnerable-safe pairs derived from real-world code, providing a high-quality and
realistic benchmark for training and evaluating vulnerability detection models.

2 CHALLENGES AND RELATED WORK

The creation of effective datasets for machine learning-based vulnerability detection (VD) is fraught with systemic
challenges that have limited the field’s progress. Existing benchmarks, despite their widespread use, suffer from
fundamental flaws related to data quality, experimental design, and the very formulation of the vulnerability detection
task. Here, we dissect these core issues and situate the contributions of ApproxVul within the current landscape.

2.1 THE FOUNDATIONAL FLAWS OF REAL-WORLD DATASETS

The dominant paradigm in VD has involved a trade-off between scale and quality. On one hand, researchers have
mined large-scale datasets from open-source software repositories, creating benchmarks like BigVul (Fan et al., 2020),
Devign (Zhou et al., 2019), DiverseVul (Chen et al., 2023), and CVEfixes (Bhandari et al., 2021). While offering
impressive scale, this approach is built on unstable foundations.

Noisy and Inaccurate Labels. The primary flaw lies in the heuristic-based labeling process. These datasets operate
under the assumption that any function modified within a ”vulnerability-fixing commit” was itself vulnerable. This is
demonstrably false. As highlighted by Ding et al. (Ding et al., 2024) and Croft et al. (Croft et al., 2023), this method
introduces significant label noise, compounded by tangled patches, where commits mix security fixes with unrelated
changes (Wang et al., 2024). This makes it nearly impossible to isolate the true vulnerability-related changes.

Recognizing these quality issues, recent efforts have focused on improving the fidelity of real-world datasets. Datasets
like ICVul (Lu et al., 2024) and ReposVul (Wang et al., 2024) employ advanced filtering techniques and VCC
(Vulnerability-Contributing Commit) tracing to enhance label reliability. ARVO (Mei et al., 2024), on the other hand,
builds a dataset of over 5,000 reproducible vulnerabilities from fuzzer-generated bug reports, ensuring each entry
has a triggering input and is recompilable, thus providing valuable inter-procedural context. ReposVul also captures
inter-procedural information by constructing repository-level call graphs (Wang et al., 2024). To achieve the highest
quality labels, datasets like SVEN (He & Vechev, 2023) rely on meticulous manual curation. However, this process
is prohibitively expensive and not scalable for training large models (SVEN contains 1.6k programs). While these
approaches significantly improve upon their predecessors, they are not formally verified and still rely on post-hoc
analysis of commits or bug reports.

Data Duplication and Contamination. Real-world datasets are also plagued by data duplication and contamination.
PrimeVul’s analysis revealed that up to 18.9% of test samples in some benchmarks are exact copies of training samples,
which artificially inflates performance metrics (Ding et al., 2024). Furthermore, there is often an unclear separation of
projects between training and testing splits, risking that a model learns project-specific idioms rather than generalizable
vulnerability patterns.

Our Approach: The ApproxVul framework is designed to achieve the best of both worlds: the accuracy of for-
mal verification at the scale of automated collection. Instead of relying on noisy, unverifiable heuristics, we use a
formal verifier as the ultimate arbiter of truth. Every label is the result of a mathematical proof, eliminating label

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

noise. Because our data is generated synthetically from real-world seeds, we avoid issues of tangled patches and data
contamination, producing a large-scale, high-fidelity dataset suitable for training robust models.

2.2 THE LIMITS OF EXISTING SYNTHETIC DATASETS

To bypass the noise and ambiguity of real-world data, some approaches have turned to synthetic data generation. The
FormAI dataset, for instance, represents a significant step by using an LLM to generate a large corpus of C programs
from scratch, which are then formally verified (Tihanyi et al., 2023). This methodology successfully addresses the
verifiability challenge at scale, producing labels with mathematical certainty.

However, this verifiability is achieved by constraining the code’s complexity to maintain tractability for formal veri-
fiers. Real-world C/C++ code is rich with constructs like complex data structures, macros, and preprocessor directives
(#ifdef). While essential for production software, these elements cause a combinatorial explosion in the number of
possible program states, making formal verification of an entire codebase computationally intractable. Consequently,
to enable verification, FormAI generates small, independent programs from generic prompts (e.g., “create a board
game”), intentionally omitting the complex, interdependent constructs found in real-world software. This simplifica-
tion leads to a dataset with less complex control flows and data structures, presenting a sanitized and less challenging
detection task (Lekssays et al., 2025).

Our Approach: ApproxVul resolves this trade-off between realism and verifiability by changing the scope of analysis.
Instead of generating entire programs from scratch, we start with real-world code seeds—individual functions or
snippets that already contain realistic structures. While formally verifying the large applications these seeds originate
from would be infeasible, verifying the seeds in a bounded, self-contained context is computationally practical. This
approach ensures our dataset inherits a high degree of syntactic and structural realism, including macros and complex
data types. Our LLM-based mutation process then introduces vulnerabilities, creating a dataset that is both verifiable
and realistically challenging.

2.3 THE PITFALLS OF DECONTEXTUALIZATION AND SPURIOUS LEARNING

Beyond data quality, a more profound challenge lies in the conventional formulation of problems itself.

Context is Critical. The vast majority of machine learning based vulnerability detection (ML4VD) research frames
the task as a function-level binary classification problem. However, as (Risse et al., 2025) demonstrates, this is often
an ill-posed problem. The vulnerability of a function is almost always context-dependent. Stripping a function of its
calling context makes it impossible to determine its vulnerability status from the code alone.

The Inevitability of Spurious Learning. This lack of sufficient information forces models to find statistical shortcuts.
Risse et al. showed that high classification scores could be achieved using a simple model trained only on word counts
(Risse et al., 2025). This confirms that models are not genuinely detecting vulnerabilities but are exploiting superficial
patterns, a phenomenon noted in other studies on the fragility of ML4VD models (Risse & Böhme, 2024).

Our Approach: ApproxVul tackles the context problem directly. Instead of providing an isolated function, our
framework generates a complete, self-contained, and compilable program for each sample, including a ‘main‘ entry
point. This ensures all necessary local context for the vulnerability to manifest is present, allowing the bounded model
checker to formally prove its existence. Furthermore, our generation of minimally different vulnerable/safe pairs
explicitly discourages spurious learning. We provide a comparative summary of datasets in Appendix A.

3 METHODOLOGY

To address the scarcity of large-scale, high-quality, and verifiable datasets for software vulnerability analysis, we
propose a novel automated framework for generating synthetic code samples with ground-truth vulnerability labels.
Our framework, illustrated in Figure 1, is a multi-stage pipeline that orchestrates multiple Large Language Model
(LLM) agents with formal verification tools. It supports a wide range of programming languages, including C/C++,
Java, Kotlin, Python, and Solidity. Our framework is modular, so it can support other formal verifiers and thus other
programming languages and target vulnerabilities. We discuss the different design considerations in Section 5.

3.1 PHASE 1: PROGRAM GENERATION

The generation process starts with a “seed”: an isolated function extracted from a real-world codebase. By itself, a
seed is a non-compilable snippet lacking the necessary context to be executed (e.g., a main function, headers, or caller

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: The end-to-end pipeline of ApproxVul framework.

functions). Our first step is to transform this seed into a complete and compilable “program” that is a self-contained
source file with all necessary components.

To achieve this, we employ a Large Language Model (LLM) agent guided by a detailed prompt (see Appendix H).
The agent’s core task is twofold: (1) to embed the seed’s original logic within a new function and (2) to construct
a realistic surrounding context for it. This context is created by generating 5–7 interconnected functions, including
a main entry point, that establish a plausible call graph and data flow. The purpose of this contextual expansion
is critical for creating a high-fidelity dataset. Real-world vulnerabilities are rarely found in trivial, single-function
programs. By embedding the seed’s logic within a multi-function program, we create a more challenging and realistic
environment for training vulnerability detection models, compelling them to learn inter-procedural analysis rather than
simply memorizing intra-procedural patterns.

Inspiration from the seed’s core functionality serves to anchor the synthetic program in a real-world logic pattern,
enhancing the dataset’s realism. It constrains the LLM to build a realistic scaffold around a known, human-written
piece of code. As part of this process, the agent is also instructed to inject exactly one vulnerability from a predefined
list of CWEs (e.g., CWE-120 Buffer Copy without Checking Size of Input, CWE-476 NULL Pointer Dereference),
thus producing the initial “vulnerable” program for our dataset. In addition, we force the LLMs to output valid
commands for required dependencies to run the program. To this end, we specify the compilation environment (e.g.,
Docker container with Ubuntu 24.04).

3.2 PHASE 2: AUTOMATED COMPILATION AND CORRECTION

Syntactic validity is enforced at every stage of code generation. Our framework integrates a compiler agent that at-
tempts to build any code produced by an LLM. If compilation fails, the compiler’s error log is fed back to a specialized
“debugging” LLM agent. Its prompt (shown in Appendix H) instructs it to apply the minimal changes necessary to
fix the compilation error while preserving the intended logic. This self-correction loop is repeated up to three times,
significantly increasing the yield of compilable programs.

3.3 PHASE 3: FORMAL VERIFICATION WITH BOUNDED MODEL CHECKING

Regarding the formal verification, all compiled code samples are analyzed by a bounded model checking agent that
employs ESBMC (Efficient SMT-based Bounded Model Checker) (Li et al., 2024) to verify security properties. We
use ESBMC as an external tool without modifying its internals. Further adaptations and possible extensions of this
component are discussed in Section 5. The ESBMC verifier has three types of outputs: i) Successful Verification:
ESBMC mathematically proves the code is safe within the bounded context, confirming the “safe” label; ii) Failed
Verification: ESBMC finds a counterexample that violates a security property, confirming the “vulnerable” label. The
resulting log is crucial for the remediation phase; and iii) Timeout/Inconclusive: The process exceeds a time limit, and
the sample is discarded to maintain dataset integrity.

3.4 PHASE 4: PAIRED VULNERABLE/SAFE CODE GENERATION

After a program is labeled “safe” or “vulnerable”, it is submitted to a pool of parallel LLM agents that synthesize a
corresponding counterpart — producing a safe version from a vulnerable seed or a vulnerable version from a safe seed
— so that each result forms a minimally different pair. The framework accomplishes this using two complementary
strategies, enabling pair generation starting from either vulnerable or safe inputs: i) Vulnerability Remediation: This
is the primary path for creating a pair. The vulnerable program from Phase 1, along with its corresponding ESBMC
verification log, is given to a remediation agent. Guided by its prompt shown in Appendix H), this LLM is instructed to
act as a security analyst, analyze the ESBMC log to understand the root cause of the vulnerability, and apply a precise

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

fix. The result is a ‘safe‘ version of the code, creating the pair (cvulnerable, csafe); and ii) Vulnerability Injection: For
the programs verified to be ‘safe‘ programs in Phase 1, we pass them to an injection agent. This agent is prompted to
introduce a single, subtle memory vulnerability and ensuring it still compiles. The result is a ‘vulnerable‘ version of
the code, creating the pair (cvulnerable, csafe). We note that the generation loop for a given program ends when it has
its pair or it exceeds three attempts in making a pair (as per Phase 3). We note that the generated pairs undergo the
same compilation and verification process.

3.5 PHASE 5: CODE SANITIZATION

To prevent models from overfitting on trivial lexical cues, we sanitize all verified code samples with a cleaning
agent. The generator sometimes inserted explicit labels such as comments (“this is vulnerable/safe”) or identifiers
(vulnerable function, safe example), which would let models rely on surface tokens rather than learning
semantic patterns. The cleaning agent removes all comments, normalizes string literals, and renames identifiers to
neutral forms (e.g., vulnerable function() → process data()). This ensures that code remains compil-
able and semantically equivalent while eliminating unrealistic markers. As a result, models trained on the dataset learn
vulnerability-relevant semantics instead of exploiting generator artifacts.

To illustrate the workflow of our pipeline, we included an example generated using the mistralai/Codestral-22B-v0.1.
In Section C, we present a case of generated vulnerable code exhibiting a NULL pointer dereference, derived from a
real-world seed in the FFmpeg multimedia library.

4 EVALUATION

To assess the quality and utility of ApproxVul, we designed an evaluation around two central research questions:

• RQ1 (Realism): How realistic is our synthetic dataset compared to real-world and other synthetic vulnera-
bility datasets?

• RQ2 (Performance): To what extent can ApproxVul, as a structured and verifiable dataset, improve cross-
dataset generalization compared to purely synthetic and noisy real-world vulnerability datasets?

4.1 DATASETS AND IMPLEMENTATION DETAILS

Our comparative analysis benchmarks ApproxVul against prominent existing datasets to cover different data sources
and generation philosophies. The generation process for ApproxVul utilized the entirety of the 15k samples from
ICVul as seeds. For comparison, we selected PrimeVul, which contains over 200k samples with a significant class
imbalance (only 7k vulnerable). As a representative of state-of-the-art synthetic data, we included FormAI, a dataset
of 112k formally verified programs generated from scratch. We note that we excluded SVEN because the majority of
its vulnerabilities are web related.

To ensure fair comparison, we employed stratified sampling to create balanced 12,000-sample subsets from each
dataset (10k training, 1k validation, 1k testing). Stratification was based on Common Weakness Enumeration (CWE)
types and cyclomatic complexity to ensure representativeness. This split size provides a fair baseline, as PrimeVul
contains only 7k vulnerable functions, making larger balanced sets impractical. All splits maintained equal numbers
of vulnerable and safe samples to prevent class imbalance. For testing, we used ARVO Mei et al. (2024) and ReposVul
Wang et al. (2024) as project-level datasets capturing multi-function vulnerabilities, including inter-procedural cases
and realistic development contexts that present challenging generalization targets.

To further guarantee the validity of our evaluation, we applied a strict project-level decontamination rule: no project
appears in both training, validation and test sets across any dataset to mitigate the issues discussed in Section 2. For
instance, if a CVE-linked project was present in a training split, it was excluded from all test splits. This prevents
models from exploiting project-specific coding idioms and ensures that test performance truly reflects generalization.

For code generation and performance evaluation, we utilized a diverse suite of Large Language Models (LLMs). The
generation models were hosted using vLLM for efficient inference. For the performance evaluation (RQ2), models
were fine-tuned using the LLaMA-Factory library (Zheng et al., 2024) (see Appendix F for more details).

4.2 RQ1: REALISM EVALUATION

To answer RQ1, we performed a two-faceted evaluation of our dataset, ApproxVul, comparing it against two real-world
datasets (PrimeVul (Ding et al., 2024), ICVul (Lu et al., 2024)) and a state-of-the-art synthetic dataset (FormAI (Tihanyi

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

et al., 2023)). We assess realism through two lenses: syntactic realism, which captures the high-level structure and style
of code, and semantic realism, which analyzes fine-grained, interpretable software metrics. Our analysis demonstrates
that ApproxVul achieves a significantly higher degree of realism than FormAI, validating our generation methodology
rooted in real-world seeds.

4.2.1 SYNTACTIC REALISM VIA EMBEDDING SPACE ANALYSIS

We first evaluate syntactic realism by analyzing the distribution of code snippets in a high-dimensional feature space.

Methodology & Evaluation Metrics. We generated contextual embeddings for each code snippet in ours 12k
splits for ApproxVul, PrimeVul, FormAI, and the full 15k that we used for generation for ICVul using Qwen/Qwen3-
Embedding-4B as the best performing model in code tasks in MTEB Leaderboard as of August 31, 2025. We then
employed a suite of metrics to compare the resulting distributions. The results hereafter show that ApproxVul is syn-
tactically closer to real-world datasets (i.e., PrimeVul and ICVul) than FormAI (as a synthetically generated dataset).
To compare the high-dimensional embedding distributions, we used the metrics in Table 1.

Table 1: Embedding and Clustering Metrics

Category Metric Concise Description

Distributional
Maximum Mean Discrepancy Measures distance between distribution means in a feature space.
Wasserstein Distance Minimum “cost” to transform one distribution into another.
Centroid Distance Euclidean distance between the mean vectors of distributions.

Clustering
Evaluation

Adjusted Rand Index (ARI) Similarity between true & clustered labels, corrected for chance.
V-Measure Harmonic mean of a clustering’s homogeneity and completeness.
Silhouette Score Measures how similar a point is to its own cluster vs. others.

Results & Analysis. As shown in Table 1, all three distance metrics confirm that ApproxVul is syntactically closer to
the real-world datasets than FormAI.

Table 2: Syntactic distance from synthetic datasets to real-world datasets. Lower values indicate greater similarity.
ApproxVul is consistently closer to both real-world benchmarks.

Distance Metric ApproxVul vs. PrimeVul FormAI vs. PrimeVul ApproxVul vs. ICVul FormAI vs. ICVul
MMD 0.0730 (↑26.11%) 0.0988 0.0690 (↑29.09%) 0.0973
Centroid Distance 0.4168 (↑18.89%) 0.5138 0.4068 (↑20.58%) 0.5122
Wasserstein Distance 0.0072 (↑13.25%) 0.0083 0.0066 (↑24.14%) 0.0087

The visualizations in Figure 2 further illustrate this. Both PCA (preserving global variance) and t-SNE (preserving
local structure) show that FormAI embeddings form an isolated cluster, while ApproxVul embeddings are closer to
those of the real-world datasets.

Figure 2: PCA (left) and t-SNE (right) visualizations of Qwen/Qwen3-Embedding-4B embeddings.

Our clustering evaluation metrics support this visual behavior. The high ARI (0.66) and V-Measure (0.76) scores indi-
cate that the datasets have distinct enough signatures to be clustered effectively. Most importantly, the low Silhouette
Score (0.04) is a positive result in this context. It quantitatively demonstrates that the clusters are not cleanly separable,
confirming that the ApproxVul cluster heavily overlaps with the real-world clusters.

To ensure our findings on syntactic realism were not specific to a single embedding model, we replicated this analysis
using the infly/infly-retrieval-7b model. The results are shown in Appendix E.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2.2 SEMANTIC REALISM VIA CODE METRICS ANALYSIS

To quantitatively evaluate the semantic realism of our generated dataset, ApproxVul, we conducted a comparative anal-
ysis against real-world and other synthetic code datasets. The goal is to demonstrate that ApproxVul more accurately
captures the intrinsic statistical and structural properties of human-written C/C++ code than other synthetic generation
methods, represented by the FormAI dataset. We use two real-world, non-compilable code snippet datasets, PrimeVul
and ICVul, as the ground truth for our comparisons.

Code Metrics. We employ two distinct categories of metrics to create a comprehensive profile of each code snippet,
capturing both its surface-level characteristics and its deep grammatical structure.

Table 3: Summary of Code Analysis Metrics

Category Metric Description

Statistical

Lines of Code (LOC) Count of non-empty code lines.
Cyclomatic Complexity Measures independent paths in the code’s control flow.
Halstead Metrics Quantifies complexity from operators and operands.
Naming Metrics Statistics on identifiers (e.g., average length, diversity).

Structural

Control Flow Constructs Frequency of control statements (if, for, switch).
Function & Expression Logic Frequency of computational nodes (calls, binary expressions).
Declaration Patterns Frequency of declaration and function definition nodes.
Maximum Tree Depth Longest path in the CST*, representing structural complexity.

*CST: Concrete Syntax Tree extracted with tree-sitter parser as it is a level deeper than Abstract Syntax Trees (AST).

Methodology & Evaluation Metrics. Our methodology is designed to compare the distributions of code metrics
between the synthetic datasets (ApproxVul, FormAI) and the real-world datasets (PrimeVul, ICVul). For each metric,
we treat the collection of values from a dataset as an empirical probability distribution.

To quantify the dissimilarity between two distributions, we employ the two-sample Kolmogorov-Smirnov (KS) test. We
selected the KS test because it is non-parametric, meaning it makes no assumptions about the underlying data distribu-
tion (e.g., normality), which is essential as code metrics often have irregular, non-standard distributions. Furthermore,
it is sensitive to differences in both the location and shape of the distributions, making it a comprehensive tool for this
comparison. The KS test yields a statistic (D) ranging from 0 to 1, where 0 indicates identical distributions and 1
indicates maximum divergence. Therefore, a lower KS statistic signifies greater semantic similarity. We also consider
the p-value to filter for statistically significant comparisons (p < 0.05).

Results & Analysis. The analysis reveals that ApproxVul is consistently and significantly more similar to both real-
world datasets than FormAI across both statistical and structural metrics.

Structural Realism Analysis. The structural metrics provide the most powerful evidence of semantic realism. The re-
sults show that ApproxVul’s generation process more accurately models the grammatical and logical structures inherent
in human-written code. When comparing against the statistically significant metrics from both real-world datasets (93
metrics for PrimeVul and 96 for ICVul), ApproxVul was the closer match in approximately 78% of all cases (see Ap-
pendix D for the full list of structural metrics). As shown in Table 4, ApproxVul achieves a significantly lower average
KS statistic, indicating a much higher overall structural fidelity.

Table 4: Overall Structural Similarity to Real-World Datasets. A lower average KS Statistic is better. “Wins” indicates
the number of significant metrics where the dataset was a closer match.

Avg. KS Statistic ↓ Metric Wins
Comparison ApproxVul FormAI ApproxVul FormAI
vs. PrimeVul 0.254 0.380 74 19
vs. ICVul 0.244 0.339 73 23

Table 5 provides a detailed comparison for a subset of critical CST nodes. ApproxVul consistently outperforms For-
mAI in modeling the frequency of fundamental constructs like control flow statements (if, for), expressions, and
overall structural depth. While FormAI occasionally provides a better match for specific declaration patterns (e.g.,
function definition), the overwhelming evidence points to the superior structural realism of ApproxVul.

Statistical Realism Analysis. The analysis of statistical metrics corroborates the findings from the structural analysis.
ApproxVul consistently demonstrates distributions of stylistic and lexical features that are closer to real-world code.
Across the key statistical metrics, ApproxVul achieved a lower average KS statistic against both PrimeVul (0.323 vs.
0.414) and ICVul (0.278 vs. 0.363), winning the majority of head-to-head metric comparisons. This indicates that
ApproxVul not only captures the correct grammatical structure but also the statistical texture of human-written code
more effectively.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: KS Statistics for Key Structural Metrics. The bolded value indicates the dataset with higher realism (lower
dissimilarity) for each metric.

vs. PrimeVul vs. ICVul
Key Structural Metric ApproxVul FormAI ApproxVul FormAI
If Statement 0.166 0.219 0.182 0.243
For Statement 0.095 0.284 0.068 0.306
Call Expression 0.201 0.375 0.173 0.284
Binary Expression 0.142 0.212 0.138 0.167
Declaration 0.272 0.341 0.218 0.291
Function Definition 0.890 0.769 0.889 0.767
Max Tree Depth 0.164 0.266 0.223 0.187

4.3 RQ2: PERFORMANCE EVALUATION

The goal of our evaluation is to rigorously assess the effectiveness of ApproxVul as a training dataset. Specifically,
we aim to determine whether ApproxVul improves cross-dataset generalization compared to existing benchmarks and
whether its construction translates into measurable gains in performance. To ensure that results are reliable and free
from contamination, we enforced a project-level separation between training/validation, and test splits.

Methodology. We fine-tuned our model using LLaMA-Factory (Zheng et al., 2024) with a LoRA-based approach
configured with a rank of 8 and applied to all target modules. The training was performed with a sequence cutoff length
of 12, 000 tokens and capped at 10, 000 samples. We used a batch size of 1 per device with 8 gradient accumulation
steps, a learning rate of 10−4 under a cosine scheduler with a warmup ratio of 0.1, and trained for 2 epochs in total.
All fine-tuning experiments were conducted on one NVIDIA H100 GPU.

Results & Analysis. Table 6 presents the performance of models trained on different datasets across five test distri-
butions. We report both accuracy and recall, alongside averaged results to assess generalization trends. All reported
metrics are averaged over five independent testing runs.

Table 6: Evaluation Table

Training Dataset Model
Test Datasets Average

FormAI PrimeVul ApproxVul ARVO ReposVul Acc Rec
Accuracy Recall Accuracy Recall Accuracy Recall Accuracy Recall Accuracy Recall

None

Seed-Coder-8B-Instruct 0.5889 0.6581 0.6816 0.6683 0.6078 0.8520 0.5144 0.9333 0.4970 0.9340

0.5666 0.5168
Qwen3-8B 0.6182 0.5249 0.5611 0.3860 0.6087 0.6310 0.5098 0.3263 0.5083 0.1654
Qwen3-Coder-30B-A3B-Instruct 0.6561 0.6212 0.5501 0.2998 0.6622 0.6970 0.5043 0.6261 0.4904 0.3576
GPT-OSS-20B 0.6625 0.7576 0.5720 0.4833 0.6872 0.7380 0.5323 0.5084 0.4963 0.3456
Codestral-22B-v0.1 0.5304 0.1172 0.5535 0.2344 0.5900 0.5205 0.4949 0.3648 0.4876 0.1699

FormAI

Seed-Coder-8B-Instruct 0.9099 0.8957 0.5467 0.2105 0.6765 0.4438 0.5022 0.1872 0.5047 0.3510

0.6261 0.4312
Qwen3-8B 0.8972 0.9005 0.5265 0.2009 0.6631 0.4082 0.5086 0.3340 0.4991 0.2691
Qwen3-Coder-30B-A3B-Instruct 0.9075 0.9020 0.4928 0.2392 0.7130 0.5632 0.5000 0.1377 0.4965 0.1580
GPT-OSS-20B 0.8901 0.8973 0.5552 0.3955 0.7157 0.5579 0.5269 0.2962 0.4914 0.2207
Codestral-22B-v0.1 0.8964 0.9133 0.5703 0.3732 0.6880 0.4920 0.4911 0.2419 0.4826 0.1902

PrimeVul

Seed-Coder-8B-Instruct 0.5897 0.7030 0.7751 0.8341 0.6069 0.6934 0.5110 0.7191 0.5897 0.7030

0.6020 0.6924
Qwen3-8B 0.5826 0.6324 0.7885 0.8118 0.6150 0.8057 0.5064 0.4832 0.5087 0.5208
Qwen3-Coder-30B-A3B-Instruct 0.5818 0.8539 0.7995 0.7990 0.6239 0.8645 0.4946 0.4055 0.4935 0.4724
GPT-OSS-20B 0.5905 0.9069 0.8079 0.5071 0.6479 0.8520 0.5161 0.8235 0.5069 0.6465
Codestral-22B-v0.1 0.5336 0.6404 0.7860 0.7890 0.6025 0.5437 0.4978 0.4665 0.4938 0.8323

ApproxVul

Seed-Coder-8B-Instruct 0.6458 0.9807 0.6445 0.6018 0.8307 0.8360 0.5307 0.7638 0.4962 0.7267

0.6259 0.7147
Qwen3-8B 0.6443 0.9855 0.5855 0.4163 0.8333 0.8342 0.5108 0.5147 0.5035 0.3871
Qwen3-Coder-30B-A3B-Instruct 0.6553 0.9839 0.5476 0.2871 0.8396 0.8467 0.5258 0.4559 0.5074 0.2941
GPT-OSS-20B 0.6806 0.9952 0.6672 0.7001 0.8467 0.8485 0.4925 0.8004 0.4921 0.7335
Codestral-22B-v0.1 0.6435 0.9855 0.6201 0.6268 0.8520 0.8752 0.5324 0.7862 0.5196 0.6008

Dataset landscape. The benchmarks used in this study cover distinct design philosophies. FormAI is synthetic and
formally verified, but limited in diversity. PrimeVul is a large-scale, real-world dataset at the function level, where
individual samples may be long, deeply nested, and prone to noisy labeling. ARVO and ReposVul are project-level
datasets that capture vulnerabilities spanning multiple functions, including inter-procedural cases and realistic devel-
opment contexts, making them especially difficult targets for generalization. In contrast, ApproxVul represents a hybrid
approach: inter-procedural, compilable, and executable programs that preserve the style of real-world vulnerabilities
while remaining small and self-contained, ensuring that vulnerability status can be verified.

Synthetic training (FormAI). Models trained on FormAI achieve the strongest in-distribution performance (accuracy
and recall both ≈0.90), but collapse out-of-distribution, with average recall dropping to 0.43. Their failure to general-
ize beyond synthetic patterns highlights the risks of relying solely on synthetic data.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Function-level Real-world training (PrimeVul). PrimeVul-trained models generalize better than synthetic-only ones,
reaching an average recall of 0.69. However, performance is uneven: they excel on their own test set (recall ≈0.81)
but struggle with synthetic data and project-level datasets, reflecting challenges of noise and function-level design.

Hybrid training (ApproxVul). ApproxVul sits between these two extremes. On its own test set, it yields strong accuracy
(0.83–0.85) and recall (0.83–0.88), showing internal consistency. More importantly, ApproxVul achieves the highest
overall averages across datasets: 0.63 accuracy and 0.71 recall. The improvements are modest but meaningful, showing
that hybrid datasets can outperform purely synthetic training and slightly edge out noisy real-world training.

Project-level Real-world Challenges (ARVO and ReposVul). Across all training datasets, performance drops sharply
on ARVO and ReposVul. These datasets capture the full complexity of project-level code, including inter-procedural
dependencies and deeply nested function structures, and substantially larger code units. Current fine-tuning approaches
are insufficient to bridge this gap, underscoring the need for more advanced training paradigms.

While our experiments show that simple fine-tuning on ApproxVul already delivers measurable gains in cross-dataset
generalization, the dataset’s true potential lies in its richer structure. By capturing vulnerability context (e.g., call
traces, crash outputs) in a verifiable manner, ApproxVul provides a foundation for advancing beyond basic supervised
training. Future work can leverage these signals for more expressive learning paradigms, making ApproxVul less of a
final solution and more of an essential stepping stone toward higher-quality, generalizable ML4VD systems.

5 DISCUSSION

Our work in generating ApproxVul, a large-scale dataset for vulnerability detection, has yielded several insights into
the capabilities and challenges of using LLMs for code generation, while highlighting current framework limitations.

Insights from Large-Scale Code Generation. The primary insight from our generation process is that current LLMs
struggle more with syntactic precision than with high-level logic. The most significant hurdle by far was ensuring
code could compile, with the majority of failures stemming from fundamental mistakes like missing standard headers
and basic syntax errors, rather than complex logical flaws. For a detailed breakdown of these generation outcomes,
see Section G.

Enforcing Target Code Metrics. During code generation, we attempted to enforce target code metrics in the prompts
given a prior analysis of real-world datasets such as PrimeVul. However, the compilation rate dropped significantly
across all models. We noticed that the produced code contains signs of hallucinations (e.g., repetitive function decla-
rations to satisfy Lines of Code). In addition, we noticed that the LLMs struggle with nesting depth as the were not
successful in produce deeply nested code. Future work will explore techniques to generate compilable and verifiable
deeply nested code to simulate project-level real-world datasets like ARVO and ReposVul.

Limitations. Our approach, while effective, inherits several limitations from its components. Complex code with in-
tricate loops or pointer arithmetic may cause a state-space explosion, leading the verifier to time out and restricting the
complexity of programs that can be analyzed. Moreover, vulnerability detection is limited to the checks implemented
in the verifier; although custom assertions can extend coverage, the default set is not exhaustive and may miss certain
vulnerability classes. Finally, the models are constrained by their context length, which reduces their ability to capture
dependencies in large, real-world codebases where vulnerabilities often arise from distant interactions.

Future Research Directions. There are several promising directions for future work. A natural extension is to adapt
the framework to other programming languages like Java, Python, or JavaScript, which would necessitate developing
language-specific components but would significantly broaden its applicability. Another avenue is to leverage LLMs
to automatically generate custom assertions. This would allow the framework to dynamically check for a wider and
more nuanced range of vulnerabilities beyond its predefined set, further enhancing its detection capabilities.

6 CONCLUSION

We introduce ApproxVul, a large-scale verifiable dataset of C/C++ programs for vulnerability detection, created by
combining LLMs with formal verification. Our approach bridges the gap between small curated datasets and noisy
real-world data, revealing that LLMs’ main bottleneck lies in syntactic precision rather than reasoning. While limited
by verifier constraints and context length, our framework offers a scalable method for generating high-quality datasets
and a valuable resource for the community. Future directions include expanding to other languages and using LLMs
for automated assertion generation to enable richer security analysis.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The primary goal of this research is to advance software security by providing high-quality datasets for training more
effective vulnerability detection models. The ApproxVul dataset consists of synthetically generated C/C++ programs
derived from open-source snippets and does not represent exploitable vulnerabilities in any production software. All
source code was permissively licensed, and the dataset contains no sensitive information.

In accordance with ICLR policies, we transparently disclose the use of Large Language Models (LLMs) in our re-
search. LLMs were integral to our data generation framework and were also used as assistive tools for manuscript
preparation (e.g., formatting, grammar correction) (see Section I). All AI-generated content and code were carefully
reviewed, validated, and edited by the authors, who take full responsibility for the final manuscript’s integrity and all
its claims.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our research. All components necessary to replicate our
findings will be made publicly available upon acceptance.

• Framework and Code: The complete source code for the ApproxVul generation framework, including all
scripts for data processing, model interaction, and formal verification will be open-sourced upon the accep-
tance of this manuscript.

• Dataset: The full ApproxVul dataset, containing over 104,000 formally verified programs with their cor-
responding labels and vulnerable/safe pairs, will be released publicly. The stratified subsets used for our
experiments will also be made available with clear train/validation/test splits.

• Models: The specific open-source Large Language Models used for both the generation pipeline and the
performance evaluation are detailed in Table 10. The finetuned models will be publicly available on Hug-
gingFace.

• Experimental Setup: Implementation details, including the libraries (e.g., vLLM, LLaMA-Factory), hard-
ware specifications (e.g., NVIDIA H100 GPU), and fine-tuning hyperparameters (e.g., learning rate, batch
size, LoRA configuration), are described in Section F and Section 4.3. The datasets used for comparison
(PrimeVul, FormAI, ICVul, ARVO, and ReposVul) are all publicly available. Our data sampling and project-
level decontamination procedures are detailed in Section 4.1 to allow for a fair replication of our evaluation.

REFERENCES

Guru Bhandari, Amara Naseer, and Leon Moonen. Cvefixes: automated collection of vulnerabilities and their fixes
from open-source software. In Proceedings of the 17th international conference on predictive models and data
analytics in software engineering, pp. 30–39, 2021.

Yizheng Chen, Zhoujie Ding, Lamya Alowain, Xinyun Chen, and David Wagner. Diversevul: A new vulnerable source
code dataset for deep learning based vulnerability detection. In Proceedings of the 26th International Symposium
on Research in Attacks, Intrusions and Defenses, pp. 654–668, 2023.

Roland Croft, M Ali Babar, and M Mehdi Kholoosi. Data quality for software vulnerability datasets. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE), pp. 121–133. IEEE, 2023.

Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim, Chawin Sitawarin, Xinyun Chen, Basel Alomair, David Wagner,
Baishakhi Ray, and Yizheng Chen. Vulnerability detection with code language models: How far are we? arXiv
preprint arXiv:2403.18624, 2024.

Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. A c/c++ code vulnerability dataset with code changes and
cve summaries. In Proceedings of the 17th international conference on mining software repositories, pp. 508–512,
2020.

Jingxuan He and Martin Vechev. Large language models for code: Security hardening and adversarial testing. In
Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, pp. 1865–1879,
2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ahmed Lekssays, Hamza Mouhcine, Khang Tran, Ting Yu, and Issa Khalil. {LLMxCPG}:{Context-Aware} vulner-
ability detection through code property {Graph-Guided} large language models. In 34th USENIX Security Sympo-
sium (USENIX Security 25), pp. 489–507, 2025.

Xianzhiyu Li, Kunjian Song, Mikhail R Gadelha, Franz Brauße, Rafael S Menezes, Konstantin Korovin, and Lu-
cas C Cordeiro. Esbmc v7. 6: Enhanced model checking of c++ programs with clang ast. arXiv preprint
arXiv:2406.17862, 2024.

Chaomeng Lu, Tianyu Li, Toon Dehaene, and Bert Lagaisse. Icvul: A well-labeled c/c++ vulnerability dataset with
comprehensive metadata and vccs. arXiv preprint arXiv:2405.08503, 2024.

Xiang Mei, Pulkit Singh Singaria, Jordi Del Castillo, Haoran Xi, Abdelouahab Benchikh, Tiffany Bao, Ruoyu Wang,
Yan Shoshitaishvili, Adam Doupé, Hammond Pearce, et al. Arvo: Atlas of reproducible vulnerabilities for open
source software. arXiv preprint arXiv:2408.02153, 2024.

Chen Ni, Luning Shen, Xiang Yang, Yong Zhu, and Shangguang Wang. Megavul: A c/c++ vulnerability dataset
with comprehensive code representations. In 2024 IEEE/ACM 21st International Conference on Mining Software
Repositories (MSR), pp. 738–742. IEEE, 2024.

Niklas Risse and Marcel Böhme. Uncovering the limits of machine learning for automatic vulnerability detection. In
33rd USENIX Security Symposium (USENIX Security 24), Philadelphia, PA, August 2024. USENIX Association.
URL https://www.usenix.org/conference/usenixsecurity24/presentation/risse.

Niklas Risse, Jing Liu, and Marcel Böhme. Top score on the wrong exam: On benchmarking in machine learning for
vulnerability detection. Proceedings of the ACM on Software Engineering, 2(ISSTA):1–23, 2025.

Norbert Tihanyi, Mohamed Amine Ferrag, Tamas Bisztray, Ridhi Jain, Lucas C Cordeiro, and Vasileios Mavroeidis.
The formai dataset: Generative ai in software security through the lens of formal verification. In Proceedings of the
19th International Conference on Predictive Models and Data Analytics in Software Engineering, pp. 8–18, 2023.

Xinchen Wang, Ruida Hu, Cuiyun Gao, Xin-Cheng Wen, Yujia Chen, and Qing Liao. Reposvul: A repository-level
high-quality vulnerability dataset. In 2024 IEEE/ACM 46th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), pp. 472–476, 2024.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma. Lla-
mafactory: Unified efficient fine-tuning of 100+ language models. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 3: System Demonstrations), Bangkok, Thailand, 2024.
Association for Computational Linguistics. URL http://arxiv.org/abs/2403.13372.

Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu. Devign: Effective vulnerability identifi-
cation by learning comprehensive program semantics via graph neural networks. Advances in neural information
processing systems, 32, 2019.

A COMPARATIVE SUMMARY OF DATASETS

Table 7 provides a detailed comparative overview of the key vulnerability detection datasets, contextualizing the unique
advantages of ApproxVul.

Table 7: Detailed Comparison of Vulnerability Detection Datasets

Dataset Source Labeling Method Scale (Samples) Formally Verifiable Provides Context Realistic Code Minimally-Different Pairs
Category 1: Large-Scale Real-World (Heuristic-Based)

BigVul (Fan et al., 2020) Real-world Heuristic (Commits) ∼188k Funcs × No (Function-level) Yes (Very Noisy) ×
MegaVul (Ni et al., 2024) Real-world Heuristic (Commits) ∼322k Funcs × No (Function-level) Yes (Noisy) ×
Devign (Zhou et al., 2019) Real-world Heuristic (Commits) ∼27k Funcs × No (Function-level) Yes (Extremely Noisy) ×
DiverseVul (Chen et al., 2023) Real-world Heuristic (Commits) ∼379k Funcs × No (Function-level) Yes (Noisy) ×
CVEFixes (Bhandari et al., 2021) Real-world Heuristic (CVE Links) ∼50k Funcs × No (Function-level) Yes (Noisy) ×

Category 2: Quality-Improved Real-World
ReposVul (Wang et al., 2024) Real-world LLM + Static Analysis ∼262k Funcs × Yes (Interprocedural) Yes ✓
ICVul (Lu et al., 2024) Real-world Heuristic + Filtering (ESC) ∼15k Funcs × No (Function-level) Yes ×
ARVO (Mei et al., 2024) Real-world Fuzzer Reproducibility ∼5k Traces × Yes (Interprocedural) Yes ✓
SVEN (He & Vechev, 2023) Real-world Manual Curation ∼1.6k Funcs × No (Function-level) High ✓

Category 3: Synthetic (Formally Verified)
FormAI (Tihanyi et al., 2023) Synthetic Formal Verification ∼112k Programs ✓ Yes (Compilable) Low-Medium ×
ApproxVul (Ours) Synthetic (from Seed) Formal Verification 104k Programs ✓ Yes (Compilable) High ✓

11

https://www.usenix.org/conference/usenixsecurity24/presentation/risse
http://arxiv.org/abs/2403.13372


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

B STATISTICAL CHARACTERIZATION OF APPROXVUL

To understand the intrinsic properties of the code generated by our framework, we conducted a statistical analysis of
the ApproxVul dataset, comparing the characteristics of ‘VULNERABLE‘ samples against their ‘SAFE‘ counterparts.
We analyzed a corpus of 103,374 programs (59,993 vulnerable, 43,381 safe) using five standard software metrics:
non-empty lines of code (LOC), cyclomatic complexity, nesting depth, function count, and the maintainability index.

Table 8 summarizes the descriptive statistics for both classes. Our analysis reveals that vulnerable programs are, on
average, larger and more complex than safe programs across all metrics. For instance, the mean non-empty LOC for
vulnerable samples is 73.91, compared to 63.99 for safe samples. Similarly, vulnerable code exhibits slightly higher
mean cyclomatic complexity (8.79 vs. 8.08) and nesting depth (2.57 vs. 2.39).

Crucially, vulnerable programs have a markedly lower average maintainability index (64.32 vs. 68.48). Since a lower
score indicates code that is more difficult to maintain and understand, this aligns with the expectation that such code is
more prone to contain security flaws. A Mann-Whitney U test confirms that the differences between the ‘SAFE‘ and
‘VULNERABLE‘ distributions are statistically significant for all metrics (p ≪ 0.001), with the maintainability index
showing the largest effect size (rank-biserial correlation = 0.584).

These findings support the realism of our generation process. The distinctions are subtle enough to present a chal-
lenging detection task, indicating that our framework does not merely generate trivially complex vulnerable examples.
Instead, it introduces vulnerabilities into code that remains structurally similar to its safe counterpart, thereby creating
a high-fidelity benchmark for training and evaluating vulnerability detection models.

Table 8: Descriptive statistics of code metrics for ‘SAFE‘ and ‘VULNERABLE‘ programs in the ApproxVul dataset.
The mean values for vulnerable samples are consistently indicative of higher complexity and lower maintainability.

Metric SAFE (N=43,381) VULNERABLE (N=59,993)

Mean Median Std. Dev. Mean Median Std. Dev.

Non-Empty Lines (LOC) 63.99 60.0 35.92 73.91 68.0 36.37
Cyclomatic Complexity 8.08 6.0 7.28 8.79 7.0 7.32
Nesting Depth 2.39 2.0 0.95 2.57 2.0 0.96
Function Count 5.62 6.0 2.97 6.13 6.0 2.85
Maintainability Index 68.48 67.25 14.17 64.32 64.07 12.35

C AN EXAMPLE GENERATED WITH APPROXVUL FRAMEWORK

This section details an example where a null pointer dereference vulnerability was generated from a real-world seed
from the FFmpeg multimedia library.

C.1 REAL-WORLD SEED FROM FFMPEG

The seed function, mpeg4 encode gop header, is responsible for writing Group of Pictures (GOP) headers in an
MPEG4 video stream. It was chosen for its complex data structure manipulations and bitwise operations, which are
characteristic of low-level multimedia programming.

Listing 1: Original code snippet from the FFmpeg library’s mpeg4 encode gop header function.
1 static void mpeg4_encode_gop_header(MpegEncContext *s){
2 int64_t hours, minutes, seconds;
3 int64_t time;
4 put_bits(&s->pb, 16, 0);
5 put_bits(&s->pb, 16, GOP_STARTCODE);
6 time = s->current_picture_ptr->f->pts;
7 if (s->reordered_input_picture[1])
8 time = FFMIN(time, s->reordered_input_picture[1]->f->pts);
9 time = time * s->avctx->time_base.num;

10 s->last_time_base = FFUDIV(time, s->avctx->time_base.den);
11 seconds = FFUDIV(time, s->avctx->time_base.den);
12 minutes = FFUDIV(seconds, 60); seconds = FFUMOD(seconds, 60);
13 hours = FFUDIV(minutes, 60); minutes = FFUMOD(minutes, 60);
14 hours = FFUMOD(hours , 24);
15 put_bits(&s->pb, 5, hours);
16 // ... more bitwise operations ...

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

17 }

C.2 GENERATED VULNERABLE CODE

The generation pipeline transformed the seed from a small, context-dependent function into a complete, verifiable
program. This transformation showcases the model’s ability to infer and generate substantial additional context. It
correctly identified the semantic domain of the seed—MPEG video encoding—and recreated the necessary data struc-
tures from scratch, such as MpegEncContext and AVCodecContext. Furthermore, it generated a functional
main function to initialize these complex structures and a simplified put bits function to simulate the original’s
core purpose. The vulnerability was not introduced by modifying the seed’s logic but was instead created within the
new scaffolding code required to make the program self-contained. This demonstrates a key aspect of the framework:
creating realistic vulnerabilities in the surrounding context rather than just altering the original snippet.

Listing 2: Vulnerable code generated from the FFmpeg seed.
1 #include <stdint.h>
2 #include <stdlib.h>
3 #include <stdio.h>
4

5 #define GOP_STARTCODE 0xB301
6 // ... other definitions ...
7

8 typedef struct { int64_t pts; int64_t den; } AVRational;
9 typedef struct { AVRational time_base; uint32_t flags; } AVCodecContext;

10 typedef struct {
11 AVCodecContext *avctx;
12 int64_t *last_time_base;
13 int64_t *reordered_input_picture;
14 struct { AVRational *pts; } *f;
15 uint8_t *buffer;
16 uint32_t buffer_size;
17 uint32_t buffer_index;
18 } MpegEncContext;
19

20 // ... function definitions for put_bits, ff_mpeg4_stuffing, and
mpeg4_encode_gop_header ...

21

22 int main() {
23 MpegEncContext s;
24 s.avctx = malloc(sizeof(AVCodecContext));
25 s.avctx->time_base.den = 25;
26 s.avctx->flags = AV_CODEC_FLAG_CLOSED_GOP;
27 s.last_time_base = malloc(sizeof(int64_t));
28 s.reordered_input_picture = malloc(sizeof(int64_t) * 2);
29 s.f = malloc(sizeof(*s.f));
30 s.f->pts = malloc(sizeof(AVRational));
31 s.f->pts->pts = 123456;
32 s.buffer = malloc(1024);
33 // ... more setup ...
34 mpeg4_encode_gop_header(&s);
35 // ... free calls ...
36 return 0;
37 }

C.3 VULNERABILITY ANALYSIS: NULL POINTER DEREFERENCE

The formal verifier discovered a critical null pointer dereference vulnerability in the generated code. This flaw is a
direct result of improper error handling for memory allocation within the model-generated setup code. This high-
lights how vulnerabilities often appear in the boilerplate and setup logic surrounding core functionality, a pattern our
framework successfully reproduces.

The execution flow leading to the vulnerability is as follows:

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

1. The main function begins by allocating memory for several pointers within the MpegEncContext struct
s.

2. The formal verifier explores an execution path where one of these allocations, specifically s.f->pts =
malloc(sizeof(AVRational)), fails and returns NULL.

3. The generated code critically lacks a check to verify if the returned pointer from malloc is valid.
4. In the very next line, the program attempts to write to the allocated memory via the assignment

s.f->pts->pts = 123456.
5. Since s.f->pts is NULL in this scenario, this operation constitutes a null pointer dereference, a severe

vulnerability that typically leads to a program crash.

This example highlights the model’s ability to generate code with common but critical programming mistakes, such
as failing to check the return values of memory allocation functions.

D STRUCTURAL CODE METRICS FROM CST

D.1 GENERAL CONSTRUCTS

• translation unit: The root node of the CST.
• max depth: Measures the deepest level of syntactic nesting.
• comment: Represents single-line (//) or multi-line (/.../) comments.
• ERROR: Indicates syntactically incorrect code found by the parser.

D.2 DECLARATIONS AND DEFINITIONS

• declaration: Introduces variables, functions, and types.
• function definition: A declaration that includes the function’s implementation body.
• init declarator: A variable declaration with initialization (e.g., int x = 0;).
• parameter list: Defines a function’s input parameters.
• type specifiers: Includes storag class specifier (static), type qualifier (const),

and primitive type (int, char).
• declarators: Define complex types like pointer declarator (*) and array declarator ([]).

D.3 USER-DEFINED TYPES

• struct specifier, union specifier, enum specifier: Define custom data structures.
• field declaration: Specifies a member within a struct or union.
• enumerator: Represents a named constant within an enum.

D.4 STATEMENTS AND CONTROL FLOW

• compound statement: A block of code enclosed in curly braces .
• expression statement: An expression followed by a semicolon.
• Conditionals: if statement, else clause, switch statement, case statement.
• Loops: for statement, while statement, do statement.
• Jumps: return statement, break statement, continue statement, goto statement.

D.5 EXPRESSIONS AND OPERATORS

• binary expression (a + b), unary expression (-x), update expression (i++),
assignment expression (a = b).

• conditional expression: The ternary operator (? :).
• call expression: A function call with an argument list.
• Access: field expression (.), pointer expression (->), subscript expression ([]).
• Utilities: parenthesized expression, cast expression, sizeof expression.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D.6 LITERALS AND IDENTIFIERS

• identifier: Names for variables, functions, etc.
• number literal, string literal, char literal: Constant values.
• null, true, false: Special literal values.

D.7 PREPROCESSOR DIRECTIVES

• preproc include: #include directives.
• preproc def, preproc function def: Macro definitions.
• preproc if, preproc ifdef, preproc else: Conditional compilation.
• preproc call: Invocation of a macro.

D.8 C++ SPECIFIC CONSTRUCTS

• class specifier: Defines a C++ class.
• template declaration: Creates generic classes or functions.
• qualified identifier: Scoped names (e.g., std::vector).
• new expression, delete expression: Dynamic memory management.
• try statement, catch clause: Exception handling.
• lambda expression: Anonymous functions.
• for range loop: Range-based for loops.

E ADDITIONAL SYNTACTIC REALISM ANALYSIS WITH infly/infly-retrieval-7b

To ensure our findings on syntactic realism were not specific to a single embedding model, we replicated the analysis
from Section 4.2.1 using the infly/infly-retrieval-7b model as it is the second best performing model in code tasks in
MTEB Leaderboard as of August 31, 2025. The results presented here support our primary conclusion: ApproxVul
demonstrates superior syntactic alignment with real-world vulnerability datasets compared to FormAI.

Results & Analysis. As shown in Table 9, the distance metrics computed using infly embeddings consistently show
that ApproxVul is syntactically closer to both PrimeVul and ICVul. In every case, the MMD, Centroid, and Wasserstein
distances are lower for ApproxVul than for FormAI, reaffirming the findings from the main analysis.

Table 9: Syntactic distance from synthetic datasets to real-world datasets using infly/infly-retrieval-7b embeddings.
Lower values indicate greater similarity. The results confirm that ApproxVul is syntactically closer to the real-world
benchmarks.

Distance Metric ApproxVul vs. PrimeVul FormAI vs. PrimeVul ApproxVul vs. ICVul FormAI vs. ICVul
MMD 0.0490 0.0964 0.0460 0.0969
Centroid Distance 0.2014 0.2915 0.1941 0.2917
Wasserstein Distance 0.0028 0.0043 0.0029 0.0038

The clustering evaluation provides further support. We obtained an Adjusted Rand Index (ARI) of 0.41 and a V-
Measure of 0.49. While lower than the scores from the primary model, these values still indicate a meaningful
clustering structure where datasets possess distinct signatures. Crucially, the Silhouette Score was extremely low
at 0.0365. This quantitatively demonstrates that the clusters are heavily overlapping and not cleanly separable, which,
in this context, is a strong indicator that the ApproxVul embeddings are well-integrated with the embeddings of the
real-world datasets. This independent verification strengthens our overall conclusion regarding the syntactic realism
of our generated data.

F IMPLEMENTATION DETAILS

ApproxVul framework was implemented in Python, leveraging a robust distributed architecture. The initial generation
was performed on a desktop with a Core i7 processor, and the results were stored in a PostgreSQL database managed

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 3: PCA (left) and t-SNE (right) visualizations of infly/infly-retrieval-7b embeddings. These plots confirm the
findings from the primary analysis, with ApproxVul (purple) showing strong integration with real-world datasets (ICVul
in blue, PrimeVul in red), while FormAI (green) remains distinct.

with PgBouncer for load balancing. The pipeline uses RabbitMQ for managing the queue of generation tasks, with a
dedicated queue for each model to manage the load. Docker containers provided isolated environments for compilers
and the bounded model checker. The ground-truth labels were established using the ESBMC (Efficient SMT-based
Bounded Model Checker) for formal verification, with a 5-minute timeout per sample.

For code generation and performance evaluation, we utilized a diverse suite of Large Language Models (LLMs),
detailed in Table 10. The generation models were hosted using vLLM for efficient inference. For the performance
evaluation (RQ2), models were fine-tuned using the LLaMA-Factory library (Zheng et al., 2024)..

Table 10: Large Language Models used in the experiments.

Model Parameters Context Length Usage
microsoft/phi-4 14B 16K Generation
mistralai/Codestral-22B-v0.1 22B 32K Generation
mistralai/Devstral-Small-2507 24B 128K Generation
google/gemma-3-12b-it 12B 128K Generation
01-ai/Yi-Coder-9B-Chat 9B 128K Generation

qwen/Qwen3-8B 8B 32K Fine-tuning
ByteDance/Seed-Coder-8B-Instruct 8B 32K Fine-tuning
openai/gpt-oss-20b 20B 128K Generation, Fine-tuning
qwen/Qwen3-Coder-30B-A3B-Instruct 30B 262K Generation, Fine-tuning

G ERROR ANALYSIS OF THE GENERATION PIPELINE

An analysis of our large-scale code generation pipeline reveals several key challenges, with failures occurring at
distinct stages: compilation, verification, and timeout. This section provides a quantitative and qualitative breakdown
of these outcomes.

G.1 QUANTITATIVE ANALYSIS

The primary obstacle in the generation pipeline was ensuring the code could compile successfully. Beyond that,
even syntactically correct code could fail the formal verification stage either by containing logical errors (Verification
Failure) or by being too complex for the verifier to analyze within the allocated time (Timeout). Table 11 summarizes
the outcomes for the initial code generation models.

Compilation failures were overwhelmingly the most common reason for rejection, with rates exceeding 50% for
most models and approaching 90% for smaller models like google/gemma-3-12b-it. In contrast, mistralai/Codestral-
22B-v0.1 demonstrated the strongest performance, with the lowest compilation failure rate (44.2%) and the highest
verification success rate (46.7%). Verification failures and timeouts were less frequent but still significant, accounting
for a combined 3-7% of outcomes for most models.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 11: Initial Generation Outcomes by Model

Model Comp. Failure Verif. Failure Timeout Verif. Success Total Gen.
microsoft/phi-4 29,763 (53.4%) 1,994 (3.6%) 1,055 (1.9%) 22,236 (39.9%) 55,789
mistralai/Codestral-22B-v0.1 20,410 (44.2%) 1,891 (4.1%) 1,341 (2.9%) 21,570 (46.7%) 46,173
mistralai/Devstral-Small-2507 9,335 (61.3%) 482 (3.2%) 296 (1.9%) 4,960 (32.6%) 15,226
openai/gpt-oss-20b 8,247 (54.9%) 595 (4.0%) 310 (2.1%) 5,695 (37.9%) 15,012
google/gemma-3-12b-it 10,257 (88.1%) 222 (1.9%) 111 (1.0%) 993 (8.5%) 11,639
01-ai/Yi-Coder-9B-Chat 9,989 (88.4%) 182 (1.6%) 132 (1.2%) 936 (8.3%) 11,299
Qwen/Qwen3-Coder-30B-A3B 913 (64.4%) 41 (2.9%) 16 (1.1%) 436 (30.7%) 1,418

It is important to note that the openai/gpt-oss-120b model, excluded from the table, was used for a distinct refinement
task: injecting or fixing vulnerabilities in already-verified programs. As it operated on high-quality input, its perfor-
mance is not directly comparable. It achieved a verification success rate of over 76% (44,082 out of 57,354 attempts),
a high figure attributable to its specialized role.

G.2 QUALITATIVE ANALYSIS OF FAILURES

Compiler Errors A manual review of the compiler logs reveals that the majority of compilation failures stem from
a few recurring categories of fundamental errors rather than complex logical flaws.

• Missing Standard Headers: This was the most frequent error. Models consistently failed to include nec-
essary headers (e.g., <stdbool.h>, <strings.h>, <string.h>), leading to cascading errors from
implicit declarations of standard library functions like strcasecmp and strcpy.

• Undeclared Identifiers: Models often attempted to use variables or helper functions that were never de-
clared, indicating a failure to maintain context within the generated code block.

• Complex Declaration and Type Conflicts: Beyond simple syntax, models also produced more advanced
compilation errors, such as typedef redefinitions with conflicting types and conflicting declarations for the
same function (e.g., a static declaration following a non-static one). These errors indicate a difficulty in
managing scope and definitions across a file.

• Basic C Syntax Errors: A notable number of failures were caused by trivial syntax mistakes, such as missing
semicolons, mismatched curly braces, and incorrect function call signatures.

• Type Mismatches: Models struggled with C’s static type system, frequently producing errors like incompat-
ible integer-to-pointer conversions or assigning values of the wrong type.

Verification Failures and Timeouts These errors occur only after a program has successfully compiled, indicating
deeper logical issues rather than syntactic ones.

• Verification Failures: Contrary to what the name might imply, this failure does not mean a security vulner-
ability was found. Instead, it indicates a parsing or compilation error within the formal verifier’s own strict C
front-end. The verifier enforces a stricter standard of C than a typical compiler, treating issues like typedef
redefinitions or conflicting function declarations as hard errors that halt execution. In essence, this failure
means the code was not syntactically or semantically sound enough for the formal analysis to even begin.

• Timeouts: A timeout occurs when the formal verifier cannot complete its analysis within the allocated time
budget. This is not necessarily an error in the generated code but rather a limitation of formal methods
when applied to complex programs. Timeouts often result from intricate loops, recursion, or complex pointer
arithmetic that lead to a state-space explosion, making the verification process computationally intractable.
This highlights a trade-off between code complexity and verifiability.

In summary, the error analysis shows that while LLMs can generate a vast quantity of code, syntactic correctness
remains the largest hurdle. For code that does compile, ensuring logical correctness and remaining within the bounds
of what is computationally verifiable present secondary but still significant challenges.

H PROMPTS

In this section, we present the prompts we used for the different parts of our pipeline namely, Program Generation,
Compilation Issues Fixing, Vulnerability Fixing, and Vulnerability Injection.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Listing 3: Program Generation Prompt.

You are a specialized AI assistant focused on generating high-quality,
complete source code. Your primary function is to take a code snippet and
specific requirements (provided in the user prompt) and expand it into a
fully functional, compilable, and self-contained program in the target
language.

Task: Generate a complete, self-contained, functional, and compilable program.
This program should include multiple functions, one of which must be

functionally equivalent to the provided function below. You may modify the
provided function snippet structure (e.g., parameter names, local

variables) to meet complexity requirements, but you must preserve its core
functionality.

Vulnerability Requirement:
- The generated code must always contain exactly one vulnerability from the

following list: CWE-190, CWE-125, CWE-120, CWE-415, CWE-119, CWE-787, CWE
-476, CWE-416, CWE-590

- Only one vulnerability must be present in the code, and it must match the
selected CWE type.

- The vulnerability must be actually exploitable in logic, not just hinted at.

Core Requirements:
- Completeness & Compilation: Produce a single block of code that is a

complete program, ready to be compiled and run without any modifications,
placeholders, or missing parts. Ensure it compiles cleanly without errors
or warnings except those directly resulting from the intentional
vulnerability.

- Standard Libraries: Use only standard libraries available in a typical
installation of the chosen language. Avoid non-standard dependencies
unless absolutely necessary; if so, provide a single one-liner
installation command.

- No File I/O: Do not read from or write to files. Input should be hardcoded
or read from standard input if essential.

- Functionality Preservation: Maintain the operational behavior of the
provided function in the new function. But you must write the
functionality in your way. Do not copy and paste the original function.

- No Debugging: Do not add any debugging statements or any comments to the
code.

- Vulnerability Injection: The chosen vulnerability must match one of the CWEs
above and be clearly implemented in code.

- Context & Dependencies: Define all necessary types, structs, constants,
global variables, includes/imports so the code compiles and runs.

- Multiple Functions and Entry Point: Include a main function that
demonstrates the vulnerable function. Include 5-7 interconnected functions
.

- Length Requirement: The program must be between 50 and 300 lines.
- No Comments: Do not add any comments.
- No Placeholders: The code must be fully implemented or dummy implementations

.
- Avoid using datatypes that are not standard (e.g., u32, u8, etc.). Convert

them to standard ones line uint32_t, uint8_t, etc.
- Name functions to simulate real world source code. Do not give them dummy

names or marking them explicitely as vulnerable or safe.
- Do not use comments.

Output Requirements:
- Provide only the complete, fixed, compilable program source code.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

- Enclose the entire code block within <snippet> tags.
- Enclose the ONE liner command in <install_command> tags. Do not include

compilation command. Include only correct and verified dependencies. The
code will run on a docker container with Ubuntu 24.04. Assume that gcc,
kotlin, javac, python 3.10, build-essential are installed.

- Ensure absolutely no explanations, introductions, or any other text appear
outside the <snippet> or <install_command> tags.

- Ensure there is an install command as it is mandatory.

<snippet>
[YOUR_FULL_COMPILABLE_AND_FIXED_PROGRAM_HERE]
</snippet>

<install_command>
[ONE_LINER_INSTALL_COMMAND]
</install_command>

Listing 4: Compilation Issues Fixing Prompt.

You are an AI assistant specialized in debugging and fixing compilation errors
in source code. Your primary function is to receive potentially non-

compiling code, along with optional compiler error messages (provided in
the user prompt), and output a complete, corrected, and compilable version
of that code.

Task: The provided code is failing to compile. Please fix the compilation
errors to make the code compile successfully. Apply only the necessary
changes to resolve the compilation issues, preserving the original
intended functionality and style as much as possible.

Requirements:
- Fix Compilation Errors: Identify and correct the syntax errors, type

mismatches, missing includes/imports, undefined symbols, or other issues
preventing the CODE_WITH_ERRORS from compiling.

- Minimal Changes: Apply only the modifications strictly necessary to achieve
successful compilation.

- Preserve Functionality: Maintain the original intended logic and behavior of
the code as closely as possible.

- Maintain Style: Preserve the original code’s formatting and naming
conventions unless changes are required for a compilation fix.

- Complete Code: Provide the entire corrected program, not just the modified
lines or functions.

- Installation Command: Check the previous installation command (not run
command) if it is correct, if not provide a new installation command.

Output Requirements:
- Provide only the complete, fixed, compilable program source code.
- Enclose the entire code block within <snippet> tags.
- Enclose the ONE liner command in <install_command> tags.
- Ensure absolutely no explanations, introductions, or any other text appear

outside the <snippet> or <install_command> tags.
- Enclose the ONE liner command in <install_command> tags. Do not include

compilation command. Include only correct and verified dependencies. The
code will run on a docker container with Ubuntu 24.04. Assume that gcc,
kotlin, javac, python 3.10, build-essential are installed. The environment
is a docker container based on Ubuntu 24.04 LTS. Installations shall not

have sudo since the container will run as root.
- Ensure there is an install command as it is mandatory

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

<snippet>
[YOUR_FULL_COMPILABLE_AND_FIXED_PROGRAM_HERE]
</snippet>

<install_command>
[ONE_LINER_INSTALL_COMMAND]
</install_command>

Listing 5: Vulnerability Fixing Prompt.

You are an AI assistant specialized in analyzing and fixing memory safety
vulnerabilities identified by formal verification tools, particularly
ESBMC (Efficient SMT-based Bounded Model Checker). Your primary function
is to receive vulnerable code along with ESBMC verification logs,
interpret the specific vulnerability reports, and output complete,
corrected, and memory-safe versions of the code.

Task: Given a code snippet and its corresponding ESBMC (Efficient SMT-based
Bounded Model Checker) verification log showing detected vulnerabilities,
fix the identified memory safety issues while maintaining the original
program functionality.

Requirements:
- Analyze ESBMC Output: Carefully examine the ESBMC verification log to

identify the specific vulnerability type (buffer overflow, null pointer
dereference, use-after-free, uninitialized memory access, etc.).

- Root Cause Analysis: Understand the exact line numbers, function calls, and
execution paths that lead to the vulnerability as reported by ESBMC.

- Targeted Fixes: Apply precise corrections that address the specific
vulnerability without over-engineering the solution.

- Preserve Functionality: Maintain the original intended behavior and logic of
the program.

- Memory Safety: Ensure all memory operations are bounds-checked and properly
validated.

- Complete Code: Provide the entire corrected program that will pass ESBMC
verification.

- Compilation Ready: Ensure the fixed code compiles successfully with
appropriate compiler flags.

- Make the fix implicit.
- Do NOT add comments.
- Do NOT give any hints about the fix or the vulnerability.

Output Requirements:
- Provide only the complete, fixed, compilable program source code.
- Enclose the entire code block within <snippet> tags.
- Include installation command for any required dependencies in <

install_command> tags.
- Ensure absolutely no explanations, introductions, or any other text appear

outside the <snippet> or <install_command> tags.
- The fixed code must address the specific vulnerability identified in the

ESBMC log.
- Code must compile and run successfully on Ubuntu 24.04 with standard tools (

gcc, build-essential assumed installed).

Example Output Format:
<snippet>
[YOUR_COMPLETE_VULNERABILITY_FIXED_PROGRAM_HERE]
</snippet>

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

<install_command>
[ONE_LINER_INSTALL_COMMAND_IF_NEEDED]
</install_command>

Listing 6: Vulnerability Injection Prompt.

You are an AI assistant specialized in introducing realistic memory
vulnerabilities into previously safe code for security testing and
educational purposes. Your primary function is to receive memory-safe code
and carefully introduce exactly one specific memory vulnerability while

maintaining code functionality and compilation compatibility.

Task: Given a code snippet that has been proven safe either through formal
verification, introduce exactly one specific memory vulnerability while
keeping the code syntactically correct and functionally similar.

Requirements:
- Single Vulnerability: Introduce exactly one memory vulnerability from the

following categories:
- Buffer overflow (stack or heap)
- Null pointer dereference
- Use-after-free
- Double-free
- Uninitialized memory access
- Integer overflow leading to memory corruption

- Subtle Introduction: Make the vulnerability realistic and not immediately
obvious during casual code review.

- Maintain Compilation: The modified code must compile successfully without
warnings when possible.

- Preserve Core Logic: Keep the main functionality and program flow intact.
- Realistic Scenario: Ensure the vulnerability could realistically occur in

real-world development scenarios.
- Complete Code: Provide the entire modified program with the introduced

vulnerability.
- Make the vulnerability implicit.
- Do NOT add comments.
- Do NOT give any hints about the vulnerability.

Output Requirements:
- Provide only the complete, modified, compilable program source code with the

introduced vulnerability.
- Enclose the entire code block within <snippet> tags.
- Include installation command for any required dependencies in <

install_command> tags.
- Ensure absolutely no explanations, introductions, or any other text appear

outside the <snippet> or <install_command> tags.
- The code must compile and run (though it may crash or exhibit undefined

behavior due to the introduced vulnerability).
- Code must be compatible with Ubuntu 24.04 and standard development tools.
-
Example Output Format:
<snippet>
[YOUR_COMPLETE_PROGRAM_WITH_INTRODUCED_VULNERABILITY_HERE]
</snippet>

<install_command>
[ONE_LINER_INSTALL_COMMAND_IF_NEEDED]
</install_command>

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

I USE OF LLMS

In accordance with ICLR policies, we used large language models (LLMs) as assistive tools in the preparation of this
paper. Specifically, we employed LLMs to:

• Format LaTeX tables and ensure consistent table style.
• Generate LaTeX styling and document formatting.
• Correct grammar and polish writing for clarity.
• Write scripts or helper code for generating figures.

All content generated or revised with the aid of LLMs has been carefully reviewed and validated by the authors. We
take full responsibility for the final version of the manuscript.

22


	Introduction
	Challenges and Related Work
	The Foundational Flaws of Real-World Datasets
	The Limits of Existing Synthetic Datasets
	The Pitfalls of Decontextualization and Spurious Learning

	Methodology
	Phase 1: Program Generation
	Phase 2: Automated Compilation and Correction
	Phase 3: Formal Verification with Bounded Model Checking
	Phase 4: Paired Vulnerable/Safe Code Generation
	Phase 5: Code Sanitization

	Evaluation
	Datasets and Implementation Details
	RQ1: Realism Evaluation
	Syntactic Realism via Embedding Space Analysis
	Semantic Realism via Code Metrics Analysis

	RQ2: Performance Evaluation

	Discussion
	Conclusion
	Comparative Summary of Datasets
	Statistical Characterization of ApproxVul
	An Example Generated with ApproxVul Framework
	Real-world Seed from FFmpeg
	Generated Vulnerable Code
	Vulnerability Analysis: Null Pointer Dereference

	Structural Code Metrics from CST
	General Constructs
	Declarations and Definitions
	User-Defined Types
	Statements and Control Flow
	Expressions and Operators
	Literals and Identifiers
	Preprocessor Directives
	C++ Specific Constructs

	Additional Syntactic Realism Analysis with infly/infly-retrieval-7b
	Implementation Details
	Error Analysis of the Generation Pipeline
	Quantitative Analysis
	Qualitative Analysis of Failures

	Prompts
	Use of LLMs

