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Abstract

Currently, a prevalent approach for enhancing001
Vision-Language Models (VLMs) performance002
is to encode both the high-resolution version003
and the thumbnail of an image simultaneously.004
While effective, this method generates a large005
number of image tokens. When combined with006
the widely used Rotary Position Embedding007
(RoPE), its long-term decay property hinders008
the interaction between high-resolution tokens009
and thumbnail tokens, as well as between text010
and image. To address these issues, we propose011
ID-Align, which alleviates these problems by012
reordering position IDs. In this method, high-013
resolution tokens inherit IDs from their corre-014
sponding thumbnail token while constraining015
the overexpansion of positional indices. Our016
experiments conducted within the LLaVA-Next017
framework demonstrate that ID-Align achieves018
significant improvements, including a 6.09%019
enhancement on MMBench’s relation reason-020
ing tasks and notable gains across multiple021
benchmarks.022

1 Introduction023

The swift advancement in large language models024

(LLMs) (Achiam et al., 2023; Cai et al., 2024; Yang025

et al., 2024; Liu et al., 2024a) has not only revolu-026

tionized natural language processing but also cat-027

alyzed the emergence of vision-language models028

(VLMs) (Liu et al., 2024d; Wu et al., 2024; Chen029

et al., 2024d; Li et al., 2023a; Wang et al., 2024).030

In the architecture of these advanced VLMs, vi-031

sual encoders—such as Vision Transformers (ViTs)032

(Dosovitskiy, 2020) employing training objectives033

like CLIP (Radford et al., 2021) or SigLip (Zhai034

et al., 2023)—are primarily utilized to encode im-035

ages. Subsequently, mechanisms such as Multi-036

Layer Perceptrons (MLPs) (Liu et al., 2024d) or Q-037

Former (Li et al., 2023a) are employed to fuse the038

encoded visual information with textual data. This039

fused multimodal information is then processed040

by the LLM, enabling comprehensive understand- 041

ing and contextually relevant response generation 042

across both visual and textual domains (Yin et al., 043

2023). 044

In the pursuit of developing more effective 045

VLMs, researchers are undertaking multifaceted 046

efforts, including curating higher-quality training 047

datasets (Bai et al., 2024) and refining model ar- 048

chitectures (Cha et al., 2024). Beyond these strate- 049

gies, another approach explored to enhance model 050

performance involves upscaling an input image to 051

a higher resolution before encoding, while con- 052

currently processing a low-resolution version as a 053

thumbnail (Dai et al., 2024; Deitke et al., 2024; Wu 054

et al., 2024; Chen et al., 2024c; Liu et al., 2024b). 055

The image tokens derived from both the thumb- 056

nail and the high-resolution image are then con- 057

catenated and fed into the LLM. This technique is 058

commonly referred to as dynamic high-resolution 059

adaptation. 060

Despite its straightforwardness and effectiveness, 061

this dynamic high-resolution adaptation method 062

exhibits several critical shortcomings. Encoding 063

high-resolution images inherently generates a large 064

number of image tokens. Consequently, the appli- 065

cation of Rotary Position Embedding (RoPE) (Su 066

et al., 2024), a prevalent position encoding method, 067

can pose specific challenges due to its characteristic 068

long-term decay property, which posits that atten- 069

tion scores between query and key diminish as their 070

relative distance increases. Although generally as- 071

sumed to be valid, some researchers have contested 072

this property (Barbero et al., 2024). Our further 073

analysis reveals that, based purely on RoPE’s math- 074

ematical formulation, its effective behavior (e.g., 075

long-term decay, growth, or more complex pat- 076

terns) can vary depending on the specific distribu- 077

tions of the query (q) and key (k) vectors. Fur- 078

thermore, our empirical experiments confirm that, 079

under the actual distributions of q and k observed 080

in LLMs, RoPE indeed exhibits this long-term de- 081
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cay property.082

This property may lead to:083

• Hinders image-text interaction: The sub-084

stantial increase in image embeddings result-085

ing from high-resolution strategies can im-086

pede effective interaction between text and087

image embeddings. This issue is particularly088

pronounced for image embeddings whose se-089

quential positions are distant from the text090

embeddings.091

• Loss of Multi-Resolution Correspondence:092

A spatial correspondence should exist be-093

tween high-resolution image tokens and their094

thumbnail counterparts, where two tokens are095

defined as corresponding if their encoded re-096

gions spatially overlap. However, RoPE’s097

long-term decay property can disrupt this cru-098

cial relationship.099

To address these issues, we propose ID-Align,100

a novel method that strategically rearranges the101

position IDs of image tokens. By assigning identi-102

cal positional IDs to corresponding high-resolution103

and thumbnail image embeddings, ID-Align pre-104

serves their inter-resolution correspondence. This105

approach not only maintains the crucial relation-106

ship between high-resolution and thumbnail tokens107

but also mitigates the excessive inflation of position108

ID magnitudes that can arise from the large number109

of image embeddings in high-resolution strategies.110

Our experiments, conducted on the LLaVA-Next111

(Liu et al., 2024c) architecture, demonstrate that112

ID-Align significantly enhances model capabilities,113

particularly concerning fine-grained perception of114

global information. Our contributions can be sum-115

marized into the following two points:116

• We analyze the mathematical properties of117

RoPE, demonstrating that its long-term de-118

cay property is contingent upon the specific119

distributions of q and k vectors. We further120

conduct empirical experiments showing that121

within LLMs, RoPE indeed imparts this long-122

term decay property to the model’s attention123

mechanism.124

• We first analyze the adverse effects of the long-125

term decay property of RoPE when increasing126

the number of image embeddings using the127

aforementioned super-resolution methods.128

• On this basis, we introduce ID-Align, a tech-129

nique for reorganizing position IDs. This130

method is aimed at maintaining the correspon- 131

dence between image embeddings across dif- 132

ferent resolutions and mitigating the excessive 133

growth of position IDs caused by dynamic 134

adjustments to higher resolutions. Our ex- 135

periments on the architecture and datasets of 136

LLaVA-Next confirm the effectiveness of ID- 137

Align. 138

2 Background & Related Work 139

2.1 Vision Language Model 140

Currently, the mainstream approach to build VLMs 141

is to employ a projector to connect a pre-trained 142

LLM with a visual encoder, thereby enabling the 143

LLM to interpret visual information (Zhang et al., 144

2024a). For image inputs Iimage, it is usual to first 145

encode them using vision encoders such as SigLIP 146

(Zhai et al., 2023) or CLIP (Radford et al., 2021) 147

ViT (Dosovitskiy, 2020): 148

Fimage = V E(Iimage) (1) 149

Subsequently, the projector processes the encoded 150

image features Fimage: 151

Pimage = Projector(Fimage, Itext) (2) 152

where Itext represents the text input. In certain ar- 153

chitectures, such as BLIP-2 (Li et al., 2023a), Itext 154

also interacts with Fimage at this stage. Following 155

this, the LLM backbone processes Itext alongside 156

Pimage, generating the corresponding output: 157

Output = LLM(Itext, Pimage) (3) 158

The architecture of the projector has many possible 159

designs, and currently, a mainstream choice is to 160

use a two-layer Multilayer Perceptron (MLP) to 161

process Fimage independently of Itext, as exempli- 162

fied by the LLaVA architecture (Liu et al., 2024d): 163

Pimage = MLP (Fimage) (4) 164

2.2 Dynamic High-resolution 165

While VLMs exhibit remarkable performance 166

across diverse domains, they possess inherent limi- 167

tations. These are sometimes characterized using 168

the phrase ‘VLMs are blind’ (Rahmanzadehgervi 169

et al., 2024), denoting their deficiencies in areas 170

such as fine-grained perception and spatial under- 171

standing. One effective method is the dynamic 172

high-resolution approach, the process of which is 173

illustrated in Figure 2 and includes the following 174

steps: 175

The current mainstream pipeline is as follows: 176
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Figure 1: Intuitive presentation of the original high-resolution method and ID-Align.

• Set a Predefined Set of Resolutions. For in-177

stance, if the ViT used in a VLM is suitable178

for processing images of size (336, 336), this179

set of resolutions could be defined as [(672,180

672), (336, 672), (672, 336), (1008, 336),181

(336, 1008)].182

• Select Appropriate Resolution. Given an input183

image with dimensions (H0, H0), the most184

suitable resolution is selected from a set of185

predefined resolutions based on its aspect ra-186

tio.187

• Adjust Input Image Resolution. For an in-188

put image with original resolution (H0,W0),189

two resolution adjustments are applied: first,190

super-resolving it from its original resolution191

to a selected higher resolution (Hh,Wh) to192

obtain a high-resolution image; and second,193

resizing it to a resolution (Hl,Wl) suitable for194

the ViT to serve as a thumbnail. The former195

process often preserves the original image’s196

aspect ratio,filling the remaining regions with197

blank space, while the latter generally does198

not.199

• Encode Image. ViT is used to encode the200

high-resolution image and its thumbnail sep-201

arately. For the encoded features of the high-202

resolution image, an unpadding stage is typ- 203

ically required to remove the features corre- 204

sponding to the padding regions. The result- 205

ing encoded features are then concatenated to 206

obtain the final encoding. 207

This method is used by various leading VLMs 208

(Zhu et al., 2025; Liu et al., 2024f; Deitke et al., 209

2024; Wu et al., 2024; Chen et al., 2024c; Liu et al., 210

2024b). When VLMs use a fixed-size ViT for en- 211

coding, to handle high-resolution images, the com- 212

mon approach is to divide the high-resolution im- 213

age into patches or crops, encode each separately, 214

and then rearrange the encoded results. Tokens, 215

such as new-line tokens or separators, are also typi- 216

cally added at appropriate positions. This process 217

can be seen in Figure 1a. 218

2.3 RoPE 219

The sequential nature of natural language is pivotal 220

for understanding its semantics. However, the at- 221

tention mechanism employed in the Transformer 222

(Vaswani, 2017) architecture does not inherently 223

capture this sequential information. Consequently, 224

it is essential to incorporate positional encoding 225

within the Transformer model to enable the pro- 226

cessing of sequence-dependent information. For 227

the query q with the position ID m and key k with 228
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Figure 2: Flowchart of the Dynamic High-Resolution
Method

the position ID n, positional encoding is applied to229

incorporate positional information into them:230

q̂ = PE(q,m), k̂ = PE(k, n) (5)231

Positional encoding can be implemented in var-232

ious ways (Gehring et al., 2017; Liu et al., 2020;233

Shaw et al., 2018; Dai, 2019; Raffel et al., 2020;234

He et al., 2020; Wang et al., 2019). Nowadays, in235

the choice of positional encoding methods, Rotary236

Position Embedding (RoPE) (Su et al., 2024) has237

become a prevalent encoding method. The imple-238

mentation of RoPE is as follows:239

RoPE(q,m) = Rmq (6)240

where:241

Rm =


A0 0 · · · 0
0 A1 · · · 0
...

...
. . .

...
0 0 · · · Ad/2−1

 (7)242

243

Ai =

(
cosmθi − sinmθi
sinmθi cosmθi

)
(8)244

245

θi = θ−
2i
d (9)246

Where d is the dimensionality of q, θ is a hyperpa- 247

rameter, typically taking values ranging from 104 248

to 107. 249

RoPE exhibits several key characteristics: 250

• RoPE can be described as a form of absolute 251

positional encoding because it uses the abso- 252

lute positions of tokens during the encoding 253

process. However, it also exhibits properties 254

of relative positional encoding due to its math- 255

ematical property: 256

(Rmq)T (Rnk) = qTRT
mRnk

= qTRn−mk
(10) 257

• RoPE exhibits a characteristic of long-range 258

decay: for a query q at position m and a key 259

k at position n, after encoding with RoPE, 260

the dot product (Rmq)T (Rnk) generally de- 261

creases as the absolute value of |m − n| in- 262

creases. However, this property of RoPE is 263

partially controversial, which we will discuss 264

further in Section 3.1. 265

• The value of θ controls the positional encod- 266

ing’s sensitivity to positional differences. A 267

smaller θ makes the model more sensitive 268

to position changes, whereas a larger one fa- 269

cilitates the capture of long-range dependen- 270

cies. Generally, the value of θ should increase 271

as the training length increases (Men et al., 272

2024). 273

In the domain of VLMs, researchers are explor- 274

ing modifications to RoPE to better accommodate 275

multimodal features. Approaches such as CCA 276

(Xing et al., 2025) and PyPE (Chen et al., 2025) 277

aim to reconfigure position IDs from distinct an- 278

gles, whereas V2PE (Ge et al., 2024) narrows the 279

incremental scale of positional encodings specif- 280

ically for image embeddings. Despite these ad- 281

vancements, none of these proposed methods suffi- 282

ciently consider the prevalent application of super- 283

resolution techniques—a critical aspect of the cur- 284

rent technological landscape. 285

3 Analysis 286

3.1 On the long-range decay property of 287

RoPE 288

In the RoPE paper(Su et al., 2024), the authors the- 289

oretically analyzed the long-range decay properties 290

4



of RoPE:291 ∣∣∣∣∣∣
d/2−1∑
i=0

q[2i:2i+1]k[2i:2i+1]e
i(m−n)θi

∣∣∣∣∣∣292

≤
(
max

i
|hi+1 − hi|

) d/2−1∑
i=0

|Si+1| (11)293

where:294

hi = q[2i:2i+1]k[2i:2i+1] (12)295

Sj =

j−1∑
i=0

ei(m−n)θi (13)296

Since the value of 1
d/2

∑d/2
i=1 |Si| is decreasing, the297

above formula indicates that the upper bound of298

qTRn−mk is decreasing as the relative distance299

|m− n| increases.300

They also plotted the qTRn−mk as a function301

of their relative distance, specifically for the case302

where q and k are all-one vectors, to illustrate303

RoPE’s long-range decay properties.304

Although the long-range decay property of RoPE305

is generally accepted, unlike positional encodings306

such as ALiBi(Press et al., 2021) that explicitly307

incorporate terms for long-range decay, some re-308

searchers have raised questions about this property,309

and the above inequality is not tight. Some re-310

searchers argue that if q and k are sampled from a311

standard multivariate normal distribution, the fol-312

lowing formula holds:313

Eq,k∼N (0,I)[q
⊤Rmk] = 0 ∀m ∈ Z (14)314

leading them to conclude that RoPE does not pos-315

sess the long-range decay property (Barbero et al.,316

2024).317

However, their conclusions are based only on318

their rigorous assumptions. We point out that if319

q ∼ N (µq, I),k ∼ N (µk, I), the following for-320

mula holds:321

E[q⊤Rmk] = µk
TRmµq ∀m ∈ Z (15)322

Furthermore, the trend of E[q⊤Rmk] with respect323

to m is dependent on the value of µq, µk , and can324

be overall increasing or decreasing as m increases.325

More detailed results can be found in Appendix A.326

Therefore, under the assumption of a normal327

distribution, we cannot prove that RoPE exhibits328

the property of long-range decay. However, deep329

neural networks possess a large number of param-330

eters and are highly complex. During the training331

Figure 3: The Long-term Decay Property of RoPE.
We randomly sampled 100 text data points from Wiki-
text and randomly selected 10 pairs of q-k from each
layer of the Vicuna-7B model for computation.

process, RoPE also influences model parameter up- 332

dates, consequently affecting the activation values 333

of query-key pairs. Thus, the simple assumption of 334

a normal distribution is likely not representative of 335

the actual situation. 336

To investigate whether RoPE exhibits a long- 337

range decay property, we adopted an empirical ap- 338

proach. Specifically, we randomly sampled several 339

data sequences from the WikiText (Merity et al., 340

2016) dataset. Then, for each layer, we randomly 341

selected several q-k pairs before applying RoPE . 342

By fixing these token pairs and progressively in- 343

creasing their relative positions starting from 0, we 344

measured the average inner product at each relative 345

position. The results are shown in the Figure 3. 346

3.2 Problems with Previous Positional ID 347

Arrangements 348

Having empirically demonstrated that RoPE indeed 349

exhibits the long-range decay property in LLMs, 350

we further analyze the issues inherent in previous 351

positional encoding arrangements. 352

3.2.1 Disrupt the correspondence between 353

thumbnail and high-resolution images. 354

Dynamic high-resolution methods employed by 355

models such as LLaVA-Next simultaneously pro- 356

vide the LLM backbone with both high-resolution 357

images and thumbnails. The high-resolution im- 358

ages furnish the model with fine-grained visual 359

details, while the thumbnails offer global context. 360

Similar to the introduction of RoPE in transform- 361

ers for NLP to encourage attention mechanisms to 362

focus on nearby tokens, images also exhibit local 363

self-correlation. Consequently, during the inter- 364

action between high-resolution image tokens and 365
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thumbnail tokens, we aim for the high-resolution366

image tokens to attend more strongly to their corre-367

sponding thumbnail tokens. Here, two tokens are368

defined as corresponding if the image region en-369

coded by the high-resolution token intersects with370

the image region encoded by the thumbnail token371

However, the specific arrangement of position372

IDs in this dynamic high-resolution method, cou-373

pled with the long-term decay characteristic of374

RoPE, undermines this corresponding relationship.375

As shown in Figure 1a,376

• For a token in the bottom-right corner of the377

high-resolution image, other tokens within378

the high-resolution region are relatively closer379

compared to their corresponding thumbnail380

tokens.381

• For the token in the top-left corner of the high-382

resolution image, compared to its correspond-383

ing thumbnail token, its relative distance to384

the token in the bottom-right corner of the385

thumbnail is shorter.386

As shown in Figure 4b, when computing the387

attention distribution from the red region of the388

high-resolution image towards the thumbnail, the389

attention can only focus on relevant information in390

shallow layers, while in deeper layers, attention is391

concentrated on unrelated areas.392

3.2.2 Disrupts the interaction between text393

and image394

Dynamic high-resolution methods produce a large395

number of image tokens. If a conventional position396

ID arrangement is used, this can result in excessive397

variation among the position IDs of image tokens398

corresponding to the same image. Assume a square399

image is input. In the dynamic high-resolution400

method, its width and height are scaled up to twice401

the original dimensions. Compared to approaches402

that do not use dynamic high resolution, the num-403

ber of tokens increases by a factor of five, and404

consequently, the difference in positional encoding405

among image tokens also expands fivefold.406

Effective acquisition of visual information dur-407

ing interaction with user instructions requires en-408

gaging with every image token. However, the dis-409

tance between the top-left image token and the user410

instruction tokens is significant, causing the user411

instruction to attend more to the bottom-left cor-412

ner of the image. The dynamic high-resolution413

method exacerbates this problem by increasing the414

difference in position IDs between the top-left and 415

bottom-right tokens. 416

Furthermore, studies have shown that in VLMs, 417

image tokens inherently receive less attention 418

(Chen et al., 2024a). Coupled with RoPE’s long- 419

range decay characteristic, the excessive relative 420

position between the top-left token and the user 421

instruction tokens may lead to this part of the infor- 422

mation being overlooked or neglected. 423

As shown in Figure 4d, when computing the 424

attention distribution from ‘each pair’ towards the 425

thumbnail, the attention is neither able to focus 426

on the corresponding text in the image nor on the 427

corresponding object. 428

4 Methods 429

According to the calculation formula of RoPE, it 430

can be observed that during inference, the rela- 431

tive distance between q and k is influenced not by 432

their actual distance in the sequence, but by the 433

difference in their position IDs. Simultaneously, 434

as shown in Section 3.1, increasing the difference 435

between the position IDs of q and k can enhance 436

their attention coefficient, while decreasing it can 437

reduce it. Therefore, we propose to alleviate the 438

aforementioned issues by rearranging the position 439

IDs. Our approach is as follows: 440

• For the tokens of thumbnails, we adopt the 441

same position IDs as those used in the previ- 442

ously established approach. 443

• For the tokens of high-resolution images, we 444

assign them the same position ID as their cor- 445

responding thumbnail image tokens. 446

The difference between our method and the orig- 447

inal approach can be seen in Figure 1. More details 448

are available in Appendix B. 449

5 Experiments and Results 450

5.1 Experiments Setup 451

We adopted the LLaVA-Next architecture (Liu 452

et al., 2024c). We used the Vicuna-1.5 7B (Zheng 453

et al., 2023) as the LLM backbone and CLIP ViT- 454

L/14 (336) (Radford et al., 2021) as the vision 455

encoder. Alternatively, we used Qwen-2.5-7B- 456

Instruct (Yang et al., 2024) as the backbone and 457

SigLip 400M (Zhai et al., 2023) as the encoder. 458

It is worth noting that the RoPE θ for the Qwen 459

series models is 107, which is significantly larger 460

than that of the Vicuna model (104). This indicates 461
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Question: 

Think about the magnetic force between the 
magnets in . Which of the following 
statements is true?

each pair

(a) Data example from MMBench, where the red square and red text are used for attention computation.

(b) Attention distribution for the red region (w/o ID-Align).

(c) Attention distribution for the red region (w ID-Align).

(d) Attention distribution for the red text (w/o ID-Align).

(e) Attention distribution for the red text (w ID-Align).

Figure 4: Attention distributions from the red region in the high-resolution image and the red text towards thumbnail
tokens. Figure 4a shows the data example. Figures 4b and 4c depict the attention distribution from the red region,
and figures 4d and 4e show the attention distribution from the red text.

that Qwen models are relatively less sensitive to462

changes in positional IDs. More details can be463

found in the Appendix C464

5.2 Results and Analysis465

From the perspective of attention distribution, in466

Figure 4c compared to 4b, the attention correspond-467

ing to the red region is no longer confined to certain468

unrelated areas but can focus on the magnets in the469

image. In Figure 4e compared to Figure 4d, the470

attention of ‘each pair’ can focus on the correspond-471

ing text portion in the thumbnail.472

The primary experimental results are shown in473

Table 1. As can be observed from the table, the474

adoption of ID-Align has led to improvements in475

the model’s performance metrics across various476

benchmarks. When using Vicuna and CLIP as pre- 477

training models, there was a notable improvement 478

across all benchmarks. These benchmarks cover 479

a broad spectrum of capabilities, indicating the 480

effectiveness of our approach. When employing 481

Qwen2.5, which has a RoPE θ value of 107, and 482

SigLIP as the base models, the performance gains 483

were observed to decrease, and there was a decline 484

in performance on several benchmarks. This obser- 485

vation aligns with our analysis, which suggests that 486

these models are relatively insensitive to changes 487

in positional encoding. However, after adopting 488

ID-Align, the overall performance of the model 489

showed an increasing trend. 490

To further investigate which specific capabilities 491
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Model MMBenchdev MMStar RealWorldQA SEEDB2-Plus POPE@ACC

Vicuna
w/o ID-Align 66.58 36.61 58.43 51.38 87.97
w/ ID-Align 68.21 (+1.63) 38.32 (+1.71) 59.18 (+0.75) 51.56 (+0.18) 88.66 (+0.69)

Qwen
w/o ID-Align 78.14 50.53 64.18 61.00 89.17
w/ ID-Align 78.48 (+0.34) 50.14 (-0.39) 63.79 (-0.39) 62.06 (+1.06) 89.16 (-0.01)

MME AI2D VQAV2val SQAimg Avg

Vicuna
w/o ID-Align 65.22 65.74 79.75 69.41 64.57
w/ ID-Align 65.50 (+0.28) 66.39 (+0.65) 80.02 (+0.27) 70.70 (+1.29) 65.39 (+0.82)

Qwen
w/o ID-Align 67.11 74.84 79.88 80.61 71.72
w/ ID-Align 68.22 (+1.11) 75.13 (+0.29) 80.25 (+0.37) 81.06 (+0.45) 72.03 (+0.31)

Table 1: Performance on Different Benchmarks with and without ID-Align

Model CP FP-S FP-C AR RR LR

Vicuna
w/o ID-Align 79.39 70.31 58.04 69.35 60.87 36.44
w/ ID-Align 81.76 (+2.37) 71.67 (+1.36) 59.44 (+1.40) 69.85 (+0.50) 66.96 (+6.09) 34.75 (-1.69)

Qwen
w/o ID-Align 83.73 81.91 71.26 84.38 75.83 56.65
w/ ID-Align 82.87 (-0.86) 81.91 (+0.00) 72.87 (+1.61) 83.33 (-1.05) 77.72 (+1.89) 59.54 (+2.89)

Table 2: The table presents the results on sub-metrics from the MMBench-Dev. Specifically, CP stands for Coarse
Perception, FP-C represents Fine-grained Perception (cross-instance), FP-S denotes Fine-grained Perception
(single-instance), AR refers to Attribute Reasoning, LR indicates Logical Reasoning, RR represents Relation
Reasoning.

contributed most to the observed growth in bench-492

mark performance, we have detailed the changes493

in various sub-metrics of MMbench, as shown in494

Table 2. We have also listed the subtasks of MM-495

Bench in Appendix D.3. As can be observed, when496

using Vinca as the LLM base, although all sub-497

indicators showed improvement, the most signif-498

icant growth was seen in the RR metrics. Mean-499

while, when employing qwen as the LLM back-500

bone, it was the FP-C, RR, and LR metrics that501

maintained their growth. These metrics are all re-502

lated to global information.503

6 Conclusion504

In this paper, we analyze the potential issues of505

the dynamic high-resolution strategies adopted by506

current VLMs. Based on our analysis, we propose507

ID-Align: a method that aligns the position IDs of 508

high-resolution embeddings with their correspond- 509

ing low-resolution embeddings, preserving their 510

relationship and constraining excessive growth in 511

position IDs. We conducted experiments on the 512

LLaVA-Next architecture, demonstrating the effec- 513

tiveness of our approach. 514

7 Limitation 515

Limitations of our work include: we did not inves- 516

tigate the performance of our method when com- 517

bined with token compression techniques. We also 518

did not examine the performance of our method 519

when integrated with viT that inherently support 520

dynamic resolution. 521
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A Long-term decay of RoPE768

The proof of Equation (11) is as follows:769

Let:770

hi = q[2i:2i+1]k[2i:2i+1]

Sj =

j−1∑
i=0

ei(m−n)θi
(16)771

Setting hd/2with = 0 and S0 = 0, with the Abel772

transformation, we have:773

d/2−1∑
i=0

q[2i:2i+1]k
∗
[2i:2i+1]e

i(m−n)θi

=

d/2−1∑
i=0

hi(Si+1 − Si)

= −
d/2−1∑
i=0

Si+1(hi+1 − hi).

(17)774

Thus, 775∣∣∣∣∣∣
d/2−1∑
i=0

q[2i:2i+1]k
∗
[2i:2i+1]e

i(m−n)θi

∣∣∣∣∣∣ 776

=

∣∣∣∣∣∣
d/2−1∑
i=0

Si+1(hi+1 − hi)

∣∣∣∣∣∣ 777

≤
d/2−1∑
i=0

|Si+1||(hi+1 − hi)| 778

≤
(
max

i
|hi+1 − hi|

) d/2−1∑
i=0

|Si+1| (18) 779

The proof of Equation (15) is as follows: 780

781

Let q ∼ N (µq, I) and k ∼ N (µk, I) be inde- 782

pendent random vectors 783

We use the law of total expectation, conditioning 784

on k: 785

E[q⊤Rmk] = Ek

[
Eq|k[q

⊤Rmk | k]
]

786

= Ek

[
E[q⊤ | k]Rmk

]
787

= Ek

[
E[q⊤]Rmk

]
788

= Ek

[
µ⊤
q Rmk

]
789

= µ⊤
q RmEk[k] 790

= µ⊤
q Rmµk. 791

The i-th 2 × 2 block of Rm, denoted R(i)
m , is 792

given by: 793

R(i)
m =

(
cos(mθi) − sin(mθi)
sin(mθi) cos(mθi)

)
794

First, the product Rmµk results in a vector 795

where the components corresponding to the i-th 796

2D block are: 797

(Rmµk)2i−1 = µk,2i−1 cos(mθi)− µk,2i sin(mθi) 798

(Rmµk)2i = µk,2i−1 sin(mθi) + µk,2i cos(mθi) 799

The dot product µ⊤
q (Rmµk) is then: 800

µ⊤
q Rmµk =

d∑
j=1

µq,j(Rmµk)j 801
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Grouping the summation by the d/2 two-802

dimensional blocks:803

µ⊤
q Rmµk =804

d/2∑
i=1

[µq,2i−1(Rmµk)2i−1 + µq,2i(Rmµk)2i] =805

d/2∑
i=1

[µq,2i−1(µk,2i−1 cos(mθi)− µk,2i sin(mθi))806

+ µq,2i(µk,2i−1 sin(mθi) + µk,2i cos(mθi))]807

Rearranging terms within the sum based on808

µ⊤
q Rmµk =809

d/2∑
i=1

[µq,2i−1(Rmµk)2i−1 + µq,2i(Rmµk)2i] =810

d/2∑
i=1

[µq,2i−1(µk,2i−1 cos(mθi)− µk,2i sin(mθi))811

+µq,2i(µk,2i−1 sin(mθi) + µk,2i cos(mθi))]812

To simplify notation, let:813

Ai = µq,2i−1µk,2i−1 + µq,2iµk,2i814

Bi = µq,2iµk,2i−1 − µq,2i−1µk,2i815

The expression then becomes:816

µ⊤
q Rmµk =

d/2∑
i=1

(Ai cos(mθi) +Bi sin(mθi))817

From this expression, we cannot derive the trend818

of µ⊤
q Rmµk as m changes. Next, we will demon-819

strate experimentally that µ⊤
q Rmµk exhibits dif-820

ferent trends with respect to m depending on the821

values of µq and µk.822

For each component of qand k, we sampled823

from normal distributions with the same mean and824

a standard deviation of 1. Different mean values825

were set for q and k in each experimental run.826

Then, we set the relative distance between them827

to different values and calculated their attention828

scores. For each choice of mean value, we simu-829

lated 1000 times and averaged the results at each830

relative position. We experimented with two values831

of θ, 104 and 107. The results are shown in Table 5.832

The experiments reveal that different values of µq833

and µk influence the long-term properties of RoPE,834

and a small value of θ increases the positional sen-835

sitivity of dot-product attention.836

B Method details 837

Through the reorganization of position IDs, the 838

"distance" between thumbnail tokens and their cor- 839

responding high-resolution tokens is reduced. This 840

adjustment not only brings related embeddings 841

closer in terms of positional encoding but also effec- 842

tively restricts the growth of position IDs. Conse- 843

quently, this approach prevents the issue of position 844

IDs increasing by thousands when processing a sin- 845

gle image, which could otherwise lead to exceeding 846

the maximum position ID values encountered dur- 847

ing training. 848

Our algorithm process is shown in Algorithm 849

1. In practice, assuming that the 2D feature map 850

obtained after encoding the thumbnail with ViT 851

has dimensions (H0,W0) , and the feature map 852

obtained after encoding the entire high-resolution 853

image has dimensions (H1,W1) , for simplicity, 854

we assume that the positional id of the first token 855

in the thumbnail image is 0. We first generate a 856

1D tensor ranging from 0 to H0 ∗W0 then reshape 857

it to (H0,W0) , and use interpolation to resize the 858

reshaped tensor to (H1,W1), rounding the values 859

to intenger. After flattening both parts, they are 860

concatenated to form our positional IDs. 861

C Experiments Setup 862

All experiments were conducted using eight A800 863

GPUs. 864

C.1 Parameter Settings 865

As for the hyperparameter settings, we adopted the 866

configurations from Open-LLaVA-Next (Chen and 867

Xing, 2024). We will also list these hyperparame- 868

ters below. 869

Listing 1: The script for the LLaVA-Next pretrain phase,
using Vicuna and CLIP as the LLM backbone and visual
encoder, respectively.

870
1 nnodes =1 871
2 num_gpus =8 872
3 deepspeed --num_nodes ${nnodes} -- 873

num_gpus ${num_gpus} --master_port 874
=10270 llava/train/train_mem.py \ 875

4 --deepspeed ./ scripts/zero2.json \ 876
5 --model_name_or_path ${MODEL_PATH} \ 877
6 --version plain \ 878
7 --data_path ${DATA_PATH} \ 879
8 --image_folder ${IMAGE_FOLDER} \ 880
9 --vision_tower ${VISION_TOWER} \ 881

10 --mm_projector_type mlp2x_gelu \ 882
11 --tune_mm_mlp_adapter True \ 883
12 --unfreeze_mm_vision_tower False \ 884
13 --mm_vision_select_layer -2 \ 885
14 --mm_use_im_start_end False \ 886
15 --mm_use_im_patch_token False \ 887
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Fig. 1:  (q_mean=1, k_mean=1)
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Fig. 2:  (q_mean=1, k_mean=-1)
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Fig. 3:  (q_mean=-1, k_mean=-1)
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Figure 5: Simulation of RoPE’s Long-term Properties under Different µq and µk
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Algorithm 1 ID-Align with RoPE

Require:
1: Etext: Sequence of text embeddings
2: Elow: Sequence of thumbnail embeddings
3: Ehigh: Sequence of high-resolution image em-

beddings
4: M : Ehigh → Elow : Return the Elow corre-

sponding to Ehigh
Ensure:

5: max_pid← 0
6: Emerged ← Concat(Etext, Elow, Ehigh)
7: for each embedding ei ∈ Emerged do
8: if ei ∈ Etext ∪ Elow then
9: pos_id(ei)← max_pid

10: max_pid← max_pid + 1
11: else if ei ∈ Ehigh then
12: pos_id(ei)← pos_id(M(ei))
13: max_pid ← max(max_pid,M(ei) +

1)
14: end if
15: end for

16: function APPLYROTARYENCODING(Emerged)
17: for each ei ∈ Emerged do
18: ei ← RoPE(ei, pos_id(ei))
19: end for
20: return Emerged
21: end function

16 --mm_patch_merge_type spatial_unpad888
\889

17 --image_aspect_ratio anyres \890
18 --group_by_modality_length False \891
19 --bf16 True \892
20 --output_dir ./ checkpoints/${893

RUN_NAME} \894
21 --num_train_epochs 1 \895
22 --per_device_train_batch_size 8 \896
23 --per_device_eval_batch_size 4 \897
24 --gradient_accumulation_steps 4 \898
25 --evaluation_strategy "no" \899
26 --image_grid_pinpoints "[(336, 672),900

(672, 336), (672, 672), (1008,901
336), (336, 1008)]" \902

27 --use_id_align True \903
28 --save_strategy "steps" \904
29 --save_steps 24000 \905
30 --save_total_limit 1 \906
31 --learning_rate 1e-3 \907
32 --weight_decay 0. \908
33 --warmup_ratio 0.03 \909
34 --lr_scheduler_type "cosine" \910
35 --logging_steps 1 \911
36 --tf32 True \912
37 --model_max_length 4096 \913
38 --gradient_checkpointing True \914
39 --dataloader_num_workers 4 \915
40 --lazy_preprocess True \916

41 --report_to None \ 917
42 --run_name ${RUN_NAME} 918919

Listing 2: The script for the LLaVA-Next finetune phase,
using Vicuna and CLIP as the LLM backbone and visual
encoder, respectively.

920
1 nnodes =1 921
2 num_gpus =8 922
3 923
4 deepspeed --num_nodes ${nnodes} -- 924

num_gpus ${num_gpus} --master_port 925
=10271 llava/train/train_mem.py \ 926

5 --deepspeed ./ scripts/zero3.json \ 927
6 --model_name_or_path ${MODEL_PATH} \ 928
7 --version v1 \ 929
8 --data_path ${DATA_PATH} \ 930
9 --image_folder ${IMAGE_FOLDER} \ 931

10 --pretrain_mm_mlp_adapter ./ 932
checkpoints/${BASE_RUN_NAME }/ 933
mm_projector.bin \ 934

11 --unfreeze_mm_vision_tower True \ 935
12 --mm_vision_tower_lr 2e-6 \ 936
13 --vision_tower ${VISION_TOWER} \ 937
14 --mm_projector_type mlp2x_gelu \ 938
15 --mm_vision_select_layer -2 \ 939
16 --mm_use_im_start_end False \ 940
17 --use_id_align True \ 941
18 --mm_use_im_patch_token False \ 942
19 --group_by_modality_length True \ 943
20 --image_aspect_ratio anyres \ 944
21 --mm_patch_merge_type spatial_unpad 945

\ 946
22 --bf16 True \ 947
23 --image_grid_pinpoints "[(336, 672), 948

(672, 336), (672, 672), (1008, 949
336), (336, 1008)]" \ 950

24 --output_dir ./ checkpoints/${ 951
RUN_NAME} \ 952

25 --num_train_epochs 1 \ 953
26 --per_device_train_batch_size 8 \ 954
27 --per_device_eval_batch_size 4 \ 955
28 --gradient_accumulation_steps 2 \ 956
29 --evaluation_strategy "no" \ 957
30 --save_strategy "steps" \ 958
31 --save_steps 1000 \ 959
32 --save_total_limit 1 \ 960
33 --learning_rate 2e-5 \ 961
34 --weight_decay 0. \ 962
35 --warmup_ratio 0.03 \ 963
36 --lr_scheduler_type "cosine" \ 964
37 --logging_steps 1 \ 965
38 --tf32 True \ 966
39 --model_max_length 4096 \ 967
40 --gradient_checkpointing True \ 968
41 --dataloader_num_workers 4 \ 969
42 --lazy_preprocess True \ 970
43 --report_to none \ 971
44 --run_name ${RUN_NAME} 972973

Listing 3: The script for the LLaVA-Next pre-train
phase, using Qwen and SigLIP as the LLM backbone
and visual encoder, respectively.

974
1 nnodes =1 975
2 num_gpus =8 976
3 deepspeed --num_nodes ${nnodes} -- 977

num_gpus ${num_gpus} --master_port 978
=10270 llava/train/train_mem.py \ 979
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4 --deepspeed ./ scripts/zero2.json \980
5 --model_name_or_path ${MODEL_PATH} \981
6 --version plain \982
7 --data_path ${DATA_PATH} \983
8 --image_folder ${IMAGE_FOLDER} \984
9 --vision_tower ${VISION_TOWER} \985

10 --mm_projector_type mlp2x_gelu \986
11 --tune_mm_mlp_adapter True \987
12 --unfreeze_mm_vision_tower False \988
13 --mm_vision_select_layer -2 \989
14 --mm_use_im_start_end False \990
15 --mm_use_im_patch_token False \991
16 --mm_patch_merge_type spatial_unpad992

\993
17 --image_aspect_ratio anyres \994
18 --group_by_modality_length False \995
19 --bf16 True \996
20 --output_dir ./ checkpoints/${997

RUN_NAME} \998
21 --num_train_epochs 1 \999
22 --per_device_train_batch_size 8 \1000
23 --per_device_eval_batch_size 4 \1001
24 --gradient_accumulation_steps 4 \1002
25 --evaluation_strategy "no" \1003
26 --image_grid_pinpoints "[(384, 768),1004

(768, 384), (768, 768), (1152,1005
384), (384, 1152)]" \1006

27 --use_id_align True \1007
28 --save_strategy "steps" \1008
29 --save_steps 24000 \1009
30 --save_total_limit 1 \1010
31 --learning_rate 1e-3 \1011
32 --weight_decay 0. \1012
33 --warmup_ratio 0.03 \1013
34 --lr_scheduler_type "cosine" \1014
35 --logging_steps 1 \1015
36 --tf32 True \1016
37 --model_max_length 32768 \1017
38 --gradient_checkpointing True \1018
39 --dataloader_num_workers 4 \1019
40 --lazy_preprocess True \1020
41 --report_to none \1021
42 --run_name ${RUN_NAME}10221023

Listing 4: The script for the LLaVA-Next finetune phase,
using Qwen and SigLIP as the LLM backbone and vi-
sual encoder, respectively

1024
1 nnodes =11025
2 num_gpus =81026
3 deepspeed --num_nodes ${nnodes} --1027

num_gpus ${num_gpus} --master_port1028
=10271 llava/train/train_mem.py \1029

4 --deepspeed ./ scripts/zero3.json \1030
5 --model_name_or_path ${MODEL_PATH} \1031
6 --version ${PROMPT_VERSION} \1032
7 --data_path ${DATA_PATH} \1033
8 --image_folder ${IMAGE_FOLDER} \1034
9 --pretrain_mm_mlp_adapter ./1035

checkpoints/${BASE_RUN_NAME }/1036
mm_projector.bin \1037

10 --unfreeze_mm_vision_tower True \1038
11 --mm_vision_tower_lr 2e-6 \1039
12 --vision_tower ${VISION_TOWER} \1040
13 --mm_projector_type mlp2x_gelu \1041
14 --mm_vision_select_layer -2 \1042
15 --mm_use_im_start_end False \1043
16 --use_id_align True \1044
17 --mm_use_im_patch_token False \1045

18 --group_by_modality_length True \ 1046
19 --image_aspect_ratio anyres \ 1047
20 --mm_patch_merge_type spatial_unpad 1048

\ 1049
21 --bf16 True \ 1050
22 --image_grid_pinpoints "[(384, 768), 1051

(768, 384), (768, 768), (1152, 1052
384), (384, 1152)]" \ 1053

23 --output_dir ./ checkpoints/${ 1054
RUN_NAME} \ 1055

24 --num_train_epochs 1 \ 1056
25 --per_device_train_batch_size 8 \ 1057
26 --per_device_eval_batch_size 4 \ 1058
27 --gradient_accumulation_steps 2 \ 1059
28 --evaluation_strategy "no" \ 1060
29 --save_strategy "steps" \ 1061
30 --save_steps 1000 \ 1062
31 --save_total_limit 1 \ 1063
32 --learning_rate 2e-5 \ 1064
33 --weight_decay 0. \ 1065
34 --warmup_ratio 0.03 \ 1066
35 --lr_scheduler_type "cosine" \ 1067
36 --logging_steps 1 \ 1068
37 --tf32 True \ 1069
38 --model_max_length 32768 \ 1070
39 --gradient_checkpointing True \ 1071
40 --dataloader_num_workers 4 \ 1072
41 --lazy_preprocess True \ 1073
42 --report_to none \ 1074
43 --run_name ${RUN_NAME} 10751076

C.2 Benchmarks 1077

Focusing on the overall and various hierarchical 1078

capabilities of models, we primarily adopted three 1079

benchmarks—MMBench (Liu et al., 2024e), MME 1080

(Yin et al., 2023), and MMStar (Chen et al., 2024b). 1081

Additionally, SeedBench-2-Plus (Li et al., 2024) 1082

and AI2D (Kembhavi et al., 2016) were utilized 1083

to assess the models’ capability in processing rich 1084

text images such as charts, maps, and web pages. 1085

RealWorldQA was employed to evaluate the mod- 1086

els’ effectiveness in handling real-world images, 1087

whereas POPE (Li et al., 2023b) was used to exam- 1088

ine the phenomenon of model hallucinations. To 1089

evaluate the model’s performance on QA tasks, we 1090

will utilize the VQAv2 (Goyal et al., 2017) and 1091

ScienceQA (Lu et al., 2022) datasets. We utilized 1092

LMMS-Eval (Zhang et al., 2024b) for the evalua- 1093

tion of our model. The decision to utilize ID-Align 1094

can be controlled by setting the value of use-id- 1095

align. 1096

D More Results and Analysis 1097

D.1 Learning Curve 1098

In this section, we also plot the learning curve. 1099

From these curves, it can be observed that after ap- 1100

plying ID-Align, the training loss is slightly lower 1101

during the latter half of the training phase com- 1102
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pared to when not using ID-Align. Additionally,1103

the gradient norm is notably lower, indicating that1104

the model is closer to achieving convergence. This1105

effect is especially pronounced on Vinuca. These1106

plots were generated using a sliding average win-1107

dow with a window length of 100.1108

D.1.1 Vicuna1109

Figure 6: Pretrain Loss

Figure 7: Pretrain Grad Norm

Figure 8: Finetune Loss

Figure 9: Finetune Grad Norm

D.1.2 Qwen 1110

Figure 10: Pretrain Loss

Figure 11: Pretrain Grad Norm

Figure 12: Finetune Loss

Figure 13: Finetune Grad Norm

D.2 Compare with Other Methods 1111

We also compared our method with MRoPE(Wang 1112

et al., 2024) and V2PE(Ge et al., 2024). Our 1113

method is not in competition with these methods; 1114
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rather, it is compatible with them. The focus of1115

these methods is on positional encodings within1116

a single image, whereas our method addresses1117

the correspondence between thumbnail and high-1118

resolution images. Therefore, these methods can1119

be combined.1120

Due to the limitation of computing resource,1121

we only experimented with the Qwen-2.5-0.5B1122

model and SigLip. These experiments only in-1123

volved adjusting these two methods to suit high-1124

resolution scenarios, without combining them with1125

ID-Align. For V2PE, we set ϵ = 0.5 , which is1126

the best result reported in their paper for conven-1127

tional benchmarks. For MROPE, we treated the1128

thumbnail and high-resolution images as separate1129

images. Since the hidden state dimension of the1130

0.5B model is small, we set MRoPE section =1131

[8, 12, 12], which is a proportionally scaled version1132

of MRoPE section = [16, 24, 24] used in the1133

Qwen-2.5-VL-3B model. The results are shown in1134

Table 3.1135

Compared to V2PE and MRoPE, our method1136

shows significant improvement in metrics that mea-1137

sure the overall capability of the model (MME,1138

MMBench, MMStar). In metrics that measure spe-1139

cific capabilities, such as PoPE and AI2D, our1140

method may not perform as well as V2PE or1141

MRoPE, which could be related to the character-1142

istics of their methods and the benchmark data1143

distribution. Overall, in the context of dynamic1144

high-resolution, our method is superior.1145

D.3 MMBench Leaf Tasks1146

Coarse Perception:1147

• Image Style1148

• Image Topic1149

• Image Scene1150

• Image Mood1151

• Image Quality1152

Fine-grained Perception (Single-instance):1153

• Attribute Recognition1154

• Celebrity Recognition1155

• Object Localization1156

• OCR1157

Fine-grained Perception (Cross-instance):1158

• Spatial Relationship 1159

• Attribute Comparison 1160

• Action Recognition 1161

Attribute Reasoning: 1162

• Physical Property Reasoning 1163

• Function Reasoning 1164

• Identity Reasoning 1165

Relation Reasoning: 1166

• Social Relation 1167

• Nature Relation 1168

• Physical Relation 1169

Logic Reasoning: 1170

• Future Prediction 1171

• Structuralized Image-text Understanding 1172
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MMB MMStar RWQA SEEDB POPE MME-C MME-P AI2D VQAV2 SQA avg

V2PE 56.28 37.43 51.76 48.09 87.82 30.85 63.86 57.87 65.62 60.83 56.04
MRoPE 55.44 38.28 53.73 46.73 88.41 30.01 62.81 57.77 64.78 59.89 55.79
ID-Align 57.68 39.74 55.03 47.56 87.50 31.03 64.03 56.96 64.86 60.88 56.53

Table 3: Comparison with MRoPE and V2PE
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