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Abstract

Currently, a prevalent approach for enhancing
Vision-Language Models (VLMs) performance
is to encode both the high-resolution version
and the thumbnail of an image simultaneously.
While effective, this method generates a large
number of image tokens. When combined with
the widely used Rotary Position Embedding
(RoPE), its long-term decay property hinders
the interaction between high-resolution tokens
and thumbnail tokens, as well as between text
and image. To address these issues, we propose
ID-Align, which alleviates these problems by
reordering position IDs. In this method, high-
resolution tokens inherit IDs from their corre-
sponding thumbnail token while constraining
the overexpansion of positional indices. Our
experiments conducted within the LLaVA-Next
framework demonstrate that ID-Align achieves
significant improvements, including a 6.09%
enhancement on MMBench’s relation reason-
ing tasks and notable gains across multiple
benchmarks.

1 Introduction

The swift advancement in large language models
(LLMs) (Achiam et al., 2023; Cai et al., 2024; Yang
et al., 2024; Liu et al., 2024a) has not only revolu-
tionized natural language processing but also cat-
alyzed the emergence of vision-language models
(VLMs) (Liu et al., 2024d; Wu et al., 2024; Chen
et al., 2024d; Li et al., 2023a; Wang et al., 2024).
In the architecture of these advanced VLMs, vi-
sual encoders—such as Vision Transformers (ViTs)
(Dosovitskiy, 2020) employing training objectives
like CLIP (Radford et al., 2021) or SigLip (Zhai
et al., 2023)—are primarily utilized to encode im-
ages. Subsequently, mechanisms such as Multi-
Layer Perceptrons (MLPs) (Liu et al., 2024d) or Q-
Former (Li et al., 2023a) are employed to fuse the
encoded visual information with textual data. This
fused multimodal information is then processed

by the LLM, enabling comprehensive understand-
ing and contextually relevant response generation
across both visual and textual domains (Yin et al.,
2023).

In the pursuit of developing more effective
VLMs, researchers are undertaking multifaceted
efforts, including curating higher-quality training
datasets (Bai et al., 2024) and refining model ar-
chitectures (Cha et al., 2024). Beyond these strate-
gies, another approach explored to enhance model
performance involves upscaling an input image to
a higher resolution before encoding, while con-
currently processing a low-resolution version as a
thumbnail (Dai et al., 2024; Deitke et al., 2024; Wu
et al., 2024; Chen et al., 2024c; Liu et al., 2024b).
The image tokens derived from both the thumb-
nail and the high-resolution image are then con-
catenated and fed into the LLM. This technique is
commonly referred to as dynamic high-resolution
adaptation.

Despite its straightforwardness and effectiveness,
this dynamic high-resolution adaptation method
exhibits several critical shortcomings. Encoding
high-resolution images inherently generates a large
number of image tokens. Consequently, the appli-
cation of Rotary Position Embedding (RoPE) (Su
et al., 2024), a prevalent position encoding method,
can pose specific challenges due to its characteristic
long-term decay property, which posits that atten-
tion scores between query and key diminish as their
relative distance increases. Although generally as-
sumed to be valid, some researchers have contested
this property (Barbero et al., 2024). Our further
analysis reveals that, based purely on RoPE’s math-
ematical formulation, its effective behavior (e.g.,
long-term decay, growth, or more complex pat-
terns) can vary depending on the specific distribu-
tions of the query (q) and key (k) vectors. Fur-
thermore, our empirical experiments confirm that,
under the actual distributions of q and k observed
in LLMs, RoPE indeed exhibits this long-term de-



cay property.
This property may lead to:

* Hinders image-text interaction: The sub-
stantial increase in image embeddings result-
ing from high-resolution strategies can im-
pede effective interaction between text and
image embeddings. This issue is particularly
pronounced for image embeddings whose se-
quential positions are distant from the text
embeddings.

¢ Loss of Multi-Resolution Correspondence:
A spatial correspondence should exist be-
tween high-resolution image tokens and their
thumbnail counterparts, where two tokens are
defined as corresponding if their encoded re-
gions spatially overlap. However, RoPE’s
long-term decay property can disrupt this cru-
cial relationship.

To address these issues, we propose ID-Align,
a novel method that strategically rearranges the
position IDs of image tokens. By assigning identi-
cal positional IDs to corresponding high-resolution
and thumbnail image embeddings, ID-Align pre-
serves their inter-resolution correspondence. This
approach not only maintains the crucial relation-
ship between high-resolution and thumbnail tokens
but also mitigates the excessive inflation of position
ID magnitudes that can arise from the large number
of image embeddings in high-resolution strategies.
Our experiments, conducted on the LL.aVA-Next
(Liu et al., 2024c) architecture, demonstrate that
ID-Align significantly enhances model capabilities,
particularly concerning fine-grained perception of
global information. Our contributions can be sum-
marized into the following two points:

* We analyze the mathematical properties of
RoPE, demonstrating that its long-term de-
cay property is contingent upon the specific
distributions of q and k vectors. We further
conduct empirical experiments showing that
within LLMs, RoPE indeed imparts this long-
term decay property to the model’s attention
mechanism.

» We first analyze the adverse effects of the long-
term decay property of RoPE when increasing
the number of image embeddings using the
aforementioned super-resolution methods.

¢ On this basis, we introduce ID-Align, a tech-
nique for reorganizing position IDs. This

method is aimed at maintaining the correspon-
dence between image embeddings across dif-
ferent resolutions and mitigating the excessive
growth of position IDs caused by dynamic
adjustments to higher resolutions. Our ex-
periments on the architecture and datasets of
LLaVA-Next confirm the effectiveness of ID-
Align.

2 Background & Related Work

2.1 Vision Language Model

Currently, the mainstream approach to build VLMs
is to employ a projector to connect a pre-trained
LLM with a visual encoder, thereby enabling the
LLM to interpret visual information (Zhang et al.,
2024a). For image inputs I;;,qge, it is usual to first
encode them using vision encoders such as SigLIP
(Zhai et al., 2023) or CLIP (Radford et al., 2021)
ViT (Dosovitskiy, 2020):

Fimage = VE(Iimage) (1)

Subsequently, the projector processes the encoded
image features Finage:

Pimzzge = PTOjQCtOT(Fimagea Itemt) 2)

where I, represents the text input. In certain ar-
chitectures, such as BLIP-2 (Li et al., 2023a), I;ex
also interacts with Fj,q4¢ at this stage. Following
this, the LLM backbone processes [;.,; alongside
Pimage, generating the corresponding output:

OUtPUt = LLM(Itemta Pimage) (3)

The architecture of the projector has many possible
designs, and currently, a mainstream choice is to
use a two-layer Multilayer Perceptron (MLP) to
process Fiqge independently of e, as exempli-
fied by the LLaVA architecture (Liu et al., 2024d):

Pimage — MLP(Fimage) (4)
2.2 Dynamic High-resolution

While VLMs exhibit remarkable performance
across diverse domains, they possess inherent limi-
tations. These are sometimes characterized using
the phrase ‘“VLMs are blind’ (Rahmanzadehgervi
et al., 2024), denoting their deficiencies in areas
such as fine-grained perception and spatial under-
standing. One effective method is the dynamic
high-resolution approach, the process of which is
illustrated in Figure 2 and includes the following
steps:
The current mainstream pipeline is as follows:
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Figure 1: Intuitive presentation of the original high-resolution method and ID-Align.

¢ Set a Predefined Set of Resolutions. For in-
stance, if the ViT used in a VLM is suitable
for processing images of size (336, 336), this
set of resolutions could be defined as [(672,
672), (336, 672), (672, 336), (1008, 336),
(336, 1008)].

* Select Appropriate Resolution. Given an input
image with dimensions (Hy, Hp), the most
suitable resolution is selected from a set of
predefined resolutions based on its aspect ra-
tio.

* Adjust Input Image Resolution. For an in-
put image with original resolution (Hy, Wp),
two resolution adjustments are applied: first,
super-resolving it from its original resolution
to a selected higher resolution (Hp,, W},) to
obtain a high-resolution image; and second,
resizing it to a resolution ( H;, W) suitable for
the ViT to serve as a thumbnail. The former
process often preserves the original image’s
aspect ratio,filling the remaining regions with
blank space, while the latter generally does
not.

* Encode Image. ViT is used to encode the
high-resolution image and its thumbnail sep-
arately. For the encoded features of the high-

resolution image, an unpadding stage is typ-
ically required to remove the features corre-
sponding to the padding regions. The result-
ing encoded features are then concatenated to
obtain the final encoding.

This method is used by various leading VLMs
(Zhu et al., 2025; Liu et al., 2024f; Deitke et al.,
2024; Wu et al., 2024; Chen et al., 2024c; Liu et al.,
2024b). When VLMs use a fixed-size ViT for en-
coding, to handle high-resolution images, the com-
mon approach is to divide the high-resolution im-
age into patches or crops, encode each separately,
and then rearrange the encoded results. Tokens,
such as new-line tokens or separators, are also typi-
cally added at appropriate positions. This process
can be seen in Figure 1a.

2.3 RoPE

The sequential nature of natural language is pivotal
for understanding its semantics. However, the at-
tention mechanism employed in the Transformer
(Vaswani, 2017) architecture does not inherently
capture this sequential information. Consequently,
it is essential to incorporate positional encoding
within the Transformer model to enable the pro-
cessing of sequence-dependent information. For
the query g with the position ID m and key k with
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Method

the position ID n, positional encoding is applied to
incorporate positional information into them:

~

q= PE(q,m),k = PE(k,n) 5)

Positional encoding can be implemented in var-
ious ways (Gehring et al., 2017; Liu et al., 2020;
Shaw et al., 2018; Dai, 2019; Raffel et al., 2020;
He et al., 2020; Wang et al., 2019). Nowadays, in
the choice of positional encoding methods, Rotary
Position Embedding (RoPE) (Su et al., 2024) has
become a prevalent encoding method. The imple-
mentation of RoPE is as follows:

RoPE(q,m) = Rmq (6)
where:

Ag O 0

0 Ay --- 0
Rn=1 . . . (N
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cosmb; —sinmb;
Ai = (sin mb;  cosmb; ) ®)
0 =04 ©)

Where d is the dimensionality of q, 6 is a hyperpa-
rameter, typically taking values ranging from 10*
to 107.

ROoPE exhibits several key characteristics:

* ROPE can be described as a form of absolute
positional encoding because it uses the abso-
lute positions of tokens during the encoding
process. However, it also exhibits properties
of relative positional encoding due to its math-
ematical property:

(Rma)" (R:k) = @' RL R,k

= qTRn—mk (10
* RoPE exhibits a characteristic of long-range
decay: for a query q at position m and a key
k at position n, after encoding with RoPE,
the dot product (R,,q)” (R, k) generally de-
creases as the absolute value of |m — n| in-
creases. However, this property of RoPE is
partially controversial, which we will discuss
further in Section 3.1.

* The value of # controls the positional encod-
ing’s sensitivity to positional differences. A
smaller § makes the model more sensitive
to position changes, whereas a larger one fa-
cilitates the capture of long-range dependen-
cies. Generally, the value of # should increase
as the training length increases (Men et al.,
2024).

In the domain of VLMs, researchers are explor-
ing modifications to RoPE to better accommodate
multimodal features. Approaches such as CCA
(Xing et al., 2025) and PyPE (Chen et al., 2025)
aim to reconfigure position IDs from distinct an-
gles, whereas V2PE (Ge et al., 2024) narrows the
incremental scale of positional encodings specif-
ically for image embeddings. Despite these ad-
vancements, none of these proposed methods suffi-
ciently consider the prevalent application of super-
resolution techniques—a critical aspect of the cur-
rent technological landscape.

3 Analysis

3.1 On the long-range decay property of
RoPE

In the RoPE paper(Su et al., 2024), the authors the-
oretically analyzed the long-range decay properties



of RoPE:
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Since the value of ﬁ Zfi 21 |S;| is decreasing, the

above formula indicates that the upper bound of
qTRn_mk is decreasing as the relative distance
|m — n| increases.

They also plotted the q” R,,_,,k as a function
of their relative distance, specifically for the case
where q and k are all-one vectors, to illustrate
RoPE’s long-range decay properties.

Although the long-range decay property of ROPE
is generally accepted, unlike positional encodings
such as ALiBi(Press et al., 2021) that explicitly
incorporate terms for long-range decay, some re-
searchers have raised questions about this property,
and the above inequality is not tight. Some re-
searchers argue that if q and k are sampled from a
standard multivariate normal distribution, the fol-
lowing formula holds:

Eq,kNN(OJ) [qTRmk] =0 VmeZ (14)

leading them to conclude that RoPE does not pos-
sess the long-range decay property (Barbero et al.,
2024).

However, their conclusions are based only on
their rigorous assumptions. We point out that if
q ~ N(pqg,I), k ~ N(px, I), the following for-
mula holds:

Elq' Rmk] = i Rinptq YmeZ  (15)

Furthermore, the trend of E[q' R, k] with respect
to m is dependent on the value of jiq, 1k , and can
be overall increasing or decreasing as m increases.
More detailed results can be found in Appendix A.

Therefore, under the assumption of a normal
distribution, we cannot prove that RoPE exhibits
the property of long-range decay. However, deep
neural networks possess a large number of param-
eters and are highly complex. During the training

Avg QK Dot Product (Simulated RoPE) vs. Hypothetical Relative Position (Al Layers)

Figure 3: The Long-term Decay Property of RoPE.

We randomly sampled 100 text data points from Wiki-
text and randomly selected 10 pairs of g-k from each
layer of the Vicuna-7B model for computation.

process, RoPE also influences model parameter up-
dates, consequently affecting the activation values
of query-key pairs. Thus, the simple assumption of
a normal distribution is likely not representative of
the actual situation.

To investigate whether RoPE exhibits a long-
range decay property, we adopted an empirical ap-
proach. Specifically, we randomly sampled several
data sequences from the WikiText (Merity et al.,
2016) dataset. Then, for each layer, we randomly
selected several g-k pairs before applying RoPE .
By fixing these token pairs and progressively in-
creasing their relative positions starting from 0, we
measured the average inner product at each relative
position. The results are shown in the Figure 3.

3.2 Problems with Previous Positional ID
Arrangements

Having empirically demonstrated that RoPE indeed
exhibits the long-range decay property in LLMs,
we further analyze the issues inherent in previous
positional encoding arrangements.

3.2.1 Disrupt the correspondence between
thumbnail and high-resolution images.

Dynamic high-resolution methods employed by
models such as LLaVA-Next simultaneously pro-
vide the LLM backbone with both high-resolution
images and thumbnails. The high-resolution im-
ages furnish the model with fine-grained visual
details, while the thumbnails offer global context.
Similar to the introduction of RoPE in transform-
ers for NLP to encourage attention mechanisms to
focus on nearby tokens, images also exhibit local
self-correlation. Consequently, during the inter-
action between high-resolution image tokens and



thumbnail tokens, we aim for the high-resolution
image tokens to attend more strongly to their corre-
sponding thumbnail tokens. Here, two tokens are
defined as corresponding if the image region en-
coded by the high-resolution token intersects with
the image region encoded by the thumbnail token

However, the specific arrangement of position
IDs in this dynamic high-resolution method, cou-
pled with the long-term decay characteristic of
ROoPE, undermines this corresponding relationship.
As shown in Figure 1a,

* For a token in the bottom-right corner of the
high-resolution image, other tokens within
the high-resolution region are relatively closer
compared to their corresponding thumbnail
tokens.

* For the token in the top-left corner of the high-
resolution image, compared to its correspond-
ing thumbnail token, its relative distance to
the token in the bottom-right corner of the
thumbnail is shorter.

As shown in Figure 4b, when computing the
attention distribution from the red region of the
high-resolution image towards the thumbnail, the
attention can only focus on relevant information in
shallow layers, while in deeper layers, attention is
concentrated on unrelated areas.

3.2.2 Disrupts the interaction between text
and image

Dynamic high-resolution methods produce a large
number of image tokens. If a conventional position
ID arrangement is used, this can result in excessive
variation among the position IDs of image tokens
corresponding to the same image. Assume a square
image is input. In the dynamic high-resolution
method, its width and height are scaled up to twice
the original dimensions. Compared to approaches
that do not use dynamic high resolution, the num-
ber of tokens increases by a factor of five, and
consequently, the difference in positional encoding
among image tokens also expands fivefold.
Effective acquisition of visual information dur-
ing interaction with user instructions requires en-
gaging with every image token. However, the dis-
tance between the top-left image token and the user
instruction tokens is significant, causing the user
instruction to attend more to the bottom-left cor-
ner of the image. The dynamic high-resolution
method exacerbates this problem by increasing the

difference in position IDs between the top-left and
bottom-right tokens.

Furthermore, studies have shown that in VLMs,
image tokens inherently receive less attention
(Chen et al., 2024a). Coupled with RoPE’s long-
range decay characteristic, the excessive relative
position between the top-left token and the user
instruction tokens may lead to this part of the infor-
mation being overlooked or neglected.

As shown in Figure 4d, when computing the
attention distribution from ‘each pair’ towards the
thumbnail, the attention is neither able to focus
on the corresponding text in the image nor on the
corresponding object.

4 Methods

According to the calculation formula of RoPE, it
can be observed that during inference, the rela-
tive distance between q and k is influenced not by
their actual distance in the sequence, but by the
difference in their position IDs. Simultaneously,
as shown in Section 3.1, increasing the difference
between the position IDs of q and k can enhance
their attention coefficient, while decreasing it can
reduce it. Therefore, we propose to alleviate the
aforementioned issues by rearranging the position
IDs. Our approach is as follows:

* For the tokens of thumbnails, we adopt the
same position IDs as those used in the previ-
ously established approach.

* For the tokens of high-resolution images, we
assign them the same position ID as their cor-
responding thumbnail image tokens.

The difference between our method and the orig-
inal approach can be seen in Figure 1. More details
are available in Appendix B.

S Experiments and Results

5.1 Experiments Setup

We adopted the LLaVA-Next architecture (Liu
et al., 2024c). We used the Vicuna-1.5 7B (Zheng
et al., 2023) as the LLM backbone and CLIP ViT-
L/14 (336) (Radford et al., 2021) as the vision
encoder. Alternatively, we used Qwen-2.5-7B-
Instruct (Yang et al., 2024) as the backbone and
SigLip 400M (Zhai et al., 2023) as the encoder.
It is worth noting that the RoPE 6 for the Qwen
series models is 107, which is significantly larger
than that of the Vicuna model (10%). This indicates
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Figure 4: Attention distributions from the red region in the high-resolution image and the red text towards thumbnail
tokens. Figure 4a shows the data example. Figures 4b and 4c depict the attention distribution from the red region,
and figures 4d and 4e show the attention distribution from the red text.

that Qwen models are relatively less sensitive to
changes in positional IDs. More details can be
found in the Appendix C

5.2 Results and Analysis

From the perspective of attention distribution, in
Figure 4c compared to 4b, the attention correspond-
ing to the red region is no longer confined to certain
unrelated areas but can focus on the magnets in the
image. In Figure 4e compared to Figure 4d, the
attention of ‘each pair’ can focus on the correspond-
ing text portion in the thumbnail.

The primary experimental results are shown in
Table 1. As can be observed from the table, the
adoption of ID-Align has led to improvements in
the model’s performance metrics across various

benchmarks. When using Vicuna and CLIP as pre-
training models, there was a notable improvement
across all benchmarks. These benchmarks cover
a broad spectrum of capabilities, indicating the
effectiveness of our approach. When employing
Qwen2.5, which has a RoPE @ value of 107, and
SigLIP as the base models, the performance gains
were observed to decrease, and there was a decline
in performance on several benchmarks. This obser-
vation aligns with our analysis, which suggests that
these models are relatively insensitive to changes
in positional encoding. However, after adopting
ID-Align, the overall performance of the model
showed an increasing trend.

To further investigate which specific capabilities



Model MMBench;,, MMStar RealWorldQA SEEDB2-Plus POPE@ACC
Vicuna
w/o ID-Align  66.58 36.61 58.43 51.38 87.97
w/ ID-Align  68.21 (+1.63) 38.32 171y 59.18 +0.75) 51.56 (+0.13) 88.66 (+0.69)
Qwen
w/o ID-Align 78.14 50.53 64.18 61.00 89.17
w/ ID-Align  78.48 (+0.34) 50.14 0399  63.79 (039 62.06 (+1.06) 89.16 (0.01)
MME AI2D VQAV2,. SQA;g Avg
Vicuna
w/o ID-Align 65.22 65.74 79.75 69.41 64.57
w/ ID-Align  65.50 (+0.28) 66.39 065 80.02 (+0.27) 70.70 (+1.29 65.39 +0.82)
Qwen
w/o ID-Align 67.11 74.84 79.88 80.61 71.72
w/ ID-Align  68.22 (+1.11) 75.13 029y  80.25 (+0.37) 81.06 (+0.45) 72.03 +031)
Table 1: Performance on Different Benchmarks with and without ID-Align
Model CcpP FP-S FP-C AR RR LR
Vicuna
w/o ID-Align  79.39 70.31 58.04 69.35 60.87 36.44
w/ ID-Align 81.76 237y 71.67 +136) 59.44 (+1.40) 69.85 +050) 66.96 (+6.09)  34.75 (-1.69)
Qwen
w/o ID-Align 83.73 81.91 71.26 84.38 75.83 56.65
w/ ID-Align 82.87 036) 81.91 +000) 72.87 +1.61) 83.33¢105) 77.72+189 59.54 (+2.89)

Table 2: The table presents the results on sub-metrics from the MMBench-Dev. Specifically, CP stands for Coarse
Perception, FP-C represents Fine-grained Perception (cross-instance), FP-S denotes Fine-grained Perception
(single-instance), AR refers to Attribute Reasoning, LR indicates Logical Reasoning, RR represents Relation

Reasoning.

contributed most to the observed growth in bench-
mark performance, we have detailed the changes
in various sub-metrics of MMbench, as shown in
Table 2. We have also listed the subtasks of MM-
Bench in Appendix D.3. As can be observed, when
using Vinca as the LLM base, although all sub-
indicators showed improvement, the most signif-
icant growth was seen in the RR metrics. Mean-
while, when employing qwen as the LLM back-
bone, it was the FP-C, RR, and LR metrics that
maintained their growth. These metrics are all re-
lated to global information.

6 Conclusion

In this paper, we analyze the potential issues of
the dynamic high-resolution strategies adopted by
current VLMs. Based on our analysis, we propose

ID-Align: a method that aligns the position IDs of
high-resolution embeddings with their correspond-
ing low-resolution embeddings, preserving their
relationship and constraining excessive growth in
position IDs. We conducted experiments on the
LLaVA-Next architecture, demonstrating the effec-
tiveness of our approach.

7 Limitation

Limitations of our work include: we did not inves-
tigate the performance of our method when com-
bined with token compression techniques. We also
did not examine the performance of our method
when integrated with viT that inherently support
dynamic resolution.
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A Long-term decay of RoPE

The proof of Equation (11) is as follows:
Let:
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Setting hg/owith = 0 and Sp = 0, with the Abel
transformation, we have:
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The proof of Equation (15) is as follows:
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Let g ~ N(uq,I) and k ~ N (py, I) be inde-
pendent random vectors

We use the law of total expectation, conditioning
on k:

Eqpda’ Rk | K]
Ela" | KRk|
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= N;—RmEk k]

The i-th 2 x 2 block of R,,, denoted R
given by:
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First, the product R,,p,; results in a vector
where the components corresponding to the ¢-th
2D block are:

= pk,2i—1 cos(mb;) — i 2; sin(mé;)

= g 2i—1 Sin(mb;) + g 2; cos(mb;)

(Rimtg)2i—1
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The dot product un(Rmuk) is then:

d
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Grouping the summation by the d/2 two-
dimensional blocks:
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Rearranging terms within the sum based on

HIRme:
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To simplify notation, let:

Ai = g 2i—11k,2i—1 T g, 2i bk, 2i
B = g, 2iftk,2i—1 — g, 2i—1/k 2i

The expression then becomes:

/2

u;Rmuk = 2:(14Z cos(mb;) + B; sin(mé;))
i=1

From this expression, we cannot derive the trend
of ,u:;Rmuk as m changes. Next, we will demon-
strate experimentally that u;—Rmuk exhibits dif-
ferent trends with respect to m depending on the
values of p, and py,.

For each component of qand k, we sampled

B Method details

Through the reorganization of position IDs, the
"distance" between thumbnail tokens and their cor-
responding high-resolution tokens is reduced. This
adjustment not only brings related embeddings
closer in terms of positional encoding but also effec-
tively restricts the growth of position IDs. Conse-
quently, this approach prevents the issue of position
IDs increasing by thousands when processing a sin-
gle image, which could otherwise lead to exceeding
the maximum position ID values encountered dur-
ing training.

Our algorithm process is shown in Algorithm
1. In practice, assuming that the 2D feature map
obtained after encoding the thumbnail with ViT
has dimensions (Hy, Wy) , and the feature map
obtained after encoding the entire high-resolution
image has dimensions (Hy, W) , for simplicity,
we assume that the positional id of the first token
in the thumbnail image is 0. We first generate a
1D tensor ranging from 0 to Hy * Wy then reshape
it to (Ho, Wp) , and use interpolation to resize the
reshaped tensor to (Hy, W), rounding the values
to intenger. After flattening both parts, they are
concatenated to form our positional IDs.

C Experiments Setup

All experiments were conducted using eight A800
GPUs.

C.1 Parameter Settings

As for the hyperparameter settings, we adopted the
configurations from Open-LLaVA-Next (Chen and
Xing, 2024). We will also list these hyperparame-
ters below.

Listing 1: The script for the LLaVA-Next pretrain phase,
using Vicuna and CLIP as the LLM backbone and visual
encoder, respectively.

from normal distributions with the same mean and |
a standard deviation of 1. Different mean values >
were set for q and k in each experimental run.’
Then, we set the relative distance between them

to different values and calculated their attention +
scores. For each choice of mean value, we simu- (
lated 1000 times and averaged the results at each ;
relative position. We experimented with two values ¢
of ,10* and 107. The results are shown in Table 5.’
The experiments reveal that different values of 1411
and p, influence the long-term properties of RoPE, '
and a small value of 6 increases the positional sen—:

sitivity of dot-product attention. 15
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nnodes=1

num_gpus=8

deepspeed --num_nodes ${nnodes} --
num_gpus ${num_gpus} --master_port
=10270 llava/train/train_mem.py \
--deepspeed ./scripts/zero2.json \
--model_name_or_path ${MODEL_PATH} \
--version plain \
--data_path ${DATA_PATH} \
--image_folder ${IMAGE_FOLDER3} \
--vision_tower ${VISION_TOWER} \
--mm_projector_type mlp2x_gelu \
--tune_mm_mlp_adapter True \
--unfreeze_mm_vision_tower False \
--mm_vision_select_layer -2 \
--mm_use_im_start_end False \
--mm_use_im_patch_token False \
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Algorithm 1 ID-Align with RoPE 1
Require:
1: Fiext: Sequence of text embeddings
2: Ejow: Sequence of thumbnail embeddings
3: Ehign: Sequence of high-resolution image em-
beddings
4: M 1 Epigh — Elow : Return the Ejoy corre—l
sponding to Ejgh 3
Ensure: !
5: max_pid < 0
Emerged — Concat(Etexu Ejow, Ehigh) 2
: for each embedding e; € Epergeq do
if e; € Fiext U Elow then g
pos_id(e;) < max_pid 9
10 max_pid <+ max_pid + 1
11: elseif e; € Ehigh then
12: pos_id(e;) + pos_id(M (e;)) .
13: max_pid < max(max_pid, M(e;) +,,
1) 14
14: end if .
15: end for

A e

18

16: function APPLYROTARYENCODING(Emerged)i:

17: for each e; € Eiergeq do o)
18: e; + RoPE(e;, pos_id(e;))

19:  end for
20: return Eerged 7

21: end function

--mm_patch_merge_type spatial_unpad |,
\

--image_aspect_ratio anyres \

--group_by_modality_length False \

--bf16 True \

--output_dir ./checkpoints/${ N
RUN_NAME} \ I

--num_train_epochs 1 \

--per_device_train_batch_size 8 \

--per_device_eval_batch_size 4 \

--gradient_accumulation_steps 4 \ |

--evaluation_strategy "no"” \ 1
--image_grid_pinpoints "[(336, 672), |
(672, 336), (672, 672), (1008, |
336), (336, 1008)1" \ ),
--use_id_align True \ b
--save_strategy "steps” \ )
4

--save_steps 24000 \
--save_total_limit 1 \
--learning_rate 1e-3 \
--weight_decay 0. \
--warmup_ratio ©0.03 \
--1lr_scheduler_type "cosine” \
--logging_steps 1 \

--tf32 True \

--model_max_length 4096 \
--gradient_checkpointing True \
--dataloader_num_workers 4 \
--lazy_preprocess True \

14

--report_to None \
--run_name ${RUN_NAME}

Listing 2: The script for the LLaVA-Next finetune phase,
using Vicuna and CLIP as the LLM backbone and visual
encoder, respectively.

nnodes=1
num_gpus=8

deepspeed --num_nodes ${nnodes} --
num_gpus ${num_gpus} --master_port
=10271 llava/train/train_mem.py \
--deepspeed ./scripts/zero3.json \
--model_name_or_path ${MODEL_PATH} \
--version v1 \
--data_path ${DATA_PATH} \
--image_folder ${IMAGE_FOLDER3} \
--pretrain_mm_mlp_adapter ./
checkpoints/${BASE_RUN_NAME}/
mm_projector.bin \
--unfreeze_mm_vision_tower True \
--mm_vision_tower_1lr 2e-6 \
--vision_tower ${VISION_TOWER} \
--mm_projector_type mlp2x_gelu \
--mm_vision_select_layer -2 \
--mm_use_im_start_end False \
--use_id_align True \
--mm_use_im_patch_token False \
--group_by_modality_length True \
--image_aspect_ratio anyres \
--mm_patch_merge_type spatial_unpad

\
--bf16 True \
--image_grid_pinpoints "[(336, 672),
(672, 336), (672, 672), (1008,
336), (336, 1008)1" \
--output_dir ./checkpoints/${
RUN_NAME} \

--num_train_epochs 1 \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 2 \
--evaluation_strategy "no"” \
--save_strategy "steps"” \
--save_steps 1000 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--1lr_scheduler_type "cosine"” \
--logging_steps 1 \

--tf32 True \

--model_max_length 4096 \
--gradient_checkpointing True \
--dataloader_num_workers 4 \
--lazy_preprocess True \
--report_to none \

--run_name ${RUN_NAME?}

Listing 3: The script for the LLaVA-Next pre-train
phase, using Qwen and SigLIP as the LLM backbone
and visual encoder, respectively.

nnodes=1

num_gpus=8

deepspeed --num_nodes ${nnodes} --
num_gpus ${num_gpus} --master_port
=10270 llava/train/train_mem.py \
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--deepspeed
--model_name_or_path ${MODEL_PATH} \ |
--version plain \ g
--data_path ${DATA_PATH} \
--image_folder ${IMAGE_FOLDER} \
--vision_tower ${VISION_TOWER} \
--mm_projector_type mlp2x_gelu \
--tune_mm_mlp_adapter True \
--unfreeze_mm_vision_tower False \
--mm_vision_select_layer -2 \
--mm_use_im_start_end False \
--mm_use_im_patch_token False \
--mm_patch_merge_type spatial_unpad
\
--image_aspect_ratio anyres \
--group_by_modality_length False \
--bf16 True \
--output_dir ./checkpoints/${
RUN_NAME} \
--num_train_epochs 1 \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 4 \

--evaluation_strategy "no” \
--image_grid_pinpoints "[(384, 768),
(768, 384), (768, 768), (1152,
384), (384, 1152)1" \
--use_id_align True \
--save_strategy "steps” \

--save_steps 24000 \
--save_total_limit 1 \
--learning_rate 1e-3 \
--weight_decay 0. \
--warmup_ratio ©0.03 \
--1r_scheduler_type "cosine” \
--logging_steps 1 \

--tf32 True \
--model_max_length 32768 \
--gradient_checkpointing True \
--dataloader_num_workers 4 \
--lazy_preprocess True \
--report_to none \

--run_name ${RUN_NAME}

Listing 4: The script for the LLaVA-Next finetune phase,
using Qwen and SigLIP as the LLLM backbone and vi-
sual encoder, respectively

nnodes=1

num_gpus=8

deepspeed --num_nodes ${nnodes} --
num_gpus ${num_gpus} --master_port
=10271 llava/train/train_mem.py \
--deepspeed ./scripts/zero3.json \
--model_name_or_path ${MODEL_PATH} \
--version ${PROMPT_VERSION} \
--data_path ${DATA_PATH} \
--image_folder ${IMAGE_FOLDERZ} \
--pretrain_mm_mlp_adapter ./

checkpoints/${BASE_RUN_NAME }/
mm_projector.bin \

--unfreeze_mm_vision_tower True \
--mm_vision_tower_1lr 2e-6 \
--vision_tower ${VISION_TOWER} \
--mm_projector_type mlp2x_gelu \
--mm_vision_select_layer -2 \
--mm_use_im_start_end False \
--use_id_align True \
--mm_use_im_patch_token False \

./scripts/zero2.json \ it

N N N

--group_by_modality_length True \
--image_aspect_ratio anyres \
--mm_patch_merge_type spatial_unpad

\

--bf16 True \

--image_grid_pinpoints "[(384, 768),
(768, 384), (768, 768), (1152,
384), (384, 1152)1" \

--output_dir ./checkpoints/${
RUN_NAME } \

--num_train_epochs 1 \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 2 \
--evaluation_strategy "no” \
--save_strategy "steps” \
--save_steps 1000 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio ©0.03 \
--1lr_scheduler_type "cosine” \
--logging_steps 1 \

--tf32 True \

--model_max_length 32768 \
--gradient_checkpointing True \
--dataloader_num_workers 4 \
--lazy_preprocess True \
--report_to none \

--run_name ${RUN_NAME?}
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C.2 Benchmarks

Focusing on the overall and various hierarchical
capabilities of models, we primarily adopted three
benchmarks—MMBench (Liu et al., 2024¢), MME
(Yin et al., 2023), and MMStar (Chen et al., 2024b).
Additionally, SeedBench-2-Plus (Li et al., 2024)
and AI2D (Kembhavi et al., 2016) were utilized
to assess the models’ capability in processing rich
text images such as charts, maps, and web pages.
RealWorldQA was employed to evaluate the mod-
els’ effectiveness in handling real-world images,
whereas POPE (Li et al., 2023b) was used to exam-
ine the phenomenon of model hallucinations. To
evaluate the model’s performance on QA tasks, we
will utilize the VQAV2 (Goyal et al., 2017) and
ScienceQA (Lu et al., 2022) datasets. We utilized
LMMS-Eval (Zhang et al., 2024b) for the evalua-
tion of our model. The decision to utilize ID-Align
can be controlled by setting the value of use-id-
align.

D More Results and Analysis

D.1 Learning Curve

In this section, we also plot the learning curve.
From these curves, it can be observed that after ap-
plying ID-Align, the training loss is slightly lower
during the latter half of the training phase com-




pared to when not using ID-Align. Additionally, D.1.2
the gradient norm is notably lower, indicating that
the model is closer to achieving convergence. This S

Qwen
effect is especially pronounced on Vinuca. These > = oo
plots were generated using a sliding average win- *
dow with a window length of 100.
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D.2 Compare with Other Methods

; o aw e e s e We also compared our method with MRoPE(Wang
. . et al., 2024) and V2PE(Ge et al., 2024). Our
Figure 9: Finetune Grad Norm method is not in competition with these methods;

16



rather, it is compatible with them. The focus of
these methods is on positional encodings within
a single image, whereas our method addresses
the correspondence between thumbnail and high-
resolution images. Therefore, these methods can
be combined.

Due to the limitation of computing resource,
we only experimented with the Qwen-2.5-0.5B
model and SigLip. These experiments only in-
volved adjusting these two methods to suit high-
resolution scenarios, without combining them with
ID-Align. For V2PE, we set ¢ = 0.5, which is
the best result reported in their paper for conven-
tional benchmarks. For MROPE, we treated the
thumbnail and high-resolution images as separate
images. Since the hidden state dimension of the
0.5B model is small, we set M RoPE  section =
[8,12, 12], which is a proportionally scaled version
of MRoPE section = [16,24,24] used in the
Qwen-2.5-VL-3B model. The results are shown in
Table 3.

Compared to V2PE and MRoPE, our method
shows significant improvement in metrics that mea-
sure the overall capability of the model (MME,
MMBench, MMStar). In metrics that measure spe-
cific capabilities, such as PoPE and AI2D, our
method may not perform as well as V2PE or
MROoPE, which could be related to the character-
istics of their methods and the benchmark data
distribution. Overall, in the context of dynamic
high-resolution, our method is superior.

D.3 MMBench Leaf Tasks

Coarse Perception:
* Image Style
* Image Topic
* Image Scene
* Image Mood
* Image Quality
Fine-grained Perception (Single-instance):
* Attribute Recognition
* Celebrity Recognition
* Object Localization
* OCR

Fine-grained Perception (Cross-instance):

17

* Spatial Relationship
* Attribute Comparison
* Action Recognition
Attribute Reasoning:

* Physical Property Reasoning
* Function Reasoning

* Identity Reasoning
Relation Reasoning:

* Social Relation

* Nature Relation

* Physical Relation
Logic Reasoning:

* Future Prediction

* Structuralized Image-text Understanding



MMB MMStar RWQA SEEDB POPE MME-C MME-P AI2ZD VQAV2 SQA avg
V2PE 56.28 37.43 51.76 48.09 87.82  30.85 63.86 57.87 65.62 60.83 56.04
MRoPE  55.44 38.28 53.73 46.73  88.41 30.01 62.81 57777 6478  59.89 55.79
ID-Align 57.68  39.74 55.03 4756  87.50  31.03 64.03 5696 6486 60.88 56.53

Table 3: Comparison with MRoPE and V2PE
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