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Abstract
We introduce an Outlier-Efficient Modern Hop-
field Model (termed OutEffHop) and use it to
address the outlier inefficiency problem of train-
ing gigantic transformer-based models. Our main
contribution is a novel associative memory model
facilitating outlier-efficient associative memory
retrievals. Interestingly, this memory model man-
ifests a model-based interpretation of an outlier-
efficient attention mechanism (Softmax1): it is
an approximation of the memory retrieval process
of OutEffHop. Methodologically, this allows us
to introduce novel outlier-efficient Hopfield lay-
ers as powerful alternatives to traditional atten-
tion mechanisms, with superior post-quantization
performance. Theoretically, the Outlier-Efficient
Modern Hopfield Model retains and improves
the desirable properties of standard modern Hop-
field models, including fixed point convergence
and exponential storage capacity. Empirically,
we demonstrate the efficacy of the proposed
model across large-scale transformer-based and
Hopfield-based models (including BERT, OPT,
ViT, and STanHop-Net), benchmarking against
state-of-the-art methods like ClippedSoftmax

and GatedAttention. Notably, OutEffHop

achieves an average reduction of 22+% in average
kurtosis and 26+% in the maximum infinity norm
of model outputs across four models. Code is
available at GitHub; future updates are on arXiv.
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1. Introduction
We address the outlier-inefficient problem in large
Transformer-based models by debuting a novel outlier-
efficient modern Hopfield model. This problem is of practi-
cal importance in the era of Large Foundation Models (Bom-
masani et al., 2021), i.e. huge transformer-based models,
pretrained on massive datasets. They play a central role not
only in machine learning but also in a wide range of scien-
tific domains, such as ChatGPT (Brown et al., 2020; Floridi
and Chiriatti, 2020) for natural language, BloombergGPT
(Wu et al., 2023) for finance, DNABERT (Zhou et al., 2024;
2023; Ji et al., 2021) for genomics, and many others. Specif-
ically, the problem of outlier inefficiency in these large mod-
els stems from their tendency to allocate attention to less
informative tokens (the “no-op” outliers), including delim-
iters and punctuation marks. This tendency arises because
these large models assign non-zero attention probabilities
to low-information tokens, diluting the overall effectiveness
of the attention mechanism (Bondarenko et al., 2023, Sec-
tion 3). As training progresses, the influence of these “no-op”
outliers magnifies due to the softmax function’s inability to
assign zero probability. Consequently, it leads to a scenario
where even irrelevant tokens contribute to the model’s out-
puts. Besides, it makes the model need unnecessarily large
GPU memory space to host due to the extra bits that outliers
take. This hampers the model’s processing efficiency and
potential accuracy.

To combat this, we take a route from the deep learning com-
patible modern Hopfield models (Wu et al., 2024a;b; Hu
et al., 2024a;b; 2023; Ramsauer et al., 2020). Through the as-
sociative memory model interpretation of transformer atten-
tion, we introduce a novel outlier-efficient modern Hopfield
model. This model’s memory retrieval dynamics approxi-
mate an outlier-efficient attention mechanism (Softmax1)
(Miller, 2023). This allows us to debut novel outlier-efficient
Hopfield layers as outlier-efficient alternatives for vanilla at-
tention (Vaswani et al., 2017). The fundamental idea of our
model is to add one extra “no-op classification” dimension
into state/configuration space of the Hopfield energy func-
tion. This dimension classifies whether a stored memory pat-
tern is a “no-op” outlier, see Figure 1 for a visualization. We
regard the “no-op” outliers as distinct or rare patterns with
no similarity to other memory patterns. Then, we present an
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Outlier Efficient Modern Hopfield Model for Large Transformer-Based Models

outlier-efficient Hopfield energy function with a refined log-
sum-exponential function. Consequently, this energy-based
associative memory model allocates this “no-op” pattern
to the zero-energy point of the energy function, remaining
unaffected by state updates (retrievals). Remarkably, by the
standard CCCP derivation for modern Hopfield models, this
new energy function leads to a memory-retrieval dynamics
that not only retrieves stored memories in an outlier-efficient
fashion but also subsumes the Softmax1 attention (Miller,
2023) as its special case (when limited to a single update).

Figure 1. Visualization of Outlier-Efficient Hopfield Model.

Contributions. We propose the Outlier-Efficient Modern
Hopfield Model. Our contributions are as follows:

• We propose an associative memory model capable of
outlier-efficient memory retrievals with strong physics
intuition. Theoretically, we analyze the proposed model
equips the standard properties of modern Hopfield mod-
els: fixed point convergence (Theorem 3.1) and exponen-
tial memory capacity (Theorem 3.3). Importantly, we
derive an outlier-efficient Hopfield layer OutEffHop as
a promising attention alternative (Section 2.4). More-
over, we provide a model-based interpretation for the
Softmax1 attention (Miller, 2023): it is an approximation
of the memory retrieval dynamics of the outlier-efficient
modern Hopfield model (Lemma 2.1).

• Methodologically, we introduce outlier-efficient Hopfield
layers as new components in deep learning. These layers
tackle the outlier problem of large models by reducing
the probability assigned to low-information vectors. In
addition to outlier reduction, we explore the generaliza-
tion of OutEffHop. We establish a generalization bound
(Theorem 3.4) that scales with N−1/2 logN in sample
size and log(dM) in the pattern dimension d and the size
of the stored memory set M . This positions OutEffHop
as a promising alternative to transformer attention.

• Empirically, we validate the proposed method on 3 com-
mon large transformer-based and 1 Hopfield-based mod-

els (BERT (Devlin et al., 2019), Open Pre-trained Trans-
former (OPT) (Zhang et al., 2022), Vision Transformer
(ViT) (Dosovitskiy et al., 2020) and STanHop-Net (Wu
et al., 2024b)). Specifically, OutEffHop reduces aver-
age kurtosis and maximum infinity norm by ∼22+% and
∼26+%, respectively1, and improves the same metrics
by an average of 3% and 4% compared to 3 variants of
STanHop-Net and ranks among the top two in outlier
efficiency in 25 out of 30 settings.

2. Outlier-Efficient Hopfield Model
This section introduces the Outlier-Efficient Modern Hop-
field Model. Section 2.2 presents an internal “no-op clas-
sification” mechanism for all memory patterns. Then, Sec-
tion 2.3 utilizes this mechanism to construct a model facil-
itating outlier-efficient associative memory retrievals. Im-
portantly, the retrieval dynamics of this model subsumes an
outlier-efficient attention as its special case, and Section 2.4
debuts outlier-efficient Hopfield layers for deep learning.

2.1. Background

This section presents the ideas we build on.

“No-Op” Outliers in Attention Heads. Clark et al.
(2019); Kovaleva et al. (2019) identify specific tokens in
BERT, such as delimiters and punctuation mark, receive
larger attention weights. Furthermore, Kobayashi et al.
(2020) reveal that tokens with small value vectors tend to
receive significantly large attention weights. As stated in
(Bondarenko et al., 2023), low-information tokens within
BERT and background patches in the Vision Transformer
(ViT) attract large attention probability to achieve no-update.

To see this, we consider an input sequence X =
[x1, . . . , xL] ∈ Rd×L and the attention mechanism

Attention(X) = Softmax
(
QKT

)
V = A.

We focus on the part of transformer right after attention

Output = Residual(X +A). (2.1)

If the input X already has enough information and does not
require further feature extraction, the attention mechanism
tends to behave like an identity map, and output a zero A.
This is known as the no-update situation: the output of (2.1)
is the same as input X . A direct consequence of this is
that — the attention mechanism forces tokens with large val-
ues (as in V ) receive close-to-zero attention probability (as
in Softmax

(
QKT

)
), resulting small-value tokens to have

large attention probability. By the normalization nature of
softmax function, this operation forces its input QKT to
have a wide range. This is the fundamental source of out-
liers: there must be some tokens causing the “wide range”

1See Table 1 for details.
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of QKT, namely outliers. Since attention to these tokens be-
haves as a “no-op”, as mentioned in (Clark et al., 2019), we
term these outliers as “no-op” outliers. Furthermore, since
the softmax function never reaches exact zero, it always
sends back a gradient signal, leading to the magnification of
outliers during training (Bondarenko et al., 2023).

Modern Hopfield Models. Let x ∈ Rd represent the
query patterns and Ξ = [ξ1, · · · , ξM ] ∈ Rd×M the memory
patterns. Krotov and Hopfield (2016) introduce the dense
associative memory model encoding memory patterns Ξ into
energy functionH(x) using overlap-construction: H(x) =
F (ΞTx), where F : RM → R is a smooth function. The
choice of energy function and the corresponding retrieval
dynamics results in different Hopfield models types (Krotov
and Hopfield, 2016; 2021; Demircigil et al., 2017; Ramsauer
et al., 2020; Hu et al., 2023; 2024a; Wu et al., 2024a;b).
Inspired by the dense associative memory models, Ramsauer
et al. (2020) introduce the modern Hopfield models with the
energy function of the form

H(x) = −lse
(
β,ΞTx

)
+

1

2
⟨x, x⟩+ Const.,

where lse(β, z) := β−1 log
∑M

µ=1 exp{βzµ}. In addition,
they introduce the corresponding retrieval dynamics as

xnew ← T (x) = ΞSoftmax(βΞTx), (2.2)

for any input query x ∈ Rd. The modern Hopfield model
possesses several desirable properties, including:

1. Exponential Memory Capacity: Achieved by highly
non-linear energy functions.

2. One-step Retrieval Dynamics: Achieved by guarantee-
ing monotonic energy function minimization.

3. Compatibility with Deep Learning Architectures:
Achieved by the link between their retrieval dynamics
and attention mechanisms.

2.2. One Dimension More

As models of associative memory, modern Hopfield mod-
els aim to retrieve a memory pattern xnew from the stored
memories Ξ, closest to the input query x. By (2.2), they do
this by computing the output xnew as the expectation value
of Ξ over the distribution Softmax(ΞTx). Crucially, the
weight of Softmax(ΞTx), i.e., ΞTx, represents the inner-
product similarity measure between the input query x and
each stored memory ξµ. Namely, the greater ⟨ξµ, x⟩ is, the
stronger their correlation.

Under this interpretation, for a given query x, the memory
patterns with low similarity inevitably deviate the expec-
tation value from the ground truth. This occurs because
the softmax function always assigns non-zero probability
weights, even for near zero similarity ⟨ξµ, x⟩ ≃ 0. Con-
sequently, this results to more iterative retrievals for the

retrieval dynamics to converge to the ground truth memory
(w.r.t x). We refer to these low-similarity memory patterns
as “no-op patterns,” as they are unrelated to the presented
query and should not operate during the retrieval process.

Motivated by above, we introduce a new dimension into
the pattern vectors to distinguish “no-op patterns” from the
relevant ones, via the following “no-op classification.”

No-Op Classification Mechanism. Given an input query
pattern x = (x1, . . . , xd) and memory patterns ξµ =
(ξµ1 , · · · , ξ

µ
d ) with µ ∈ [M ]. We extend their dimension

such that

x = (x1, . . . , xd, 0), ξ
µ
= (ξµ1 , · · · , ξ

µ
d , ω),

with an extra ω ∈ R. In addition, for memory patterns, we
set this extra dimension ω to be

• ω ̸= 0: non-zero for no-op outliers, and
• ω = 0: zero for the rest memory patterns,

assuming we are aware of which patterns are outliers2. Then
we introduce the following function:

Λ(ξµ) =


(ξµ1 , · · · , ξ

µ
d , 0) = ξ

µ

op ∈ Rd+1, if ω = 0,

(0, · · · , 0︸ ︷︷ ︸
d

, C) = Ω ∈ Rd+1, if ω ̸= 0 ,

(2.3)

with some C ∈ R and for all µ ∈ [M ], to map all “no-op
patterns” into an unique “no-op memory class vector Ω.” By
design, the inner product of the vector Ω with the query x is
zero: ⟨Ω, x⟩ = 0. We term the Λ function (2.3) the “no-op
classification mechanism.” It enforces all outlier memory
patterns to have zero inner product with the input query.
Remark 2.1. It is also feasible to design Λ so that each
outlier pattern maps to a distinct, non-repeated C. However,
the form presented here offers better elegance and simplicity.

In sum, for any set of (d-dimensional patterns) x and
Ξ = [ξ1, . . . , ξM ], we obtain a set of ((d+ 1)-dimensional
patterns) x and Ξ = [ξ1, . . . , ξM ]. Suppose there are K
outliers in Ξ. Then, with Λ, we further categorize Ξ into
(M −K) {ξµop}µ∈[M−K] and a single Ω.

2.3. Hopfield Energy and Retrieval Dynamics

Now, we utilize above to construct the Outlier-Efficient
Modern Hopfield Model. For the ease of presentation, in
the following, we set

x← x, ξµ ← ξµ (i.e., Ξ← Ξ),

for query and memory patterns. Move rover, since we only
need a single Ω for outliers, we set

d← (d+ 1), M ← (M −K),

2We can do this by either ad-hoc assignment or similarity mea-
sure thresholding (See B.1 for details).
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for pattern dimension and the number of “op” memory pat-
terns. We introduce the outlier-efficient Modern Hopfield
energy as:

H(x) = −lse1
(
β,ΞTx

)
+

1

2
⟨x, x⟩+ Const., (2.4)

where lse1 is a refined log-sum-exponential fucntion:

lse1
(
β,ΞTx

)
:= β−1 log

(
M∑
µ=1

exp{β ⟨ξµ, x⟩}+ exp{β ⟨Ω, x⟩}

)

= β−1 log

(
M∑
µ=1

exp{β ⟨ξµ, x⟩}+ 1

)
. (2.5)

Remark 2.2. Since the log function is monotonic, (2.5) has
a physical interpretation of an energy function with a zero-
energy point3 associated with exp{β ⟨Ω, x⟩} = exp{0}.
Naturally, this zero-energy point serves as one of the local
minima of H, and thus corresponds to a memory pattern.
More precisely, we retrieve “no-op” memory from there
with proper retrieval dynamics T .

Remark 2.3. Echoing with Remark 2.1, if we twist
(2.3) to have one ΩC for each no-op patterns with non-
repeated C’s, then (2.5) simply becomes lseK

(
β,ΞTx

)
:=

β−1 log
(∑M

µ=1 exp{β ⟨ξµ, x⟩}+K
)
.

Retrieval Dynamics. With (2.4), we derive the following
memory retrieval dynamics:

Lemma 2.1 (Retrieval Dynamics). Let Softmax1(z) :=

exp{z}/
(∑M

µ=1 exp{zµ}+ 1
)

for any z ∈ RM and t be
the iteration number. The memory retrieval dynamics:

TOutEff (xt) := ΞSoftmax1
(
βΞTxt

)
= xt+1, (2.6)

monotonically minimizes the energy (2.4) over t.

Proof Sketch. Since (2.5) is concave by design, we prove
this by standard CCCP derivation following (Hu et al., 2023).
See Appendix C.1 for a detailed proof.

Due to the monotonic decreasing property of Lemma 2.1,
for any given input query x, (2.6) retrieves a memory clos-
est to it by approaching to the nearest local minimum of
H. Interesting, when TOutEff is applied only once, (2.6) is
equivalent to an outlier-efficient attention (Miller, 2023).

Remark 2.4. Importantly, this set of H and T enables
outlier-efficient associative memory retrievals. When we
identify specific memory patterns as outliers relative to the
input query and classify them into Ω, they no longer con-
tribute to the retrieval output defined by (2.6).

3This zero-energy point does not mean H = 0.

2.4. Connection to Deep Learning

Outlier-efficient Hopfield model is applicable to nowadays
deep learning architectures, due to its connection to trans-
former attention mechanism when the retrieval dynamics
TOutEff undergoes a single iteration. Consider the raw query
R and memory pattern Y . We define the query and memory
associative (or embedded) spaces through transformations:
XT = RWQ := Q and ΞT = YWK := K, with ma-
trices WQ and WK . By transposing the retrieval dynamics
(2.6) and multiplying with WV (letting V := KWV ), we
get: QnewWV = Softmax1(βQKT)V .

This equation resembles the attention mechanism but with
a Softmax1 activation. When substituting the original pat-
terns R and Y , we present the Outlier-Efficient Hopfield
(OutEffHop) layer:

Z = OutEffHop (R, Y )

= Softmax1
(
βRWQW

T
KY T

)
YWKWV . (2.7)

This layer is readily incorporated into deep learning models.
To elaborate, the OutEffHop layer takes R and Y as input,
paired with weight matrices WQ, WK , and WV . Similar to
(Hu et al., 2024a; Wu et al., 2024b; Hu et al., 2023; Ram-
sauer et al., 2020), its configuration determines its behavior:

• Memory Retrieval: This mode does not require learning.
The matrices WK , WQ, and WV are identity matrices. R
acts as the query to retrieve memory patterns Y .

• OutEffHop: In this design, R and Y are inputs. The
matrices WK , WQ, and WV are adjustable, offering an
alternative to the usual attention mechanism with outlier
efficiency. R, Y , and Y function as the sources of query,
key, and value, respectively. To mimic a self-attention
mechanism, we set R equal to Y .

• OutEffHopPooling: Here, Y is the only input of
the layer. Q acts as a learnable query that can search
static prototype patterns in Y . We consider this layer
as a pooling layer if only one static state pattern (query)
exists.

• OutEffHopLayer: With just R as input (which de-
notes the query pattern), the adaptive matrices WK and
WV act as repositories for stored patterns and pattern
projections. This implies that keys and values are inde-
pendent of input, suggesting an interpretation of Y as an
identity matrix.

Remark 2.5. For outlier efficient Hopfield model with lseK
energy (Remark 2.3), the corresponding deep learning layer
becomes SoftmaxK(xi) = exp(xi)/(K +

∑
j exp(xj)).4

4https://github.com/softmax1/Flash-Attention-Softmax-N
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3. Theoretical Analysis
In this section, we validate our model as a theoretically
robust Hopfield model. Furthermore, by establishing a
lower upper bound on retrieval error, we prove the pro-
posed model’s enhancements over its original counterpart,
including expanded memory capacity.

3.1. Convergence Guarantee

We start our analysis with the notion of memory storage and
retrieval5 of modern Hopfield models following (Wu et al.,
2024b; Hu et al., 2023; Ramsauer et al., 2020).

Definition 3.1 (Storage and Retrieval). For all µ ∈ [M ],
let R := 1

2 Minµ,ν∈[M ];µ̸=ν ∥ξµ − ξν∥ be the finite radius
of each sphere Sµ centered at memory pattern ξµ. We say
ξµ is stored if all x ∈ Sµ are generalized fixed points of
T , x⋆

µ ∈ Sµ, and Sµ ∩ Sν = ∅ for µ ̸= ν. We say ξµ is
ϵ-retrieved by T with x for an error ϵ, if ∥T (x)− ξµ∥ ≤ ϵ.

Definition 3.1 does not guarantee alignment between
TOutEff’s fixed points and H’s stationary points. Addition-
ally, the monotonicity of equation (2.6) does not ensure the
existence of stationary points concerning energyH (Sripe-
rumbudur and Lanckriet, 2009). In the following lemma,
we establish our proposed model as a well-defined Hopfield
model by demonstrating two types of convergence.

Theorem 3.1 (Convergence of TOutEff). SupposeH is given
by (2.4) and TOutEff(x) is given by (2.6). For any sequence
{xt}∞t=0 defined by xt′+1 = TOutEff(xt′), all limit points of
this sequence are stationary points if they are obtained by
iteratively applying TOutEff toH.

Proof Sketch. Following (Hu et al., 2023), we first show
thatH converges to its generalized fixed point x⋆

µ through
TOutEff (1st convergence guarantee). Then, we show that
x⋆
µ corresponds to the stationary points of the energy min-

imization, and hence H converges to local optimum (2nd
convergence guarantee). See Appendix C.2 for a proof.

3.2. Retrieval Error Analysis

Calibrating against the standard results (Ramsauer et al.,
2020), we prove the superiorities of the proposed model.

Theorem 3.2 (Retrieval Error). Let Toriginal be the retrieval
dynamics of the original modern Hopfield model (Ramsauer
et al., 2020). ∥TOutEff(x)− ξµ∥ has lower upper bound than
∥Toriginal(x)− ξµ∥ for all x ∈ Sµ

Corollary 3.2.1 (Tighter Retrieval Error). Assume all
patterns x and {ξµ}µ∈[M ] are normalized. Let γ :=

5A fixed point of T with respect to H is a point where x =
T (x), and a generalized fixed point is a point where x ∈ T (x).
For more details, refer to (Sriperumbudur and Lanckriet, 2009).

M∑
µ=1

[
Softmax1

(
βΞTx

)]
µ

and α be the angle between

Toriginal(x) and ξµ. It holds ∥TOutEff(x)− ξµ∥ ≤
∥Toriginal(x)− ξµ∥ when (γ + 1)/2 ≥ cos(α).

Proof. See Appendix C.3 and Appendix C.4 for detailed
proofs of Theorem 3.2 and Corollary 3.2.1.

Remark 3.1. Corollary 3.2.1 is typically observed at the
beginning of retrieval.

Theorem 3.3 (Memory Capacity Lower Bound, Informal).
Assume all memory patterns are randomly sampled from a
sphere of radius m. For any β > 0, our proposed model’s
capacity to store and retrieve patterns scales exponentially
with the pattern size d, and has a larger capacity lower bound
than that of original modern Hopfield model (Ramsauer
et al., 2020): M ≥Moriginal.

Proof. See Appendix C.5 for a detailed proof.

Remark 3.2. Comparing previous asymptotic larger ca-
pacity results of sparse models (Hu et al., 2023; Wu et al.,
2024b) with large β, Theorem 3.3 is exact for all β > 0.

3.3. Generalization Bound

Following notations from Section 2.4, we analyze the gen-
eralization of the proposed layers. Consider the input
query Q = [q1, ..., qT ]

⊤ ∈ RT×d and memory pattern
Y = [y1, ..., yM ]⊤ ∈ RM×a, where y ∈ Ra and q ∈ Rd.

As standard supervised learning setting, we set the sample
size (number of sequences) to be N , i.e. input queries
Q(1), Q(2), ..., Q(N), and the corresponding target memory
sets to be Y (1), Y (2), ..., Y (N). For vectors, ∥·∥p and ∥·∥
denote the ℓp-norm and ℓ2-norm of vectors, respectively. For
matrices, ∥ · ∥p denotes the ℓp-norm, and ∥ · ∥p,q the (p, q)
matrix norm, which is q-norm of the p-norm of the columns
of a matrix. Namely, ∥A∥p,q = ∥(∥a1∥p, . . . , ∥ai∥p, . . .)∥q ,
where ai is the i-th column vector of A.

Here, we consider the transpose of (2.7) and taking W̃V :=
WKWV , while taking query Q and raw memory pattern Y
as inputs. We write the Outlier-Efficient Modern Hopfield
mechanism as a function fhop : RM×a × RT×d → Rd×T

(i.e. fhop is the transpose of OutEffHop in (2.7)):

fhop(Y,Q;WK , W̃V ) = W̃T
V Y

TSoftmax1
(
βYWKQT

)
,

where WK ∈ Ra×d and W̃V ∈ Ra×d. Also, we write the
corresponding function class

Fhop := {(Y,Q) 7→ fhop(Y,Q;WK , W̃V ) |

WK ∈ WK , W̃V ∈ W̃V }.
and make the following mild assumptions.
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Table 1. Comparing OutEffHop with Vanilla Attention in BERT, OPT, ViT and STanHop-Net. We showcase the outlier efficiency
of OutEffHop in 3 large transformer-based and 1 Hopfield-based models, using Average Kurtosis and Maximum Infinity Norm ∥x∥∞.
Additionally, we showcase the quantization performance of OutEffHop, by comparing FP16 and W8A8 (Weight-8bit-Activation-8bit)
performance. The best results are highlighted in bold, and the second-best results are underlined. In all settings, OutEffHop delivers
significant outlier reduction, and further enhances its combinations with Clipped Softmax and Gated Attention. ∗For FP16 and
W8A8, we report Perplexity Score for BERT and OPT, Top-1 Accuracy for ViT, and Mean Square Error (MSE) for STanHop-Net.

Model Method Avg. kurtosis Max inf. norm FP16∗ W8A8∗ Parameters

B
E

R
T

Vanilla 418.724 ± 0.814 255.859 ± 0.004 6.237 ± 0.001 7.154 ± 0.009

108.9mOutEffHop 26.564 ± 0.022 33.618 ± 0.000 6.209 ± 0.001 6.295 ± 0.001
Clipped Softmax 14.210 ± 0.003 33.619 ± 0.001 6.118 ± 0.002 6.189 ± 0.001

Clipped OutEffHop 11.839 ± 0.001 30.107 ± 0.001 6.133 ± 0.000 6.199 ± 0.001
Gated Attention 17.779 ± 0.014 34.082 ± 0.000 6.230 ± 0.001 6.299 ± 0.003 109mGated OutEffHop 15.625 ± 0.012 32.777 ± 0.000 6.214 ± 0.001 6.279 ± 0.003

O
PT

Vanilla 23341.513 ± 27.363 92.786 ± 0.002 15.974 ± 0.001 42.012 ± 19.514

124.06mOutEffHop 21.542 ± 0.000 13.302 ± 0.001 15.916 ± 0.002 16.429 ± 0.013
Clipped Softmax 9731.110 ± 0.000 43.803 ± 0.000 16.042 ± 0.000 30.825 ± 0.330

Clipped OutEffHop 24127.332 ± 0.000 67.602 ± 0.000 16.118 ± 0.000 29.269 ± 0.184
Gated Attention 90.321 ± 0.000 13.704 ± 0.000 15.677 ± 0.000 16.236 ± 0.074 124.07mGated OutEffHop 11.449 ± 0.000 7.568 ± 0.000 15.751 ± 0.000 16.148 ± 0.005

V
iT

Vanilla 37.104 ± 0.000 272.198 ± 0.000 76.810 ± 0.000 74.935 ± 0.046

22.03mOutEffHop 31.601 ± 0.001 249.163 ± 0.000 76.788 ± 0.000 76.313 ± 0.012
Clipped Softmax 33.868 ± 0.00 257.613 ± 0.00 76.612 ± 0.000 75.179 ± 0.013

Clipped OutEffHop 24.642 ± 0.000 196.199 ± 0.001 76.871 ± 0.001 76.083 ± 0.007
Gated Attention 45.145 ± 0.864 269.279 ± 1.426 69.922 ± 2.436 67.479 ± 1.447 22.04mGated OutEffHop 21.979 ± 0.254 60.169 ± 1.153 74.089 ± 2.585 73.958 ± 3.126

ST
an

H
op

-N
et Vanilla 2.954 ± 0.063 5.048 ± 0.232 0.360 ± 0.008 0.362 ± 0.000

35.13mOutEffHop 2.897 ± 0.011 4.565 ± 0.209 0.360 ± 0.004 0.355 ± 0.000
Clipped Softmax 2.995 ± 0.05 4.890 ± 0.17 0.553 ± 0.03 0.591 ± 0.000

Clipped OutEffHop 2.864 ± 0.06 4.145 ± 0.23 0.506 ± 0.05 0.517 ± 0.000
Gated Attention 2.487 ± 0.017 4.277 ± 0.163 0.380 ± 0.006 0.375 ± 0.000 35.15mGated OutEffHop 2.459 ± 0.041 4.240 ± 0.155 0.376 ± 0.007 0.367 ± 0.000

Assumption 3.1 (Norm Bounds). We assume that
(A1). Query vectors rτ are bounded by 1 in ℓ2-norm

∥qτ∥ ≤ 1 ∀τ ∈ [T ].

(A2). Memory vectors yt are bounded in ℓ2-norm

∥yt∥ ≤ BY ∀t ∈ [M ].

(A3). WK is bounded in ℓ2,1-norm

WK : {WK ∈ Ra×d |
∥∥W⊤

K

∥∥
2
≤ BK , ∥WK∥2,1 ≤ B2,1

K }.

(A4). W̃V is bounded in ℓ2-norm and ℓ2,1-norm

W̃V : {W̃V ∈ Ra×d |
∥∥W̃T

V

∥∥
2
≤ BV ,

∥∥W̃V

∥∥
2,1
≤ B2,1

V }.

Then, we state our generalization results.

Theorem 3.4 (Outlier Efficient Hopfield Layer General-
ization Bound). For any δ > 0, with probability at least
1− δ,

εgen(fhop) ≤ Õ
(√

N−1

[√
(E1 + E2)

3
+
√
log (1/δ)

])
,

where E1 =
[
4B2

V B
2
Y (βB

2,1
K )2 log (dNM)

]1/3
, E2 =[

(B2,1
V )2 log(dNM)

]1/3
.

Proof Sketch. We first derive the covering number bound
of the Outlier-Efficient Hopfield Layer by showing the Lip-
schitzness of fhop (Lemma C.7). By Dudley’s Theorem,
we obtain the generalization bound via covering number
(Lemma C.4). See Appendix C.6 for a detailed proof.

Our results indicate that the generalization error remains
controllable as long as the size of the data N at least scales
logarithmically with the pattern dimension d and the size
of stored memory set M . In addition, the length of the se-
quence, T , does not impact generalization, making Hopfield
layers as a promising alternative to transformer attention.

4. Experimental Studies
We conduct a series of experiments to validate the Outlier-
Efficient Modern Hopfield Model and layers. Specifically,
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Figure 2. The Impact of OutEffHop on Maximum Infinity Norm ∥x∥∞ Changes During Pretraining of (a) BERT, (b) OPT, (c) ViT,
and (d) STanHop-Net. The plots, from left to right, compare OutEffHop with the vanilla attention baseline and their combination with
Clipped Softmax and Gated Attention as per (Bondarenko et al., 2023). Each figure’s y-axis scale varies. For better visualization, we
focus on the outlier reduction in layer 10 of the BERT, ViT and OPT model, and in layer 9 of the STanHop-Net. In all settings, OutEffHop
delivers significant reduction of the ∥x∥∞ compared to the vanilla attention and improves Clipped Softmax and Gated Attention.
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Figure 3. The trend of Feed-Forward Network (FFN) output max-
imum infinity norm values in layers 3, 6, 9, and 10 of a BERT
encoder is analyzed using two softmax variations: OutEffHop

(represented in red) and vanilla Softmax (in grey). The findings
indicate that OutEffHop significantly reduces outliers in the model
compared to the vanilla Softmax.
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Figure 4. Maximum infinity norm ∥x∥∞ for different tensor com-
ponents within layer 10 of BERT. Our work is analysed using two
softmax variations: OutEffHop (represented in red) and vanilla
Softmax (in grey). We find OutEffHop suppresses the outliers
growing in both FFN layers.
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we test our model in accordance with SOTA methods out-
lined in (Bondarenko et al., 2023), with 3 common large
transformer-based models and 1 Hopfield-based model.

4.1. Outlier Efficiency of OutEffHop

To test the model’s robustness against outliers, we use
OutEffHop in BERT (Devlin et al., 2019), Open Pretrained
Transformers (OPT) (Zhang et al., 2022), Vision Transform-
ers (ViT) (Dosovitskiy et al., 2020) and STanHop-Net (Wu
et al., 2024b) to replace the vanilla attention layer (Vaswani
et al., 2017) and Hopfield layer (Hu et al., 2023; Ramsauer
et al., 2020). We then train these models from scratch and
evaluate them on the validation set. We conduct each evalu-
ation three times with different random seeds and present
the average and standard deviation for each metric.

Metrics. We report maximum infinity norm ∥x∥∞ of the
activation tensors x across all the Transformer layers as the
metrics for outliers’ existence. Also, we report the average
kurtosis of x. For BERT, we only average on the outputs
tensors from the Feed-Forward Network (FFN) layer and
Layer Normalization. These two parts are known for outlier
presence, as confirmed by our experiments and previous
studies (Bondarenko et al., 2021; Wei et al., 2022; Bon-
darenko et al., 2023). In the case of OPT, ViT and STanHop,
we average over every output component in the transformer
layers. These two metrics have been shown to correlate
well with the model quantizability (i.e., robustness against
outliers) (Bondarenko et al., 2021; Shkolnik et al., 2020).
Specifically, previous studies (Dettmers et al., 2022; Wei
et al., 2022; Bondarenko et al., 2021) highlight a substantial
decline in model performance attributed to quantization in
the presence of outliers. As a result, we report the models’
performance before and after quantization. For before quan-
tization performance, we report (i) FP16 (in 16-bit floating-
point) Perplexity Score for BERT and OPT, (ii) FP32 Top-1
Accuracy for ViT, and (iii) Mean Square Error (MSE) for
STanHop-Net. For after quantization performance W8A8
(in 8-bit floating-point), we report the same metrics.

Datasets. We use 4 real-world datasets: Bookcorpus (Zhu
et al., 2015), wiki40b/en (Guo et al., 2020), ImageNet-1k
(Russakovsky et al., 2015) and ETTh1 (Zhou et al., 2021).
The first two are for language models, i.e. OPT and BERT,
the third is for vision model, i.e. ViT, and the last is for time
series model, i.e. STanHop-Net.

Models. Following Bondarenko et al. (2023), we validate
our method (OutEffHop layers) with 4 popular models: 2
language models (BERT, OPT), 1 vision model (ViT) and
1 time series model (STanHop). For BERT, we adopt the
BERT-base-uncased model of size 109 million parameters6.

6https://huggingface.co/bert-base-uncased

We pretrain this model with the masked language model-
ing (MLM) technique, following the original BERT paper
(Devlin et al., 2019). As for OPT, we adopt a OPT model
of size 125 million parameters7. For this model, we em-
ploy causal language modeling (CLM) as the pre-training
objective. To optimize training efficiency, we set specific
constraints on sequence length: sequence length of 128
for BERT and of 512 for OPT. As for ViT, we adopt the
ViT-S 16 variant of size 22.03 million parameters8. We
pretrain this model with standard image classification ob-
jective. As for STanHop-Net, we adopt a STanHop-Net of
size 35.13 million parameters9. We pretrain this model on a
multivariate time series prediction objective.

Results. In Table 1 and Figure 2, our results show
that OutEffHop achieves performance in outlier reduction
comparable to Clipped Softmax and Gated Attention.
Moreover, combining OutEffHop with these two methods
further improves the effect, achieving an average reduction
of ∼22+% in average kurtosis and ∼26+% in maximum
infinity norm across four test models. The only exception
is Clipped OutEffHop in the OPT model. This anomaly
aligns with the findings of Bondarenko et al. (2023), which
suggest that the Clipped Softmax approach does not per-
form well with OPT. In sum, the efficacy of OutEffHop
is also apparent in the reduction of the maximum infinity
norm value during the pre-training process, particularly no-
ticeable in layer 10 of the BERT, ViT and OPT model, and
in layer 9 of the STanHop models, as depicted in Figure 2.
OutEffHop is more efficient at reducing outliers during the
pretraining process compared to its baseline methods, with
particularly notable improvements in the OPT model.

4.2. OutEffHop Improves Hopfield-Centric Deep
Learning Model: A Case Study on STanHop-Net

We also test our method on STanHop-Net (Wu et al., 2024b),
a Hopfield-based time series prediction model. We conduct
a comparison between our method and common modern
Hopfield layers (Hu et al., 2023; Ramsauer et al., 2020).

Data. Following Wu et al. (2024b), we use 3 realistic
datasets for multivariate time series prediction tasks: ETTh1
(Electricity Transformer Temperature-hourly), ETTm1
(Electricity Transformer Temperature-minutely), WTH
(Weather). We divide these datasets into training, validation,
and test sets with a ratio of 14/5/5. For each dataset, we
conduct evaluations across various prediction horizons.

Metrics. To evaluate the outlier efficiency, we use the
same metrics as the above experiments: the maximum infin-

7https://huggingface.co/facebook/opt-125m
8https://huggingface.co/WinKawaks/vit-small-patch16-224
9https://github.com/MAGICS-LAB/STanHop
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Table 2. STanHop-Net (Wu et al., 2024b): Outlier Reduction of Multivariate Time Series Predictions. We implement 4 STanHop
variants, Hopfiled with Dense Hopfield layer (Ramsauer et al., 2020), SparseHopfiled with Sparse SparseHopfield layer (Hu et al.,
2023), STanHop-Net with GSH layer (Wu et al., 2024b) and OutEffHop with our Softmax1 layer respectively. To evaluate outlier
reduction performance, we report the maximum infinity norm and average kurtosis metrics. We also report the average Mean Square
Error (MSE) and Mean Absolute Error (MAE) metrics with variance omitted as they are all ≤ 2%. We evaluate each dataset with different
prediction horizons (shown in the second column). We have the best results bolded and the second best results underlined. In 25 out
of 30 settings, OutEffHop ranks either first or second. Our results indicate that our proposed OutEffHop delivers consistent top-tier
outlier-reduction performance compared to all the baselines.

Models Hopfield SparseHopfield STanHop-Net (GSH) OutEffHop

Metric MSE MAE
Avg.

kurtosis
Max inf.

norm MSE MAE
Avg.

kurtosis
Max inf.

norm MSE MAE
Avg.

kurtosis
Max inf.

norm MSE MAE
Avg.

kurtosis
Max inf.

norm

E
T

T
h1

24 0.360 0.401 2.954 ± 0.063 5.048 ± 0.232 0.388 0.411 3.311 ± 0.082 4.954 ± 1.064 0.395 0.415 3.269 ± 0.117 4.947 ± 0.173 0.361 0.397 2.897 ± 0.011 4.565 ± 0.209
48 0.405 0.424 2.968 ± 0.039 4.969 ± 0.033 0.466 0.452 3.295 ± 0.136 4.749 ± 0.517 0.458 0.448 3.271 ± 0.200 4.644 ± 0.341 0.409 0.426 2.965 ± 0.004 4.570 ± 0.424

168 0.881 0.710 2.545 ± 0.004 3.923 ± 0.115 1.422 0.921 3.149 ± 0.015 4.348 ± 0.085 1.422 0.926 3.093 ± 0.065 4.160 ± 0.285 0.872 0.704 2.526 ± 0.011 3.865 ± 0.035
336 0.755 0.648 2.436 ± 0.003 3.536 ± 0.230 1.223 0.851 3.071 ± 0.009 4.156 ± 0.199 1.381 0.909 3.043 ± 0.021 4.248 ± 0.159 0.780 0.658 2.433 ± 0.009 3.416 ± 0.042
720 0.852 0.709 2.443 ± 0.006 3.266 ± 0.132 1.134 0.824 3.030 ± 0.015 4.179 ± 0.054 1.360 0.904 3.062 ± 0.089 4.238 ± 0.197 0.894 0.788 2.450 ± 0.035 3.218 ± 0.142

E
T

T
m

1

24 0.272 0.339 3.617 ± 0.003 4.717 ± 0.353 0.265 0.331 3.357 ± 0.045 4.334 ± 0.087 0.261 0.328 3.547 ± 0.096 4.696 ± 0.279 0.347 0.429 3.584 ± 0.136 4.212 ± 0.262
48 0.352 0.387 4.211 ± 0.113 5.603 ± 0.854 0.304 0.355 4.280 ± 0.102 6.296 ± 0.479 0.328 0.367 4.384 ± 0.415 5.557 ± 4.188 0.375 0.409 3.967 ± 0.253 5.816 ± 0.209
96 0.396 0.412 3.102 ± 0.026 4.534 ± 0.328 0.345 0.383 3.568 ± 0.127 4.441 ± 0.650 0.344 0.375 3.609 ± 0.364 4.618 ± 0.319 0.529 0.487 3.014 ± 0.042 4.333 ± 0.394

288 0.600 0.540 2.643 ± 0.005 3.179 ± 1.798 0.500 0.471 2.783 ± 0.075 3.172 ± 0.048 0.515 0.483 2.803 ± 0.101 3.228 ± 0.056 0.572 0.513 2.498 ± 0.031 3.151 ± 0.072
672 0.784 0.627 2.674 ± 0.079 3.740 ± 0.318 0.537 0.495 3.429 ± 0.206 3.875 ± 0.380 0.571 0.519 3.427 ± 0.138 3.439 ± 0.093 0.752 0.607 2.553 ± 0.081 3.641 ± 0.091

W
T

H

24 0.357 0.404 3.616 ±0.117 6.668± 1.102 0.378 0.429 3.656 ±0.082 5.609 ±0.154 0.370 0.394 3.726± 0.231 9.126± 0.322 0.378 0.423 3.711± 0.017 5.428 ±0.093
48 0.441 0.464 3.904 ± 0.090 6.481 ±0.417 0.441 0.474 3.957± 0.184 7.409± 1.445 0.472 0.500 3.911± 0.282 6.730± 0.150 0.464 0.480 3.663 ±0.144 6.649 ±0.586

168 0.549 0.562 2.617 ±0.046 3.028± 0.097 0.575 0.575 2.835± 0.012 3.364± 0.045 0.561 0.565 2.712± 0.040 3.087± 0.089 0.562 0.561 2.552± 0.031 2.931± 0.068
336 0.572 0.579 2.565 ± 0.082 3.185 ± 0.055 0.598 0.593 2.849 ± 0.031 3.640 ± 0.078 0.552 0.557 2.710 ± 0.072 3.087 ± 0.043 0.613 0.604 2.516 ± 0.057 3.383 ± 0.063
720 0.727 0.670 2.578 ± 0.027 3.617 ± 0.443 0.591 0.587 2.737 ± 0.009 3.228 ± 0.078 0.571 0.573 2.737 ± 0.009 3.219 ± 0.073 0.794 0.710 2.543 ± 0.006 3.524 ± 0.261

ity norm ∥x∥∞ and average kurtosis over 12 decoder layers.
To evaluate the prediction accuracy, we use Mean Squared
Error (MSE) and Mean Absolute Error (MAE). We repeat
each experiment 10 times and report the average results.

Results. In Table 2, our results demonstrate the effective-
ness of OutEffHop in enhancing outlier efficiency of mod-
ern Hopfield network architectures. OutEffHop delivers
significant improvements on outlier efficiency with marginal
sacrifice of model performance. OutEffHop achieves top-
tier outlier-efficiency in 25 out of 30 evaluated scenarios,
ranking either first or second in these settings. In STanHop-
Net, OutEffHop model demonstrates a notable enhance-
ment in outlier efficiency compared to Vanilla and Sparse,
Generalized Sparse Modern Hopfield Models. Specifically,
there are 3% and 4% reductions in ∥x∥∞ and average kur-
tosis, respectively.

4.3. Additional Experimental Results (Appendix D)

Figure 3 & Figure 4. To supplement Section 4.1, We
conduct in-depth case studies on the BERT model. In Fig-
ure 3, we focus on the outlier performance in selected layers,
and in Figure 4, we delve into the maximum infinity norm
∥x∥∞ within the 10th layer’s various tensor components.
OutEffHop offers evidence of its effectiveness in mitigating
outliers within our approach. Additionally, we observe that
this mitigation effect becomes particularly pronounced in
the final several layers. See Appendix D.1 for more details.

Verifying Theoretical Results. Following (Hu et al.,
2023; Wu et al., 2024b; Ramsauer et al., 2020), we vali-
date the superiority of OutEffHop’s theoretical results on
memory retrieval and MIL learning tasks on 3 datasets,

benchmarking against (Krotov and Hopfield, 2016; Ram-
sauer et al., 2020; Hu et al., 2023; Wu et al., 2024b). See
Appendix D.2 for more details.

5. Conclusion and Discussion
We present the Outlier-Efficient Modern Hopfield Model
to manage the computational challenges posed by outliers
in large transformer-based models. Our model not only
inherits the appealing features of modern Hopfield mod-
els, but also introducing the OutEffHop layers as new
deep learning components for large transformer-based mod-
els with strong outlier-reducing capabilities. Empirically,
OutEffHop achieves an average reduction of ∼22+% in
average kurtosis and ∼26+% in maximum infinity norm
across four test models. Additionally, it improves the same
metrics by an average of 3% and 4% compared to 3 variants
of STanHop-Net and ranks among the top two in outlier
efficiency in 25 out of 30 settings.

Limitation and Future Work. One limitation is that
OutEffHop does not address outliers induced by Layer-
Norm (see First Residual LayerNorm in Figure 4). In fact,
Wei et al. (2022) observe that LayerNorm outliers arise from
mechanisms different from those of attention, as studied
here. We plan to integrate these different types of outliers
with OutEffHop in future research.

Impact Statement
We believe this methodology offers an opportunity to en-
hance the foundations of foundation models, including large
language models, through insights from associative memory
models. However, this approach could intensify biases in
the training data, potentially resulting in unfair or discrimi-
natory outcomes for underrepresented groups.
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A. Related Works
Associative Memory Models for Deep Learning. The classical Hopfield models (Hopfield, 1984; 1982; Krotov and
Hopfield, 2016) mirror the associative memory of the human brain, focusing on the storage and retrieval of specific memory
patterns. Recently, a resurgence in associative memory model research is attributable to (i) advancements in memory storage
capacities (Wu et al., 2024a; Chaudhry et al., 2023; Krotov and Hopfield, 2016; Demircigil et al., 2017), (ii) the innovative
architectural designs (Wu et al., 2024b; Hoover et al., 2023; Seidl et al., 2022; Fürst et al., 2022; Ramsauer et al., 2020), and
(iii) their biological plausibility (Burns, 2024; Kozachkov et al., 2022; Krotov and Hopfield, 2021). Notably, the associative
memory networks a.k.a. the modern Hopfield models (Hu et al., 2024a;b; Wu et al., 2024b; Burns and Fukai, 2023; Hu
et al., 2023; Brandstetter, 2021; Ramsauer et al., 2020) exhibit favorable properties, including fast convergence speed and
exponential memory capacity. They form a bridge to Transformer architecture (Hu et al., 2024a; 2023; Wu et al., 2024b;
Cabannes et al., 2024; Bietti et al., 2023; Ramsauer et al., 2020), positioning themselves as advanced extensions of attention
mechanisms. Consequently, their applicability extends across various fields, including drug discovery (Schimunek et al.,
2023), immunology (Widrich et al., 2020), time series forecasting (Wu et al., 2024b; Auer et al., 2023), tabular learning (Xu
et al., 2024), out-of-distribution detection (Hofmann et al., 2024), reinforcement learning (Paischer et al., 2022), and vision
(Fürst et al., 2022). Our study refines this research direction towards efficient models. We believe that this study is critical in
guiding future research towards a Hopfield-driven design paradigm, especially for large-scale models.

Outlier-Efficient Methods. Quantization is a method to reduce the computational burden of large models via low-bit
precision computing (Horowitz, 2014; Tang and Kwan, 1993; Marchesi et al., 1993). For instance, common quantization
schemes, INT8 and INT4, compress the models’ weights and activations by using 8-bit or 4-bit integers encoding (Zafrir
et al., 2019; Bhandare et al., 2019; Junczys-Dowmunt et al., 2018). However, the presence of outliers challenges the
quantization performance of transformer-based models due to outlier-induced exploding attention weights (Bondarenko
et al., 2023; 2021). To combat this, Wei et al. (2022) modify LayerNorm to enable quantization on outlier-free activation
tensors, and introduce Token-Wise Clipping to optimize clipping ranges for each token. Further, Dettmers et al. (2022)
quantize outlier features and other features with different degrees of precision. Yet, since outliers stem from the softmax
function (see Section 2.1 for details), neither of above methods address the outlier issue from its source. To this end,
Bondarenko et al. (2023) introduce Clipped Softmax and Gated Attention to force attention mechanism to output exact
zeros, thereby tackling the source of outliers. Specifically, Clipped Softmax extends the output range of the softmax
function from (0, 1) to larger span, and Gated Attention determines to keep or nullify the update. However, these two
methods need hyperparameters for optimal performance. Moreover, Clipped Softmax underperforms with the OPT model
and Gated Attention introduces additional training parameters. In this paper, we present a novel modern Hopfield model
such that it endows outlier-efficient computation. Surprisingly, its retrieval dynamics subsumes the Softmax1 outlier-efficient
attention (Miller, 2023) as a special case10. We expect this work to shed light on research into (Hopfield-based) large
foundation models, both theoretically and methodologically.

Outlier Related Transformer Theories. Recent works highlight the theoretical advantages of removing outliers in the
attention heads of transformer-based large foundation models. Alman and Song (2023) show that efficient transformers
(both vanilla and tensor (Alman and Song, 2024b)) require bounded attention weights using fine-grained reduction. Hu et al.
(2024b) show that efficient modern Hopfield models and corresponding networks also need bounded query and key patterns
for sub-quadratic time complexity via fine-grained reduction. Alman and Song (2024a); Gao et al. (2023) show that efficient
training of transformer-based models necessitates bounded weight matrices.

10For any x ∈ Rd, Softmax1(x)i = exp{xi}
1+

∑
j exp{xj} . Preliminary experimental results (johnowhitaker, 2023) confirm its outlier

efficiency.
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B. Supplementary Backgrounds
B.1. How Does Softmax1 Solve the Outlier Problem?

The “outlier” challenge in (multi-head) attention arises from the inherent design of Softmax. Softmax forces each attention
head to attend to at least one position in the input sequence, even if there is no useful information throughout the entire input
sequence. In the case where a no-update behavior is needed, since for Softmax, producing close-to-zero probabilities for
all positions is not an option, it has to produce a high probability to a spurious position (such as a comma sign in a sentence)
and produces close-to-zero probabilities for all other positions. However, this is a workaround and it still introduces noises.

To solve this, Miller (2023) proposes Softmax1, which adds 1 to the denominator of Softmax. This adjustment reduces the
relative importance of each head. As a result, if a head provides less relevant or even misleading information, the model
does not depend on it. This ensures the influence of “less-relevant heads” remains moderate. Therefore, Softmax1 allows a
head to “abstain” or contribute minimally when its information is not beneficial for the current context.

In this paper, we introduce the Outlier-Efficient modern Hopfield model for two purposes:

I. Outlier Efficient Associative Memory Model

II. Outlier Efficient Attention-like Layer for deep learning

We only have to identify outlier when our model serves as Associtative Memory Models . For similarity measure thersholding,
it has following process:

1. Calculating similarity scores among patterns.

2. Setting a threshold, patterns with scores below this threshold are considered dissimilar.

3. Patterns with consistently low similarity scores across the board are identified as “no-op” outliers.

As for ad-hoc assignment, we create a provisional classification system to identify “no-op” outliers. This temporary
framework allows us to segregate data that does not fit into predefined categories.

For Outlier Efficient model implement as attention-like layer for deep learning, the similarity measurement is automatically
done by learning. Thus, it identifies outliers without extra effort. Patterns with small inner products with queries get almost
zero attention probability, because of our retrieval dynamic design (2.6).

Explicitly, let z := (z1, ..., zM ) ∈ RM . By (2.5) and (2.6), Softmax1(z) automatically assigns ∼ 0 output to zi ∼ 0 for all
i ∈ [M ] without requiring other zj ̸=i to be super huge, by associating them to zero-point energy state (no-op memories).
Here z is learned according to (2.7) when OutEffHop is used as a learning layer. Hence, it’s clear the outlier identification is
done automatically through learning.

Consider an example involving a negligible input vector in the attention mechanism: n = [-10, -10, -10]. Upon passing n
through the Softmax function, it yields relatively large weights:

Softmax(n) ≈ [0.33, 0.33, 0.33].

To achieve a no-update, the attention mechanism allocates increasing attention to low-information tokens, causing the
probability of other tokens to approach zero (See Section 2.1 for details). For instance, if the first element in n represents a
low-information token (e.g., [SEP]), the input vector might transform into

n′ = [100,−10,−10].

This transformation causes the weights of all but the first token to converge to zero:

Softmax(n′) ≈ [0.99, 2× 10−48, 2× 10−48].

This procedure requires the wide range of input vector, leading the emergence of outliers. However, when n is processed by
Softmax1, the result is as follows:

Softmax1(n) ≈ [5× 10−5, 5× 10−5, 5× 10−5]
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In this case, all vector values diminish to a level close to zero. Consequently, the attention head does not need to assign
a higher probability mass to specific tokens, resulting in a reduction in the memory space for the vector. Therefore, by
construction, Softmax1 is outlier-robust.
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C. Proofs of Main Text
C.1. Lemma 2.1

Proof of Lemma 2.1. To show monotonic decreasing property of the energy (2.4), we first derive the outlier-efficient retrieval
dynamics by utilizing the convex-concave procedure (Yuille and Rangarajan, 2003) (CCCP). The total energyH(x) is split
into convex termH1 := 1

2 ⟨x, x⟩ and concave termH2 := −lse1(β,ΞTx). In addition,H1 andH2 are both differentiable
by definition. Every iteration of CCCP applied onH gives:

∇xH1(xt+1)︸ ︷︷ ︸
= 1

2∇x⟨xt+1,xt+1⟩

= −∇x H2(xt)︸ ︷︷ ︸
=−lse1(β,ΞTxt)

,

such that

xt+1 = ∇xlse1(β,Ξ
Txt).

To derive the gradient of lse1(β,ΞTxt) , we set τ(βzl) :=
∑N

l exp(βzl).

Then,

∇xlse1
(
β,ΞTxt

)
|xt = ∇xt

(
β−1 log{τ(βΞTxt) + 1}

)
= β−1∇τ log(τ + 1) · ∇xtτ(βΞ

Txt)

=
1

τ(βΞTxt) + 1
· exp

(
βΞTxt

)
· ΞT

= Ξ ·
exp

(
βΞTxt

)
1 +

∑
exp (βΞTxt)

= Ξ · Softmax1
(
βΞTxt

)
.

Hence, we obtain

xt+1 = ∇xlse1(βΞ
Txt) = Ξ · Softmax1

(
βΞTxt

)
Due to the concave design of H2, we demonstrate that H can be monotonically decreased by TOutEff(x) given by (2.6),
following the proof in (Hu et al., 2023, Appendix E.2).

C.2. Theorem 3.1

With the monotonic decreasing property from Lemma 2.1, we prove Theorem 3.1 following the same strategy as (Wu et al.,
2024b, Lemma 3.3) and (Hu et al., 2023, Lemma 2.2).

C.3. Theorem 3.2

Proof of Theorem 3.2. Let Toriginal be the retrieval dynamics of the original modern Hopfield model (Ramsauer et al.,
2020), and ∥TOutEff(x)− ξµ∥ and ∥Toriginal(x)− ξµ∥ be the retrieval error of outlier-efficient and modern Hopfield model,
respectively.

To prove ∥TOutEff(x)− ξµ∥ has tighter upper bound than ∥Toriginal(x)− ξµ∥, we recall the upper bound on
[Softmax(βΞTx)]ν from (Wu et al., 2024b, Eqaution C.37):

[Softmax(βΞTx)]ν ≤ exp
{
−β∆̃µ

}
,

where ∆̃µ := ⟨ξµ, x⟩ −Maxµ,ν∈[M ];µ̸=ν ⟨ξµ, ξν⟩.
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Since we observe the relation

[
Softmax1

(
βΞTx

)]
ν
=

(
M∑
µ=1

[
Softmax1

(
βΞTx

)]
µ

)[
Softmax

(
βΞTx

)]
ν
,

it holds

[Softmax1(βΞ
Tx)]ν ≤ exp

{
−β∆̃µ

}
· γ,

where γ :=
M∑
µ=1

[
Softmax1

(
βΞTx

)]
µ

. Note that 0 < γ < 1.

For any β > 0, there exist a δ > 0 such that γ := exp{−βδ}.

Also, recall the bound of ∥Toriginal − ξµ∥ from (Wu et al., 2024b, Equation C.41) :

∥Toriginal − ξµ∥ ≤ 2m(M − 1) exp
{
−β∆̃µ

}
≤ 2m(M − 1) exp{−β (∆µ − 2mR)}. (C.1)

By (Wu et al., 2024b, Equation C.39), we know ∆̃µ ≥ ∆µ − 2mR and R is the radius of the sphere Sµ. Then we have

∥TOutEff − ξµ∥ ≤ 2m(M − 1) exp{−β (∆µ − 2mR+ δ)}.

Comparing above with (C.1), this complete the proof.

C.4. Corollary 3.2.1

Proof of Corollary 3.2.1. We aim to establish the validity of the following inequality:

∥TOutEff(x)− ξµ∥ ≤ ∥Toriginal(x)− ξµ∥ .

It is equivalent to consider

∥TOutEff(x)− ξµ∥2 − ∥Toriginal(x)− ξµ∥2 ≤ 0. (C.2)

That is, ∥∥∥∥∥
M∑
ν=1

ξν
[
Softmax1

(
βΞTx

)]
ν
− ξµ

∥∥∥∥∥
2

−

∥∥∥∥∥
M∑
ν=1

ξν
[
Softmax

(
βΞTx

)]
ν
− ξµ

∥∥∥∥∥
2

≤ 0. (C.3)

Let γ :=
M∑
µ=1

[
Softmax1

(
βΞTx

)]
µ

(0 < γ < 1).

For ease of presentation, we set v1 :=
M∑
ν=1

ξν
[
Softmax

(
βΞTx

)]
ν

, v2 :=
M∑
ν=1

ξν
[
Softmax1

(
βΞTx

)]
ν
= γv1 and w := ξµ.

(C.3) becomes

∥v2 − w∥2 − ∥v1 − w∥2 ≤ 0,

expanding both terms

v22 − 2v2 · w + w2 − v21 + 2v1 · w − w2 ≤ 0,

simplifying the expression

(γ2 − 1)v21 − 2(γ − 1)v1 · w ≤ 0,
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since vectors are normalized

(γ2 − 1)∥v1∥ − 2(γ − 1)∥w∥ cos(α) ≤ 0,

and rearranging the terms

(γ + 1)∥v1∥ − 2∥w∥ cos(α) ≥ 0,

where cos(α) quantifies the overlap between v1 and w.

If all the memories and queries are normalized, (C.2) holds when

γ + 1

2
≥ cos(α).

As memory patterns and queries exhibit smaller overlap at the beginning of the retrieval process, the proposed model
experiences smaller retrieval errors than its original counterpart during the initial phase of memory retrieval.

C.5. Theorem 3.3

Lemma C.1 (Memory Capacity Lower Bound, Formal). Suppose the probability of successfully storing and retriev-
ing memory pattern is given by 1 − p. The number of memory patterns sampled from a sphere of radius m that the
Outlier-Efficient Hopfield model can store and retrieve has a lower bound: M ≥ √pC d−1

4 , where C is the solution
for C = b/W0(exp{a+ ln b}) with W0(·) being the principal branch of Lambert W function (Olver et al., 2010),
a := 4/(d−1) {ln[2m2(

√
p−1)/R] + 1− δ/(2βmR)} and b := 4m2β/5(d−1). For all β, we have larger memory capacity

lower bound compared to the original modern Hopfield model (Ramsauer et al., 2020): M ≥Moriginal

To prove it, we first derive the well-separation condition for the outlier-efficient modern Hopfield model.

Lemma C.2 (Modified from Lemma C.3 of (Wu et al., 2024b)). Let γ :=
M∑
µ=1

[
Softmax1

(
βΞTx

)]
µ

and 1 > γ > 0. For

any β > 0, there exist a δ > 0 such that γ := exp{−βδ}. Then, the well-seperation condition can be formulated as:

∆µ ≥
1

β
ln

(
2(M − 1)m

R

)
+ 2mR− δ.

Proof. From Appendix C.1 we obtain the result

∥TOutEff − ξµ∥ ≤ 2m(M − 1) exp{−β (∆µ − 2mR+ δ)}

Therefore, for TOutEff to be mapping TOutEff : Sµ → Sµ, it is sufficient to obtain

2(M − 1) exp{−β (∆µ − 2mR+ δ)}m ≤ R.

This leads to the separation condition for the proposed Outlier-Efficient Modern Hopfield Model

∆µ ≥
1

β
ln

(
2(M − 1)m

R

)
+ 2mR− δ. (C.4)

Given that (C.4) possesses a stricter lower bound compared to its original counterpart (Ramsauer et al., 2020, Equa-
tion (300)),we complete the proof following the similar approach in (Wu et al., 2024b, Lemma 3.4).

Lemma C.3. [(Ramsauer et al., 2020)] If the identity

ac+ c ln c− b = 0,
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holds for all real numbers a, b ∈ R, then c takes a solution:

c =
b

W0(exp(a+ ln b))
.

Proof. By looking at the proof in (Wu et al., 2024b).

Then we start our formal proof of Theorem 3.3.

Proof. Since ∆min = min
1≤µ≤M

∆µ, we get

∆min ≥
1

β
ln

(
2(M − 1)m

R

)
+ 2mR− δ.

Following the proof in ((Wu et al., 2024b), Appendix Theorem A5), we obtain

a :=
4

(d− 1)

{
ln

[
2m2(

√
p− 1)

R

]
+ 1− δ

(2βmR)

}
, b :=

4m2β

5(d− 1)
.

By Lemma C.3, C can be expressed as

C =
b

W (exp{a+ ln b})
.

We expressed the original counterpart of a and b as

ã :=
4

(d− 1)

{
ln

[
2m2(

√
p− 1)

R

]
+ 1

}
, b̃ = b.

Since

ã > a

and

C̃ =
b

W (exp{ã+ ln b})
<

b

W (exp{a+ ln b})
= C,

we arrive at

Moriginal =
√
pC̃

d−1
4 <

√
pC

d−1
4 = M.

This completes the proof.
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C.6. Theorem 3.4

To bound the generalization error of Outlier-Efficient Modern Hopfield, we utilize the generalization bound via covering
number (Dudley, 1978; Edelman et al., 2022; Liang, 2016; Zhang, 2023).

Definition C.1 (Covering Number). For a given class of vector-valued functions F , the covering number
N∞

(
F ; ε;

{
z(i)
}m
i=1

; ∥ · ∥
)

is the smallest size of a collection (a cover) C ⊂ F such that ∀f ∈ F ,∃f̂ ∈ C satisfy-
ing

max
i

∥∥∥f (z(i))− f̂
(
z(i)
)∥∥∥ ≤ ε.

Also, define

N∞(F , ε,m, ∥ · ∥) := sup
z(1)...z(m)

N∞

(
F ; ε; z(1), . . . , z(m), ∥ · ∥

)
.

Lemma C.4 (Generalization Bound via Covering Number (Liang, 2016; Zhang, 2023)). Suppose F is a class of bounded
functions, and logN∞

(
F ; ε;x(1), . . . , x(m)

)
≤ CF/ε

2 for all x(1), . . . , x(m) ∈ Xm. Then for any δ > 0, with probability
at least 1− δ, simultaneously for all f ∈ F , the generalization error εgen satisfies

εgen(f) ≤ Õ

(√
CF

m
+

√
log(1/δ)

m

)
.

We start by proving the Lipschitzness of Softmax1. We first introduce Lemma C.5 from (Edelman et al., 2022).

Lemma C.5 (Lemma A.6. of (Edelman et al., 2022)). Consider a function f : Rd → Rd such that the Jacobian Jf := ∇f
of the function satisfies ∥Jf (v)∥1,1 ≤ cf for all v ∈ Rd, then for any vectors v1, v2 ∈ Rd,

∥f (v1)− f (v2)∥1 ≤ cf ∥v1 − v2∥∞ .

With Lemma C.5, we obtain the Lipschitzness of Softmax1.

Lemma C.6 (Lipschitzness of Softmax1). For vectors x1, x2 ∈ Rd,

∥Softmax1(x1)− Softmax1(x2)∥1 ≤ 2 ∥x1 − x2∥∞ .

Proof of Lemma C.6. We prove that Softmax1 satisfies ∥Jf (θ)∥1,1 ≤ cf , and use Lemma C.5 to obtain the Lipschitzness.

Let JSoftmax1
(x) := ∇xSoftmax1(x).

For any x ∈ Rd, we first denote the elements of JSoftmax1
(x) as

∂Softmax1(x)i
∂xj

, for i, j ∈ [d].

Observe that for i = j:

∂Softmax1(x)i
∂xj

= Softmax1(x)i − Softmax1(x)iSoftmax1(x)j ,

and for i ̸= j:

∂Softmax1(x)i
∂xj

= −Softmax1(x)iSoftmax1(x)j .
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Therefore, we have

∥JSoftmax1
(x)∥1,1 =

∣∣∣∣∣∣
d∑

i,j=1

Softmax1(x)i1(i = j)− Softmax1(x)iSoftmax1(x)j

∣∣∣∣∣∣
=

∣∣∣∣∣∣
d∑

i,j=1

Softmax1(x)i (1(i = j)− Softmax1(x)j)

∣∣∣∣∣∣
< 2

d∑
i

Softmax1(x)i (1− Softmax1(x)i)

≤ 2.

Finally, by Lemma C.5, we have

∥Softmax1(x1)− Softmax1(x2)∥1 ≤ 2 ∥x1 − x2∥∞ .

This completes the proof.

Next, we prove the Lipschitzness of fhop in parameter.

Lemma C.7 (Lipschitzness of fhop). For any WK ,W ′
K ∈ WK , W̃V , W̃

′
V ∈ W̃V , τ ∈ [T ]:∥∥∥fhop(Y, qτ ;WK , W̃V )− fhop(Y, qτ ;W

′
K , W̃ ′

V )
∥∥∥

≤ 2BV BY ∥βYWKqτ − βYW ′
Kqτ∥∞ +

∥∥∥∥(Y W̃V

)T
−
(
Y W̃ ′

V

)T∥∥∥∥
2,∞

.

Proof of Lemma C.7.∥∥∥fhop(Y, qτ ;WK , W̃V )− fhop(Y, qτ ;W
′
K , W̃ ′

V )
∥∥∥

=
∥∥∥W̃T

V Y
TSoftmax1 (βYWKqτ )− W̃ ′T

V Y TSoftmax1 (βYW ′
Kqτ )

∥∥∥
=
∥∥∥W̃T

V Y
T (Softmax1 (βYWKqτ )− Softmax1 (βYW ′

Kqτ )) +
(
W̃T

V Y
T − W̃ ′T

V Y T
)
Softmax1 (βYW ′

Kqτ )
∥∥∥

≤
∥∥∥W̃T

V Y
T (Softmax1 (βYWKqτ )− Softmax1 (βYW ′

Kqτ ))
∥∥∥+ ∥∥∥(W̃T

V Y
T − W̃ ′T

V Y T
)
Softmax1 (βYW ′

Kqτ )
∥∥∥(

By triangle inequality
)

≤
∥∥∥W̃T

V Y
T
∥∥∥
2,∞
∥Softmax1 (βYWKqτ )− Softmax1 (βYW ′

Kqτ )∥1

+
∥∥∥W̃T

V Y
T − W̃ ′T

V Y T
∥∥∥
2,∞
∥Softmax1 (βYW ′

Kqτ )∥1
(
By ∥Ax∥ ≤ ∥A∥2,∞∥x∥1

)
≤
∥∥∥W̃T

V

∥∥∥
2

∥∥Y T
∥∥
2,∞ ∥Softmax1 (βYWKqτ )− Softmax1 (βYW ′

Kqτ )∥1

+
∥∥∥W̃T

V Y
T − W̃ ′T

V Y T
∥∥∥
2,∞
∥Softmax1 (βYW ′

Kqτ )∥1
(
By ∥PQ∥2,∞ ≤ ∥P∥2∥Q∥2,∞

)
≤ 2BV BY ∥βYWKqτ − βYW ′

Kqτ∥∞ +
∥∥∥W̃T

V Y
T − W̃ ′T

V Y T
∥∥∥
2,∞
∥Softmax1 (βYW ′

Kqτ )∥1(
By Assumption 3.1-(A4) and Lemma C.6

)
≤ 2BV BY ∥βYWKqτ − βYW ′

Kqτ∥∞ +

∥∥∥∥(Y W̃V

)T
−
(
Y W̃ ′

V

)T∥∥∥∥
2,∞

.
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Next, with Lemma C.7, we construct a covering number bound for a Modern Hopfield model function class using the
covering number of its composing functions. We write the composing functions as fK : RM×a × Rd → RM as:

fK(Y, q;WK) = βYWKq,

and fV : RM×a → Rd×M as:

fV (Y ; W̃V ) =
(
Y W̃V

)T
.

With fk and fV , we prove that the covering number of Fhop is bounded as below.

Lemma C.8. Under the Assumption 3.1, for any α ∈ [0, 1] the covering number of Fhop satisfies

logN∞

(
Fhop ; ε;

{(
Y (i), q(i)τ

)}i∈[N ],

τ∈[T ]
; ∥ · ∥2

)
≤ logN∞

(
FK ; εK ;

{(
y
(i)
t , q(i)τ

)}i∈[N ]

t∈[M ],τ∈[T ]

)
+ logN∞

(
FV ; εV ;

{
y
(i)
t

}i∈[N ]

t∈[M ]
; ∥ · ∥2

)
,

where FK =
{
(y, q) 7→ βyTWKq : WK ∈ WK

}
and FV =

{
yT 7→

(
y⊤W̃V

)T
: W̃V ∈ W̃V

}
.

Proof of Lemma C.8. We prove that for each ε > 0 and input sample (Y (i), Q(i)) for all i ∈ [N ], there exists a cover Chop
for Fhop. From Lemma C.7, we see that∥∥∥fhop(Y, qτ ;WK , W̃V )− fhop(Y, qτ ;W

′
K , W̃ ′

V )
∥∥∥

≤ 2BV BY

∥∥∥fK (Y (i), q(i)τ ;WK

)
− fK

(
Y (i), q(i)τ ;W ′

K

)∥∥∥
∞

+
∥∥∥fV (Y (i); W̃V

)
− fV

(
Y (i); W̃ ′

V

)∥∥∥
2,∞

.

With the property of ℓ∞-norm, we have

max
i∈[N ]

∥∥∥fK (Y (i), q(i)τ ;WK

)
− fK

(
Y (i), q(i)τ ;W ′

K

)∥∥∥
∞

= max
i∈[N ],t∈[M ]

∣∣∣fK (y(i)t , q(i)τ ;WK

)
− fK

(
y
(i)
t , q(i)τ ;W ′

K

)∣∣∣.
Also, with the property of ℓ2,∞-norm,

max
i∈[N ]

∥∥∥fV (Y (i); W̃V

)
− fV

(
Y (i); W̃ ′

V

)∥∥∥
2,∞

= max
i∈[N ],t∈[M ]

∥∥∥fV (y(i)t ; W̃V

)
− fV

(
y
(i)
t ; W̃ ′

V

)∥∥∥ .
Now, we let CK (a set of WK) be the εK-cover for FK over inputs

{(
y
(i)
t , q

(i)
τ

)}i∈[N ]

t∈[M ],τ∈[T ]
of size

N∞

(
FK ; εK ;

{(
y
(i)
t , q(i)τ

)}i∈[N ]

t∈[M ],τ∈[T ]

)
.

Also, let CV (a set of W̃V ) be the εV -cover for FV over inputs
{
y
(i)
t

}i∈[N ]

t∈[M ]
of size

N∞

(
FV ; εV ;

{
y
(i)
t

}i∈[N ]

t∈[M ]
; ∥ · ∥2

)
.

We now construct the cover for Fhop. First Set

Chop =

{
fhop

(
Y (i), q(i)τ ;W ′

KW̃ ′
V

)i∈[N ]

τ∈[T ]
: W ′

K ∈ CK , W̃ ′
V ∈ CV

}
.
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Then for any WK ∈ WK , W̃ ′
V ∈ W̃V , there exists W ′

K ∈ Chop, W̃
′
V ∈ CV (using Lemma C.7):∥∥∥fhop(Y, qτ ;WK , W̃V )− fhop(Y, qτ ;W
′
K , W̃ ′

V )
∥∥∥ ≤ 2BV BY εK + εV .

The size of the cover Chop we have constructed is,

log |Chop |
= log |CK |+ log |CV |

= logN∞

(
FK ; εK ;

{(
y
(i)
t , q(i)τ

)}i∈[N ]

t∈[M ],τ∈[T ]

)
+ logN∞

(
FV ; εV ;

{
y
(i)
t

}i∈[N ]

t∈[M ]
; ∥ · ∥2

)
,

where ε = 2εScore + εK for Chop .

Next, we introduce a useful lemma for completing the proof of Theorem 3.4.

Lemma C.9. (Lemma A.8 of (Edelman et al., 2022)) For αi, βi ≥ 0, the solution to the following optimization

min
x1,...,xn

n∑
i=1

αi

x2
i

subject to
n∑

i=1

βixi = C,

is γ3
/C2 and is achieved at xi = C/γ (αi/βi)

1/3 where γ =
∑n

i=1 α
1/3
i β

2/3
i .

Proof of Lemma C.9. The proof follows by a standard Lagrangian analysis. Let f(x) be the objective function and g(x) be
the constraint function. With Lagrange multiplier, we have

∇f (x)− λ∇g (x) = 0.

By plugging in f and g we have

xi = −
(
2αi

λβi

) 1
3

, (C.5)

for all i ∈ [n]. In addition, we get λ by plugging (C.5) into the constraint g:

λ =

∑n
i=1(2ai)

1
3 β

2
3
i

C
.

To bound the covering number of FK ,FV , we introduce the covering number bound for a linear function class:

Lemma C.10 (Covering Number Bound for Linear Function Class, Lemma 4.6 of (Edelman et al., 2022)). Let W :{
W ∈ Rd1×d2 :

∥∥W⊤
∥∥
2,1
≤ BW

}
, and consider the function class F : {x 7→ Wx : W ∈ W}. For any ε > 0 and

x(1), . . . , x(N) ∈ Rd2 satisfying ∀i ∈ [N ],
∥∥x(i)

∥∥ ≤ BX ,

logN∞

(
F ; ε;x(1), . . . , x(N); ∥ · ∥2

)
≲

(BXBW )
2

ε2
log (d1N) .

We now obtain the covering number bound of a Modern Hopfield Model explicitly by bounding the two function classes FV

and FK using Lemma C.10.
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Lemma C.11 (Covering Number Bound of Outlier-Efficient Hopfield Layer).

logN∞

(
Fhop ; ε;

{(
Y (i), Q(i)

)}i∈[N ]

; ∥ · ∥2,∞
)

≤ ε−2

((
4B2

V B
2
Y

(
B2,1

βK

)2
log (dNM)

) 1
3

+

((
B2,1

V

)2
log(dNM)

) 1
3

)3

,

where B2,1
βK = βB2,1

K .

Proof of Lemma C.11. First observe that since ∥qτ∥ ≤ 1 (Assumption 3.1-(A1)), we have∣∣βyTt WKqτ − βyTt W
′
Kqτ

∣∣ ≤ ∥∥βyTt WK − βyTt W
′
K

∥∥ .
We define the right hand side as (taking transpose to make it a column vector):

F̂K :=
{
yt 7→W⊤

βKyt : ∥WβK∥2,1 ≤ B2,1
βK

}
,

where WβK := βWK and B2,1
βK = βB2,1

K .

Since the covering number of FK is at most the covering number of F̂K , instead of discussing the covering number bound
of FK , we focus on F̂K .

Now, by Lemma C.10, Assumption 3.1-(A3) and Assumption 3.1-(A4) we have

logN∞

(
FK ; εK ;

{(
y
(i)
t , q(i)τ

)}i∈[N ]

t∈[M ],τ∈[T ]

)
≤ logN∞

(
F̂K ; εK ;

{(
y
(i)
t

)}i∈[N ]

t∈[M ]

)
(C.6)

≲

(
B2,1

βK

)2
ε2K

log (dNM) ,

and

logN∞

(
FV ; εV ;

{
y
(i)
t

}i∈[N ]

t∈[M ]
; ∥ · ∥2

)
≲

(
B2,1

V

)2
ε2V

log (dNM) . (C.7)

Next, we find the optimal εK and εV to minimize the sum of (C.6) and (C.7), subject to

2BV BY εK + εV = ε.

By Lemma C.9, the optimal bound is

logN∞

(
Fhop ; ε;

{(
Y (i), Q(i)

)}i∈[N ]

; ∥ · ∥2,∞
)

≤ logN∞

(
Fhop ; ε;

{(
Y (i), q(i)τ

)}i∈[N ]

τ∈[T ]
; ∥ · ∥2

)

≤ ε−2

((
4B2

V B
2
Y

(
B2,1

βK

)2
log (dNM)

) 1
3

+

((
B2,1

V

)2
log(dNM)

) 1
3

)3

.

With the covering number bound, we arrive at the norm-based generalization bound Theorem 3.4 through Lemma C.4.
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D. Additional Numerical Experiments
D.1. Supplemental Experimental Results (Figure 3 and Figure 4)

We conducted in-depth case studies on the BERT model. In Figure 3, we focus on the outlier performance in selected
layers. The figure shows that outliers become stronger in deeper layers of the vanilla model, corroborating insights from
Bondarenko et al. (2021). However, OutEffHop maintains a consistent maximum infinity norm ∥x∥∞ across all layers,
demonstrating its effectiveness in controlling outliers. In Figure 4, we delve into the maximum infinity norm ∥x∥∞ within
the 10th layer’s various tensor components. These tensors are after attention layer, the first residual layernorm after attention,
and the first, second FFN layers. As mentioned in (Bondarenko et al., 2023), FFN layers indeed increase the outliers heavily
along the training process in vanilla attention. In contrast, OutEffHop suppresses the outliers growing in both FFN layers.
The effectiveness of OutEffHop is due to its built-in no-operation (no-op) pattern which defaults queries to this pattern
when updates are unnecessary. This eliminates the need to learn outlier values in FFN layers to direct attention weights
toward specific tokens for a no-op. Additionally, we observe that the first residual LayerNorm after the attention mechanism
tends to amplify outliers. This observation is also mentioned in Wei et al. (2022)’s finding. Furthermore, we note that the
outliers of OutEffHop are larger than those of the vanilla model. Our method, OutEffHop, focusing solely on the attention
mechanism, offers evidence of its effectiveness in mitigating outliers within our approach.

D.2. Verifying Theoretical Results

We also verify our theoretical findings following the settings in (Hu et al., 2023).

Figure 5. Memory Capacity. Our extensive evaluation of memory capacity across various Hopfield Networks, including Vanilla Modern
Hopfield, Sparse Hopfield, 10th Order Hopfield, and our OutEffHop, is conducted on two image datasets: MNIST and CIFAR10. We
observe that OutEffHop outperforms its baselines, especially when the memory set size is large.

Memory Capacity. For the memory capacity, we compare our Outlier-Efficient Modern Hopfield Model (OutEffHop)
with Dense (Softmax) (Ramsauer et al., 2020), Sparse (Hu et al., 2023) and 10th order polynomial Hopfield model (Krotov
and Hopfield, 2016) on MNIST (LeCun et al., 1998) (high sparsity) and CIFAR10 (Krizhevsky et al., 2009) (low sparsity)
datasets. For all Hopfield models, we set β = 1. As shown in Figure 5, OutEffHop outperforms its baselines, especially
when the memory set size is large.

Noise-Robustness. For the robustness against noise queries, we inject Gaussian noises varying variances (σ) into the
images. The results, as shown in Figure 6, show that OutEffHop excels when the signal-to-noise ratio in patterns is low.

Faster Convergence. We numerically analyse the convergence of OutEffHop, Dense and Sparse Hopfield model by
evaluating their loss and accuracy in two different datasets. We use the Vision Transfromer (Dosovitskiy et al., 2020)
(ViT) as the backbone and then replace the attention layer with different Hopfield layers. The hyperparameters used in our
experiment are listed in Table 3. As shown in Figure 7, our model surpasses its original counterpart across all datasets.
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Figure 6. Noise-Robustness. Our extensive evaluation of noise robustness across various Hopfield Networks, including Vanilla Modern
Hopfield, Sparse Hopfield, 10th Order Hopfield, and our OutEffHop, is conducted on two image datasets: MNIST and CIFAR10. The
results show that as the noise level rises, the impact of OutEffHop on the error rate is minimal.
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Figure 7. Faster Convergence. Our extensive evaluation of faster covergence across various Hopfield Networks, including Vanilla
Modern Hopfield, Sparse Hopfield, and our OutEffHop, is conducted on two image datasets: CIFAR10 and CIFAR100. The results show
that OutEffHop has faster convergence than baselines.

Table 3. Hyperparameter used in the fast convergence task.

parameter values

learning rate 1e− 4
embedding dimension 512
Feed forward dimension 1024
Dropout 0.3
activation function GELU
Epoch 100
Batch size 512
Model optimizer Adam
Patch size 32
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D.3. Computational Cost Comparison

We compare the computational resources of four different models against the vanilla Softmax and OutEffHop, as detailed
in Table 4. We measure the pre-training records of all four models. Memory usage for OPT, BERT, and ViT is monitored
using Wandb 11, while for STanHop, it is tracked via system logs12. The model sizes for this experiment match those
described in section 4.1. Our experimental setup used a Slurm system with two 80G A100 GPUs and a 24-core Intel(R)
Xeon(R) Gold 6338 CPU at 2.00GHz. We also provide the wandb diagram of the system memory usage in Figure 8.

Table 4. The computational resource comparison of vanilla Softmax and OutEffHop in 4 models. We compare the Time and average of
the Memory RAM usage in the model pre-training periods.

Model Method Memory Usage (Gb)

ViT Vanilla 47.47
OutEffHop 49.69

ERT Vanilla 7.56
OutEffHop 7.20

OPT Vanilla 3.75
OutEffHop 3.75

STN Vanilla 5.30
OutEffHop 5.28

11https://wandb.ai/
12We thank the authors of (Reneau et al., 2023) for their helpful comments on this part.
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(a) BERT

(b) OPT

(c) ViT

Figure 8. The computational resource comparison between Vanilla Softmax and OuTEffHop involves measuring RAM usage via Wandb
in a system equipped with 180G RAM under the Slurm system.
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