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Abstract. Discrete diffusion and flow matching excel at capturing epistatic
structure in protein fitness landscapes through parallel, iterative refine-
ment. However, their implicit nature—sampling via learned dynamics
without tractable densities—prevents direct use with principled varia-
tional frameworks like VSD and CbAS for budget-constrained design. We
introduce Active Flow Matching (AFM), which reformulates variational
objectives to operate on conditional endpoint distributions along the
flow rather than requiring log ¢4 (z). This enables gradient-based steer-
ing of flow models toward high-fitness regions while preserving the rigor
of VSD and CbAS. We derive forward-KL and reverse-KL variants us-
ing self-normalised importance sampling. Across four protein design tasks
forward-KL AFM consistently achieves lower regret and higher optimiza-
tion performance than VSD and diffusion-based LaMBO-2, demonstrat-
ing effective exploration-exploitation under tight experimental budgets.

1 Introduction

Autoregressive (AR) decoders are commonly used across domains for discrete
generation tasks, but their left-to-right factorisation cannot revise early tokens.
This is a fundamental mismatch for epistatic systems where changing position
1 alters the effect of changing j. Protein fitness landscapes exhibit such cou-
pling where distant residues interact through 3D folding and binding [Starr
and Thornton, 2016, Phillips, 2008]. The fitness square formalizes this: indepen-
dence requires Fy; = Fig + Fy1 — Fyo, but evolution frequently yields epistasis
e = Fyy — Fig — Fo1 + Foo # 0. Capturing € demands joint updates across sites.

Non-autoregressive iterative refinement models such as discrete diffusion and
flow matching, generate all positions in parallel, enabling global coupling [Austin
et al., 2021, Gat et al., 2024]. These models match or exceed AR/masked base-
lines across protein and RNA design (EvoDiff, DiMA, RFdiffusion, Chroma,
RNAdiffusion, DNA-Diffusion), and can also enable structure-conditioned gener-
ation (RFdiffusion, FoldFlow, motif-scaffolding) [Alamdari et al., 2023, Meshchani-
nov et al., 2024, Watson et al., 2023, Ingraham et al., 2023, Huang et al., 2024,
DasSilva et al., 2024, Bose et al., 2024, Trippe et al., 2022].

Translating these generative capabilities into practical discoveries requires
navigating finite experimental budgets. Discovery loops face combinatorial search
(20%° ~ 1025 for 20-residue peptides) and expensive experiments (~ $500-2000
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per assay) [Biophysics and Core, 2024, Core, 2024, for Macromolecular Inter-
actions, 2024, GenScript, 2025]. We adopt active generation view to solve this
problem, where we learn g(x | y > 7), the conditional distribution of high-fitness
designs under fixed budgets [Steinberg et al., 2025a]. Practical requirements in-
clude (i) diverse batches for parallel screening [Jain et al., 2023, Steinberg et al.,
2025b], (ii) multi-objective flexibility [Stanton et al., 2022, Jain et al., 2023], and
(iii) interpretable structure discovery via co-occurrence patterns in the batch
[Marks et al., 2011, Hopf et al., 2014].

Two principled approaches cast active generation as variational inference
over rare events. VSD (reverse KL) minimizes KL(q4(x) ||p(z | y > 7, Dy)),
yielding an ELBO with prior, likelihood, and entropy terms; discrete sequences
require score-function estimators, demanding access to Vg logge(z) [Steinberg
et al., 2025a]. CbAS (forward KL) minimizes KL(p(x | y>7) || g4()), yielding
weighted MLE E, ) [w(x) log g4 ()] where w(z) o< Pr(y > | ) [Brookes et al.,
2019]. Both support informative priors and batch-sequential updates, but both
require tractable q¢(x).

State-of-the-art discrete diffusion and flow-matching models are implicit gen-
erators: they optimise score/denoising or flow-regression objectives rather than
a tractable likelihood, and thus do not yield normalised densities over discrete
sequences. Consequently, evaluating or differentiating log ¢y () is generally in-
tractable. These models sample via learned dynamics but lack a usable mass
function g4 (z): for discrete diffusion, exact log g4 () requires summing over expo-
nentially many corruption paths [Austin et al., 2021]; for discrete flow matching,
current formulations provide no simple closed-form mass function [Lipman et al.,
2022, Gat et al., 2024]. Objectives that require log g, (2) or its score V4 log g4 ()
are therefore incompatible with these generative models.

Active Flow Matching (AFM). We resolve this by reformulating variational ob-
jectives to operate on conditional endpoint distributions along the flow rather
than on gy (z) itself. Active Flow Matching preserves the principled foundations
of VSD and CBAS while leveraging implicit generators for principled, budget-
efficient design.

2 Active Flow Matching (AFM)

Setup. Let X = XL denote the sequence space. We train a discrete-state flow
that induces, for each ¢ € [0, 1], the conditional endpoint distribution ¢/ (x; |
x;). The flow starts from uniform u(x) = |¥|~% at t = 0. A class probability
estimator provides scores p(y=1 | x, D) for desirable sequences, where y denotes
the property label.

Forward-KL AFM If we could sample from p(x1|y), we would learn the flow by
simply minimising

Lovim(0) =E; 5,y [KL [pt(X1|Xt7ZU)HQ?(XﬂXt)H = —E; x,yx 108 Qf(X1|Xt)]+CODSt-

(1)
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Since sampling from p(x;|y) is intractable, we use self-normalized importance
sampling (SNIS) with a proposal distribution ¢(x;):

X1y
Lovin(6) = o) [ Gal Nogqf(xlxt)] @)
q(x1)
N S i, log gf (x5 [%¢)
~ _Et,xt K ) (3)
D k=1 W

where {x1 ;< | ~ q(x1), wp = p;’(il":)’), t ~ Unif[0, 1], and x; is sampled from
the model’s CTMC.

Reverse-KL AFM At each round, we steer the base flow (from the previous
round) toward high-property regions by minimizing

Lovim(¢) = E x, [KL [Qf(xﬂxt)ﬂpt(xﬂxt)ﬂ ; (4)

where p;(x1|x;) o ¢? (x1|x¢)p(y|x1, D) and 6 denotes the base flow parameters.
Using SNIS with proposal ¢(x1) yields:

p(X1ly
LoviM (@) = By z,mq(x1)x: [ ;();J))qu(mlxt) {1og qf (x1|x¢) — log ¢ (x1|x:) — logp(yX1,D)H
(5)

K
R B E 9 e ) [logqf’(xllm,k) — log ¢f (%1 [x¢,) —logp(ylxhl?)],
k=1

(6)

where @y = wi/ Y p_y Wi, Wy, = pg&f;g)a t~U(0,1), x1, ~ q(x1).
Our choice of proposal distribution (a mixture of unlabelled data, flow end-
points, and a replay buffer) provides good coverage as demonstrated in the strong

experiment results.

Symmetric-KL baseline. For completeness, we also report a symmetric-KL vari-
ant that adds the forward- and reverse-KL objectives above, implemented with
the same SNIS endpoint sampling scheme.

3 Experiments

We evaluate on four protein design tasks: Ehrlich synthetic objectives (lengths
32, 64) [Stanton et al., 2024], FoldX stability [Guerois et al., 2002, Schymkowitz
et al., 2005, Delgado et al., 2019], SASA optimization [Lee and Richards, 1971,
Shrake and Rupley, 1973, pol|. We compare Forward-KL AFM against VSD and
diffusion-based LaMBO-2. For tasks with known optima (Ehrlich), we report
simple regret r, = f(2*) —max;<s<; f(x5). For unknown optima (FoldX, SASA),
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Fig. 1: Performance comparison across four protein design tasks. Forward-KL
AFM achieves superior optimization compared to VSD and Lambo2 baselines.

we report highest value uptil each round I; = maxj<s<; f(xs). We use a batch
size of 128 in ehrlich sequences and batch size of 10 in FoldX experiments

Forward-KL. AFM achieves lowest regret (Ehrlich) and highest scores in
FoldX stability. (Figure 1;). Reverse-KL’s performs relatively poorly. Symmetric-
KL performs competitively but trails Forward-KL on Ehrlich-32/64, indicating
Forward-KL’s mass-covering better balances exploration-exploitation in these
sequence spaces.

4 Conclusion

We introduced Active Flow Matching (AFM), which enables principled vari-
ational optimization with implicit discrete generators by reformulating objec-
tives on conditional endpoint distributions. This resolves the incompatibility be-
tween state-of-the-art flow models and likelihood-based frameworks like VSD and
CbAS, allowing gradient-based steering without tractable ¢,(x). Across protein
design tasks, forward-KL. AFM consistently outperforms existing methods un-
der tight experimental budgets, demonstrating effective exploration-exploitation.
Our framework opens the door to leveraging powerful pretrained flow and diffu-
sion models (e.g., EvoDiff, ESM-2) for budget-constrained discovery in proteins.
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