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Abstract

The world offers unprecedented amounts of data in real-world domains, from which we can
develop successful decision-making systems. It is possible for reinforcement learning (RL)
to learn control policies offline from such data but challenging to deploy an agent during
learning in safety-critical domains. Offline RL learns from historical data without access
to an environment. Therefore, we need a methodology for estimating how a newly-learned
agent will perform when deployed in the real environment before actually deploying it. To
achieve this, we propose a framework for conservative evaluation of offline policy learning
(CEOPL). We focus on being conservative so that the probability that our agent performs
below a baseline is approximately δ, where δ specifies how much risk we are willing to
accept. In our setting, we assume access to a data stream, split into a train-set to learn an
offline policy, and a test-set to estimate a lower-bound on the offline policy using off-policy
evaluation with bootstrap confidence intervals. A lower-bound estimate allows us to decide
when to deploy our learned policy with minimal risk of overestimation. We demonstrate
CEOPL on a range of tasks as well as real-world medical data.

1 Introduction

Suppose someone else is controlling a sequential decision making task for you. This could be a person trading
stocks, a hand-coded controller for a chemical plant, or even a PID controller for temperature regulation.
Offline reinforcement learning (RL) allows us to learn policies from historical data collected by some other
controller. But when would one want to switch from the existing controller to the new policy? This decision
may depend on the cost for continued data collection from the existing controller, your risk appetite, and
your confidence in the performance of the policy you have learned. This paper takes a critical step towards
the question: how to (confidently) select the right time to deploy when learning offline, if we do
not have access to the environment nor the policy generating the data?

Offline reinforcement learning is a way to train off-policy algorithms using existing data. It presents a great
opportunity for learning data-driven policies without environment interaction. In safety-critical applications
such as in healthcare or autonomous driving, there is a large amount of data that we can use to learn RL
policies and hence use for decision making (Gottesman et al., 2019). Learning with offline data is challenging
because of the distribution mismatch between the data collected by the behavior policy that collected the
data, and the offline agent, which learns from data (Levine et al., 2020). What is even more challenging
is evaluating offline agents in the offline RL setting if we assume no access to the environment; in some
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domains, we cannot execute our learned policy until it is good enough because it can be costly or dangerous
if it performs worse than the current policy or controller. This limitation raises the possibility of using
off-policy evaluation (OPE) methods, where we can estimate the value of a policy using trajectories from
another policy, to predict what the performance of the offline agent is at any point of time during training.
We further investigate if it is better to use OPE with confidence intervals to control the risk of overestimating
the policy’s performance, which is referred to as conservative off-policy evaluation (COPE).

We present a framework for conservative evaluation for offline policy learning (CEOPL). CEOPL tack-
les the setup where we combine offline policy learning with conservative off-policy evaluation; we learn
a policy from pre-existing data and evaluate it to provide a confidence lower-bound estimate on its re-
turn. The goal is to learn a target policy purely from data and evaluate its performance while learning
so that we can tell when it is ready for deployment. In conservative off-policy evaluation (COPE), we
ensure safety by using bootstrap confidence intervals to provide a lower-bound on the policy value esti-
mates using a reasonable amount of test data. COPE provides an approximate solution to high confi-
dence off-policy evaluation (HCOPE); HCOPE estimates a lower bound on the policy’s value that is correct
with a set level of confidence, but requires a substantial amount of data to achieve a tight lower bound.

Data
Train agent 

Safety test for the
agent?

TrueFalse

Deployment

Data
source

Figure 1: Setup for continual safety-
evaluation of offline RL: this figure illustrates
the loop of interaction between an offline agent and
data while the agent is trained, evaluated and de-
ployed if it passes the safety test.

Our target setup is summarized in Figure 1: we have
some source of data, from which we request data sam-
ples. At each step, data is split into training and test-
ing. After each offline learning step, we test the pol-
icy using conservative evaluation. A policy passes the
safety test if a lower-bound on the policy’s value is bet-
ter than the value of the data distribution. We con-
tinue the process of training/testing for a few itera-
tions until the testing shows the policy can outperform
the existing controller with a confidence level δ. We
dynamically receive samples, continuously perform RL
updates, and continuously monitor a confidence interval
on the changing policy until it reaches a sufficient level
for deployment. We hypothesize that our conserva-
tive off-policy evaluation (COPE) is preferred over off-
policy evaluation (OPE) because OPE may be prone to
overestimation, which is problematic for safety-critical
problems. CEOPL acts as a workflow for offline learn-
ing and evaluation in safety-critical domains. Contri-
butions of this article are summarized as follows:

• CEOPL, a framework combining offline RL with conservative off-policy evaluation for both discrete
and continuous control tasks.

• Studying the feasibility of offline evaluation without access to an environment nor the behavior
policy.

• Exploring the effect of offline learning on OPE methods given constantly-improving target policy
(as opposed to a fixed policy, as previously studied in the literature).

• Demonstrating CEOPL on real-world medical data.

2 Related Work

In this section, we provide a review of the current literature of offline reinforcement learning and off-policy
evaluation. We also discuss the gap in research our work is trying to fill.

Offline Reinforcement Learning Offline reinforcement learning refers to RL algorithms learning from a
fixed dataset D without environment interaction or further data collection. Such data is the transition tuples
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⟨st, at, rt, st+1, γt+1⟩ resulting from historical agent-environment interaction, which will eventually compose
a trajectory H of size L. We learn πθ, a new target policy that is not necessarily similar to the behavior
policy πb. In this work, we assume we have access to a dataset D = {H1, H2, ..., Hn} as a set of n trajectories
generated by an unknown behavior policy πb.

For offline RL, a survey paper (Levine et al., 2020) categorizes offline RL algorithms into model-free methods
and model-based methods. Our paper only considers model-free approaches for offline RL, where model-free
methods are sub-categorized into policy constraint methods that constrain the learned policy to be close to
the behavior policy and uncertainty-based methods that attempt to estimate the epistemic uncertainty of Q-
values to reduce distributional shift. In policy gradient methods, a policy constraint can be enforced directly
on the actor update to keep the new policy as similar as possible to the behavior policy while learning.
This constraint can be implicit KL-divergence, which does not model the behavior policy; for example,
see advantage-weighted regression (AWR) (Peng et al., 2019) or advantage weighted actor-critic (AWAC)
(Nair et al., 2020). A constraint can also be an explicit divergence constraint that require an estimation
for the behavior policy as done in the way off-policy (WOP) algorithm (Jaques et al., 2019). In practice,
policy constraint methods so far seem to outperform pure uncertainty-based methods, as shown with the
batch constrained deep Q-learning paper (Fujimoto et al., 2019b). In bootstrapping error accumulation
reduction (BEAR) (Kumar et al., 2019), authors identify bootstrapping error as the source of instability of
offline RL methods; they propose doing distribution-constrained backups via maximum-mean discrepancy
(MMD) (Kumar et al., 2019). In behavior-regularized offline reinforcement learning (Wu et al., 2019),
a general framework, behavior constrained actor-critic (BRAC), is introduced to cover different ways of
regularization to offline policies, whether as a value penalty or a policy penalty. Non-constrained methods
include traditional Q-learning (Watkins & Dayan, 1992), double DQN (Hasselt et al., 2016), and soft actor
critic (SAC) (Haarnoja et al., 2018), which are not always successful in the fully offline setup. Behavioral
cloning (BC) (Bain & Sammut, 1999), as a main method for imitation learning, is another way for learning
offline policies from historical data; BC proved to perform well compared to offline RL methods under
medium-quality and expert data (Kumar et al., 2019).

Off-policy Evaluation Off-policy evaluation (OPE) methods evaluate a target policy πθ using data gen-
erated by a behavior policy πb. When the off-policy estimate is guaranteed with some confidence that its
performance is not worse than the behavior policy πb, it is referred to as high confidence off-policy policy
evaluation (HCOPE) (Thomas et al., 2015a). An empirical study of OPE methods (Voloshin et al., 2019)
discussed the applicability of both methods and presented method selection guidelines depending on the
environment parameters and the mismatch between πθ and πb. This study categorized OPE methods into
importance sampling (IS) methods, direct methods, and hybrid methods that combine aspects from both IS
and direct methods. Importance Sampling (IS), or Inverse Propensity Scoring, as it is known in statistics,
is one of the most widely used methods for off-policy evaluation where rewards are re-weighted by the ratio
between πθ and πb (Precup et al., 2000). This weighting results in a consistent and unbiased off-policy
estimator. Later versions of importance sampling provide lower-variance estimates such as weighted impor-
tance sampling (WIS) (Mahmood et al., 2014), per-decision importance sampling (PDIS), and per-decision
weighted importance sampling (PDWIS) (Precup et al., 2000). To avoid bias due to using the off-policy
state distribution and the high variance of importance weights, Dice-style methods (Nachum et al., 2019a)
(Nachum et al., 2019b) (Zhang et al., 2020) (Yang et al., 2020) estimate the marginal importance ratio
between state density distributions instead. Secondly, direct methods rely on regression techniques to di-
rectly estimate the value function of the policy without access to the behavior policy. This category includes
model-based methods where the transition dynamics and reward are estimated from historical data via a
model. Then, the off-policy value is computed with Monte-Carlo policy evaluation in the model (Hanna
et al., 2017). To achieve conservative OPE, MB-bootstrap (Hanna et al., 2017) uses model-based off-policy
estimator with bootstrapping to construct confidence intervals for OPE estimates. A recent work introduced
HAMBO (Rothfuss et al., 2023), which uses an uncertainty-aware learned model of the transition dynamics
to obtain tight lower bounds of policies. Another direct method is fitted Q-evaluation (FQE) (Le et al.,
2019), a model-free approach that acts as the policy evaluation counter-part to batch Q-learning or fitted
Q-iteration (FQI) (Riedmiller, 2005). The last category contains the hybrid methods that combine different
features from IS and direct methods, which mainly involves doubly-robust methods (Jiang & Li, 2016) that
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use a direct model to lower IS variance. A few other methods improve upon this approach, such as weighted
doubly-robust (WDR) (Thomas & Brunskill, 2016), and MAGIC (Thomas & Brunskill, 2016).

Gap in The Literature In the offline RL literature, there is no standard way to evaluate a policy while
learning offline; most of the literature still evaluates the performance of offline algorithms in the environment
or in a simulator, by running a policy online. A workflow for offline RL (Kumar et al., 2021) proposed a set
of metrics to indicate how the algorithm can be further improved, such as detecting over-fitting and under-
fitting, providing no clear workflow for estimating the policy performance. At the intersection of offline RL
and OPE, there has been recent work combining these two areas. One paper discussed the applicability of
FQE (Le et al., 2019) to test the performance of offline policies under different hyper-parameters and select
the best performance (Paine et al., 2020). Active offline policy selection (Konyushova et al., 2021) uses OPE
to warm-start the evaluation process and choose which policy to evaluate online when given a limited budget
of online interactions. In benchmarks for deep off-policy evaluation (Fu et al., 2021), authors evaluate
offline policies learned on continuous control tasks using various OPE methods ranging from importance
sampling, model-based methods, and doubly-robust estimators. They show how challenging OPE can be as
an evaluation method (Fu et al., 2021).

Even considering the previous work combining offline RL with OPE (Paine et al., 2020) (Fu et al., 2021),
none discussed the feasibility of evaluating offline RL agents as we learn πθ, and how much we can trust OPE
as an approach for testing. The setup we are studying is quite different from the current literature because
previous work for off-policy evaluation assumed a behavior policy πb and a target policy πθ, where both
policies are fixed and may be related. For example, in a study for high-confidence OPE methods (Thomas
et al., 2015a), the target policy is initialised as a subset of the behavior policy such that they are close to
each other. In another study for safe improvement (Thomas et al., 2015b), the Daedulus algorithm learns
a safe target policy as a continuous improvement over the behavior policy. This is quite relevant to our
work; however, it is not purely offline learning because their algorithm uses data from an older version of the
policy it currently improves to perform both the improvement step and safety tests. With the doubly-robust
estimator, results are presented with different versions of πθ such that πθ is always a mixture of πb and πθ

with different degrees to ensure their relevance (Jiang & Li, 2016).

Training
buffer

Offline RL
optimization

Conservative
off-policy
evaluation

Is the policy good
enough? NoYes, Deploy!

Request more D

Figure 2: Proposed workflow for CEOPL: this
figure shows the methodology to follow, when given
a source of data, to both learn a policy offline and
estimate its value confidently.

Recent work on offline RL focuses on continuous
control in near-complex domains and environments
(Levine et al., 2020). As detailed above, OPE liter-
ature focuses on much simpler domains in discrete
and continuous control (Voloshin et al., 2019). None
of the previous work discussed the feasibility of us-
ing conservative OPE to evaluate offline RL policies.
We believe the setup we are tackling is under-studied
in the literature where the target policy is not nec-
essarily similar to the data collection policy, which
is the case for offline RL.

3 Methodology

In this section, we introduce our framework CEOPL
in detail with the methods used for both learning
and evaluation of an offline policy. CEOPL couples
offline RL algorithms with conservative off-policy
evaluation as a feasible evaluation method for of-
fline agents in safety-critical domains. Conserva-
tive evaluation is defined by any off-policy evalu-
ation method which seeks a high-probability lower
bound on the policy’s estimate. In CEOPL, we sam-
ple data from a buffer of data dynamically at each
iteration, perform policy updates, and continuously
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monitor its performance with a confidence interval
until it reaches a reasonable performance and is ready to be deployed. The policy learning offline does not
interact with the environment unless it passes the safety test. Moreover, we assume no control or access to
the behavior policy πb producing the data, but we assume that we can request more data as long as our
offline policy does not pass the safety test. However, the same methodology applies if we just have access
to a static dataset of trajectories (which we demonstrate in Section 6). We have k iterations where, in each
iteration i, dataset of trajectories Di of size n is requested from the main data source. Di is split between
Dtrain to train our offline policy πθi and Dtest to perform the safety test using conservative off-policy eval-
uation methods. Dtrain is accumulated over iterations in the training data buffer while a new set of Dtest

is used each evaluation iteration for the confidence interval to hold. CEOPL terminates when the learned
policy is ready to be deployed with appropriate confidence. Instantiating CEOPL requires selecting an offline
policy learning method and an off-policy evaluation method for computing off-policy estimates. We study
various methods for offline policy learning and evaluation as our methodology. Figure 2 shows an overview
of CEOPL framework based on a given data source, where the interaction between an agent and the data
source is summarized as follows:

1. An agent receives a set of data Di without access to the behavior policy.

2. We optimize a policy πθi offline using Dtrain with an offline RL algorithm (Section 3.1).

3. We perform a safety test using Dtest with a conservative off-policy evaluation method (Section 3.2).

4. Our new policy is either ready to be deployed or we go back to step 1.

Algorithm 1 Conservative Evaluation for Offline Policy Learning (CEOPL) Framework
Input: initial πθ, dataset D of m trajectories, confidence level δ ∈ [0, 1], number of trajectories needed every
iteration n, number of bootstrap estimates B, offline learning method Φ, and an OPE method Ψ
Output: πθ, v̂δ(πθ): 1 − δ lower-bound on v̂(πθ)

1: Let i = 0
2: while v̂δ(πθ) ≤ v̂(πb) do
3: Request a set of trajectories Di with size n
4: Split Di into Dtraini and Dtest

5: Dtrain = Dtrain ∪ Dtraini

6: Optimize policy πθi
= Φ(Dtrain)

7: Evaluate policy v̂δ(πθ) = BCI(πθ, Dtest, δ, B, Ψ)
8: end while
9: return πθ, v̂δ(πθ)

We refer to each offline policy learning method with Φ and each off-policy evaluation method with Ψ.
CEOPL is further explained in Algorithm 1. The inputs are a dataset of trajectories D, a confidence level δ
appropriate for the problem in hand, offline policy learning method Φ, and an off-policy evaluation method
Ψ to combine with bootstrap confidence intervals, shown in Algorithm 2 in Appendix A.3. The output will
be a policy trained offline πθ and a confidence lower-bound estimate of its return v̂δ(πθ). Since the stopping
condition in Algorithm 1 is not always satisfied if no evaluation method can detect an improved policy, we
set a maximum number of iterations for training and evaluation in our experiments.

3.1 Methodology: Offline Reinforcement Learning

Is it possible to learn a good policy offline given data and no environment interaction? Earlier work (Agarwal
et al., 2020) tried to answer this question, and showed how capable RL algorithms are in the offline setting,
since they were able to learn a successful DQN agent totally offline when provided with diverse data. However,
a benchmark on batch RL (Fujimoto et al., 2019a) showed how RL without correction can fail in the offline
setting given ordinary data.
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Table 1: Categories for offline learning: this table shows different categories for offline learning methods
for both discrete and continuous control, with examples of algorithms used in our experiments.

Discrete Control Continuous Control
Off-policy Double DQN (Hasselt et al., 2016) SAC (Haarnoja et al., 2018)
Imitation Learning Behavioral Cloning (Bain & Sammut, 1999) Behavioral Cloning
Offline BCQ (Fujimoto et al., 2019b) BCQ & BEAR (Kumar et al., 2019)

In CEOPL, we investigate different techniques for learning from offline data, ranging from normal off-policy
RL algorithms (off-policy), imitation learning techniques (imitation learning), and policy constraint methods
specific for offline learning (offline). Imitation learning is a form of supervised learning and is good at learning
from expert data or demonstrations. Policy constraint methods are designed to mitigate the challenges for
normal off-policy to learn offline, such as bootstrapping error (Levine et al., 2020). This categorization is
inspired by the offline RL tutorial (Levine et al., 2020) and is shown in Table 1. Details about each algorithm
are further explained in Appendix A.1. Given the data samples used from a data source, we aim to learn a
policy totally offline without environment interaction or access to the policy generating the data. This offline
policy is expected to be at least as good as the behavior policy in case of imitation learning and better in
the case of other algorithms, after a few iterations.

3.2 Methodology: Conservative Off-policy Evaluation

Conservative off-policy evaluation extends OPE methods to lower-bounding the performance of the target
policy, πθ, when combined with bootstrapping confidence intervals.

Off-Policy Evaluation

While a policy is being improved offline, we are interested in evaluating such a policy. Off-policy evaluation
is a promising technique to evaluate a policy that is continuously learning given access to fixed data. An
off-policy estimator is a method for computing an estimate v̂(πθ) for the true value of the target policy
v(πθ) using trajectories D collected while following another policy πb, which is what OPE methods do.
When evaluating, we use new samples for testing each time to avoid the multi-comparison problem2. This
sampling is also to ensure that we do not over-fit our OPE estimates or tune training parameters to reduce
the estimate error. Table 2 shows the three categories of OPE methods, with examples under each category.
The methods in bold are the ones we use for evaluation. For instance, we use Weighted Importance Sampling
(WIS) (Mahmood et al., 2014), Direct Model-based (MB) (Hanna et al., 2017), and Weighted Doubly-Robust
(WDR) Thomas & Brunskill (2016) estimators as shown. More details are further shown in Appendix A.2.

Table 2: Different OPE methods categorized: This table shows the three main categories of OPE
methods, importance sampling, direct methods and hybrid methods with examples with the methods used
in our experimentation.

Importance Sampling WIS (Mahmood et al., 2014)
Direct Model-based (Hanna et al., 2017)
Hybrid Weighted doubly-robust(Thomas & Brunskill, 2016)

Bootstrapping

To conservatively evaluate in CEOPL, each OPE method is combined with bootstrapping to approximate
a confidence lower bound of v̂δ(πθ) on v̂(πθ) such that v̂δ(πθ) ≤ v̂(πθ) with probability at least 1 − δ. In
principle, bootstrapping can be replaced by any other method that provides tight lower bounds. Consider
a data sample D of n random variables Hj for j = 1, 2, ..., n where we can sample Hj from some i.i.d.

2The problem occurs when conducting multiple statistical tests simultaneously with reusing data, so the confidence bound
does not strictly hold anymore.
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distribution of data. From the sample of data D, we can compute a sample estimate x̂ of a parameter x
such that x̂ = f(D) where f is any function that estimates x. Given a dataset D, we create B resamples
with replacement, where B is the number of bootstrap resamples, and compute an estimate for x, x̂, on each
of these resamples. Bootstrapping (Efron, 1979) allows us to estimate the distribution of x̂ with confidence
bounds. The estimates computed with different resamples will determine the 1 − δ confidence interval. In
our setup, the parameter of interest x is the expected return of a policy v(πθ).

With a confidence level δ ∈ [0, 1] and B resamples of the dataset of trajectories D, we use bootstrapping to
approximate a lower-bound confidence interval of v(πθ) on v(πθ) such that vδ(πθ) ≤ v(πθ) with probability
at least 1 − δ. This bootstrap method is referred to as the percentile bootstrap for confidence intervals
(Carpenter & Bithell, 2000). After obtaining B resamples of the dataset, we compute v̂(πθ) with each of
these resamples. Then, all the off-policy estimates v̂(πθ) are sorted ascendingly and the index δ × B is
chosen to calculate v̂δ(πθ). When bootstrapping is combined with off-policy evaluation methods, we can
estimate the distribution of v(πθ), and use it to estimate v̂δ(πθ) with probability at least 1 − δ. We refer to
the algorithm used as bootstrap confidence intervals (BCI) and the pseudo-code is detailed in Algorithm 2
in Appendix A.3. Although bootstrap confidence intervals provide approximate high-confidence estimates,
they provide a practical approach with small amounts of data compared to exact concentration inequalities
that may be too loose to use.

4 Experiments

This section discusses the experiments and the results of CEOPL on simulated setups in discrete and con-
tinuous control tasks. In our experiments, two simulated environments (MountainCar-v0 and Pendulum-v0)
were used to demonstrate CEOPL in discrete and continuous control, respectively. This choice shows how
the complexity of the environment, state and action dimensions, and horizon are affecting offline evaluation.
To mimic the setup where there is a source of trajectories without access to the environment itself, we simu-
late a source of data in each environment as a partially-trained policy that collects data of medium quality.
Such data resulting from a policy that is not optimal nor random resembles real-world data and leaves room
for improvement when training offline RL policies. For each environment, a policy is optimized offline using
three different offline learning methods and evaluated simultaneously using three different off-policy evalua-
tion methods. Following Algorithm 1, in each iteration, we get m trajectories from our data source which we
split between training and testing. We use more data for testing than training since CEOPL requires large
amounts of data to estimate tight bounds. For each improvement method, we load the train split into the
training buffer and do k training epochs where k varies among offline RL algorithms. Since we exceptionally
have access to the true environment in these simulated domains, we compute the true value of the offline
policy by testing it in the actual environment and use it for comparison. For bootstrapping, we use δ = 0.05
to get a 95% confidence lower-bound using B = 2000 bootstrap estimates, as recommended by practitioners
(Efron, 1979). In weighted doubly-robust with bootstrapping 3.2, we use a value of B = 224 for the number
of bootstrap estimates to avoid heavy computation; this can still get us a good approximation as suggested
by MAGIC (Thomas & Brunskill, 2016). Since we have no access to πb, we estimate π̂b given the test data
(Hanna et al., 2021) with a behavior cloning model that is improved gradually with more test data.

Results on MountainCar-v0: For each iteration, 300 trajectories are sampled, where 20 trajectories are
used into the training buffer and 280 trajectories are used for evaluation. This totals to 3000 trajectories
over the 10 iterations. Each evaluation iteration includes performing k training epochs to the offline policy;
a training epoch is a single optimization step of the policy over a batch of data. k is set to be 29 for BCQ
and Double DQN, while BC does 26 policy updates in one iteration (since BC was faster to optimize).
Figure 3 shows how different offline policy improvement methods perform given medium-quality data with
conservative evaluation, indicating which method can tell when v̂δ(πθ) > v̂(πb). While the x-axis shows the
number of evaluation iterations, the y-axis shows the value estimate of a policy across different iterations.
Behavior cloning, as an offline policy improvement method, can only perform as well as πb. Double DQN
and BCQ were able to outperform πb. The true value of a target policy is calculated as the average return
when running the policy in the actual environment (not possible in practice) for 1000 episodes. All reported
results are an average of 40 runs, while the shaded area shows the standard error. The value of the behavioral
policy, v̂(πb), is the sum of undiscounted rewards of all trajectories in the data set.
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Figure 3: CEOPL on MountainCar-v0: this figure shows the performance of the target policy as it is
training offline over iterations (x-axis). Weighted importance sampling (WIS) failed to detect that the offline
policy outperforms πb. The model-based estimator (MB) and weighted doubly-robust (WDR) were able to
determine when an offline agent outperforms πb. While the y-axis shows the estimated policy value v̂(π),
we show the empirical estimate v̂(πb) for the behavioral policy (given the dataset), and the conservative
off-policy estimate v̂δ(πθ) across different estimators.

For conservative evaluation of each offline agent, weighted importance sampling (WIS) with bootstrapping
failed to detect that the offline policy outperforms πb for all learning methods. The model-based estimator
(MB) and weighted doubly-robust with bootstrapping (WDR) have much less error with respect to the true
value of a policy and were able to infer when an offline agent outperforms πb and hence is ready to be
deployed. For instance, with 95% confidence, in the case of offline improvement with Double DQN, we were
able to tell that our new target policy is better than the behavior policy at iteration 4 using two different
estimators (MB and WDR).

Results on Pendulum-v0: For each iteration, 500 trajectories are sampled, where 100 trajectories goes
into the training buffer and 400 trajectories for evaluation. This totals 5000 trajectories over the 10 iterations.
Figure 4 shows how different offline policy improvement methods perform given medium-quality data with
conservative evaluation, indicating which method can tell when v̂δ(πθ) > v̂(πb). Behavioral cloning as an
offline policy improvement method can only perform as well as the data by πb, while BEAR and BCQ were
able to outperform πb. We did not report results on SAC (Haarnoja et al., 2018) since it failed to learn a
policy better than the behavior policy. In MountainCar-v0, the true value of a target policy is calculated
as the average return when running the policy in the actual environment (which is not possible in practice)
for 1000 episodes. All reported results are an average of 40 runs, while the shaded area shows the standard
error. v̂(πb) is the sum of undiscounted rewards of the data set, which represents the value of the behavioral
policy. Similar to the results on MountainCar-v0, WIS with bootstrapping failed to detect that the offline
policy outperforms πb. The MB estimator achieve a very tight lower-bound with the true value of a policy
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Figure 4: CEOPL on Pendulum-v0: this figure shows the performance of the target policy as it is
training offline over iterations (x-axis). Weighted importance sampling (WIS) failed to detect that the
offline policy outperforms πb. The model-based estimator (MB) and weighted doubly-robust (WDR) were
able to determine when an offline agent outperforms πb. While the y-axis shows the estimated policy value
v̂(π), we show the empirical estimate v̂(πb) for the behavioral policy (given the dataset), and the conservative
off-policy estimate v̂δ(πθ) across different estimators.

and were able to identify when an offline agent outperforms πb and therefore is ready to be deployed. WDR
estimates are also affected by the improvement methods as in the case with WIS.

5 Analysis & discussion

5.1 Overestimation of OPE vs. Conservative OPE:

It is important to question whether conservative evaluation in our proposed framework is worth the added
complexity and computation of bootstrapping over the vanilla off-policy evaluation (OPE). Although both
OPE and conservative OPE can provide value estimates of an offline target policy, conservative OPE lower-
bound estimates underestimate the value of the offline policy which serves our purpose of ensuring safety.
Moreover, most existing OPE estimators are prone to overestimating the value of the policy Thomas et al.
(2015a). Empirical results on simulated environments showed how OPE estimates can overestimate the true
value of the offline policy, as shown in Figure 5. Even if not all OPE estimators are overestimating the true
value of the offline policy in Figure 5, there are no guarantees on the performance of the reported OPE
estimators. On the other hand, lower bounds in CEOPL are guaranteed to only overestimate the true value
of the offline policy within the allowable 5% error rate for a 95% confidence, as shown in Figure 7 in Appendix
B.2. Bootstrapping has strong guarantees as the size of test data goes to ∞, but it lacks guarantees for finite
samples (Hanna et al., 2017); this is because it assumes that the bootstrap distribution is representative of
the true distribution of the statistic of interest. As a result of this assumption, bootstrapping is considered
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Off-policy (Double DQN) Imitation Learning (BC) Offline (BCQ)
WIS 49.032 ± 0.57 28.742 ± 1.22 43.66 ± 0.84
MB 7.85 ± 0.72 22.716 ± 1.09 13.645 ± 0.65
WDR 6.18 ± 1.45 17.642 ± 2.79 12.81 ± 2.42

Table 3: Mean error between CEOPL estimates and true value of πθ on MountainCar-v0: this
table shows the mean error of conservative OPE estimates, v̂δ(πθ), over all training iterations and multiple
runs given each offline improvement method. Lowest mean errors for each method are shown in bold., and
standard error over 40 runs is reported.

Imitation Learning (BC) Offline (BCQ) Offline (BEAR)
WIS 268.5 ± 28.93 602.49 ± 78.05 432.22 ± 47.5
MB 33.48 ± 0.77 25.02 ± 2.5 19.0 ± 5.1
WDR 161.1 ± 13.47 307.11 ± 37.3 54.75 ± 10.43

Table 4: Mean error between CEOPL estimates and true value of πθ on Pendulum-v0: this table
shows the mean error of conservative OPE estimates, v̂δ(πθ), over all training iterations and multiple runs
given each offline learning method. Lowest mean errors for each method are shown in bold, and standard
error over 40 runs is reported. SAC is not reported as it failed to learn a good policy.

semi-safe because the assumption it makes may be false. Prior work Kostrikov & Nachum (2020) identified
conditions, such as sufficient data size and sufficient coverage, under which statistical bootstrapping is
guaranteed to yield correct confidence intervals. Other work (Morrison et al., 2007) shows that bootstrapping
is still safe enough for high-risk predictions with a known record of producing accurate confidence intervals.
Therefore, it is better to rely on CEOPL for conservative evaluation in safety-critical applications.

5.2 What affects CEOPL?

If we are to apply CEOPL to any problem, OPE methods and offline RL methods are different factors
affecting the performance. To investigate this, we do further analysis and report total variation (TV)
distance, a measure of similarity between two probability distributions; this is to check how the learning
method of an offline policy is affecting TV distance between π̂b and πθ and hence affecting the off-policy
estimates. Results are shown in Figure 8 in Appendix B.3, where the total variation distance between the
offline policy πθ and the estimated behavior policy π̂b across the different offline learning methods is reported.
For discrete control, behavioral cloning (imitation learning) can achieve a much lower distance than other
improvement methods (batch-constrained Q-learning and double DQN) whether they are constrained or
non-constrained. This is because behavioral cloning forces its target policy to be close to the behavior policy
while other methods do not. The same applies to continuous control in Pendulum-v0; behavior cloning
achieves the lowest error between π̂b and πθ. This insight on divergence explains why weighted importance
sampling achieves the lowest error between the estimate and the true value in the case of behavioral cloning,
as shown in Tables 3 and 4; the error grows for other methods that do not constrain the policy to be close
to the data distribution. This analysis suggests that the choice of a OPE method is dependant on the offline
method chosen to optimize the policy. Other factors affecting the performance include the horizon of the
trajectory and the environment dynamics, which we discuss further in Appendix B.3.

Takeaways: the performance of conservative off-policy evaluation, and OPE in general can be affected by
the following factors: a) divergence between π̂b and πθ as discussed earlier in Section 5.1, b) the horizon
of the trajectory, c) the environment dynamics. The horizon of the trajectory affects importance sampling
such that it suffers from high variance with longer horizons (Liu et al., 2020). The environment dynamics
also affect direct and hybrid methods. The MB estimator performs well when it is possible to model the
environment dynamics such as the case for both MountainCar-v0 and Pendulum-v0 environments. The
WDR estimator also performs well because q-values can get more accurate when it is easy to learn a model
of the environment. However, the WDR estimator is still affected by the divergence between π̂b and πθ as

10



Published in Transactions on Machine Learning Research (9/2024)

in the case for BC and BCQ algorithms. WDR estimates get worse as the divergence increases. As a result,
we can conclude that

• When it is possible to model the environment dynamics, we should rely on estimators that do not
take πb into account (e.g., direct methods or hybrid methods) so that value estimates are less affected
by the divergence between πθ and π̂b (as the case for WIS).

• In short-horizon environments, we should rely on importance sampling methods when the offline
policy algorithm is constrained to be similar to π̂b.

Based on our empirical analysis in subsections 5.1 and 5.2, we conclude that conservative off-policy estimators
are considered a safe evaluation method for offline learning with enough confidence that minimizes the risk
of overestimating the true performance of an offline policy. In contrast, off-policy evaluation suffers from
overestimation to the true values so it makes sense to rely on conservative evaluation in CEOPL instead,
for domains where safety is essential. Further, our ability to accurately detect an improved policy with
CEOPL is a function of different factors: the offline learning algorithm, the environment dynamics and the
trajectories horizon.

6 Case Study: Real world data
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: Behavior Cloning (BC)

Figure 5: Results of vanilla off-policy evalua-
tion on MountainCar-v0: figure shows results of
evaluating a policy, optimized offline with behavioral
cloning, with OPE (without bootstrapping). It shows
that OPE overestimates the true value of πθ.

In this section, we demonstrate our proposed frame-
work CEOPL on real-world medical data to see how
our framework can perform.

6.1 Problem: Sepsis Treatment

Problems in healthcare can be considered a form of
sequential decision making, such as clinical physi-
cians making decisions about the best next step
to take in care (Ghassemi et al., 2019). Current
advances in AI can provide personalized care that
is equal to or better than humans by finding an
optimal decision making policy given clinical data
(Ghassemi et al., 2019). Sepsis, a severe infection
with organ failure, is a leading cause of mortality in
intensive care units (ICUs) in hospitals (Sakr et al.,
2018). There are continuous efforts in research to
understand and cure sepsis and, hence, increase the
survival rates for ICU patients. RL for sepsis treat-
ment is preferred over supervised learning because
the ground truth of good treatment strategy is un-
clear in the current medical literature (Marik, 2015). Sepsis data is a form of offline data, from which we
can learn an offline policy given no access to an environment. The challenge lies in evaluating such policies
while learning to determine when it is good enough to be deployed. We use the well-known MIMIC III data
(Johnson et al., 2016) for sepsis treatment. Current literature in RL for health (Raghu et al., 2017a;b) finds
it challenging to evaluate policies learned from such data given no agent-environment interaction.

For this problem, given no further data collection, it is better to rely on offline RL methods (rather than
online RL) to learn a policy from a fixed dataset. A recent work (Killian et al., 2020) explores different
representation learning techniques to learn a good policy offline with discrete BCQ (Fujimoto et al., 2019a).
To evaluate their policies, they rely on Weighted Importance Sampling (Mahmood et al., 2014) to compare
the different representation learning techniques. The problem at hand is widely researched but, only this
previous work (Killian et al., 2020) relied on offline learning with off-policy evaluation. While relying on
importance sampling for evaluation is good when comparing different approaches, we believe it is essential
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to perform evaluation with confidence for this critical application to avoid the risk of overestimation. We
build upon their work to apply our proposed training-evaluation framework.

6.2 Experimental Design

We would like to perform conservative evaluation for offline policy learning and see if we can trust our RL
policy to make decisions in the real-world. To apply CEOPL, there are a few design decisions to make
first. These decisions include: how much data to use for training/testing, bootstrapping size, confidence
level, and choice of algorithm to optimize a policy offline. Given that the available data is fixed, we split
the dataset once in the beginning into a train set, used to train the offline policy, and a test set, used for
evaluating the policy performance during training. Note that this fixed batch setup is different from what
we followed in Section 4 where we assumed a growing dataset. With stratified sampling (Killian et al., 2020),
we use a 70/30 train/test split, which maintains the same proportions of each terminal outcome (survival or
mortality). Data description and experimental details are shown in Appendix C.1.

Unlike simulated environments in Section 4, we do not have a way in this setup to evaluate how a policy
performs except for using off-policy estimators. With CEOPL, we use weighted importance sampling (WIS),
model-based estimator (MB), and weighted doubly-robust estimator (WDR) with bootstrapping to provide
lower-bound estimates v̂δ(πθ) for πθ. We also report v̂(πθ) using the same estimators without bootstrapping,
as the OPE estimate. Data is split between training and evaluation. Training data is used to optimize a
BCQ agent while testing data is used for evaluation with conservative OPE methods.3 With evaluation, we
check if the agent is good enough to deploy in the real-world, and if not, we need to continue improving our
offline agent before deploying. For this problem, we hypothesize that importance sampling (Precup et al.,
2000) will provide good estimates given the short horizon and the offline policy constraint method used for
improvement, unlike the MB estimator which will find transition dynamics for this problem challenging.

6.3 Results

For sepsis data, there is no ground-truth to compare against, as opposed to the simulated environments we
presented in Section 4. While learning our offline policy, we would like to see how well it performs over time
and when it outperforms the behavior policy so we can deploy it into the real world.

Figure 6 shows the results of applying CEOPL to train and evaluate an offline RL policy, as an average of
10 runs with the standard error indicated. The value of the behavior policy, v(πb), is the average return
of the data in hand. With WIS, the conservative estimate v̂δ(πθ) and the mean estimate v̂(πθ) show the
improvement of the policy over training iterations. The mean OPE estimate of WIS slightly outperforms the
behavior policy but this can be an overestimate of the true value. We focus on our conservative estimate,
which did not show that the target policy outperforms the behavior policy. The conservative estimates by
the model-based estimator (MB) failed to detect the improvement of the policy over time. This has to
do with failing to model the complex dynamics of the dataset; as a result, it failed to estimate the true
value of the target policy. In a model-based estimator, we model all the environment dynamics, the next
state, reward, and terminal state. In MountainCar-v0, we only modeled the next state since the reward and
terminal state can be computed deterministically from the current state. In Pendulum-v0, the environment
always terminates at the maximum horizon, so we only modeled the next state and reward. With sepsis
data, it was hard enough to model the next state because the state dimension is large; it is also hard to
model the terminal state indicating when a patient dies and whether they survive or not.

With weighted doubly-robust estimator, values of v̂δ(πθ) and v̂(πθ) can show the improvement of the offline
policy as it is training, until both estimates outperform v̂δ(πθ). WDR combines per-decision weighted
importance sampling with an approximate model; the approximate model only fits q-values so it does not
suffer from the modeling complexity as the MB estimator. However, we cannot rely on the mean estimates
v̂(πθ) as they may overestimate. For real-world sepsis data, we suggest that relying on OPE only is not
enough for such critical application, and it is better to rely on CEOPL for conservative lower-bound estimates

3For this case study, we face the multi-testing problem in this experiment as we used the same data split for each evaluation
iteration; this is because the size of the test data is too small to split among iterations.

12



Published in Transactions on Machine Learning Research (9/2024)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Evaluation Iterations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

v(
)

v( b)

v( )

v ( )

(a) Importance Sampling (WIS)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Evaluation Iterations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

v(
)

v( b)

v( )

v ( )

(b) Direct (MB)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Evaluation Iterations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

v(
)

v( b) v( )

v ( )

(c) Hybrid (WDR)

Figure 6: Results of CEOPL on sepsis data: this figure shows results of evaluating the performance of
the offline policy. We show both the conservative off-policy estimate v̂δ(πθ), and mean OPE estimate v̂(πθ).

because it will be less likely to overestimate. As for the choice of an evaluation method, WIS can be reliable
for this problem given the short horizon but WDR can provide better estimates as a hybrid method that
improves upon importance sampling. It is challenging for the MB estimator to detect an improved policy
given the complex environment dynamics.

7 Conclusion

This paper proposed a framework for evaluating offline RL methods in a conservative manner (CEOPL),
combining OPE with bootstrap confidence intervals. First, we studied the feasibility of different categories
of conservative off-policy estimators and how they are affected by offline learning algorithms. We suggest
that conservative evaluation is better for safety-critical applications since off-policy evaluation may suffer
from overestimation. We tested CEOPL on real-world medical data for sepsis treatment. While dynamically
receiving data, we optimize offline RL agents and run safety tests to estimate a lower-bound on the value
of the offline policy and control the risk of overestimating its true value. This is essential for safety-critical
applications to be able to tell when it is safe enough to deploy a new policy. In conclusion, conservative
evaluation with CEOPL proved to be a reliable evaluation method for offline agents that do not have access
to a simulated environment. When combined with bootstrapping, direct and hybrid OPE methods can be
trusted for evaluating offline agents. The horizon of the trajectory and the environment dynamics affect
the choice for the off-policy estimator to rely on. In future work, we plan to tackle learning offline from
multiple data sources with different qualities and explore how the quality of the data affects offline learning
and conservative evaluation. In addition, we can explore other OPE methods such fitted Q-evaluation (Le
et al., 2019) to eliminate the challenges of direct model-based evaluation, and explore recent approaches
for conservative evaluation such as HAMBO (Rothfuss et al., 2023) which are more reliable in continuous
state-action spaces.

Broader Impact Statement

We do not foresee any potential negative impacts of this research that users need to be aware of. Additionally,
our framework provides a safe way to perform evaluation of offline RL methods. We have showcased a real-
world application of our proposed framework in healthcare, where offline RL can be utilized safely, and hence
have a positive impact.
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A Appendix: Methodology

This section provides further details of the methods used in CEOPL.

A.1 Offline Reinforcement Learning

As mentioned in Section 3.1, we categorized learning methods into three categories: normal off-policy RL
algorithms (off-policy), imitation learning techniques (imitation learning), and policy constraint methods
specific for offline learning (offline). For continuous control, we describe the approaches in the three cate-
gories. For the off-policy category, we used soft actor-critic (SAC) (Haarnoja et al., 2018); this means a SAC
agent is optimized offline using a fixed buffer of data without interaction with the environment or control
over the buffer. For the imitation learning category, we study Behavioral Cloning (BC) (Bain & Sammut,
1999); BC is a supervised learning algorithm where the model learns how to predict actions from the current
state.

In the offline category, we study batch-constrained Q-learning (BCQ) (Fujimoto et al., 2019b) and bootstrap-
ping error accumulation reduction (BEAR) (Kumar et al., 2019). Batch-constrained Q-learning (Fujimoto
et al., 2019b) argue that off-policy algorithms often fail in the offline setting due to the extrapolation error
since unseen state-action pairs will have unrealistic values (Fujimoto et al., 2019b). This is a result of the
mismatch between the state-action visitation of the current policy and the state-action pairs in the offline
dataset. To solve this, the policy should induce a similar state-action visitation to the offline data. BCQ
(Fujimoto et al., 2019b) proposed the use of a state-conditioned generative model to produce only likely ac-
tions to the current offline data. Then, this generative model, effectively a variational auto-encoder (Kingma
& Welling, 2013), is combined with a network which aims to optimally perturb the generated actions in a
small range. When this is combined with the Q-network, the network will only select the highest valued
actions similar to the data in the batch (Fujimoto et al., 2019b).

BEAR (Kumar et al., 2019) argues that the source of instability for off-policy algorithms learning offline is
the bootstrapping error. This error results from bootstrapping with actions that lie outside of the training
data distribution, and it accumulates via the bellman backup operator (Kumar et al., 2019). BEAR is
built on top of any actor-critic algorithm, such as SAC (Haarnoja et al., 2018), by modifying the policy
improvement step to use a distribution-constrained backup. To apply the constraint, the sampled version of
maximum-mean discrepancy is used between the unknown behavior policy πb and the current actor πθ to
constrain the distribution of the actor to the support of the behavior policy (Kumar et al., 2019). Hence,
BEAR allows the actor to maximize the Q-function while being constrained to remain in the valid support
space of the behavior policy defined by the data samples (Kumar et al., 2019).

For discrete control, we use Double DQN (Hasselt et al., 2016) as a normal off-policy RL algorithm; similar
to SAC, Double DQN is used to learn solely from offline data. For the imitation learning category, we use
behavioral cloning (BC) (Watkins & Dayan, 1992) in a supervised learning manner with cross-entropy loss.
In the offline category, we experiment with the discrete version of BCQ (Fujimoto et al., 2019a). Discrete
BCQ is much simpler than its continuous version, since it trains Q-learning with a constrained argmax
operator. This only allows actions in the backup with probability, given by the generative model, above
some threshold τ . The generative model is a behavioral cloning network trained in standard supervised
learning with a cross-entropy loss (Fujimoto et al., 2019a). BCQ is also based on Double DQN, and we use
the threshold to be τ = 0.3 as reported in their original paper. If the threshold τ is 1, the algorithm returns
an imitator of all the actions in the dataset, while a threshold τ = 0 returns the Q-learning objective.

A.2 Off-Policy Evaluation

Importance Sampling (Precup et al., 2000) is a method for handling mismatch between distributions
and hence presented as a consistent and unbiased off-policy estimator. For a trajectory H ∼ πb of length L,
as H = s1, a1, r1, .., sL, aL, rL, we can define the importance sampling up to time t for policy πθ as follows:

IS(πθ, πb, D) =
m∑

i=1
ρH

L Ri, ρH
t :=

t∏
j=0

πθ(Aj |Sj)
πb(Aj |Sj) (1)
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By re-weighting the returns, we can tell how likely each reward is under πθ versus πb. However, IS often
assumes a known πb, which is not always the case for off-policy policy evaluation. Since we assume no access
to πb in our setting, we estimate a behavior policy π̂b from data with a behavior cloning model (Hanna et al.,
2021). To come up with a high confidence estimate, we first compute the importance-weighted returns then
use bootstrapping, described in Section 3.2, to get the lower-bound estimate. In our experiments, we use
weighted importance sampling (WIS) (Mahmood et al., 2014) with bootstrapping as a representation for
importance sampling family of estimators.

WIS(πθ, D, πb) =
m∑

i=1

ρi
L−1∑m

j=1 ρj
L−1

g(Hi) (2)

Direct Model-Based Estimator is another off-policy estimator that falls under direct methods. The
model-based off-policy estimator (MB) computes v̂(πθ) by building a model using all the available trajectories
D to build a model M̂ = (S, A, P̂ , r, γ, d̂0) where P̂ and d̂0 are estimated with trajectories sampled from πb.
Then, MB will compute v̂(πθ) as the average return of trajectories simulated in the estimated model M̂ while
following πθ. Despite having lower variance than IS methods, MB is a biased estimator for: 1) we lack data
for particular state-action pairs, so we assume their transition probabilities, 2) we assume that the model
class includes the true model for the transitions. As a result, as n → ∞, the model estimates may converge
to a value different from the true v(πθ). This effect is due to its dependency on the modeling assumptions
we make whether we assume a linear or a non-linear model.

Therefore, the model-based estimator is combined with bootstrapping, as discussed in Section 3.2, for con-
servative off-policy evaluation. To clarify, as mentioned in Section A.1, we rely mainly on model-free policy
optimization algorithms for learning a policy offline. However, we use model-based estimation to evaluate a
policy, which is independent from the policy optimization part.

Weighted Doubly-Robust Estimator (Thomas & Brunskill, 2016) is a hybrid method for off-policy
estimation, presented as an extension to the doubly-robust (DR) method (Jiang & Li, 2016). DR is an
unbiased estimator of v(πθ) that uses an approximate model of the MDP to reduce the variance of importance
sampling (Jiang & Li, 2016). Although biased, WDR is based on per-decision weighted importance sampling
(PDWIS) and improves upon the DR method as it balances the bias-variance trade-off. In addition, the
approximate model value functions act as a control variate for PDWIS.

PDWIS(πθ, D, πb) =
m∑

i=1

L−1∑
t=0

ρi
t∑m

j=1 ρj
t

γtRi
t (3)

WDR(πθ, D, πb) = PDWIS(πθ, D, πb)−
n∑

i=1

L−1∑
t=0

γt(wi
tq̂πθ

(Si
t , Ai

t) − wi
t−1v̂piθ

(Si
t))

(4)

Similar to direct model-based methods, we use bootstrapping with WDR to provide a confidence lower-
bound estimate on v̂(πθ). WDR with bootstrapping is guaranteed to converge to the correct estimate as
n increases, given the statistical consistency of PDWIS (Hanna et al., 2017). For the approximate model,
a single model is estimated with the available trajectories D, then used to compute the value functions of
WDR for each bootstrap data. We choose the weighted doubly robust estimator to represent OPE hybrid
methods in our study.

A.3 Bootstrapping

The pseudo-code of Bootstrap Confidence Intervals (BCI) is shown in Algorithm 2.

19



Published in Transactions on Machine Learning Research (9/2024)

Algorithm 2 Bootstrap Confidence Intervals: BCI
Input: a target policy πθ, dataset Dtest of m trajectories, confidence level δ ∈ [0, 1], number of bootstrap
estimates B, an estimate of the behavior policy π̂b, and off-policy estimator Ψ
Output: v̂δ(πθ): 1 − δ lower-bound on v̂(πθ)

1: for j ∈ [1, B] do
2: D̃j = Hj

1 , .., Hj
m where Hj

i is sampled uniformly
3: v̂ = Ψ(πθ, D̃j , π̂b)
4: end for
5: sort(v̂j |j ∈ [1, B]) // ascending
6: l = ⌊δB⌋
7: return v̂l

B Appendix: Empirical Results

This section provides further details on the experimental setup and further analysis of the empirical results
on the simulated environments.

B.1 Simulated Environments

MountainCar-v0: we use discrete MountainCar (Sutton & Barto, 2018) with a continuous state (velocity
and position) and 3 possible discrete actions. At each time-step, the reward is −1, except for the terminal
state when it is 0. However, we used the modified version of Mountain-Car as described here (Thomas,
2015). The horizon is shortened by holding an action at constant for 4 updates of the environment state.
We also change the start state such that an episode starts with a random position in the range of (-1.2, 0.6)
and random velocity in the range of (-0.07, 0.07) (Jiang & Li, 2016; Thomas, 2015). The data collector we
use for this environment is an online actor-critic (Sutton & Barto, 2018) agent that is partially trained with
added 30% randomization when generating data. This means when collecting the offline data, an agent takes
a random action 30% of the time instead of following the online policy, to include exploratory transitions.

Pendulum-v0: inverted pendulum swing-up problem is a classic problem in the control literature with
one continuous action (Brockman et al., 2016). In this version of the problem, the pendulum starts in a
random position, and the goal is to swing it up to stay upright. We also shorten the horizon following the
same procedure as done in MountainCar (Thomas, 2015) by holding an action constant for 4 updates of the
environment state. This limits the horizon of the environment to 50 instead of 200. The data source we use
for this environment is a soft actor-critic (Haarnoja et al., 2018) agent that is trained partially, with added
30% randomization when generating the dataset. This means when collecting the offline data, an agent takes
a random action 30% of the time instead of following the online policy to resemble real-world data.

B.2 Overestimation of CEOPL

Figure 7 shows the overestimation of lower bounds compared to the true value of the offline policy; it is
guaranteed to remain within the allowable δ = 5% error rate for a 95% confidence. We would like to point
out that the safety guarantee for the confidence bound specified is per-iteration (Thomas, 2015). If we want
to consider this guarantee over multiple iterations, the probability 1 − δ decreases for the early iterations as
we perform more tests. As a result, we should only consider this guarantee for the last iteration of our loop,
such that the error rate in the last iteration is at most δ.

B.3 Further Analysis

To better understand how evaluation is affected by the offline learning method, multiple measures can
show the similarity between two probability distributions (as a policy is a distribution over actions). One
simple measure is the total variation (TV) distance. TV distance measures the difference between action
probabilities taken under two policies given the data set in hand. TV would be the sum of differences in
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(c) Batch-Constrained Q-learning (BCQ)

Figure 7: The empirical error rate on MountainCar-v0 with CEOPL: This figure shows the empirical
error rate on MountainCar given different evaluation methods. The lower bound is computed z times for
each method (z = 40 for Mountain Car) and we count how many times the lower bound is above the true
v̂(πθ) computed in the true environment. Given 200 trajectories only for evaluation, all methods correctly
approximate the allowable 5% error rate for a 95% confidence lower bound. However, there are two instances
of WIS and WDR that slightly exceed 5%, which can be mitigated with more data.

probabilities between the behavior policy πb and the target policy πθ for each state-action pair in the test
dataset. Since πb is not known, we estimate π̂b given the test data (Hanna et al., 2021). TV distance is
correlated to KL-divergence, showing how two policies are different from each other. As discussed in Section
5.2 and shown in Figure 8, in MountainCar-v0 (discrete control), behavior cloning (BC) learns a policy that
is very similar to π̂b. Discrete BCQ and double DQN do not limit the distance with the behavior policy, and
their TV distance is quite large as opposed to BC. For Pendulum-v0 (continuous control), behavior cloning
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(a) MountainCar-v0 (discrete control)
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(b) Pendulum-v0 (continuous control)

Figure 8: Divergence between π̂b & πθ over training iterations: this figure shows the total variation
(TV) distance between π̂b & πθ on MountainCar-v0 & Pendulum-v0 over all training iterations. For both
discrete (a) and continuous control (b), BC achieves the lowest distance since it tries to mimic the data
distribution. In (a), Double DQN and BCQ policies achieve similar distance, but higher compared to BC.
(b), BEAR achieves a higher distance than BC, but much less than BCQ; this is because BEAR enforces
explicit divergence minimization between π̂b and πθ.

(BC) also learns a policy that is very similar to π̂b and achieves the lowest TV distance. BEAR limits the
divergence compared to BCQ since BEAR’s objective is constrained to be close to πb, as shown in Figure 8.

C Appendix: Real-world Case Study

This section provides further experimental details and analysis of the experiments on sepsis data.

C.1 Experimental Details

To build a decision-making policy for the treatment of septic patients, we use data from the Medical Informa-
tion Mart for Intensive Care (MIMIC-III) dataset (v1.4) (Johnson et al., 2016). We follow previous relevant
work (Komorowski et al., 2018) to extract and preprocess vital and lab measurements and build a cohort of
19418 patients; this cohort has an observed mortality rate just above 9% (determined by death within 48h
of the final observation). Data extraction, preprocessing, and splitting follow previous work (Killian et al.,
2020).

A dataset D is a collection of trajectories; a trajectory H of a non-fixed horizon L refers to a single patient
that ends by the survival or death of a patient, with a maximum horizon L of 19. A transition is composed
of current observation Ot, the action taken by the clinician at to move to the next observation Ot+1 receiving
reward of rt until a patient survives or dies. We treat the problem as a markov decision process (MDP). Data
consists of a continuous state space of a dimension 38 and a discrete action space of 25 actions. Observed
actions are the administration of fluids or vasopressors that can be given, categorized by volume, and put
into 5 discrete bins per action type resulting in 25 actions (Killian et al., 2020). The data has sparse reward
such that a trajectory has a terminal reward of +1 if a patient survived, -1 if a patient died, and 0 otherwise.
The observations used as our state space are a combination of time-varying continuous features (33), such
as heart rate, glucose, etc., and demographic features (5), such as gender, age, weight, etc. (Killian et al.,
2020).

For the bootstrapping size, we use B = 2000 as in the experiments with simulated data. We also use a
confidence level δ = 0.05. We optimize a policy offline using batch-constrained Q-learning (BCQ) for discrete
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control (Fujimoto et al., 2019a), coupled with an auto-encoder for better state representation learning.
Another important decision is to decide how often we will run our conservative evaluation methods because
of its computational cost. For this, we train the policy for 200k epochs, where we evaluate the policy every
10k epochs. To estimate the behavior policy πb, which is referred to as the clinician’s policy, we rely on
behavior cloning (Hanna et al., 2021) as done in other experiments on simulated environments.
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