Estimating flexible across-area communication with neurally-constrained RNN
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Abstract

Neural computations supporting complex behaviors in-
volve multiple brain regions, and large-scale recordings
from animals engaged in complex tasks are increasingly
common. A current challenge in analysing these data
is to identify which part of the information contained
within a brain region is shared with others. Here, to
address this limitation, we trained multi-region recur-
rent neural networks (RNN) models to reproduce the dy-
namics of large-scale single-unit recordings (more than
6000 neurons across 7 cortical areas) from monkeys en-
gaged in a two-dimensional (color and motion direction)
context-dependent decision-making task. Decoding anal-
yses show that all areas encode both stimuli (color and
direction). However, using our approach we uncovered
feed-forward and feedback interactions within a network
of 7 interacting regions. Constraining interactions dur-
ing training or testing recovered the canonical brain hi-
erarchy that differentiate sensory and frontal regions. In-
specting across-region interactions, we also found that
frontal regions compress the irrelevant stimulus in a
context-dependent manner, while sensory regions always
compress the same stimulus.
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Context-dependent decision-making task.

We analysed a previous published dataset (Siegel et al.,
2015), where two monkeys were trained on a context-
dependent decision making task to categorize either the color
(red versus green) or the direction (up versus down) of a col-
ored visual motion stimulus, depending on the context that
was cued trial-by-trial (Fig. 1). For the purpose of this project,
we focused on conditioned-averaged activity, leading to a data
tensor X with the shape C x T x N , with C = 4 colors x 4 di-
rections x 4 context cues (64) conditions, T = 40 time bins
of 25 ms and N = 6000 neurons. As extra pre-processing
steps, we denoised the data using PCA (Mante & Susillo et
al., 2013) and z-scored the activity across conditions. Linear
decoding (svm) from this dataset showed that all areas en-
coded both stimuli (Fig. 1b), regardless of the context (Siegel
et al., 2015). While there were some quantitative differences
in the timing of encoding of each variable, both stimuli were
very quickly encoded everywhere.
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Figure 1: a) Experimental design from (Siegel et al., 2015). Red
triangle highlights stimulus period used for analyses reported in d-g.
Circles in bottom left highlight stimulus used in d-f. b) Decoding of
color and direction is very high in all areas.

Multi-region RNN and fitting procedure.

Instead of handcrafting specific across-region interactions
(e.g. Barbosa et al., 2021, 2022), we inferred directed interac-
tions between all areas by training rate-based recurrent neural
networks with back-propagation to replicate the recorded neu-
ral activity of each neuron (Valente et al., 2022). Specifically,
we enforced a one-to-one mapping between the recorded and
simulated neurons while minimizing the reconstruction error
L:
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Here J represents the network connectivity matrix and ¢ is
tanh. In addition to inputs from other neurons, scaled by J,
each neuron receives feed-forward Nj, input signals u'(¢) via
the weights I’ and independent noise & ~ A(0,0.1). For the
task modelled here, the network received 6 inputs (color, stim-
ulus and 4 different cues) which were delivered to all neurons,
except to those in PFC and FEF.

After fitting, we performed two types of experiments, that
we detail below. Namely, we blocked across-region interac-
tions (during testing or training) and partitioned across-region
inputs.
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Figure 2: a) lllustration of multi-region RNN and b) cross-validated
reconstruction error for different baselines. ¢) First 3 PCs of original
data and model fits, separatedly for each region.
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Figure 3: a) Difference in reconstruction error (ARZ) when blocking
across-region communication during testing (left) or training (right).
b) Visualization of strongest 50% of all the pairwise ARZ. Line tricki-
ness represent larger impact.

Blocking of across-region communication.

We blocked across-region communication during testing and
training and compared the full model with the perturbed model
(Fig. 3a). Removing incoming interactions from all regions us-
ing both approaches revealed the canonical brain hierarchy:
more frontal regions (e.g. PFC, FEF) integrate information
globally, in contrast to sensory regions seem to integrate less
(e.g. MT, V4). We also visualized this result during testing in
a communication graph (Fig. 3b) by blocking communication
between each possible pairs of regions and comparing the im-
pact on the model predictability (AR?). In (Fig. 3b), we show
the cases where we saw the strongest (mean-split) impact in
blocking across-region communication.

Partitioning inputs.

In this particular analyses, we ran the model forward 10 times,
each for 2 colors x 2 directions x 2 context (8) conditions and
saved each unit’s activation in 10 data tensors X, with shape
8 X T x N. Note that we trained the model on all the conditions
(cross-validated), but for easier visualisation in this analyses
we ran the model forward for a subset of 2 stimuli, correspond-
ing to the extreme values (circles in Fig. 1 a). In what follows,
we report the analyses performed at r = 0.2s, a period during
stimulus presentation when the animal did respond yet (red ar-
row in Fig. 1a), resulting in a C x N activity matrix. Using an
approach similar to (Perich et al., 2020), we then partitioned
the inputs from recurrent interactions (within-area) from those
resulting from across-area interactions. Specifically, to esti-
mate the inputs from a source to a target region (s — ¢), we
projected the source area activity X;ourc. ONto the connectivity
block of J corresponding to the interactions between both re-
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Figure 4: a) First two principle components of selected interac-
tions between V4, FEF and PFC illustrated on the top. On the left,
it suggests that V4 compresses direction in its interactions. On the
right, FEF shows context-dependent (with PFC) and area-dependent
compression. b) Compression ratio for all source-target pairs and
both contexts. €) Averaging compression ratios across target areas,
suggests that sensory areas always compress their non-preferred
stimulus (e.g. MT compresses color, V4 compresses direction),
while frontal areas show context-dependent compression of the irrel-
evant stimulus. Preliminary analyses show that the level of context-
dependent compression depends on which areas receive direct stim-
uli inputs (not shown)

gions J;_, resulting in the projection X;_; = JL, X;ource. FoOr
each source-target pair we considered 4 projections: X0/
Xdirection - xcolor gng xdirection - corresponding to within- and
across-area activity projections and for each context sepa-
rately. To visualize these high-dimensional projections, we
plotted their first two principal components (Fig. 4a). Visually
inspecting these 2D plots, we observed that sensory areas
(V4, MT and IT) projected only one variable (color or direction)
while compressing others, irrespective of the context or down-
stream area (see Fig. 4a, left for two examples). In contrast,
we observed that the prefrontal cortex (PFC) and frontal eye
fields (FEF) projected different information depending on the
downstream area or context (see Fig. 4a, for two examples).
This suggested that PFC/FEF compressed the irrelevant stim-
ulus in their projection to frontal areas but not as much towards
sensory areas. In the following we describe how we quantify
these observations in the original high-dimensional spaces.

Compression of stimulus information.

We used Linear discriminant analysis (LDA) to quantify the
amount of information related to color and direction separately,
and from each of the four projections described above, result-
ing in 8 decoding values. For example, D¢ (color) for
the decoding of color from the cross-area activity subspace
(from s to ¢) during the direction context. We then devised a
compression metric by comparing the decoding before and af-
ter a communication layer. For example, for the compression
of color information during the color context and due to the
interaction s — ¢:

direction
Dsource (COlOV)

Cdirection
Ddirection(color)

s (color) = ()
Using this metric, we found that information was compressed
in all projections for all stimuli and during both contexts (not
shown). To see if compression was biased for some stimuli or
context, we devised a final metric that we called compression
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ratio:

[Ceontext (color) — CEMeX (direction)]

[CEottext (color) + CEoM e (direction))

Assuming compression values are positive (which they em-
pirically turned out to be; not shown), this ratio varies be-
tween -1 and 1. More negative values show that direction is
more strongly compressed by the s — ¢ layer in the consid-
ered context, and positive values that color is more strongly
compressed in that same context. In Fig. 4b, we report this
ratio for all area pairs. As suggested in the selected exam-
ples (Fig. d), PFC and FEF show context-dependent projec-
tions towards frontal-parietal areas (PFC, FEF, LIP, Parietal)
but less so for sensory areas. On the other hand, sensory ar-
eas compress their non-preferred, regardless of the context.
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