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Abstract
Despite significant advances in graph representation learning, little attention has1

been paid to graph data in which new categories of nodes (e.g., new research2

areas in citation networks or new types of products in co-purchasing networks)3

and their associated edges are continuously emerging. The key challenge is to4

incorporate the feature and topological information of new nodes in a continuous5

and effective manner such that performance over existing nodes is uninterrupted. To6

this end, we present Hierarchical Prototype Networks (HPNs) which can adaptively7

extract different levels of abstract knowledge in the form of prototypes to represent8

continually expanded graphs. Specifically, we first leverage a set of Atomic Feature9

Extractors (AFEs) to generate basic features which can encode both the elemental10

attribute information and the topological structure of the target node. Next, we11

develop HPNs by adaptively selecting relevant AFEs and represent each node12

with three-levels of prototypes, i.e., atomic-level, node-level, and class-level. In13

this way, whenever a new category of nodes is given, only the relevant AFEs14

and prototypes at each level will be activated and refined, while others remain15

uninterrupted. Finally, we provide the theoretical analysis on memory consumption16

bound and the continual learning capability of HPNs. Extensive empirical studies17

on eight different public datasets justify that HPNs are memory efficient and can18

achieve state-of-the-art performance on different continual graph representation19

learning tasks.20

1 Introduction21

Graph representation learning aims to pursue a meaningful vector representation of each node so as22

to facilitate downstream applications such as node classification, link prediction, etc. Traditional23

methods are developed based on graph statistics [23] or hand-crafted features [3, 16]. Recently,24

a great amount of attention has been paid to graph neural networks (GNNs), such as graph con-25

volutional network (GCNs) [12], GraphSAGE [10], Graph Attention Networks (GATs) [31], and26

their extensions [34, 6, 41, 14, 7, 24, 38]. This is because they can jointly consider the feature and27

topological information of each node. Most of these approaches, however, focus on static graphs and28

cannot generalize to the case when new categories of nodes are emerging.29

In many real world applications, different categories of nodes and their associated edges (in the form30

of subgraphs) are often continuously emerging in existing graphs. For instance, in a citation network31

[27, 32, 20], papers describing new research areas will gradually appear in the citation graph; in a32

co-purchasing network such as Amazon [4], new types of products will continuously be updated to33

the graph. Given these facts, how to incorporate the feature and topological information of new nodes34

in a continuous and effective manner such that performance over existing nodes is uninterrupted is a35

critical problem to investigate.36

To address this issue, various types of continual learning approaches can be considered. Existing37

continual learning techniques fall into three main categories, i.e., regularization-based methods that38

penalize (or reward) their model objectives so as to maintain satisfactory performance on previous39

tasks [11, 9, 26], e.g., Learning without Forgetting (LwF) [15] and Elastic Weight Consolidation40

(EWC) [13]; memory-replay based methods that constantly feed a model with representative data41
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or exemplars of previous tasks to prevent them from being forgotten [18, 28, 2, 5, 8], e.g., Gradient42

Episodic Memory (GEM) [18]; and parametric isolation based methods that adaptively introduce43

new parameters for new tasks and avoid the existing parameters of previous tasks being drastically44

changed [25, 36, 35, 33]. Although these approaches exhibited promising performance in mitigating45

the problem of catastrophic forgetting in different applications, e.g., image classification, action46

recognition, and reinforcement learning, they are not suitable for continual graph representation47

learning since both the feature information and topological structure of the target node need to be48

considered appropriately.49

More recently, Zhou et al. [39] proposed to store a set of representative experience nodes in a buffer50

and replay them along with new tasks (categories) to prevent forgetting existing tasks (categories).51

The buffer, however, only stores node features and ignores the topological information of graphs.52

Liu et al. [17] developed topology-aware weight preserving (TWP) that can preserve the topological53

information of existing graphs. However, its design hinders the capability of learning topology on54

new tasks (categories). Note that continual graph representation learning is essentially different from55

dynamic graph works which mainly concern time dependent graphs in which nodes and (or) edges56

change over time [37, 21, 40, 19]. Therefore, the methods developed for dynamic graphs cannot be57

directly applied to this task.58

A desired learning system for continual graph representation learning is to continuously grasp59

knowledge from new categories of emerging nodes and capture their topological structures without60

interfering with the learned knowledge over existing graphs. To this end, we present a completely61

novel framework, i.e., Hierarchical Prototype Networks (HPNs), to continuously extract different62

levels of abstract knowledge (in the form of prototypes) from graph data such that new knowledge63

will be accommodated while earlier experience can still be well retained. Within this framework,64

representation learning is simultaneously conducted to avoid catastrophic forgetting, instead of65

considering these two objectives separately. Specifically, based on the assumption that each node66

can be decomposed into basic atomic characteristics belonging to a set of attributes (e.g., gender,67

nationality, hobby, etc.) and the relationship between a pair of nodes can be categorized into different68

types (e.g., trust or distrust in a social network), we develop the Atomic Feature Extractors (AFEs)69

to decompose each node into two sets of atomic embeddings, i.e., atomic node embeddings which70

encode the node feature information and atomic structure embeddings which encode its relations to71

neighboring nodes within multi-hop. Next, we present Hierarchical Prototype Networks to adaptively72

select, compose, and store representative embeddings with three levels of prototypes, i.e., atomic-73

level, node-level, and class-level. Given a new node, only the relevant AFEs and prototypes in each74

level will be activated and refined, while others are uninterrupted. Eventually, each node can be75

represented with a tri-level prototypes which encode its feature as well as structure information from76

different abstract levels and can be used for downstream tasks such as node classification. Finally, we77

provide the theoretical analysis for the memory consumption upper bound of HPNs and its continual78

learning capability. To summarize, the main contributions of our work include:79

• We present a novel framework, i.e., Hierarchical Prototype Networks (HPNs), to contin-80

uously extract different levels of abstract knowledge (in the form of prototypes) from the81

graph data such that new knowledge will be accommodated while earlier experience can be82

well retained.83

• We provide the theoretical analysis for the memory consumption upper bound of HPNs and84

its continual learning capability.85

• Our experiment results on eight different public datasets demonstrate that the proposed86

HPNs not only achieve state-of-the-art performance, exhibiting good continual learning87

capability, but also use less parameters (more efficient). For instance, on OGB-Products88

dataset that contains more than 2 million nodes and 47 categories of nodes, HPNs achieves89

around 80% accuracy with only thousands of parameters.90

2 Hierarchical Prototype Networks91

In this section, we first state the problem we aim to study and the notations. Then we present92

Hierarchical Prototype Networks (HPNs) that consist of two core modules, i.e., Atomic Feature93

Extractor (AFEs) and Hierarchical Prototype Networks (HPNs), as shown in Figure 1. AFEs serve to94

extract a set of atomic features from the given graph, and the HPNs aim to select, compose, and store95

the representative features in the form of different levels of prototypes. During the training stage,96

each node will only refine the relevant AFEs and prototypes of the model without interfering with the97
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Figure 1: The framework of HPNs. On the left, subgraphs from different tasks come in sequentially. Given a node
v. uj

k denotes the j-th sampled node from k-hop neighbors. In the middle, node v and the sampled neighbors
are fed into the selected AFEs to get atomic embeddings, which are either matched to existing A-prototypes or
used as new A-prototypes. The selected A-prototypes are further matched to a N- and a C-prototype for the
hierarchical representation, which is finally fed into the classifier to perform node classification.

irrelevant parts (i.e., to avoid catastrophic forgetting). In the test stage, the model will activate the98

relevant AFEs and prototypes to perform the inference.99

2.1 Problem Statement and Notations100

We study continual learning on graphs that have new categories of nodes and associated edges (in the101

form of subgraphs) emerging in a continuous manner. In the context of continual learning, assuming102

we have a sequence of p tasks {T i|i = 1, ..., p}, in which each task T i aims to learn a satisfied103

representation for a new subgraph Gi consisting of nodes belonging to some new categories. A104

desired model should maintain its performance on all previous tasks after being successively trained105

on the sequence of p tasks from T 1 to T p.106

For simplicity, we omit the subscripts in this section. Full notations will be used in the theoretical107

analysis. Each graph G consists of a node set V = {vi|i = 1, ..., N} with N nodes and an edge set108

E = {(vi, vj)} denoting the connections of nodes in V. Each node vi can be represented as a feature109

vector x(vi) ∈ Rdv that encodes node attributes, e.g., gender, nationality, hobby, etc. The set of l-hop110

neighboring nodes of vi is defined as N l(vi), with N 0(vi) = {vi}.111

2.2 Atomic Feature Extractors112

Based on the assumption that different nodes can be decomposed into basic atomic characteristics113

belonging to a set of attributes (e.g., gender, nationality, hobby, etc.) and the relations between a114

pair of nodes can also be categorized into different types (e.g., trust or distrust in a social network),115

we develop Atomic Feature Extractors (AFEs) to consider two different sets of atomic embeddings,116

i.e., atomic node embeddings which encode the node features and atomic structure embeddings117

that encode its relations to neighbors within multi-hop. Specifically, to ensure that each node can118

be represented as different combinations of a subset of atomic features, AFEs are designed as119

learnable linear transformations AFEnode = {Ai ∈ Rdv×da |i ∈ {1, ..., la}} and AFEstruct = {Rj ∈120

Rdv×dr |j ∈ {1, ..., lr}}where Ai and Rj are real matrices to encode atomic node and structure121

information, respectively. la and lr denotes the cardinality of AFEnode and AFEstruct, respectively.122

Given a node v, a set of atomic node embeddings is obtained by applying AFEnode to the feature123

vector x(v):124

Enode
A (v) = {xT (v)Ai|Ai ∈ AFEnode}. (1)

To obtain atomic structure embeddings, the multi-hop neighboring nodes of v have to be considered.125

We first uniformly sample a fixed number of vertices from 1-hop up to h-hop neighborhood, i.e.,126

Nsub(v) ⊆
⋃

l∈{1,...,h}
N l(v). Then these selected nodes are embedded via projection matrices in127

AFEstruct to encode different types of interactions with the target node v:128

Estruct
A (v) = {xT (u)Ri|Ri ∈ AFEstruct, u ∈ Nsub}. (2)
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Finally, the complete atomic feature set of target node v is:129

EA(v) = Enode
A (v) ∪ Estruct

A (v). (3)

Note that Ai and Ri are designed to generate different types of atomic features. To ensure that, we130

impose a divergence loss on AFEs to ensure they are be uncorrelated with each other and thus can131

map features to different subspaces:132

Ldiv =
∑
i 6=j

AT
i Aj +

∑
i 6=j

RT
i Rj . (4)

2.3 Hierarchical Prototype Networks133

With the atomic features extracted based on AFEs, hierarchical prototype networks (HPNs) will select,134

compose, and store representative features in the form of different levels of prototypes as shown in135

Figure 1. This is mainly achieved by refining existing prototypes and creating new prototypes only136

when necessary. Specifically, HPNs will produce three different levels of prototypes, i.e., atomic-137

level prototypes (A-prototypes), node-level prototypes (N-prototypes), and class-level prototypes138

(C-prototypes). From atomic-level to class-level, the prototypes denote abstract knowledge of the139

graph at different scales which is analog to the feature maps of convolutional neural networks at140

different layers.141

We first introduce how HPNs can refine existing prototypes. For each task that contains certain142

categories of nodes, instead of using all atomic embeddings generated by existing AFEs, HPNs only143

select a small and fixed number of AFEs from both AFEnode and AFEstruct which are more relevant144

to the given task. In this way, only the relevant AFEs are refined while others remain uninterrupted.145

Specifically, as shown in Figure 1, given a node from an incoming subgraph, each AFE is used to146

generate an embedding. Those AFEs with embeddings that are closer to existing A-prototypes are147

deemed as more confident ones and chosen. Formally, we first obtain Enode
A (v) and Estruct

A (v) via Eq.148

(1) and Eq. (2), respectively. Then, we calculate the maximum cosine similarity between atomic149

embeddings of each AFE (ei) and the A-prototypes as:150

SimMAXid
i = max

p
(

eTi p

‖ei‖2‖p‖2
), ei ∈ Eid

A(v),p ∈ PA, (5)

where id ∈ {node, struct}, i ranges from 1 to la (or lr), and PA is the atomic prototype set containing151

all A-prototypes. After that, we sort the AFEs in a descending order according to SimMAXid
i as152

AFEsort
node = {Ai′ ∈ Rdv×da |i′ ∈ {1, ..., la}} and AFEsort

struct = {Rj′ ∈ Rdv×dr |j′ ∈ {1, ..., lr}}.153

Finally, we select the top l′a and top l′r ranked AFEs from these two sets as AFEselect
node and AFEselect

struct ,154

respectively. l′a and l′r are fixed hyperparameters with l′a ≤ la and l′r ≤ lr. The atomic embeddings155

generated by these selected AFEs are denoted as Eselect
A (v).156

Based on Eselect
A (v), HPNs then starts to distill representative features, which is conducted by refining157

existing prototypes and creating new prototypes simultaneously. A matching process is first conducted158

between the Eselect
A (v) and PA to recognize the atomic features that are compatible with exiting A-159

prototypes and those ones to be accommodated with new A-prototypes. Formally, we measure the160

cosine similarity between elements in Eselect
A (v) and elements in PA as161

SimE→A(v) = {
eTi p

‖ei‖2‖p‖2
|ei ∈ Eselect

A (v),p ∈ PA}. (6)

The atomic embeddings that are compatible with existing A-prototypes are these ones with cosine162

similarity not less than a certain threshold tA to have at least one existing A-prototype, i.e.,163

Eold(v) = {ei| ∃p ∈ PA s.t.
eTi p

‖ei‖2‖p‖2
> tA}. (7)

Eold(v) collects a set of atomic embeddings satisfying the previous condition and can be used to164

refine PA. To this end, a distance loss Ldis is computed to enhance the cosine similarity between165

each ei ∈ Eold(v) and its corresponding A-prototype pi ∈ PA, i.e.,166

Ldis = −
∑

ei∈Eold(v)

eTi pi

‖ei‖2‖pi‖2
(8)

By minimizing Ldis, not only the existing A-prototypes in PA will get refined, the atomic embeddings167

will also be closer to ‘standard’ A-prototypes.168
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Algorithm 1: Learning Procedure for HPNs.
Input :Task sequence: {T1, ..., Tp}, HPNs

1 for T ← 1 to p do
2 Get the data of the current task: V, E, X(V) = {x(v)|v ∈ V}.
3 Select AFEselect

node and AFEselect
struct .

4 Compute L = HPNs(V,X(V),E).
5 L = HPNs(V,X(V),E).
6 Optimize L.

Output :updated HPNs

Next, we discuss how to deal with the atomic embeddings that are not close to any existing prototypes,169

i.e., Enew(v) = Eselect
A (v)\Eold(v) or Enew(v) = {ei| ∀p ∈ PA,

eT
i p

‖ei‖2‖p‖2 < tA}.170

Contrary to Eold(v), atomic embeddings in Enew(v) are regarded as new atomic features of the171

corresponding AFEs. In this case, new prototypes should be generated to accommodate them.172

Considering that very similar embeddings may exist in Enew(v) and cause HPNs to create redundant173

prototypes, we first filter Enew(v) into E′new(v) to keep only the representative ones such that174

∀ei, ej ∈ E′new(v),
eTi ej

‖ei‖2‖ej‖2
< tA. (9)

Then, E′new(v) is included into PA as new A-prototypes, which will be further refined in the future.175

PA = PA ∪ E′new(v). (10)

After generating new prototypes, the matching will be conducted to get a new SimE→A(v) in which176

each element is not less than tA. Then each element in Eselect
A (v) is assigned a closest A-prototype177

according to SimE→A(v), and each node is associated with a set of atomic prototypes A(v).178

To map A(v) to high level prototypes so as to obtain hierarchical prototype representations. A(v) is179

firstly mapped to a N-prototype denoting the overall features of v. We assume that N-prototypes lie180

in a dn dimensional space and a fully connected layer is applied to transform A(v) into the new space181

EN (v) = FCA→N (a1 ⊕ · · · ⊕ al′a+l′r
),∀ai ∈ A(v), where ⊕ denotes the concatenation operator.182

With EN (v), we then find a matching N-prototype or establish a new one, which is similar to the183

process at atomic level except that the threshold is set as tN , instead of tA. Learning class-level184

prototypes from node-level prototypes is same except that we set the matching threshold as tC .185

Finally, the hierarchical prototype representations of the target node is contained in the following set186

PH(v) = A(v) ∪ N(v) ∪ C(v). (11)

Note that A(v) contains multiple A-prototypes denoting atomic features of v from different aspects.187

N(v) and C(v) only contain one N-prototype and one C-prototype, representing the overall character-188

istics of v and the common characteristics shared by the community containing v, respectively.189

2.4 Learning Objective190

The obtained hierarchical prototypes for each node are first concatenated into a unified vector and191

then pass through a fully connected layer FC to obtain a c (the number of classes) dimensional192

feature vector, i.e., FC(h1 ⊕ · · · ⊕ hl′a+l′r+2),∀hi ∈ PH(v). In this paper, we aim to perform node193

classification. Therefore, based on the c dimensional feature vector and the softmax function σ(·),194

we can estimate the label with ŷi = σ(FC(h1 ⊕ · · · ⊕ hl′a+l′r+2))i where i is the index of class. To195

perform node classification, with the output predictions ŷi and the target label yi ∈ {1, 2, ..., c}, the196

corresponding classification loss is given by197

Lcls =

c∑
i=1

−yi log(ŷi), (12)

198
which is essentially the cross entropy loss function. Note that besides node classification, PH(v) may199

also be used for other tasks based on different objective functions. In this paper, we focus on node200

classification and the overall loss of HPNs is:201

L = Ldis + Ldiv + Lcls. (13)

During the training stage, subgraphs with different tasks (containing different categories of nodes) are202

continuously fed to HPNs. Note that unlike topology-aware weight preserving (TWP) method [17],203

HPNs do not require task indicator for training and test, and therefore is more practical for real-world204

continual graph representation learning applications.205
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2.5 Theoretical Analysis206

In this subsection, we provide the theoretical upper bound for the memory consumption and analyze207

how the model configuration would affect HPNs’ capacity in dealing with different tasks. Both208

theoretical results are justified and analyzed in the experiments. Only the main results are provided209

here, while the detailed proof and analysis are given in Appendix.210

We first show that the numbers of different prototypes are upper bounded by the number of atomic211

feature extractors and the dimension of the prototypes. Specifically, we have:212

Theorem 1 (Upper bounds for numbers of prototypes). Given the notations defined in HPNs, the213

upper bound for the number of A-prototypes na can be given by214

nA 6 (la + lr)max
N

S(da, N, 1− tA), (14)

and the upper bounds for the number of N-prototypes and the C-prototypes are:215

nN 6 max
N

S(dn, N, 1− tN ) and nC 6 max
N

S(dc, N, 1− tC) (15)

where S(n,N, t) is the spherical code defined on a n dimensional hypersphere (details in Appendix).216

Theorem 1 provides an upper bound for the memory consumption of HPNs. In our experiments, we217

show that the number of parameters for most baseline methods are even higher than this upper bound.218

Besides memory consumption, the more important problem for a continual learning model is the219

capability to maintain memory on previously learned tasks. Based on our model design, we formulate220

this as: whether learning new tasks affect the representations the model generates for old task data.221

We give explicit definitions on tasks and task distances based on set theory (in Appendix), then222

construct a bound to indicate what configuration would the model have to ensure this capability.223

Theorem 2 (Task distance preserving). For HPNs trained on consecutive tasks T p and T p+1.224

If lada + lrdr > (lr + 1)dv and W is column full rank, then as long as tA < λmin(lr +225

1)dist(Vp,Vp+1), learning on T p+1 will not modify representations HPNs generate for data from226

T p , i.e. catastrophic forgetting is avoided.227

In Theorem 2, λi is eigenvalues of the WTW, where W is a matrix constructed via AFEs (details in228

Appendix). dv , da and dr are dimensions of data and two kinds of atomic embeddings. The bound in229

this theorem is not tight, as the tight bound would be dependant on the specific dataset properties.230

But this informs us that either the number of AFEs or the dimension of the prototypes has to be large231

enough to ensure that data from two tasks can be well separated in the representation space.232

According to Theorem 1, the upper bound of the memory consumption is dependent on S(da, N, tA),233

S(dn, N, tN ), and S(dc, N, tC). As S(n,N, t) grows fast with n, we prefer larger number of AFEs234

with smaller prototype dimensions. We also empirically demonstrate this in Section 3.6. Besides, the235

upper bound proposed in Theorem 1 is explicitly computed and compared to experimental results.For236

both theorems, proofs and detailed explanations are included in Appendix.237

3 Experiments238

In the experiments, we answer the following six questions: (1) Whether HPNs can outperform239

state-of-the-art approaches? (2) How does each component of HPNs contribute to its performance?240

(3) Whether HPNs can memorize previous tasks after learning each new task? (4) Are HPNs sensitive241

to the hyperparameters? (5) Whether the theoretical results can be empirically verified? (6) Whether242

the learned prototypes can be interpreted via visualization?243

3.1 Datasets244

To assess the effectiveness of the proposed HPNs, we consider 8 datasets which include 3 citation245

networks (Cora [27], Citeseer[27], OGB-Arxiv [32, 20]), 3 web page networks (Wisconsin, Cornell,246

Texas) [22], 1 actor co-occurence network (Actor) [22], and 1 product co-purchasing networks247

(OGB-Products [4]). Detailed statistics about these datasets are provided in the Appendix.248

Among these datasets, the results of 4 datasets, i.e., Cora, Citeseer, OGB-Arxiv (169,343 nodes,249

1,166,243 edges), and OGB-Products (2,449,029 nodes, 61,859,140 edges), are reported in the paper250

and the results of other 4 datasets are available in the Appendix.251

3.2 Experimental Setup and Evaluation Metrics252

To perform continual graph representation learning with new categories of nodes continuously253

emerging, we adopt a class-incremental scheme for all datasets. Each new task brings a subgraph with254

new categories of nodes and associated edges, e.g., task 1 contains classes 1 and 2, task 2 contains255
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Table 1: Performance comparisons between HPNs and baselines on 4 different datasets.

C.L.T. Base Cora Citeseer OGB-Arxiv OGB-Products
AM/% FM/% AM/% FM /% AM/% FM /% AM/% FM /%

None
GCN 63.5±1.9 -42.3±0.4 64.5±3.9 -7.7±1.6 56.8±4.3 -19.8±3.2 45.2±5.6 -27.8±7.1
GAT 71.9±3.8 -33.1±2.3 66.8±0.9 -19.6±0.3 54.3±3.5 -21.76± 4.6 44.9±6.9 -30.3±5.2
GIN 68.3±2.3 -35.4±3.4 57.7±2.3 -36.4±0.3 53.2± 6.5 -23.59±8.1 43.1±7.4 -31.4±8.8

EWC
[13]

GCN 63.1±1.2 -42.7±1.6 54.4±4.2 -30.3±0.9 72.1±2.4 -9.1±1.9 66.7±0.5 -8.4±0.4
GAT 72.2±1.5 -32.2±1.6 65.7±2.5 -19.7±2.3 73.2±1.1 -10.8±2.1 67.9±1.0 -9.65±1.3
GIN 69.6±2.6 -28.5±2.8 57.9±3.4 -36.3±2.4 74.1±1.7 -8.3±2.0 67.3±2.3 -13.6±1.5

LwF
[15]

GCN 76.1±1.4 -21.3±2.4 67.0±0.2 -8.3±2.7 69.9± 3.9 -12.1±2.8 66.3±2.5 -11.8±3.4
GAT 70.8±2.8 -34.6±4.1 66.1±4.1 -18.9±1.5 68.9±4.4 -13.6±3.3 65.1±4.1 -13.2±2.9
GIN 74.1±2.7 -23.3±0.8 63.1±1.9 -16.5±2.2 71.4±4.8 -15.9±5.6 65.9±4.0 -10.7±3.1

GEM
[18]

GCN 75.7±3.0 -6.5±4.4 41.8±2.6 -31.9±1.4 75.4±1.7 -13.6±0.5 71.3±1.7 -10.5±0.9
GAT 69.8±3.0 -26.1±2.6 71.3±2.2 +9.0±1.5 76.6±0.7 -11.3±0.4 70.4±0.8 -10.9±1.6
GIN 80.2±3.3 -2.0±4.2 49.7±0.5 -24.5±0.9 77.3±2.1 -11.2±1.6 76.5±3.3 -7.2±2.5

MAS
[1]

GCN 65.5±1.9 -21.4±3.7 59.5±3.1 -0.1±2.4 69.8±0.4 -18.8±0.9 62.0±1.1 -17.9±1.9
GAT 84.7±0.7 -5.6±2.0 69.1±1.1 -4.8±3.3 70.6±1.3 -16.7±1.6 64.4±2.3 -14.5±3.2
GIN 76.7±2.6 -4.0±3.6 65.2±3.9 +0.0±2.0 65.3±2.9 -17.0±2.3 61.4±3.8 -20.9±2.9

ERGN.
[39]

GCN 63.5±2.4 -42.3±0.7 54.2±3.9 -30.3±1.9 63.3±1.7 -18.1±0.9 60.7±2.8 -26.6±3.3
GAT 71.1±2.5 -34.3±1.0 65.5±0.3 -20.4±3.9 63.5±2.4 -19.5±1.9 61.3±1.7 -25.1±0.8
GIN 68.3±0.4 -35.4±0.4 57.7±3.1 -36.4±1.3 69.2± 1.8 -11.8±1.4 61.8±4.7 -23.4±7.9

TWP
[17]

GCN 68.9±0.9 -5.7±1.5 60.5±3.8 -0.3±4.4 75.6±0.3 -10.4±0.5 69.9±0.4 -9.0±1.1
GAT 81.3±3.2 -14.4±1.5 69.8±1.5 -8.9±2.6 75.8±0.5 -5.9±0.3 69.3±2.3 -8.9±1.5
GIN 73.7±3.2 -3.9±2.6 68.9±0.7 -2.4±1.9 76.6±1.8 -11.3±1.1 69.9±1.4 -10.3±2.7

Join.
GCN 93.7± 0.5 0.0±0.0 78.9± 0.4 0.0±0.0 77.2±0.8 0.0±0.0 72.9±1.2 0.0±0.0
GAT 93.9± 0.9 0.0±0.0 79.3± 0.8 0.0±0.0 81.8±0.3 0.0±0.0 73.7±2.4 0.0±0.0
GIN 93.2± 1.2 0.0±0.0 78.7± 0.9 0.0±0.0 82.3±1.9 0.0±0.0 77.9±2.1 0.0±0.0

HPNs 93.7±1.5 +0.6±1.0 79.0±0.9 -0.6±0.7 85.8± 0.7 +0.6±0.9 80.1±0.8 +2.9±1.0

Figure 2: (a) and (b) are AM and FM of HPNs with different number of AFEs and prototype dimensions on
OGB-Arxiv. (c) and (d) are AM and FM change with when tA varies on Cora.

new classes 3 and 4, etc. Each model is trained on a sequence of tasks, and the performance will be256

evaluated on all previous tasks. Specifically, we adopt accuracy mean (AM) and forgetting mean (FM)257

as metrics for evaluation. After learning on all tasks, the AM and FM are computed as the average258

accuracy and the average accuracy decrease on all previous tasks. Negative FM indicates the existence259

of forgetting , zero FM denotes no forgetting and positive FM denotes positive knowledge transfer260

between tasks. For HPNs, we set da = dn = dc = 16, la = lr = 22, and h = 2. The threshold tA,261

tN , and tC are selected by cross validation on {0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}. The262

experiments on the important hyperparameters are provided in Section 3.6. All experiments are run263

on an Nvidia Titan Xp GPU. Full implementation details are in Appendix, and the code is available264

in supplementary materials.265

3.3 Comparisons with Baseline Methods266

We compare HPNs with various baseline methods. Experience Replay based GNN (ERGNN) [39]267

and Topology-aware Weight Preserving (TWP) [17] are developed for continual graph representation268

learning. The others approaches, including Elastic Weight Consolidation (EWC) [13], Learning with-269

out Forgetting (LwF) [15], Gradient Episodic Memory (GEM) [18], and Memory Aware Synapses270

(MAS) [1]) are popular continual learning methods for Euclidean data. All the baselines are imple-271

Table 2: Ablation study on prototypes of different
levels of prototypes over Cora.

Conf. A-p. N-p. C-p. AM% FM%

1 X 89.2±1.3 -0.1±0.5

2 X X 91.7±1.1 -0.2±0.8

3 X X X 93.7±1.5 +0.6±1.0

Table 3: Ablation study on different loss terms over
Cora.

Conf. Lcls Ldiv Ldis AM% FM%

1 X 92.4±1.3 +0.8±0.7

2 X X 92.9±1.1 +0.3±1.0

3 X X 92.8±0.9 +0.0±1.2

4 X X X 93.7±1.5 +0.6±1.0
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Figure 3: Left: dynamics of ARS for continual learning tasks on OGB-Arxiv. Middle: impact of tA on the
number of prototypes in HPNs over Cora. Right: dynamics of memory consumption of HPNs on OGB-Products.

Table 4: Final parameter amount for models trained on OGB-Products
None EWC LwF GEM MAS ERGNN TWP Joint HPNs

GCN 2,336 46,720 4,672 2,202,336 2,336 6,738 9,344 2,336
GAT 20,032 400,640 40,064 2,220,032 20,032 24,432 80,128 20,032 4,908
GIN 2,352 47,040 4,704 2,202,352 2,352 6,752 9,408 2,352

mented based on three popular backbone models, i.e., Graph Convolutional Networks (GCNs) [12],272

Graph Attentional Networks (GATs) [31], and Graph Isomorphism Network (GIN) [34].273

Note that Joint training (Join.) in Table 1 does not represent continual learning. It allows a model to274

access data of all tasks at any time and thus is often used as an upper bound for continual learning.[29].275

In Table 1, we observe that regularization based approaches, e.g., EWC and TWP, generally obtain276

lower forgetting, but the accuracy (AM) is limited by the constraints. However, the forgetting277

problem of regularization based methods will become increasingly severe when the number of278

tasks is relatively large, as shown in Section 3.5. Memory replay based methods such as GEM279

achieve better performance without using any constraint. However, the memory consumption is280

higher (Section 3.7). HPNs significantly outperform all baselines without inheriting their limitations.281

Compared to regularization based methods, HPNs do not impose constraints to limit the model’s282

expressiveness, therefore the performance is much better. Compared to memory replay based methods,283

HPNs do not only perform better but also are memory efficient as shown in Section 3.7. Joint training284

(Join.) achieves comparable performance to HPNs on small datasets but is significantly worse on large285

OGB datasets. This is because joint training (Join.) is a multi-task setting, inter-task interference286

may cause negative transfer, which is not obvious on small datasets with only a few tasks but287

becomes prominent on large datasets with tens of tasks. In HPNs, different tasks can choose different288

combinations of the parameters and thus task interference is dramatically alleviated.289

3.4 Ablation Study290

We conduct ablation studies on different levels of prototypes and different combinations of three loss291

terms. In Table 2, we show the performance of HPNs when A-, N-, and C-Prototypes are gradually292

added (Cora dataset). We notice both AM and FM of HPNs increase when higher level prototypes293

are considered. This suggests that high level prototypes can enhance the model’s performance and294

robustness against forgetting.The effect of different combinations of loss terms are shown in Table 3.295

The first three rows show that adding Ldiv or Ldis with Lcls may slightly improve the performance.296

By jointly considering these three terms, the performance (AM) can be further improved. This is297

because Ldiv pushes different AFEs away from each other and Ldis makes the prototypes of each298

AFE be more close to its output. Jointly considering Ldiv and Ldis with Lcls can make the prototype299

space better separated as shown in Section 3.8.300

3.5 Learning Dynamics301

For continual learning, it is important to memorize previous tasks after learning each new task. To302

measure this, instead of directly measuring the average accuracy on previous tasks which may mix up303

the accuracy change caused by forgetting and task differences, we develop a new metric, i.e., average304

retaining score (ARS), to address this problem. Specifically, after learning on a task T i, the ratio305

between the model’s accuracy on a previous task T i−m and its accuracy on T i−m after it had been306

just learned on T i−m is defined as the retaining ratio. Then the ARS is the average retaining ratio of307

all previous tasks after learning a new task.308

Figure 3(left) shows the ARS change of HPNs and two baselines. GAT represents the models without309

continual learning techniques. TWP+GAT is the best baseline in terms of forgetting. GAT forgets310

quickly, while TWP significantly alleviates the forgetting problem for GAT. But as more tasks come311

in, the forgetting of TWP+GAT increases. As different tasks require different parameters, TWP+GAT312
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Figure 4: Visualization of hierarchical prototype representations of nodes in the test set of Cora.

(regularization based) is seeking a trade off between old and new tasks. With more new tasks,313

TWP+GAT tends to gradually adapt to new tasks and forget old ones. On contrary, HPNs maintain314

the ARS very well. This is because HPNs learn prototypes to denote the common basic features and315

learning new tasks does not hurt the parameters for old tasks. New tasks can be handled with new316

combinations of the existing basic prototypes. If necessary, new prototypes can be established for317

more expressiveness.318

3.6 Parameter Sensitivity319

As discussed in Section 2.5, the number of AFEs and the prototype dimensions are key factors320

in determining the continual learning capability and memory consumption. Here, we conduct321

experiments with different number of AFEs and prototype dimensions to justify the theoretical322

results. We keep the dimensions of different prototypes equal and the number of two types of AFEs323

equal for simplicity.324

As shown in Figure 2(a) and (b), larger dimensions and the number of AFEs yield better AM and325

FM, which is consistent with Theorem 2. Besides, AM is mostly determined by the number of AFEs326

since HPNs compose prototypes with different AFEs to represent each target node. The number of327

possible combinations determines its expressiveness. Considering the above results and the bound328

(Theorem 1) for the number of prototypes, using large number of AFEs and small dimension can329

ensure both high performance and low memory usage, as verified in Section 3.7.330

We also evaluate the effectiveness of HPNs when prototype thresholds vary from 0.01 to 0.4. Here,331

we set tA = tN = tC for simplicity. In Figure 2(c) and (d), we observe that the performance332

(AM and FM) of HPNs are generally stable when tA varies and slightly better when tA is between333

0.2 and 0.3. This is because when tA is too small or too large, we will have too many or too less334

prototypes (consistent with Theorem 1) as shown in Figure 3(middle), which may cause the problem335

of overfitting or underfiting.336

3.7 Memory Consumption337

We compare memory consumption of different methods, as well as a explicitly theoretical memory338

upper bound, with the baselines on OGB-Products (the largest dataset). We also show the actual339

memory consumption of HPNs in the process of continual learning.340

In Table 4, even on the dataset with millions of nodes and 23 tasks, HPNs can accommodate all tasks341

with a small amount of parameters. Besides, the dynamic change of parameter amount is shown in342

Figure 3(right). The red dashed line denotes the theoretical upper bound (6,163), and the computation343

details are included in Appendix. In Figure 3(right), we notice the actual memory usage of HPNs is344

much lower than the upper bound. Moreover, even the upper bound is among the lowest for memory345

consumption compared to baselines. The model we use here is the same as the one in Section 3.3346

3.8 Visualization347

To show that HPNs can generate interpretable prototype representations, we apply t-SNE [30] to348

visualize the node representations of the Cora dataset (test set) after learning each task. As shown in349

Figure 4, each task contains two classes corresponding to (red, blue), (green, salmon), and (purple,350

orange), as new tasks come in gradually, the representations are consistently well separated, which351

will be beneficial for downstream tasks.352

4 Conclusion353

In this paper, we proposed Hierarchical Prototype Networks (HPNs), to continuously extract different354

levels of abstract knowledge (in the form of prototypes) from streams of tasks on graph representation355

learning. The performance of HPNs is both theoretically and experimentally justified. In the future,356

we will apply HPNs to more application scenarios like link prediction, multi-label classification,357

anomaly detection, etc.358
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