
Proceedings of Machine Learning Research 2023 Symmetry and Geometry in Neural Representations

Expressive dynamics models with nonlinear injective
readouts enable reliable recovery of latent features from

neural activity

Christopher Versteeg1 Andrew R. Sedler1,2 Jonathan D. McCart1,2

Chethan Pandarinath1,2

1 Wallace H. Coulter Department of Biomedical Engineering

Emory University and Georgia Institute of Technology

Atlanta, GA, USA

2 Center for Machine Learning

Georgia Institute of Technology

Atlanta, GA, USA

Editors: Sophia Sanborn, Christian Shewmake, Simone Azeglio, Nina Miolane

Abstract

An emerging framework in neuroscience uses the rules that govern how a neural circuit’s
state evolves over time to understand the circuit’s underlying computation. While these
neural dynamics cannot be directly measured, new techniques attempt to estimate them
by modeling observed neural recordings as a low-dimensional latent dynamical system em-
bedded into a higher-dimensional neural space. How these models represent the readout
from latent space to neural space can affect the interpretability of the latent representa-
tion – for example, for models with a linear readout could make simple, low-dimensional
dynamics unfolding on a non-linear neural manifold appear excessively complex and high-
dimensional. Additionally, standard readouts (both linear and non-linear) often lack injec-
tivity, meaning that they don’t obligate changes in latent state to directly affect activity
in the neural space. During training, non-injective readouts incentivize the model to in-
vent dynamics that misrepresent the underlying system and computation. To address the
challenges presented by non-linearity and non-injectivity, we combined a custom readout
with a previously developed low-dimensional latent dynamics model to create the Ordinary
Differential equations autoencoder with Injective Nonlinear readout (ODIN). We generated
a synthetic spiking dataset by non-linearly embedding activity from a low-dimensional dy-
namical system into higher-D neural activity. We show that, in contrast to alternative
models, ODIN is able to recover ground-truth latent activity from these data even when
the nature of the system and embedding are unknown. Additionally, we show that ODIN
enables the unsupervised recovery of underlying dynamical features (e.g., fixed points) and
embedding geometry (e.g., the neural manifold) over alternative models. Overall, ODIN’s
ability to recover ground-truth latent features with low dimensionality make it a promising
method for distilling interpretable dynamics that can explain neural computation.

Keywords: Dynamical systems, Manifold, Modeling, Neural Networks

© 2023 .



1. Introduction
When artificial recurrent neural networks are trained to perform tasks, the rules that govern
how activity evolves over time (i.e., the network dynamics) provide insight into the underly-
ing computation [Sussillo and Barak (2013); Remington et al. (2018)]. As artificial networks
are conceptually similar to biological neural circuits, these dynamical analyses could also
help to understand how the brain performs complex sensory, cognitive, and motor computa-
tions [Vyas et al. (2020); Shenoy et al. (2013)]. However, without direct access to dynamics
of biological circuits, we are forced to estimate them from observed neural activity.

Fortunately, advances in recording technology have dramatically increased the number
of neurons that can be simultaneously recorded, supporting novel population-level analyses
of neural activity [Stevenson and Kording (2011); Steinmetz et al. (2021); Demas et al.
(2021)]. In these datasets, the activity of hundreds or thousands of neurons often falls
on a relatively low-dimensional latent subspace (i.e., a neural manifold) [Gao and Ganguli
(2015); Gallego et al. (2017)], orders-of-magnitude smaller than the total number of neurons.
Neural activity in these latent spaces evolves according to consistent sets of rules (i.e., latent
dynamics) [Duncker and Sahani (2021); Shenoy et al. (2013)], which, assuming no external
inputs, can be expressed mathematically as:

zt+1 = zt + f(zt) (1)

yt = exp g(zt) (2)

xt ∼ Poisson(yt) (3)

where zt ∈ RD represents the latent state at time t, f(·) : RD → RD is the vector field
governing the dynamical system, yt ∈ RN denotes the firing rates of the N neurons, g(·) :
RD → RN maps latent activity into log-firing rates, and xt ∈ RN denotes the observed
spike counts at time t, assuming the spiking activity follows a Poisson distribution with
time-varying rates given at each moment t by yt.

Unfortunately, any given observed neural activity can be equivalently described by many
combinations of dynamics f and embeddings g, which makes the search for a unique latent
system futile. However, versions of a latent system’s dynamics f and embedding g that
are less complex and use fewer latent dimensions can be easier to interpret than alternative
representations that are more complex and/or higher-dimensional.

Neural population dynamics models (NPDMs) are a popular approach to estimate neural
dynamics [Sussillo et al. (2016); Schimel et al. (2021); Sedler et al. (2023)]. NPDMs model
neural activity as a latent dynamical system embedded into neural activity. We refer to the
components of an NPDM that learn the dynamics and embedding as the generator f̂ and
the readout ĝ, respectively. The generator and readout are trained jointly to infer firing
rates ŷ that maximize the likelihood of the observed neural activity x.

Using NPDMs to estimate the underlying dynamics and embedding implicitly assumes
that good reconstruction performance (i.e., x̂ ≈ x) implies interpretable estimates of the
underlying system (i.e., ẑ ≈ z, f̂ ≈ f , ĝ ≈ g). However, recent work has shown that when
the state dimensionality of the generator D̂ is larger than a system’s latent dimensionality
D, high reconstruction performance may actually correspond to estimates of the latent
system that are overly complex or misleading and therefore harder to interpret [Sedler et al.
(2023)]. At present, reconstruction performance is seemingly an unreliable indicator for the
interpretability of the learned dynamics.



Injectivity enables reliable latent recovery

This vulnerability to learning overly complex latent features might emerge from the fact
that, without constraints on the readout ĝ, changes in the latent state are not obligated
to affect predicted neural activity. Thus, NPDMs can be rewarded for inventing latent
activity that boosts reconstruction performance, even if that latent activity has no direct
correspondence to neural activity. A potential solution is to make ĝ injective, which would
obligate all latent activity to affect neural reconstruction. This would penalize any latent
activity that is not reflected in the observed neural activity, thereby putting pressure on the
generator f̂ and readout ĝ to learn a more interpretable (i.e., simpler and lower dimensional)
representation of the underlying system.

In addition, most previously used readouts ĝ were not expressive enough to model diverse
mappings from latent space to neural space, assuming the embedding g to be a relatively
simple (often linear) transformation (though there are exceptions [Gao et al. (2016); Zhao
and Park (2020))]. Capturing nonlinear embeddings is important because neural activ-
ity often lives on a lower-dimensional neural manifold that is nonlinearly embedded into
the higher-dimensional neural space [Jazayeri and Ostojic (2021)]. Therefore, assumptions
of linearity are likely to prevent NPDMs from capturing dynamics in their simplest and
lowest-dimensional form, making them less interpretable than the latent features learned
by NPDMs that can approximate these nonlinearities.

To address these challenges, we propose a novel architecture called Ordinary Differen-
tial equation autoencoder with Injective Nonlinear readout (ODIN), which implements f̂
using a Neural ODE (NODE [Chen et al. (2019)]) and ĝ using a network inspired by in-
vertible ResNets [Dinh et al. (2014); Chen et al. (2019); Behrmann et al. (2019)]. ODIN
approximates an injective nonlinear mapping between latent states and neural activity, obli-
gating all latent state variance to appear in the predicted neural activity and penalizing
the model for using excessively complex or high-dimensional dynamics to model the under-
lying system. On synthetic data, ODIN learns representations of the latent system that
are more interpretable, with simpler and lower-dimensional latent activity and dynamical
features (e.g., fixed points) than alternative readouts. ODIN’s interpretability is also more
robust to overestimates of latent dimensionality and can recover the nonlinear embedding
of synthetic data that evolves on a simulated neural manifold. In summary, ODIN es-
timates interpretable latent features from synthetic data, making it a promising tool for
understanding how the brain performs computation.

2. Related Work
Many previous models have attempted to understand neural activity through the lens of
neural dynamics. Early efforts limited model complexity by constraining both f̂ and ĝ to
be linear [Macke et al. (2011); Archer et al. (2015)]. While these models were relatively
straightforward to analyze, they often failed to adequately explain neural activity patterns.

Other approaches increased the expressiveness of the modeled dynamics f̂ . RNNs can
learn to approximate complex nonlinear dynamics, and have been shown to substantially
outperform linear dynamics models in reconstructing neural activity [Pei et al. (2022)], but
their ability to model complex dynamics relies on having a high-dimensional latent state. In
contrast, NODEs can model arbitrarily complex dynamics of embedded dynamical systems
at the dimensionality of the system [Kim et al. (2021); Sedler et al. (2023)]. In contrast to
our approach, previous NODE-based models used a linear readout ĝ. This can make the
accuracy of estimated latent activity vulnerable to overestimates of the latent dimensionality



(i.e., when D̂ > D) and/or fail to capture potential nonlinearities in the embedding g (i.e.,
the neural manifold).

Early efforts to allow greater flexibility in ĝ preserved linearity in f̂ , using feed-forward
neural networks to nonlinearly embed linear dynamical systems in high-dimensional neu-
ral firing rates [Gao et al. (2016)]. More recently, models have used Gaussian processes
to approximate nonlinear mappings from latent state to neural firing with tuning curves
Wu et al. (2017). Other models have combined nonlinear dynamics models and nonlinear
embeddings for applications in behavioral tracking [Johnson et al. (2017)] and neural re-
construction [Zhao and Park (2020)]. While nonlinear, these models lacked injectivity in
their mapping from latent activity to neural activity.

Some latent variable models have used invertible networks to approximate the mapping
from the latent space to neural activity [Zhou and Wei (2020)] or for generative models of
visual cortex activity [Bashiri et al. (2021)]. However, these previous approaches did not
have explicit dynamics models, making our study, to our knowledge, the first to test whether
injective readouts improve the interpretability of neural population dynamics models.

3. Methods
3.1. Synthetic Neural Data
To determine whether different models can distill an interpretable latent system from ob-
served population activity, we first used reference datasets that were generated using simple
ground-truth dynamics f and embedding g. Our synthetic test cases emulate the empirical
properties of neural systems, specifically low-dimensional latent dynamics observed through
noisy spiking activity [Sussillo et al. (2016); Smith et al. (2021); Jensen et al. (2021)]. We
sampled latent trajectories from the Arneodo system (f , D = 3) and nonlinearly embedded
these trajectories into neural activity via an embedding g (i.e., a neural manifold). We
consider models that can recover the dynamics f and embedding g used to generate these
data as providing an interpretable description of the latent system and its relation to the
neural activity. Additional detail on data generation, models, and metrics can be found in
the Supplementary Material.

We generated activations for N neurons (N = 12) by projecting the simulated latent
trajectories Z through a 3×N matrix whose columns were random encoding vectors with
elements sampled from a uniform distribution U [−0.5, 0.5] (Fig. 1A, left). We standardized
these activations to have zero mean and unit variance and applied a different scaled sigmoid
function to each neuron, yielding a matrix of non-negative time-varying firing rates Y. The
scaling of each sigmoid function was evenly spaced on a logarithmic scale between 100.2 and
10. This process created a diverse set of activation functions ranging from quasi-linear to
nearly step-function-like (Fig. 1A, Activation Functions).

We simulated spiking activity X by sampling from inhomogeneous Poisson processes
with time-varying rate parameters equal to the firing rates Y of the simulated neurons
(Fig. 1A, right). We randomly split 70-point segments of these trials into training and
validation datasets (training and validation proportions were 0.8 and 0.2, respectively).

3.2. Model Architecture
We used three sequential autoencoder (SAE) variants in this study, with the main difference
being the choice of readout, ĝ(·). In brief, a sequence of binned spike counts x1:T was passed
through a bidirectional GRU encoder, whose final hidden states were converted to an initial



Injectivity enables reliable latent recovery

Figure 1: A) Synthetic data generation (left to right). Trajectories projected onto encod-
ing vectors produce activations. Sigmoidal nonlinearity converts activations into
firing rates. B) Zero-padded latent dynamics (green) are reversibly warped to
higher-dimensional neural activity (blue). C) Flow applies a sequence of K small
updates (parameterized by MLP). Reverse pass maps from neural to latent spaces
via serial subtraction of updates from same MLP.

condition ẑ0 via a mapping ϕ(·). A modified NODE generator unrolled the initial condition
into time-varying latent states ẑ1:T . These were subsequently mapped to inferred rates
via the readout ĝ(·) ∈ {Linear,MLP,Flow}. All models were trained for a fixed number
of epochs to infer firing rates ŷ1:T that minimize the negative Poisson log-likelihood of
the observed spikes x1:T . The computations each SAE performs are summarized by the
following set of equations:

hT =
[
hfwd

∣∣hbwd

]
= BiGRU(x1:T ) (4)

ẑ0 = ϕ(hT ) (5)

ẑt+1 = ẑt + α ·MLP(ẑt) (6)

ŷt = exp ĝ(ẑt) (7)

For models with Linear and MLP readouts, ϕ(·) was a linear map to RD̂. For models
with Flow readouts, ϕ(·) was a linear map to RN followed by the reverse pass of the Flow
(see Section 3.2.1). We unrolled the NODE using Euler’s method with a fixed step size
equal to the bin width and trained using standard backpropagation for efficiency. A scaling
factor (α = 0.1) was applied to the output of the NODE’s MLP to stabilize the dynamics
during early training. Readouts were implemented as either a single linear layer (Linear),
an MLP with two 150-unit ReLU hidden layers (MLP), or a Flow readout (Flow) which
contains an MLP with two 150-unit ReLU hidden layers. We refer to these three models as
Linear-NODE, MLP-NODE, and ODIN, respectively.

3.2.1. Flow Readout
The Flow readout resembles a simplified invertible ResNet [Behrmann et al. (2019)]. Flow
learns a vector field that can reversibly transform data between latent and neural represen-
tations (Figure 1B). The Flow readout has three steps: first, we increase the dimensionality
of the latent activity zt to match that of the neural activity by padding the latent state
with zeros. This corresponds to an initial estimate of the log-firing rates, log ŷt,0. Note that
zero-padding makes our mapping injective rather than fully invertible (see [Zhou and Wei
(2020)]). The Flow network then uses an MLP to iteratively refine log ŷt,k over K steps
(K = 20) after which we apply an exponential to produce the final firing rate predictions,
ŷt. A scaling factor (β = 0.1) was applied to the output of the Flow’s MLP, which prevents



the embedding from becoming unstable during the early training period. This process is
summarized by the equations below:

log ŷt,0 = [ẑt|0]T (8)

log ŷt,k+1 = log ŷt,k + β ·MLP(log ŷt,k) (9)

ĝ (ẑt) = log ŷt,K = log ŷt (10)

We also use a reverse pass of the Flow to transform the output of the encoders to initial
conditions in the latent space via ϕ(·), approximating the inverse function ĝ−1. Our method
subtracts the output of the MLP from the state rather than adding it as in the forward mode
(Fig 1C), a simplified version of the fixed-point iteration procedure described in [Behrmann

et al. (2019)]. We then trim the excess dimensions to recover ẑ ∈ RD̂ (in effect, removing
the zero-padding dimensions).

log ŷt,k−1 = log ŷt,k − β ·MLP(log ŷt,k) (11)

ĝ−1 (log ŷt) = [log ŷt,0,1, . . . , log ŷt,0,D̂]
T = ẑt (12)

The Flow mapping is only guaranteed to be injective if changes in the output of the MLP are
sufficiently small relative to changes in the input (i.e., Lipschitz constant for the MLP that
is strictly less than 1) [Behrmann et al. (2019)]. The model could be made fully injective by
restricting the weights of the MLP (e.g., with spectral normalization). In practice, we found
that using a moderate number of steps allows Flow to preserve approximate injectivity of
the readout at all tested dimensionalities (Supp. Figs. S2), in contrast with MLP and
Linear readouts (Fig 2D, Supp. Fig. S3).

3.3. Metrics and characterization of dynamics
We assessed model performance in five domains: 1) reconstruction performance, 2) latent
accuracy, 3) dynamical accuracy, 4) embedding accuracy, and 5) injectivity. All metrics
were evaluated on validation data. Critically, on biological data without a ground-truth
system, only the reconstruction performance and readout injectivity can be assessed, since
all the other metrics rely on full observability of the underlying system. Therefore, we need
models for which good performance on the observable metrics (reconstruction, injectivity)
implies good performance on the unobservable metrics (latent, dynamical, and embedding
accuracy). Reconstruction performance was assessed using two key metrics. The first, spike
negative log-likelihood (Spike NLL), was defined as the Poisson NLL employed during model
training. The second, Rate R2, was the coefficient of determination between the inferred and
true firing rates, averaged across neurons. We used Spike NLL to assess how well the inferred
rates explain the spiking activity, while Rate R2 reflects the model’s ability to find the true
firing rates. These metrics quantify how well the model captures the embedded system’s
dynamics (i.e., that f̂ , ĝ captures the system described by f, g), but give no indication of
the interpretability of the learned latent representation (i.e., that the learned f̂ , ĝ are simple
and low-dimensional).

To determine whether a model’s inferred latent activity contains features that are not
in the simulated latent activity, we used a previously published metric called the State R2

[Sedler et al. (2023)]. State R2 is defined as the coefficient of determination (R2) of a linear
regression from simulated latent trajectories z to the inferred latent trajectories ẑ. State R2



Injectivity enables reliable latent recovery

Figure 2: ODIN recovers latent activity and is robust to overestimated D̂. A) Model dia-
gram: Linear-NODE (green), MLP-NODE (orange), ODIN (red). B) Inferred
latent activity at D̂ with true latent activity (cyan). C) Model metrics vs.
D̂. Shaded areas represent one std. dev. around the mean. Dashed line in-
dicates D̂ = 3 Top: Spike NLL, Middle: Rate R2, Bottom: State R2. D) Cycle-
consistency R2 for ODIN and MLP-NODE as a function of noise corruption.

will be low if the inferred latent trajectories contain features that cannot be explained by
an affine transformation of the true latent trajectories. Importantly, State R2 alone cannot
ensure latent accuracy because a model can achieve high State R2 trivially if the inferred
latent activity ẑ is a low-dimensional projection of the simulated activity z. Therefore, only
models that have both good reconstruction performance (Spike NLL, Rate R2) and State
R2 can be said to accurately reflect the simulated latent dynamics without extra features
that make the model harder to interpret (i.e., ẑ ≈ z).

As a direct comparison of the estimated dynamics f̂ to the simulated dynamics f , we
extracted the fixed-point (FP) structure from our trained models and compared it to the
FP structure of the underlying system. We used previously published FP-finding techniques
[Golub and Sussillo (2018)] to identify regions of the generator’s dynamics where the mag-
nitude of the vector field was close to zero, calling this set of locations the putative FPs.
We linearized the dynamics around the FPs and computed the eigenvalues of the Jacobian
of f̂ to characterize each FP. Capturing FP location and character gives an indication of
how closely the estimated dynamics resemble the simulated dynamics (i.e., f̂ ≈ f).

To determine how well our embedding ĝ captures the simulated embedding g, we pro-
jected the encoding vectors used to generate the synthetic neural activity from the ground-
truth system into our model’s latent space using the affine transformation from ground-truth
to inferred latent activity. We projected inferred latent activity onto each neuron’s affine-
transformed encoding vector to find the predicted activation of each synthetic neuron. We
then related the predicted firing rates of each neuron to its corresponding activations to es-
timate each neuron’s activation function. Because the inferred latent activity is arbitrarily
scaled relative to the true latent activity, we fit an affine transformation from the predicted
activation function to the ground-truth. The coefficient of determination R2 quantifies how
well our models recovered the synthetic warping applied to each neuron (i.e., ĝ ≈ g).



Figure 3: ODIN recovers accurate fixed points. A,B) Representative latent activity and
fixed-points from the true (blue, ◦), ODIN (red, ×), and Linear-NODE (green, +)
systems. Each fixed point is labeled with reference to C. C) Real vs. imaginary
part of the eigenvalues of Jacobian evaluated at each fixed point. Black curve
shows boundary between attractive and repulsive behavior (indicated by inset).

We compared the injectivity of the Flow readout to MLP readouts using cycle-consistency.
Cycle-consistency quantifies how well the inferred latent activity ẑ can be recovered from
the predicted log-firing rates log ŷ.

4. Results
4.1. Accurate latent activity across state dimensionalities with ODIN
As the latent dimensionality D is unknown for biological datasets, we tested the robustness
of each model to choices of state dimensionality D̂. We trained Linear/MLP -NODE,
and ODIN (Fig 2A) to reconstruct synthetic neural activity from the Arneodo system and
compared reconstruction performance (i.e. Spike NLL and Rate R2) and latent recovery
(i.e. State R2). We trained 5 different random seeds for each of the 3 model types and 5
state dimensionalities (75 total models, hyperparameters in Supp. Table 1, representative
hyperparameter sweeps in Supp. Fig. S1).

First, we observed that latent activity inferred by Linear-NODE did not closely resemble
the simulated latent activity, with all tested dimensionalities performing worse than either
ODIN or the MLP-NODE at D̂ = 3 (Fig 2B,C, mean State R2 = 0.70 for Linear-NODE vs.
0.89, 0.93 for MLP-NODE, ODIN respectively). We also found that Linear-NODE required
many more dimensions to reach the peak reconstruction performance (Fig 2C, Rate R2).
These results show that models that are unable to account for nonlinear embeddings learn
more complex and higher dimensional dynamics than models with nonlinear readouts.

Next, we found that at the correct dimensionality (D̂ = 3), ODIN and MLP-NODE had
similar performance in both reconstruction and latent recovery. However, as the dimension-
ality increased beyond the true dimensionality (D̂ > 3), latent recovery of the MLP-NODE
degraded rapidly while ODIN’s latent recovery remained high (Fig 2C, as D̂ > 3).

We then used cycle consistency – how well inputs to a function can be recovered from
the function’s outputs – to test whether ODIN’s relative robustness in latent recovery was
associated with its injective readout. We trained a separate MLP to predict inferred latents
ẑ from predicted log-firing rates log ŷ for each 10D MLP-NODE and ODIN model. We
found that ODIN’s cycle consistency was consistently higher than MLP-NODE (Fig. 2D),
in both the noise-free and noise corrupted conditions. As the true latent dimensionality D
of biological datasets is unknown, NPDMs with non-injective readouts (like MLPs) may be
predisposed to learning misleading latent activity that can be more difficult to interpret.



Injectivity enables reliable latent recovery

Figure 4: ODIN recovers nonlinear embeddings. A) Inferred activation function for two
example neurons, Linear, MLP, ODIN, True = green, orange, red, black, respec-
tively). Predicted firing rate vs. neural activation. B) Comparison of the R2

values across all neurons for models with D̂ = 3.

4.2. Recovering fixed point structure with ODIN

A common method for evaluating NPDMs is to compare the character and structure of the
inferred fixed points (FPs) to the FPs of the ground-truth system [Sedler et al. (2023)].
FPs provide a concise description of the dynamics in the region around the FP, and can
collectively provide a qualitative picture of the overall dynamical landscape. To obtain a set
of candidate FPs, we found points in the latent space at which the magnitude of the vector
field ∥f̂∥ is minimized (as in [Sussillo and Barak (2013); Golub and Sussillo (2018)]). We
computed the eigenvalues of the Jacobian of f̂ at each FP location. The real and imaginary
components of these eigenvalues identify each FP as attractive, repulsive, etc.

We found that 3D ODIN models and 3D Linear-NODEs were both able to recover three
fixed points that generally matched the location of the three fixed points of the Arneodo
system (Fig 3A, B), However, ODIN was also able to capture the eigenspectra of all three
FPs (Fig. 3C, red ×), while the Linear-NODE failed to capture the rotational dynamics of
the central FP (Fig 3C, middle column). We found that the MLP-NODE was also able to
find FPs with similar accuracy to ODIN at 3D. Failing to capture the nonlinear embedding
can apparently lead to impoverished estimates of the underlying dynamics f̂ .

4.3. Recovering simulated activation functions with ODIN

A primary goal of this work is to find models that allow unsupervised recovery of the
embedding geometry (i.e., the neural manifold), as these features may provide additional
insight about the computations performed by the neural system [Gardner et al. (2021);
Jazayeri and Ostojic (2021)]. For this section, we considered a representative model from
each readout class with the correct number of latent dimensions (D = 3). We derived
an estimate of the activation function for each neuron, and compared this estimate to the
ground-truth activation function.

We found, as expected, that Linear-NODE was unable to approximate the sigmoidal
activation function of individual neurons (Fig 4A, green). On the other hand, both ODIN
and MLP-NODE were able to capture activation functions ranging from nearly linear to
step function-like in nature (Fig 4A, red, orange). Across all simulated neurons for models
with D = 3, we found that ODIN more accurately estimated the activation function of
individual neurons compared to both Linear- and MLP-NODEs (Fig 4B), suggesting that
ODIN’s injectivity allows more accurate estimation of nonlinear embeddings (two-sided
paired t-test, p-val for ODIN vs. Linear-, MLP-NODE < 1e-10).



5. Discussion
Dynamics models have had great success in reproducing neural activity patterns and relating
brain activity to behavior [Pandarinath et al. (2018); Smith et al. (2023)], but these models
have not yet been used to investigate neural computation directly. If NPDMs could be
trusted to find accurate representations of latent dynamics, then recent techniques that can
uncover computation in artificial networks could help to interpret computations in the brain
[Sussillo and Barak (2013); Driscoll et al. (2022)].

A primary limitation of this work is that ODIN is not yet able to account for external
inputs to the system. Inferring inputs is difficult due to ambiguity in the role and timecourse
of inputs compared to internal dynamics for driving the state of the system. While some
RNN-based models can infer inputs [Pandarinath et al. (2018)], more work is needed to infer
inputs to NODE-based models. Injective readouts are an important step towards addressing
the fundamental difficulties of input inference, as models without injective readouts can be
incentivized to imagine latent features in place of an inferred input.



Injectivity enables reliable latent recovery

References

Evan Archer, Il Memming Park, Lars Buesing, John Cunningham, and Liam Paninski.
Black box variational inference for state space models, November 2015. URL http:

//arxiv.org/abs/1511.07367. arXiv:1511.07367 [stat].

A Arneodo, P Coullet, and C Tresser. Occurence of strange attractors in three-dimensional
Volterra equations. Physics Letters A, 79(4):259–263, October 1980. ISSN 0375-9601.
doi: 10.1016/0375-9601(80)90342-4. URL https://www.sciencedirect.com/science/

article/pii/0375960180903424.

Mohammad Bashiri, Edgar Walker, Konstantin-Klemens Lurz, Akshay Jagadish, Taliah
Muhammad, Zhiwei Ding, Zhuokun Ding, Andreas Tolias, and Fabian Sinz. A flow-
based latent state generative model of neural population responses to natural images.
In Advances in Neural Information Processing Systems, volume 34, pages 15801–15815.
Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/

hash/84a529a92de322be42dd3365afd54f91-Abstract.html.

Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and Joern-Henrik
Jacobsen. Invertible Residual Networks. In Proceedings of the 36th International
Conference on Machine Learning, pages 573–582. PMLR, May 2019. URL https:

//proceedings.mlr.press/v97/behrmann19a.html. ISSN: 2640-3498.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural Ordi-
nary Differential Equations. Technical Report arXiv:1806.07366, arXiv, December 2019.
URL http://arxiv.org/abs/1806.07366. arXiv:1806.07366 [cs, stat] type: article.

Jeffrey Demas, Jason Manley, Frank Tejera, Kevin Barber, Hyewon Kim, Francisca Mart́ınez
Traub, Brandon Chen, and Alipasha Vaziri. High-speed, cortex-wide volumetric recording
of neuroactivity at cellular resolution using light beads microscopy. Nature Methods,
18(9):1103–1111, September 2021. ISSN 1548-7105. doi: 10.1038/s41592-021-01239-8.
URL https://www.nature.com/articles/s41592-021-01239-8. Number: 9 Publisher:
Nature Publishing Group.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent compo-
nents estimation. arXiv preprint arXiv:1410.8516, 2014.

Laura Driscoll, Krishna Shenoy, and David Sussillo. Flexible multitask computation in
recurrent networks utilizes shared dynamical motifs, August 2022. URL https://www.

biorxiv.org/content/10.1101/2022.08.15.503870v1. Pages: 2022.08.15.503870 Sec-
tion: New Results.

Lea Duncker and Maneesh Sahani. Dynamics on the manifold: Identifying computational
dynamical activity from neural population recordings. Current Opinion in Neurobiol-
ogy, 70:163–170, October 2021. ISSN 0959-4388. doi: 10.1016/j.conb.2021.10.014. URL
https://www.sciencedirect.com/science/article/pii/S0959438821001264.

Juan A. Gallego, Matthew G. Perich, Lee E. Miller, and Sara A. Solla. Neural Manifolds
for the Control of Movement. Neuron, 94(5):978–984, June 2017. ISSN 1097-4199. doi:
10.1016/j.neuron.2017.05.025.

http://arxiv.org/abs/1511.07367
http://arxiv.org/abs/1511.07367
https://www.sciencedirect.com/science/article/pii/0375960180903424
https://www.sciencedirect.com/science/article/pii/0375960180903424
https://proceedings.neurips.cc/paper/2021/hash/84a529a92de322be42dd3365afd54f91-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/84a529a92de322be42dd3365afd54f91-Abstract.html
https://proceedings.mlr.press/v97/behrmann19a.html
https://proceedings.mlr.press/v97/behrmann19a.html
http://arxiv.org/abs/1806.07366
https://www.nature.com/articles/s41592-021-01239-8
https://www.biorxiv.org/content/10.1101/2022.08.15.503870v1
https://www.biorxiv.org/content/10.1101/2022.08.15.503870v1
https://www.sciencedirect.com/science/article/pii/S0959438821001264


Peiran Gao and Surya Ganguli. On simplicity and complexity in the brave new world of
large-scale neuroscience. Current Opinion in Neurobiology, 32:148–155, June 2015. ISSN
0959-4388. doi: 10.1016/J.CONB.2015.04.003. URL https://www.sciencedirect.com/

science/article/pii/S0959438815000768. Publisher: Elsevier Current Trends.

Yuanjun Gao, Evan Archer, Liam Paninski, and John P. Cunningham. Linear dy-
namical neural population models through nonlinear embeddings. Technical Report
arXiv:1605.08454, arXiv, October 2016. URL http://arxiv.org/abs/1605.08454.
arXiv:1605.08454 [q-bio, stat] type: article.

Richard J. Gardner, Erik Hermansen, Marius Pachitariu, Yoram Burak, Nils A. Baas,
Benjamin A. Dunn, May-Britt Moser, and Edvard I. Moser. Toroidal topology of
population activity in grid cells. Technical report, bioRxiv, February 2021. URL
https://www.biorxiv.org/content/10.1101/2021.02.25.432776v1. Section: New
Results Type: article.

William Gilpin. Chaos as an interpretable benchmark for forecasting and data-driven
modelling. Advances in Neural Information Processing Systems, 2021. URL http:

//arxiv.org/abs/2110.05266.

Matthew D. Golub and David Sussillo. Fixedpointfinder: A tensorflow toolbox for iden-
tifying and characterizing fixed points in recurrent neural networks. Journal of Open
Source Software, 3(31):1003, 2018. doi: 10.21105/joss.01003. URL https://doi.org/

10.21105/joss.01003.

Mehrdad Jazayeri and Srdjan Ostojic. Interpreting neural computations by exam-
ining intrinsic and embedding dimensionality of neural activity. Technical Report
arXiv:2107.04084, arXiv, August 2021. URL http://arxiv.org/abs/2107.04084.
arXiv:2107.04084 [q-bio] type: article.

Kristopher Jensen, Ta-Chu Kao, Jasmine Stone, and Guillaume Hennequin. Scalable
Bayesian GPFA with automatic relevance determination and discrete noise models. In
Advances in Neural Information Processing Systems, volume 34, pages 10613–10626. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/

58238e9ae2dd305d79c2ebc8c1883422-Abstract.html.

Matthew J. Johnson, David Duvenaud, Alexander B. Wiltschko, Sandeep R. Datta, and
Ryan P. Adams. Composing graphical models with neural networks for structured rep-
resentations and fast inference, July 2017. URL http://arxiv.org/abs/1603.06277.
arXiv:1603.06277 [stat].

Timothy D Kim, Thomas Z Luo, Jonathan W Pillow, and Carlos Brody. Inferring la-
tent dynamics underlying neural population activity via neural differential equations. In
International Conference on Machine Learning, pages 5551–5561. PMLR, 2021.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion
Stoica. Tune: A research platform for distributed model selection and training. arXiv
preprint arXiv:1807.05118, 2018.

https://www.sciencedirect.com/science/article/pii/S0959438815000768
https://www.sciencedirect.com/science/article/pii/S0959438815000768
http://arxiv.org/abs/1605.08454
https://www.biorxiv.org/content/10.1101/2021.02.25.432776v1
http://arxiv.org/abs/2110.05266
http://arxiv.org/abs/2110.05266
https://doi.org/10.21105/joss.01003
https://doi.org/10.21105/joss.01003
http://arxiv.org/abs/2107.04084
https://proceedings.neurips.cc/paper/2021/hash/58238e9ae2dd305d79c2ebc8c1883422-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/58238e9ae2dd305d79c2ebc8c1883422-Abstract.html
http://arxiv.org/abs/1603.06277


Injectivity enables reliable latent recovery

Jakob H Macke, Lars Buesing, John P Cunningham, Byron M Yu, Krishna V
Shenoy, and Maneesh Sahani. Empirical models of spiking in neural popula-
tions. In Advances in Neural Information Processing Systems, volume 24. Cur-
ran Associates, Inc., 2011. URL https://papers.nips.cc/paper/2011/hash/

7143d7fbadfa4693b9eec507d9d37443-Abstract.html.

Chethan Pandarinath, Daniel J. O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D.
Stavisky, Jonathan C. Kao, Eric M. Trautmann, Matthew T. Kaufman, Stephen I.
Ryu, Leigh R. Hochberg, Jaimie M. Henderson, Krishna V. Shenoy, L. F. Abbott, and
David Sussillo. Inferring single-trial neural population dynamics using sequential auto-
encoders. Nature Methods, 15(10):805–815, October 2018. ISSN 1548-7105. doi: 10.1038/
s41592-018-0109-9. URL https://www.nature.com/articles/s41592-018-0109-9.
Number: 10 Publisher: Nature Publishing Group.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative
Style, High-Performance Deep Learning Library. Technical Report arXiv:1912.01703,
arXiv, December 2019. URL http://arxiv.org/abs/1912.01703. arXiv:1912.01703
[cs, stat] type: article.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

Felix Pei, Joel Ye, David Zoltowski, Anqi Wu, Raeed H. Chowdhury, Hansem Sohn,
Joseph E. O’Doherty, Krishna V. Shenoy, Matthew T. Kaufman, Mark Churchland,
Mehrdad Jazayeri, Lee E. Miller, Jonathan Pillow, Il Memming Park, Eva L. Dyer, and
Chethan Pandarinath. Neural Latents Benchmark ’21: Evaluating latent variable models
of neural population activity. Technical Report arXiv:2109.04463, arXiv, January 2022.
URL http://arxiv.org/abs/2109.04463. arXiv:2109.04463 [cs, q-bio] type: article.

Evan D. Remington, Devika Narain, Eghbal A. Hosseini, and Mehrdad Jazayeri. Flexible
Sensorimotor Computations through Rapid Reconfiguration of Cortical Dynamics. Neu-
ron, 98(5):1005–1019.e5, June 2018. ISSN 1097-4199. doi: 10.1016/j.neuron.2018.05.020.

Olivier Roy and Martin Vetterli. The Effective Rank: a Measure of Effective Dimensionality.
European Association for Signal Processing, 2007.

Marine Schimel, Ta-Chu Kao, Kristopher T. Jensen, and Guillaume Hennequin. iLQR-
VAE : control-based learning of input-driven dynamics with applications to neural data.
Technical report, bioRxiv, October 2021. URL https://www.biorxiv.org/content/

10.1101/2021.10.07.463540v1. Section: New Results Type: article.

Andrew R. Sedler, Christopher Versteeg, and Chethan Pandarinath. Expressive archi-
tectures enhance interpretability of dynamics-based neural population models, February
2023. URL http://arxiv.org/abs/2212.03771. arXiv:2212.03771 [cs, q-bio].

https://papers.nips.cc/paper/2011/hash/7143d7fbadfa4693b9eec507d9d37443-Abstract.html
https://papers.nips.cc/paper/2011/hash/7143d7fbadfa4693b9eec507d9d37443-Abstract.html
https://www.nature.com/articles/s41592-018-0109-9
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/2109.04463
https://www.biorxiv.org/content/10.1101/2021.10.07.463540v1
https://www.biorxiv.org/content/10.1101/2021.10.07.463540v1
http://arxiv.org/abs/2212.03771


Krishna V. Shenoy, Maneesh Sahani, and Mark M. Churchland. Cortical control of arm
movements: a dynamical systems perspective. Annual Review of Neuroscience, 36:337–
359, July 2013. ISSN 1545-4126. doi: 10.1146/annurev-neuro-062111-150509.

Jimmy T. H. Smith, Scott W. Linderman, and David Sussillo. Reverse engineering recurrent
neural networks with Jacobian switching linear dynamical systems. Technical Report
arXiv:2111.01256, arXiv, November 2021. URL http://arxiv.org/abs/2111.01256.
arXiv:2111.01256 [cs] type: article.

Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified State Space
Layers for Sequence Modeling, March 2023. URL http://arxiv.org/abs/2208.04933.
arXiv:2208.04933 [cs].

Nicholas A Steinmetz, Cagatay Aydin, Anna Lebedeva, Michael Okun, Marius Pachitariu,
Marius Bauza, Maxime Beau, Jai Bhagat, Claudia Böhm, Martijn Broux, Susu Chen, Jen-
nifer Colonell, Richard J Gardner, Bill Karsh, Fabian Kloosterman, Dimitar Kostadinov,
Carolina Mora-Lopez, John O’Callaghan, Junchol Park, Jan Putzeys, Britton Sauerbrei,
Rik J J van Daal, Abraham Z Vollan, Shiwei Wang, Marleen Welkenhuysen, Zhiwen Ye,
Joshua T Dudman, Barundeb Dutta, Adam W Hantman, Kenneth D Harris, Albert K
Lee, Edvard I Moser, John O’Keefe, Alfonso Renart, Karel Svoboda, Michael Häusser,
Sebastian Haesler, Matteo Carandini, and Timothy D Harris. Neuropixels 2.0: A minia-
turized high-density probe for stable, long-term brain recordings. Science, 372(6539),
April 2021.

Ian H. Stevenson and Konrad P. Kording. How advances in neural recording affect data
analysis. Nature Neuroscience, 14(2):139–142, February 2011. ISSN 1546-1726. doi:
10.1038/nn.2731.

David Sussillo and Omri Barak. Opening the black box: low-dimensional dynamics in high-
dimensional recurrent neural networks. Neural Computation, 25(3):626–649, March 2013.
ISSN 1530-888X. doi: 10.1162/NECO a 00409.

David Sussillo, Rafal Jozefowicz, L. F. Abbott, and Chethan Pandarinath. LFADS - Latent
Factor Analysis via Dynamical Systems. Technical Report arXiv:1608.06315, arXiv, Au-
gust 2016. URL http://arxiv.org/abs/1608.06315. arXiv:1608.06315 [cs, q-bio, stat]
type: article.

Saurabh Vyas, Matthew D. Golub, David Sussillo, and Krishna V. Shenoy. Computa-
tion Through Neural Population Dynamics. Annual Review of Neuroscience, 43(1):
249–275, 2020. doi: 10.1146/annurev-neuro-092619-094115. URL https://doi.org/10.

1146/annurev-neuro-092619-094115. eprint: https://doi.org/10.1146/annurev-neuro-
092619-094115.

Anqi Wu, Nicholas A. Roy, Stephen Keeley, and Jonathan W Pillow. Gaussian
process based nonlinear latent structure discovery in multivariate spike train data.
In Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://papers.nips.cc/paper_files/paper/2017/hash/

b3b4d2dbedc99fe843fd3dedb02f086f-Abstract.html.

http://arxiv.org/abs/2111.01256
http://arxiv.org/abs/2208.04933
http://arxiv.org/abs/1608.06315
https://doi.org/10.1146/annurev-neuro-092619-094115
https://doi.org/10.1146/annurev-neuro-092619-094115
https://papers.nips.cc/paper_files/paper/2017/hash/b3b4d2dbedc99fe843fd3dedb02f086f-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/b3b4d2dbedc99fe843fd3dedb02f086f-Abstract.html


Injectivity enables reliable latent recovery

Yuan Zhao and Il Memming Park. Variational Online Learning of Neural Dynamics.
Frontiers in Computational Neuroscience, 14, 2020. ISSN 1662-5188. URL https:

//www.frontiersin.org/article/10.3389/fncom.2020.00071.

Ding Zhou and Xue-Xin Wei. Learning identifiable and interpretable latent models of high-
dimensional neural activity using pi-VAE, November 2020. URL http://arxiv.org/

abs/2011.04798. arXiv:2011.04798 [cs, q-bio, stat].

https://www.frontiersin.org/article/10.3389/fncom.2020.00071
https://www.frontiersin.org/article/10.3389/fncom.2020.00071
http://arxiv.org/abs/2011.04798
http://arxiv.org/abs/2011.04798


Expressive dynamics models with nonlinear injective
readouts enable reliable recovery of latent features from

neural activity
Supplementary Material

Appendix A. Datasets

A.1. Simulated neural data

A.1.1. Latent trajectories

We used the Arneodo system [Arneodo et al. (1980)] to generate synthetic data because it ex-
hibits mildly chaotic behavior (Lyapunov exponent equal to 0.243), it has a low-dimensional
state space, and the regions around its fixed points are well-sampled by trajectories of the
system. As demonstrated by [Sedler et al. (2023)], these properties allow recovery of latent
dynamics in the absence of a nonlinear embedding. The Arneodo system is described by
the following system of equations

ẋ = y (13)

ẏ = z (14)

ż = −ax− by − cz + dx3 (15)

where a = −5.5, b = 4.5, c = 1.0, and d = −1.0 [Arneodo et al. (1980)].

The system was simulated using the dysts Python package, which offered well-reasoned
standards for initial conditions, integration steps, and resampling frequency [Gilpin (2021)].
Initial conditions had been determined by running the model until the moments of the
autocorrelation function were stationary. Integration steps had been chosen based on the
highest significant frequency observed in the power spectrum. After integration, trajectories
were resampled to contain 35 points per period, where period was based on the dominant
frequency in the power spectrum.

A.1.2. Embedding low-dimensional trajectories on a nonlinear manifold

We simulated neural activity by nonlinearly embedding the Arneodo trajectories as firing
rates in the neural space. First, the trajectories were linearly projected into the neural space
via a set of encoding vectors γi and standardized for each neuron (see Methods). These
activations ai were passed through a sigmoid with input scaling ηi and output scaling b = 2
to produce reasonable firing rates as follows:

ηi = 100.8·
i−1
N−1

+0.2, (16)

yi = ψi(ai) = b× σ(ηi × ai), i = 1, 2, . . . , N. (17)

where σ(·) denotes the sigmoid function. This resulted in a set of activation functions ψi(·)
ranging from quasi-linear to step-like. The resulting rates yi were used to parameterize a
Poisson process, which was sampled to obtain spiking data for N neurons (N = 12).



Injectivity enables reliable latent recovery

A.1.3. Embedding low-dimensional trajectories onto linear manifold

For Supp. Figure S3, we tested whether Linear-NODEs fit to linearly-embedded data would
find non-injective readouts when D̂ > D. We simulated an alternative dataset with the same
procedure as above, except instead of passing the activations ai through the sigmoidal non-
linearity, we exponentiated them to find the rate parameter yi of a Poisson process, which
was sampled to obtain spiking data for N neurons (N = 12).

Appendix B. Model training

B.1. Simulated neural data

All weights were initialized from U(−
√
k,
√
k), where k = 1/in features for linear layers

and k = 1/hidden size for the GRU encoder weights. Dropout layers (p = 0.05) were
inserted before and after the initial condition linear projection during training. We used
the average Poisson negative log-likelihood (NLL) across neurons and time points as our
training objective. Models were trained incrementally to improve the stability of training:
rather than compute loss on the whole trajectory, we added groups of 5 new time steps
every 75 epochs, up to the max of 70 steps. Models were trained by stochastic gradient
descent using Adam for 3000 epochs. A single learning rate was shared for the optimizer of
the encoder, generator, and readout weights for each model. Each generator was a NODE
that contained an MLP with six hidden layers, each with 128 ReLU units.

Figure S1: Example hyperparameter sweeps for ODIN and MLP-NODE

We performed initial hyperparameter sweeps to determine ranges that resulted in good
reconstruction performance as measured by Spike NLL (see Methods), and used the same
hyperparameter setting for models across state dimensionalities. Two example hyperparam-
eter sweeps testing the effect of readout capacity (100 model initializations with readout
hidden sizes in the range [60,200] and number of hidden layers in [1,3]) and weight decay
(100 model initializations with weight decay drawn log-uniformly from the range [1e-8, 1e-4],
Supp. Fig. S1). We found that across readout capacities, good reconstruction performance
implied good latent recovery for ODIN but not MLP-NODE. Additionally, we found that



increasing weight decay on MLP-NODE tended to degrade rather than improve latent re-
covery. Across all HPs tested, we found no hyperparameter settings for which ODIN had
good reconstruction performance but poor latent recovery.

HPs for models trained on the Arneodo system are given in Table 1.

Table 1: Training hyperparameters (Synthetic Data)
Arneodo

Linear MLP ODIN

Batch Size 650 650 650
Learning Rate 2e-3 1.88e-4 1.88e-4

Encoder Hidden Size 100 100 100
Dropout 0.05 0.05 0.05

NODE Hidden Layers 6 6 6
NODE Hidden Size 128 128 128

Readout Hidden Layers 0 2 2
Readout Hidden Size - 150 150

Appendix C. Injectivity estimation

Figure S2: Reconstructed Latent R2 (measure of injectivity) of the Flow readout across
state dimensionalities. Each bar indicates the mean value of 5 randomly initial-
ized ODIN models for each state dimensionality. Results from individual models
are plotted as points.

To demonstrate the approximate injectivity of the Flow readout, we tested whether the
readout could be inverted to recover the inferred latent activity. The readout mapping ĝ
should satisfy the following equations

z̃t = ĝ−1(ĝ(ẑt)) (18)

z̃t ≈ ẑt (19)



Injectivity enables reliable latent recovery

where ẑt is the inferred latent activity and z̃t is the latent activity recovered by the reverse
pass of the Flow.

We computed the R2 between the inferred and recovered zt for these models and found
that our mappings were able to recover the inferred ẑt with average R2 values across ran-
domly initialized models of 0.997, 0.996, 0.990, and 0.988 at D̂ = 3, 5, 8, 10, respectively
(Supplementary Figure S2).

C.1. Effective Rank

Figure S3: Linear-NODE trained on synthetic neural activity from linearly-embedded Ar-
neodo system. A) Reconstruction performance (Rate R2) and latent state re-
construction (State R2) across D̂. B) Effective rank for Linear-NODEs as a
function of D̂.

To assess the injectivity of the Linear readout, we used a previously published method
that determines the approximate number of significant singular values of a given matrix A
[Roy and Vetterli (2007)]. Let A be a complex-valued, non-all-zero matrix of size N × D̂,
where N > D̂ that acts as the weight matrix of a readout from inferred latents ẑ to predicted
log-rates log ŷ in the equation log ŷ = Aẑ+ b. We perform a singular value decomposition
(SVD) on A, such that A = U∆V , where U and V are unitary matrices of size N ×N and
D̂ × D̂, respectively, and ∆ is an N × D̂ rectangular diagonal matrix containing the real
non-negative singular values σ1 ≥ σ2 ≥ . . . ≥ σD̂ ≥ 0.

For simplicity, let us define σ = (σ1, σ2, . . . , σD̂)
T . We then compute the singular value

distribution pk, for k = 1, 2, . . . , D̂, as

pk =
σk

∥σ∥1
, (20)

where ∥σ∥1 is the L1-norm. Using this singular value distribution, we can calculate the
Shannon entropy H as



H(p1, p2, . . . , pD̂) = −
D̂∑

k=1

pk log(pk). (21)

The authors in Roy and Vetterli (2007) define the effective rank of the matrix A, denoted
as erank(A), using the Shannon entropy H as follows:

erank(A) = exp
(
H(p1, p2, . . . , pD̂)

)
. (22)

The effective rank gives us a measure of the number of significant singular values in A.
As traditional rank counts a matrix as being “full-rank” even if it has negligibly small but
non-zero singular values, the effective rank provides a more informative assessment of the
matrix’s rank when used as the readout from a NPDM. We assessed the effective rank of the
linear readout for 5 Linear-NODE models (with state dimensionality of D̂ = 2, 3, 5, 8, 10,
respectively) trained on synthetic neural data generated by linearly embedding trajectories
from the Arneodo system (Section A.1.1) into log-firing rates, and found that while the
reconstruction performance improved as D̂ increased (Supp. Fig. S3A), the effective rank
plateaued at erank ≈ 4 (Supp. Fig S3B).

C.2. Cycle Consistency

To directly compare injectivity of the Flow readout versus the MLP, we quantified how well
each model’s inferred latent activity could be recovered from the reconstructed log-rates.
To do this, we took our fully-trained 10D ODIN and MLP-NODE models (shown in Fig.
2C, D̂ = 10) and obtained the inferred latent activity ẑ and predicted log-firing rates log ŷ
from the Arneodo dataset. Then, we trained a separate network h : logY → Z to minimize
the mean squared error between its output z̃ and the model-inferred latent activity ẑ (see
Table 2 for hyperparameters).

z̃ = h ((log ŷ)) (23)

Table 2: Training hyperparameters (Cycle-Consistency MLP, h)
Parameter Value

Batch Size 2048
Learning Rate 1e-3
Hidden Layers 3
Hidden Size 128

Epochs 1000

We computed the coefficient of determination between the re-generated latent activity
z̃ and inferred latent activity ẑ. If this performance is high, the inferred latents can be
recovered from the log-rates suggesting that the readout is approximately injective.

Cycle Consistency = R2(z̃, ẑ) (24)

It is possible for a readout to be fully injective (i.e., that ĝ−1 exists), but still compress
some features of latent activity into negligibly small contributions to the predicted firing



Injectivity enables reliable latent recovery

rates, making the readout effectively, if not technically, non-injective. We reasoned that if
this were the case, the inverse mapping h, in order to properly invert the warping applied
by ĝ, would be highly sensitive to noise. We expect that such noise perturbations would be
warped by h into large changes in the predicted latents. Using the models trained without
noise, we computed the R2 of re-generated latents z̃ compared to the inferred latents ẑ.
We therefore consider both the noise-free and noise-corrupted cycle consistency scores as
indicators of the approximate injectivity of each readout, taking into consideration undue
distortion applied in the process of learning the injective mapping.

z̃σ = h(log ŷ + ϵσ), ϵσ = N (0, σ), σ ∈ [0.01, 0.05, 0.1, 0.2, 0.5]) (25)

ccR2
σ = R2(z̃σ, ẑ) (26)

C.3. Alternative injective readout
As an additional confirmation that injectivity was the critical addition to non-linear readouts
that made latent recovery more robust, we tested an alternative injective architecture —
an invertible neural network (INN) [Dinh et al. (2014)]. We found that using a 6-layer INN
in place of the Flow readout had comparable Rate R2 and State R2 to ODIN, and that,
like ODIN, State R2 was stable as D̂ increased beyond D = 3 (see Supp. Fig. S5). Each
INN layer was composed of coupling, permutation and affine transformations. Additional
training parameters are noted in Table 3. This result further supports our claims that
injective networks empirically promote robust latent recovery.

Unfortunately, the INN hidden layer size is obligated to be the size of either the input
or output dimensionalities, whichever is larger. Therefore, in realistic biological datasets
where the number of neurons can be highly variable across datasets, the capacity of the
INN readout is intrinsically linked to the number of recorded neurons. For this reason, we
chose to use the Flow readout, which decouples the computational capacity of the injective
transformation from the dimensionality of the neural space.

Table 3: Training hyperparameters INN (Synthetic Arneodo Data)
Parameter Value

Batch Size 650
Learning Rate 1.88e-4

Encoder Hidden Size 100
Dropout 0.05

NODE Hidden Layers 6
NODE Hidden Size 128

Readout Hidden Layers 6
Readout Hidden Size 12



Figure S5: Invertible Neural Network readouts produce qualitatively similar results to Flow
readout models. Data shown is the same as Fig. 2C, except overlaid with INN
readout model (purple)

Appendix D. Fixed point finding and characterization

For each model (Linear-NODE, MLP-NODE and ODIN), we located fixed points (FPs)
by finding the positions in the latent space that minimized the norm of the vector field
via the objective q = 1

2∥f̂∥
2
2 [Sussillo and Barak (2013); Golub and Sussillo (2018)]. We

initialized our search with 1024 randomly sampled initial states from along inferred latent
trajectories. We used Adam with a learning rate of 5e-2 to minimize the q-value for each
point independently over 10,000 iterations. Candidate points that did not achieve a q-value
less than a magnitude of 7e-3 were excluded. As more than one candidate can approach
the same FP, we combined candidate points that were within a specified distance, ϵ = 1,
from one another. In practice, points that were excluded had much larger q-values than the
putative fixed points. We then linearized the dynamics around each FP and computed the
system Jacobian to determine the stability and rotational character of the system around
these FPs.



Injectivity enables reliable latent recovery

Appendix E. Metrics

E.1. Synthetic data metrics

E.1.1. Rate reconstruction (Rate R2)

We computed the coefficient of determination between true (Y) and predicted (Ŷ) rates
for each neuron, and reported the average value across neurons.

Rate R2 = R2(Y, Ŷ) =
1

N

N∑
i=0

1−
∑

(yi − ŷi)
2∑

(yi − ȳi)2

E.1.2. Latent state reconstruction (State R2)

To compute State R2, we concatenated a vector of ones with the true latent states (Z1),
then used the pseudoinverse to find the optimal affine transformation from the true latents
to the inferred latents (Ẑ) (i.e., optimal linear estimation). We computed the coefficient of
determination (R2) between the true and inferred latent activity with the same equation as
in E.1.1.

Wz = Z†
1Ẑ (27)

StateR2 = R2(Ẑ,Z1Wz) (28)

E.1.3. Activation function comparison

We developed a method for deriving an estimate of the inferred activation functions ψ̂i(·)
for a comparison to the true activation functions ψi(·) (see Equation 17). We projected the
true encoding vectors γi into the latent space of the model via the affine transformation

Wz (see section E.1.2). We then used these encoding vectors γ̂i ∈ RD̂ to convert inferred

latent states Ẑ ∈ RT×D̂ into an activation âi ∈ RT for each neuron.

γ̂i = γ1,iWz, for i = 1, 2, · · · , N (29)

âi = Ẑ · γ̂i (30)

To estimate the activation function for a given neuron i, we need pairs of inferred activations
âi and firing rates ŷi. For each neuron, we split firing rates into 20 quantiles and computed
the corresponding median activation âmed

i,1:20 and firing rate ŷmed
i,1:20 within each quantile.

ŷmed
i,1:20, â

med
i,1:20 = Quantize(ŷi, âi, 20) (31)

We represented the inferred activation function ψ̂i(·) using these activation-firing rate pairs.
We then performed the same procedure on the true rates and activations to find a similar
representation of the true activation function ψi(·) for each neuron. To compare the true ac-
tivation function ψ(·) to the estimated activation function ψ̂(·), we combined the activations
of each neuron i and its corresponding firing rate as the columns of the matrices:

Ψ̂i =
(
âmed
i ŷmed

i

)
, Ψi =

(
amed
i ymed

i

)



Because the inferred latent activity can be scaled and translated arbitrarily with respect
to the true latent activity, we found the optimal affine transformation between Ψ̂i and Ψi.
We used the R2 of this mapping to quantify the correspondence between the two activation
functions ψ̂i(·) and ψi(·) for each neuron.

Appendix F. Compute resources

We used an internal computing cluster with a total of 30 Nvidia GeForce RTX 2080 Ti
GPUs for model training. Each model trained on simulated neural data took approximately
3 hours to train. With 2 models training on each GPU, the 100 models included in Figs. 2,
3, and 4 took approximately 150 GPU-hours. FP finding was fast, requiring 1 minute for
each model.

Appendix G. Open-source packages used

• torch Paszke et al. (2019) (BSD license): Deep learning framework providing layer
definitions, GPU acceleration, automatic differentiation, optimization, and more.

• pytorch lightning (Apache 2.0 license): Lightweight wrappers for model training.

• ray.tune Liaw et al. (2018) (Apache 2.0 license): Distributed hyperparameter tuning.

• dysts Gilpin (2021) (Apache 2.0 license): Implementations for modeled dynamical
systems.

• fixed point finder Golub and Sussillo (2018) (Apache 2.0 license): Inspiration for
torch-based fixed point finder.

• FrEIA (MIT license): Implementation of alternative Invertible Neural Network archi-
tecture.

• scikit-learnPedregosa et al. (2011) (BSD License): Implementations of linear re-
gression models and principal component analysis.

https://github.com/pytorch/pytorch
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/ray-project/ray
https://github.com/williamgilpin/dysts
https://github.com/mattgolub/fixed-point-finder
https://github.com/VLL-HD/FrEIA
https://scikit-learn.org/stable/

	Introduction
	Related Work
	Methods
	Synthetic Neural Data
	Model Architecture
	Flow Readout

	Metrics and characterization of dynamics

	Results
	Accurate latent activity across state dimensionalities with ODIN
	Recovering fixed point structure with ODIN
	Recovering simulated activation functions with ODIN

	Discussion
	Datasets
	Simulated neural data 
	Latent trajectories
	Embedding low-dimensional trajectories on a nonlinear manifold
	Embedding low-dimensional trajectories onto linear manifold


	Model training
	Simulated neural data

	Injectivity estimation
	Effective Rank
	Cycle Consistency
	Alternative injective readout

	Fixed point finding and characterization
	Metrics
	Synthetic data metrics
	Rate reconstruction (Rate R2) 
	Latent state reconstruction (State R2)
	Activation function comparison


	Compute resources
	Open-source packages used 

