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ABSTRACT

Neural networks have been shown vulnerable to a variety of adversarial algorithms.
A crucial step for understanding the rationale behind this lack of robustness is to
assess the potential of the neural networks’ representation to encode the existing
features. Here, we propose a method to understand the representation quality of
the neural networks using a novel test based on Zero-Shot Learning, entitled Raw
Zero-Shot. The principal idea is that if an algorithm learns rich features, such
features should be able to interpret ‘new or unknown’ classes as a combination of
previously learned features. This is because unknown classes usually share several
regular features with recognised (learned) classes, given that the features learned
are general enough. We further introduce two metrics to assess this learned
representation which interprets unknown classes. One is based on inter-cluster
validation technique, while the other is based on the difference in the
representation between the case when the class is unknown and the case when it is
known to the classifier. Experiments suggest that several adversarial defences not
only decrease the attack accuracy of some attacks but also improve the
representation quality of the classifiers. Further, a low p-value of the
paired-samples t-test suggests that several adversarial defences, in general, change
the representation quality significantly. Moreover, experiments also reveal a
relationship between the proposed metrics and adversarial attacks (a high Pearson
correlation coefficient and low p-value).

1 INTRODUCTION

Adversarial samples are noise-perturbed samples that can fail neural networks for tasks like image
classification. Since they were discovered some years ago by Szegedy (2014), both the quality and
variety of adversarial samples have grown. These adversarial samples can be generated by a specific
class of algorithms known as adversarial attacks (Nguyen et al., 2015; Brown et al., 2017; Moosavi-
Dezfooli et al., 2017; Su et al., 2019). Most of these adversarial attacks can also be transformed
into real-world attacks (Sharif et al., 2016; Kurakin et al., 2016; Athalye & Sutskever, 2018), which
confer a big issue as well as a security risk for current neural networks’ applications. Despite the
existence of many variants of defences to these adversarial attacks (Goodfellow et al., 2014; Huang
et al., 2015; Papernot et al., 2016; Dziugaite et al., 2016; Hazan et al., 2016; Das et al., 2017; Guo
et al., 2018; Song et al., 2018; Xu et al., 2017; Madry et al., 2018; Ma et al., 2018; Buckman et al.,
2018), ‘no known learning algorithm or procedure can defend consistently’ (Carlini & Wagner, 2017;
Tramèr et al., 2017; Athalye et al., 2018; Uesato et al., 2018; Vargas & Kotyan, 2019; Tramer et al.,
2020). This shows that a more profound understanding of the adversarial algorithms is needed to
enable the formulation of consistent and robust defences.

Several works have focused on understanding the reasoning behind such a lack of robust performance.
It is hypothesised in Goodfellow et al. (2014) that neural networks’ linearity is one of the main
reasons for failure. Other investigation by Thesing et al. (2019) shows that with deep learning, neural
networks learn false structures that are simpler to learn rather than the ones expected. Moreover,
research by Vargas & Su (2019) unveil that adversarial attacks are altering where the algorithm is
paying attention. In Sabour et al. (2015), it is discussed that an adversarial sample may have different
internal representation than the benign sample. The authors show that internal representations of
adversarial samples are remarkably similar to different images of different true-class and links
adversarial robustness to representations learned by deep neural networks.
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Figure 1: Raw Zero-Shot Illustration

Contributions: In this article, we try to open up a new perspective on understanding adversarial
algorithms based on evaluating the representation quality of unseen classes based on learned classes.
We do this, by verifying that the representation quality of neural networks is indeed linked with
the adversarial attacks and defences. Specifically, we propose a methodology based on Zero-Shot
Learning entitled Raw Zero-Shot (Section 3) for evaluating the representation quality of the neural
networks.

We conducted experiments over the soft-labels of an unfamiliar class to assess the representation
quality of the classifiers. This is based on the hypothesis that, if the classifier is capable of learning
useful features, an unfamiliar class would also be associated with some of these learned features
(Amalgam Proportion) (Figure 1). We call this type of inspection over unfamiliar class, Raw Zero-
Shot (Section 3). Furthermore, we also introduce two associated metrics to evaluate the representation
quality of neural networks. One is based upon Clustering Hypothesis (Section 3.1), while the other is
based on Amalgam Hypothesis (Section 3.2).

We evaluated our Raw Zero-Shot test over a wide assortment of datasets (and classifiers) such as
Fashion MNIST, CIFAR-10, and a customised Imagenet to assess the representation quality of the
vanilla classifiers (Section 4). We also evaluated different adversarial defences to prove that when
an adversarial defence is applied to a classifier, it gives better representation quality than the vanilla
classifier. We also conducted a paired samples t-test to determine the statistical relevance of the effect
of adversarial defences on the representation quality (Section 5). We then reveal a link between the
representation quality and attack susceptibility by verifying that the proposed metrics have a high
Pearson correlation coefficient with the adversarial attacks (Section 6).

2 RELATED WORKS

Understanding Adversarial Attacks: Since the discovery of adversarial samples in Szegedy
(2014), many researchers have tried to understand the adversarial attacks. It is hypothesised in
Goodfellow et al. (2014) that neural networks’ linearity is one of the principal reasons for failure
against an adversary. A geometric perspective is analysed in Moosavi-Dezfooli et al. (2018), where it
is shown that adversarial samples lie in shared subspace, along which the decision boundary of a
classifier is positively curved. Further, in Fawzi et al. (2018), a relationship between sensitivity to
additive perturbations of the inputs, and the curvature of the decision boundary of deep networks is
shown. Another aspect of robustness is discussed in Madry et al. (2018), where authors suggest that
the capacity of the neural networks’ architecture is relevant to the robustness. It is also stated in Ilyas
et al. (2019) that the adversarial vulnerability is a significant consequence of the dominant supervised
learning paradigm and a classifier’s sensitivity to well-generalising features in the known input
distribution. Also, research by Tao et al. (2018) argue that adversarial attacks are entangled with
interpretability of neural networks as results on adversarial samples can hardly be explained. Further,
the existence of different internal representations learned by neural networks for an adversarial
sample compared to a benign sample is shown in Sabour et al. (2015). In this article, we explore a
new perspective to understand adversarial attacks and defences based on the representation quality of
the neural networks evaluated using Amalgam Proportion.
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Zero-Shot learning: Zero-Shot learning is a method to estimate unfamiliar classes which do not
appear in the training data. The motivation of Zero-Shot learning is to transfer knowledge from
recognised (learned) classes to unfamiliar classes. Existing methods address the problem by estimating
unfamiliar classes from an attribute vector defined manually for all classes. For each class, whether
such an attribute (like colour, shape) relates to the class or not is represented by one or zero. Lampert
et al. (2009) introduced Direct Attribute Prediction (DAP) model, which learns each parameter of
the input sample for estimating the attributes of the sample from the feature vector generated. Based
on this research, other zero-shot learning methods have been proposed which uses an embedded
representation generated using a natural language processing algorithm instead of a manually created
attribute vector (Norouzi et al., 2013; Fu et al., 2015; Akata et al., 2015; Zhang & Saligrama, 2016;
Bucher et al., 2016). Zhang & Saligrama (2015) proposed a different strategy by constructing the
histogram of known classes distribution for an unknown class to estimate unknown classes. They
assume that the unknown classes are the same if these histograms generated in the prediction domain
and the source domain are similar. Our Raw Zero-Shot test is distinguished from other zero-shot
learning algorithms as in Raw Zero-Shot the neural network has no access to features (attribute
vector), or additional supplementary knowledge.

3 RAW ZERO-SHOT
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Figure 2: Illustration of proposed metrics.

Raw Zero-Shot is a learning test in which only N − 1 of the N classes in the dataset are presented
to the classifier during training, or in other words, all the samples of one specific class are removed
from the standard training dataset. Such a classifier trained on only N − 1 of the N classes is called

‘Raw Zero-Shot Classifier’. Please note that a ‘Standard Classifier’ is trained on all N classes has N
soft-label dimensions in the soft-label space. In contrast, a Raw Zero-Shot Classifier has only N − 1
soft-label dimensions in the soft-label space due to the forced exclusion of a class. The excluded
unknown class then can be predicted as a combination of the remaining N − 1 soft-label dimensions
of the known (learned) classes. We call this combination as ‘Amalgam Proportion’ (Figure 1). During
testing, only the unknown class (excluded class from N ) is provided to the classifier. Amalgam
Proportion for the given unknown class is recorded for the classifier. This process is iterated for all
potential (N) classes, excluding a different class each time.

Soft-labels of a classifier composes a space in which a given image would be categorised as a weighted
vector involving the previously learned classes. If neural networks can learn the features existing in
the classes, it would be reasonable to consider that the Amalgam Proportion also describes a given
image as a combination of the previously learned classes (Figure 1). Similar to a vector space in linear
algebra, the soft-labels can be combined to describe unknown objects in this space. In our example
(Figure 1), the unknown class (Giant Panda) is represented as a combination of previously recognised
(learned) classes (Bear, Zebra, Bird) where 60% of the features of Bear (like body-shape) and 39%
of the features of Zebra (like stripes pattern) is ‘associated’ with the Giant Panda. This is analogous
to how children associate unseen objects (Giant Panda) as a combination of recognised objects (Bear
and Zebra) when they are asked to describe the unseen object with their learned knowledge (Walker &
Gopnik, 2014; Walker et al., 2016). Thus, all the images of the class Giant Panda should have similar
Amalgam Proportion as the hypothetical classifier can associate Giant Panda with some features of
Zebra and Bear classes.
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Metrics are then computed over the Amalgam Proportion of the unknown (excluded) class to assess
this representation quality of a classifier, (Figure 2). These metrics are each based on a different
hypothesis of what defines a feature or a class. In the same way, as there are various aspects of
robustness, there are also different variations of representation quality. Therefore, our metrics are
complementary, each highlighting a different perspective of the whole. The following subsections
define them.

3.1 DAVIES–BOULDIN METRIC (DBM) – CLUSTERING HYPOTHESIS

We can use cluster validation techniques to assess the representation (Amalgam Proportion),
considering that the cluster of Amalgam Proportion of an unfamiliar class would constitute a class in
itself. Here, we choose for simplicity Davies-Bouldin Index (Davies & Bouldin, 1979), one of the
most used metrics in internal cluster validation. Hence, Davies–Bouldin Metric (DBM) for an
unknown class can be defined as follows:

DBM =

 1

n

n∑
j=1

|zj −G|2
1/2

in which, n is the number of samples (samples from unknown class), G is the centroid of the cluster
formed by the soft-labels of all the n samples, and z is soft-label of a single sample of unknown
class. A denser cluster would have a lower DBM Score representing a consistent view taken by the
classifier in terms of features learned from the known classes.

3.2 AMALGAM METRIC (AM) – AMALGAM HYPOTHESIS

Differently from the previous metric, here we establish our metric on the hypothesis that the classes
that are learned by a classifier share some similarity with the unfamiliar class and the classifier
can associate this similarity in its representation while evaluating these unfamiliar classes. This
hypothesis formulates from the fact that humans can combine available perceptual information with
stored knowledge of experiential regularities which helps us to describe things that are ‘similar’ as
close and things that are ‘dissimilar’ as far apart (Casasanto, 2008). However, what would constitute
the baseline Amalgam Proportion for a given unfamiliar class still needs to be determined to assess
the extent of the classifier to exploit this existence of similarity between classes.

To calculate the baseline Amalgam Proportion of a given unknown class, we use here the assumption
that ‘Standard Classifiers should output a good approximation of the Amalgam Proportion since
the class is known to the Standard Classifier in the training phase. We thus associate the evaluated
Amalgam Proportion of the Raw Zero-Shot Classifier and the baseline Amalgam Proportion of the
Standard Classifier for a given class with our Amalgam Metric (AM) (Figure 2) as,

AM =
‖H ′ −H‖1
N − 1

where H =

n∑
j=1

zj , H ′ =

n∑
j=1

z′j

in which, z′ is the normalized soft-labels of non-target classes from the Standard classifier, and z
is the soft-labels of known classes from the Raw Zer-Shot Classifier. Note that, the given class is
‘known’ (target) by the standard classifier and is ‘unknown’ to the Raw Zero-Shot Classifier. Hence,
the Amalgam Metric captures the existence of some unique features learned which are specific to a
class which in-turn changes the Amalgam Proportion between Raw Zero-Shot Classifier and Standard
Classifier. A higher AM score corresponds to a classifier preferring to learn special features of a class
over general features present across the distribution. In other words, a lower AM score corresponds
to a classifier preferring to learn general features over special features. A non-zero AM score thus
verifies the existence of the unique special features to a class which are learned by training the
classifier on that specific class.
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4 EXPERIMENTAL DESIGN AND RESULTS

Considered Datasets: We conducted experiments on three diverse datasets to evaluate the
representation of the neural networks. We used Fashion MNIST (F-MNIST) (Xiao et al., 2017),
CIFAR-10 (Krizhevsky et al., 2009) and a customised Sub-Imagenet (Sub) dataset for our
evaluations. The details of the customised Sub-Imagenet dataset is mentioned in Appendix B. Note
that, the number of samples (7000 for Fashion MNIST, 6000 for CIFAR-10, and roughly 13500
samples for Sub-Imagenet dataset) in the assumed unknown class differ with the dataset. We use the
samples from both training and testing dataset for the ‘unknown’ class for evaluation because we
exclude these samples in the training process.

Considered Classifiers: We evaluated different architectures for different datasets. For the Fashion
MNIST datasets, we chose to evaluate Multi-Layer Perceptron (MLP), and a shallow Convolution
Neural Network (ConvNet). For the CIFAR-10 dataset, LeNet (a simpler architecture which is a
historical mark) (LeCun et al., 1998), VGG (a previous state-of-the-art architecture which is a
historical mark) (Simonyan & Zisserman, 2014), All Convolutional Network (AllConv) (an
architecture without max pooling and fully-connected layers) (Springenberg et al., 2014), Network in
Network (NIN) (an architecture which uses micro neural networks instead of linear filters) (Lin et al.,
2013), Residual Networks (ResNet) (an architecture based on skip connections) (He et al., 2016),
Wide Residual Networks (WideResNet) (an architecture which also expands in width) (Zagoruyko &
Komodakis, 2016), DenseNet (an architecture which is a logical extension of ResNet) (Huang et al.,
2017), and Capsule Networks (CapsNet) (a recently proposed completely different architecture based
on dynamic routing and capsules) (Sabour et al., 2017). For our Sub-Imagenet dataset, we chose
InceptionV3 (Szegedy et al., 2016), and ResNet-50 (He et al., 2016). Details about the Standard and
Raw Zero-Shot Classifiers are mentioned in Appendix C.

Considered Adversarial Defences: We also evaluated the representation quality of some of the
adversarial defences for CIFAR-10 dataset, such as Feature Squeezing (FS) (Xu et al., 2017), Spatial
Smoothing (SS) (Xu et al., 2017) , Label Smoothing (LS) (Hazan et al., 2016), Thermometer Encoding
(TE) (Buckman et al., 2018), and Adversarial Training (AT) (Madry et al., 2018). We also evaluate
classifiers trained with augmented dataset having Gaussian Noise of σ = 1.0 (G Aug). Details about
the adversarial defences are mentioned in Appendix D. For a discussion about the performance of
adversarial defences in general, please refer to Athalye et al. (2018).

Considered Attacks: We also evaluated all our standard vanilla classifiers against well-known
adversarial attacks such as Fast Gradient Method (FGM) (Goodfellow et al., 2014), Basic Iterative
Method (BIM) (Kurakin et al., 2016), Projected Gradient Descent Method (PGD) (Madry et al.,
2018), DeepFool (DF) (Moosavi-Dezfooli et al., 2016), and NewtonFool (NF) (Jang et al., 2017).
Details about the adversarial attacks are mentioned in Appendix E.

Architecture DBM AM
For Fashion MNIST Dataset

MLP 0.51±0.09 670.71±81.79
ConvNet 0.47±0.10 683.55±76.39

For Sub-Imagenet Dataset
InceptionV3 0.56±0.07 1335.65±31.83
ResNet-50 0.55±0.15 1311.97±37.59

Architecture DBM AM
For CIFAR-10 Dataset

LeNet 0.54±0.04 473.97±91.53
VGG 0.61±0.12 645.86±15.19
AllConv 0.64±0.08 634.04±22.01
NIN 0.63±0.09 646.04±16.40
ResNet 0.64±0.13 654.90±6.40
DenseNet 0.61±0.14 658.21±4.05
WideResNet 0.58±0.15 660.00±3.60
CapsNet 0.43±0.03 385.85±83.77

Table 1: Mean and Standard Deviation of DBM and AM Scores for vanilla Raw Zero-Shot Classifiers.

Experimental Results For Vanilla Classifiers: Table 1 shows the results of our metrics (DBM and
AM) for vanilla classifiers. Note that, we use mean across all the metric values for N classes of the
dataset to be characteristic metric value for an architecture. To enable the visualisation of DBM, we
plot a projection of all the points in the decision space of unknown class (N − 1 dimensions) into
two-dimensional space (Appendix F). Similarly, we can also visualise AM, in the form of histograms
of soft-labels for the classifiers (Appendix G). Table 1 reveals that for CIFAR-10 dataset, CapsNet
possesses the best representation quality amongst all classifiers examined as it has the least (best)
score in both of our metrics. At the same time, LeNet has the second-best representation quality.
Moreover, other architectures possess similar representation quality. Also for Sub-Imagenet dataset,
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both architectures (InceptionV3 and ResNet-50) are equally clustered and predict the Amalgam
Proportion similarly. However, ResNet-50 has marginally better representation quality than the
InceptionV3 as it has better scores for both of our metrics. Similarly, for Fashion MNIST dataset,
both architectures (MLP and ConvNet) have a similar quality of representation. While ConvNet
seems marginally superior to the MLP in terms of clustering the unknown classes more tightly
(suggested by DBM), MLP seems marginally superior to predict the Amalgam Proportion better than
the ConvNet (suggested by AM).

5 LINK BETWEEN REPRESENTATION QUALITY AND ADVERSARIAL
DEFENCES

Davies–Bouldin Metric (DBM)
Architecture No Defence Gaussian Augmentation Label Smoothing Adversarial Training
LeNet 0.54±0.04 0.56±0.04 (0.00) 0.43±0.02 (0.00) 0.32±0.04 (0.00)
VGG 0.61±0.12 0.63±0.12 (0.07) 0.55±0.10 (0.00) 0.47±0.07 (0.00)
AllConv 0.64±0.08 0.66±0.11 (0.27) 0.48±0.05 (0.00) 0.50±0.06 (0.00)
NIN 0.63±0.09 0.64±0.11 (0.17) 0.52±0.08 (0.00) 0.43±0.06 (0.00)
ResNet 0.64±0.13 0.63±0.14 (0.09) 0.54±0.11 (0.00) 0.43±0.07 (0.00)
DenseNet 0.61±0.14 0.60±0.15 (0.05) 0.55±0.13 (0.00) 0.50±0.10 (0.02)
WideResNet 0.58±0.15 0.59±0.15 (0.58) 0.46±0.09 (0.00) 0.61±0.10 (0.13)
CapsNet 0.22±0.01 0.23±0.01 (0.00) 0.18±0.01 (0.00) 0.15±0.02 (0.00)

Architecture No Defence Feature Squeezing Spatial Smoothing Thermometer Encoding
LeNet 0.54±0.04 0.54±0.04 (0.38) 0.50±0.03 (0.01) 0.52±0.04 (0.09)
VGG 0.61±0.12 0.62±0.11 (0.14) 0.63±0.09 (0.52) 0.65±0.05 (0.27)
AllConv 0.64±0.08 0.64±0.08 (0.20) 0.63±0.08 (0.66) 0.67±0.05 (0.12)
NIN 0.63±0.09 0.63±0.09 (0.13) 0.65±0.06 (0.39) 0.65±0.06 (0.14)
ResNet 0.64±0.13 0.65±0.13 (0.20) 0.66±0.11 (0.61) 0.71±0.06 (0.02)
DenseNet 0.61±0.14 0.62±0.12 (0.16) 0.64±0.11 (0.57) 0.69±0.09 (0.00)
WideResNet 0.58±0.15 0.59±0.14 (0.13) 0.62±0.11 (0.51) 0.66±0.08 (0.02)
CapsNet 0.22±0.01 0.22±0.01 (0.00) 0.21±0.01 (0.09) 0.20±0.02 (0.03)

Amalgam Metric (AM)
Architecture No Defence Gaussian Augmentation Label Smoothing Adversarial Training
LeNet 115.97±36.92 84.00±26.39 (0.03) 177.08±97.77 (0.10) 29.93±16.06 (0.00)
VGG 270.76±186.04 287.75±122.58 (0.75) 579.05±121.89 (0.00) 218.47±100.50 (0.44)
AllConv 150.35±39.16 153.73±65.96 (0.90) 395.28±143.78 (0.00) 188.66±67.98 (0.16)
NIN 186.14±97.41 222.68±104.12 (0.03) 503.32±145.15 (0.00) 86.45±17.60 (0.01)
ResNet 233.84±109.08 266.61±124.12 (0.17) 592.57±119.06 (0.00) 86.71±46.24 (0.00)
DenseNet 314.93±130.50 303.04±120.54 (0.70) 629.48±131.86 (0.00) 187.34±71.01 (0.04)
WideResNet 417.37±180.78 443.95±157.46 (0.13) 586.84±132.92 (0.00) 365.29±199.90 (0.13)
CapsNet 96.96±38.59 111.46±56.69 (0.07) 100.01±42.72 (0.54) 54.48±20.38 (0.00)

Architecture No Defence Feature Squeezing Spatial Smoothing Thermometer Encoding
LeNet 115.97±36.92 116.85±37.42 (0.37) 72.13±20.02 (0.00) 272.03±80.86 (0.00)
VGG 270.76±186.04 271.42±184.10 (0.78) 183.06±128.16 (0.02) 510.39±85.82 (0.00)
AllConv 150.35±39.16 149.47±38.17 (0.50) 179.44±68.03 (0.14) 537.48±74.51 (0.00)
NIN 186.14±97.41 185.82±100.53 (0.92) 148.72±100.69 (0.00) 516.72±92.20 (0.00)
ResNet 233.84±109.08 226.19±105.21 (0.06) 199.64±99.87 (0.14) 531.54±80.03 (0.00)
DenseNet 314.93±130.50 319.33±136.19 (0.68) 246.08±99.05 (0.09) 585.38±56.48 (0.00)
WideResNet 417.37±180.78 402.62±185.48 (0.04) 207.62±131.18 (0.00) 646.85±10.66 (0.00)
CapsNet 96.96±38.59 96.95±38.57 (0.82) 84.02±31.37 (0.03) 280.39±58.42 (0.00)

Table 2: Mean and Standard Deviation of DBM and AM values for different Raw Zero-Shot
Classifiers with and without the adversarial defences on CIFAR-10. Values in the parentheses are
p-values of the paired samples t-test between the metric values of defences and those without defences.

Table 2 shows the results of our metrics (DBM and AM) for vanilla classifiers and classifiers employed
with a variety of adversarial defences for improving the robustness of vanilla classifiers for CIFAR-
10. We also analyse the statistical relevance of the change in metric values due to introduction of
adversarial defences. A paired samples t-test (David & Gunnink, 1997) was conducted for our metrics’
distributions (DBM and AM) of Vanilla Classifiers (without adversarial defence), and Adversarially
defended classifiers (Table 2) to test the significance in the change in metric values due to Adversarial
Defences. The Null hypothesis of paired samples t-test assumes that the true mean difference between
the distributions is equal to zero. Based on the results (Table 2) adversarial defences, ‘in general’, tend
to improve the representation quality of the neural networks evaluated using Amalgam Proportion. It
does so by either by creating a more dense cluster of the soft-labels (suggested by DBM) or learning
more general/special features (suggested by AM), or both.
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Raw DBM Score values for weaker defences such as G Aug, FS, SS and TE lie within the standard
deviation of vanilla classifiers suggesting that they affect minimally in clustering the Amalgam
Proportion of unknown classes. At the same time, DBM Score values for defences such as LS
and AT are noticeably lower than vanilla classifiers suggesting they try to form a denser cluster
of Amalgam Proportion compared to the vanilla classifiers. Thus a better association of available
features is observed for the more robust defences. From the perspective of AM Score values, the
results suggest that LS favours learning special features belonging to a class while AT favours to learn
more general features. Interestingly, a general low p-value for the paired samples t-test is observed
for the adversarial defences, which suggests that underlying representation of adversarial defences
differ from the vanilla classifiers with high statistical relevance.

6 LINK BETWEEN REPRESENTATION QUALITY AND ADVERSARIAL ATTACKS

Architecture DBM with Mean L2 Score AM with Mean L2 Score
FGM BIM PGD DF NF FGM BIM PGD DF NF

Fashion MNIST
MLP -0.20 (0.58) -0.17 (0.64) -0.17 (0.64) -0.04 (0.91) -0.02 (0.97) 0.82 (0.00) 0.26 (0.47) 0.26 (0.47) 0.83 (0.00) 0.84 (0.00)
ConvNet -0.24 (0.50) -0.30 (0.40) -0.30 (0.40) -0.26 (0.46) -0.22 (0.55) 0.83 (0.00) -0.07 (0.84) -0.09 (0.80) 0.81 (0.00) 0.82 (0.00)

CIFAR-10
LeNet -0.18 (0.61) -0.70 (0.02) -0.66 (0.04) -0.51 (0.13) -0.36 (0.31) 0.93 (0.00) 0.32 (0.36) 0.25 (0.49) 0.81 (0.00) 0.89 (0.00)
VGG -0.62 (0.06) -0.21 (0.55) -0.20 (0.58) -0.52 (0.13) -0.63 (0.05) 0.71 (0.02) -0.04 (0.91) -0.07 (0.85) 0.87 (0.00) 0.74 (0.01)
AllConv -0.31 (0.39) -0.56 (0.09) -0.54 (0.11) -0.10 (0.78) -0.30 (0.41) 0.67 (0.03) 0.42 (0.23) 0.41 (0.24) 0.94 (0.00) 0.73 (0.02)
NIN -0.56 (0.09) -0.57 (0.08) -0.57 (0.09) -0.42 (0.22) -0.43 (0.21) 0.78 (0.01) 0.84 (0.00) 0.84 (0.00) 0.96 (0.00) 0.89 (0.00)
ResNet -0.52 (0.12) -0.76 (0.01) -0.76 (0.01) -0.47 (0.17) -0.51 (0.13) 0.35 (0.32) 0.57 (0.09) 0.57 (0.09) 0.79 (0.01) 0.83 (0.00)
DenseNet -0.62 (0.06) -0.50 (0.14) -0.49 (0.15) -0.16 (0.65) -0.22 (0.55) 0.53 (0.11) 0.78 (0.01) 0.78 (0.01) 0.78 (0.01) 0.84 (0.00)
WideResNet -0.68 (0.03) -0.75 (0.01) -0.75 (0.01) -0.68 (0.03) -0.75 (0.01) 0.66 (0.04) 0.68 (0.03) 0.68 (0.03) 0.78 (0.01) 0.68 (0.03)
CapsNet -0.71 (0.02) -0.45 (0.19) -0.49 (0.15) -0.39 (0.26) -0.48 (0.17) 0.98 (0.00) 0.69 (0.03) 0.73 (0.02) -0.17 (0.63) 0.47 (0.17)

Sub-Imagenet
InceptionV3 -0.76 (0.01) -0.52 (0.13) -0.52 (0.13) -0.35 (0.32) -0.50 (0.14) 0.75 (0.01) 0.14 (0.70) 0.14 (0.70) 0.28 (0.44) 0.25 (0.49)
ResNet-50 -0.34 (0.34) -0.12 (0.74) -0.12 (0.74) -0.54 (0.10) -0.25 (0.48) 0.82 (0.00) 0.31 (0.39) 0.31 (0.39) 0.51 (0.13) 0.50 (0.15)

Table 3: Pearson correlation coefficient of DBM and AM with Mean L2 Score of Adversarial Attacks
for each vanilla classifier and attack pair. Values in the parentheses are p-values of the Pearson
correlation test.

Since, the results in Table 2, suggests a link between the representation quality and the adversarial
defences as discussed above. It is intuitive to assume that there also exists a link between the
representation quality and the adversarial attacks. To evaluate the statistical relevance of this link
between representation quality evaluated using Amalgam Proportion and adversarial attacks, we
conducted a Pearson correlation coefficient test (Freedman et al., 2007) of our metrics (DBM and
AM) of the vanilla classifiers with adversarial attacks. The Pearson correlation analysis of our metrics
suggests a relationship between our metrics and the adversarial attacks in general.

We use the analysis of adversarial attacks in the form of Mean L2 Score (L2 difference between the
original sample and the adversarial one) to compute the correlation (Moosavi-Dezfooli et al., 2016).
The Pearson correlation coefficients of our metrics (DBM and AM) with Mean L2 Score is shown in
Table 3 for every architecture and attacks. Moreover, these Pearson relationships between our metrics
and Mean L2 Score can also be visualised (Appendix H). We also analyse the impact of adversarial
attacks on the correct class soft-label (Appendix I).

We do observe some anomalies in the Pearson correlation coefficient of AM with BIM and PGD
attacks for the ConvNet, and VGG network and DeepFool for CapsNet. These anomalies are studied
in detail (Appendix H) to understand their existence. Our extended analysis suggests that these
anomalies exist due to abnormal behaviour of some classes. On careful study, we note that for all the
classes of VGG network BIM and PGD have similar AM Scores, while at the same time the Mean L2
Score differs for across classes. We observe that for the CapsNet, the Airplane class had abnormally
low Mean L2 score suggesting less perturbation which was abnormal compared to the other classes
in the same setting. These anomalies further suggest that baseline Amalgam Proportion for some
of the classes differ. However, the study of these representation qualities of ‘individual’ classes and
their effect overall representation quality is beyond the scope of the current article and hence, left as
future work.
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7 GENERAL DISCUSSION ON REPRESENTATION QUALITY

On carefully observing the metric values (Tables 1, 2, and 3), we found that our assessment of
representation quality using Amalgam Proportion also explains some of the propositions by other
researchers, we highlight some of our key findings below,

Does a model with high capacity will have a better representation quality? Our results reveal
that a deeper network which generally has a higher capacity (Madry et al., 2018) does not necessarily
correspond to have a better representation quality of the input features. As CapsNet and LeNet, which
are much shallower than the other deeper networks, are shown to have superior representation quality
than other deeper networks (Table 2).
Why CapsNet has better representation quality than other deeper networks? We observe that
Capsule Networks (CapsNet) has the best representation amongst other neural networks (Table 2).
Our results suggest that CapsNet not only produces a denser cluster for Amalgam Proportion but also
learns more general features it might be because of the dynamical nature (routing) of the CapsNet.
Thus our results call for a more in-depth investigation of Capsule Networks and their representation
quality.
How does augmenting the dataset with Gaussian Noise affect the representation quality? We
observe that Gaussian Augmentation degrades the representation quality of all the classifiers (Table
2). This supports our intuition (Section 3), as adding Gaussian noise to the images subdue the features
of the image by blurring making the classifier harder to interpret these features. Consequently, a
weaker association of the representation with these features is observed through the perspective of
Amalgam Proportion.
How does Label Smoothing improve the representation quality? Our results corroborate the
analysis in Müller et al. (2019) that Label Smoothing (LS) encourages the representations to group
in tight, equally distant clusters. The raw metric values from our experiments for LS suggests that
classifiers employed with LS do form a tighter cluster in soft-label space (as suggested by DBM)
(Table 2). At the same time, LS also favours the classifiers to learn special features belonging to a
class (as suggested by AM).
Do adversarial defences which work on the principle of obfuscated gradients affect
representation quality? Since, some adversarial defences rely on obfuscating gradients (Athalye
et al., 2018) such as Feature Squeezing, Spatial Smoothing, and Thermometer Encoding, they fail to
improve the representation quality of the classifiers (suggested by DBM). At the same time, more
robust adversarial defences like Adversarial Training which do not rely on obfuscating gradients have
better representation quality. Hence, adversarial defences can be evaluated using our metrics to
analyse, if an adversarial defence improves the robustness of the classifier by improving the
representation quality of the classifier or rely on some other criterion.

8 CONCLUSIONS

In this article, we propose a novel Zero-Shot learning-based method, entitled Raw Zero-Shot, to assess
the representation of the several neural networks. In order to assess the representation, two associated
metrics are formally defined based on different hypotheses of representation quality. Results from
the experiments reveal that classifiers employed with adversarial defences not only decrease the
attack accuracy as presumed but also improve the representation quality of the classifiers as evaluated
by our proposed metrics (DBM and AM). Further, adversarial defences, have a low p-value in the
paired samples t-test when compared to vanilla classifiers in general, suggesting that representation
quality is significantly affected by various adversarial defences. Moreover, a high Pearson correlation
coefficient and low p-value of the Pearson correlation test between the proposed metrics and the
adversarial attacks suggest a link between the representation quality and the adversarial attacks. Our
experimental results suggest that CapsNet (dynamic routing network) has the best representation
quality amongst classifiers which calls for a more in-depth investigation of Capsule Networks. Hence,
the proposed Raw Zero-Shot was able to assess and understand the representation quality from the
perspective of unknown classes of different neural networks’ architectures, along with the adversarial
defences and link this representation quality of the neural networks with adversarial attacks and
defences. It also opens up new possibilities of using representation quality for both evaluation (i.e. as
a quality assessment) and the development (e.g. as a loss function) of neural networks.
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A ON LINKS OF REPRESENTATION QUALITY WITH ADVERSARIAL ATTACKS
AND DEFENCES

We hypothesise based on our experiments and results that the cause of the links of representation
quality is due to the presence of a bias introduced in the training of neural networks. We call this bias
as Dataset Bias and define it as a bias towards the classes and data distribution present in a dataset. It
is already proven theoretically that it is possible to separate any number of classes, provided enough
samples are evaluated. However, this separation only exists inside the underlying data distribution and
classes of the evaluated samples. With the introduction of noise in the underlying data distribution,
this separation of classes is not valid anymore as the distribution is substantially modified. The area
related to Zero-Shot Learning and Transfer Learning, investigate this bias by introducing unknown
class samples at the time of inferring while in the field of adversarial machine learning, the same bias
is studied by introducing noisy samples.

B DETAILS ABOUT CUSTOMISED SUB-IMAGENET DATASET

Super-Classes Training Images Testing Images Corresponding Imagenet (ILSVRC 2012) Classes
Automobile 12981 500 407, 468, 555, 627, 654, 779, 817, 802, 866, 867
Ball 12971 500 429, 430, 522, 574, 722, 746, 768, 805, 852, 890
Bird 12990 500 7, 8, 9, 16, 22, 23, 24, 84, 94, 100
Dog 12904 500 205, 206, 207, 208, 209, 210, 211, 212, 213, 214
Feline 13000 500 283, 284, 285, 286, 287, 288, 289, 290, 291, 292
Fruit 12986 500 948, 949, 950, 951, 952, 953, 954, 955, 956, 957
Insect 12985 500 300, 301, 302, 303, 304, 305, 306, 307, 308, 309
Snake 12758 500 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
Primate 12979 500 365, 366, 367, 368, 369, 370, 371, 372, 373, 374
Vegetable 12815 500 935, 936, 937, 938, 939, 943, 944, 945, 946, 947

Total 129359 5000

Table 4: Description of Super-Classes used in the Sub-ImageNet.

Sub-Imagenet is a subset of the Imagenet (ILSVRC 2012) (Russakovsky et al., 2015) dataset. It is
intuitive for us to expect that as the number of classes (N) grows, the decision boundary will become
more complicated, causing the classifier to smoothen the representation (Amalgam Proportion) more.
Therefore, to prevent this bias, we grouped a subset of 100 existing semantically alike ImageNet
classes into 10 distinct super-classes, as described in Table 4. Our Sub-Imagenet dataset has some
desired characteristics for our experiments which are also similar to the CIFAR-10 dataset. These
features are:

1. It is relatively balanced dataset as other datasets used in the experiments. The dataset has a
mean of 12937 training images with a standard deviation of 80 images. All super-classes have
relatively the same number of images with a minimum of 12758 images for super-class Snake
and a maximum of 13000 for super-class Feline. Thus, the samples in the unknown class in our
experiments remain relative same.

2. Type of super-classes is similar to CIFAR-10, having six animal classes and four non-animal
classes.

3. Abstract Relationships between super-classes also exists similar to the CIFAR-10. The CIFAR-
10 have a Cat-Dog and Automobile-Truck relationships in which they are semantically similar.
Similarly, our Sub-imagenet also exhibits Dog-Feline and Fruit-Vegetable relationships. These
abstract relationships are essential to validate our hypothesis of Amalgam Proportion.
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C DETAILS ABOUT STANDARD AND RAW ZERO-SHOT CLASSIFIERS

Architecture Standard Raw Zero-Shot Classifiers
Classifier (excluding one class)

Fashion MNIST
T-Shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag AnkleBoot

MLP 88.26% (0.3283) 90.61% (0.2636) 87.73% (0.3440) 91.30% (0.2498) 89.18% (0.2986) 90.96% (0.2606) 88.02% (0.3263) 93.53% (0.1884) 88.57% (0.3241) 87.58% (0.3446) 88.26% (0.3328)
ConvNet 90.47% (0.3280) 91.90% (0.2940) 89.43% (0.3556) 90.64% (0.3193) 90.67% (0.3193) 91.70% (0.2933) 88.86% (0.3675) 94.18% (0.2336) 90.20% (0.3309) 90.02% (0.3496) 90.52% (0.3360)

CIFAR-10
Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

LeNet 73.86% (0.8223) 74.52% (0.7858) 74.91% (0.7945) 77.33% (0.7075) 79.34% (0.6642) 77.13% (0.7223) 78.32% (0.6990) 75.95% (0.7569) 75.90% (0.7615) 74.46% (0.7946) 75.67% (0.7735)
VGG 92.65% (0.5467) 92.85% (0.5370) 92.06% (0.5600) 93.27% (0.5026) 94.43% (0.4660) 92.73% (0.5241) 93.85% (0.4890) 92.82% (0.5400) 92.64% (0.5301) 92.41% (0.5415) 92.60% (0.5442)
AllConv 87.93% (0.6823) 88.63% (0.6501) 86.75% (0.7601) 89.07% (0.6313) 90.04% (0.5917) 87.98% (0.6737) 89.81% (0.6147) 87.38% (0.6778) 87.67% (0.7085) 87.35% (0.7034) 87.00% (0.7205)
NIN 90.45% (0.5020) 90.92% (0.4752) 90.55% (0.4974) 91.04% (0.4666) 92.84% (0.3962) 91.02% (0.4773) 92.01% (0.4315) 90.77% (0.4646) 90.13% (0.5155) 90.51% (0.5041) 90.26% (0.5068)
ResNet 92.58% (0.4685) 92.82% (0.4494) 92.67% (0.4824) 93.42% (0.4328) 94.25% (0.3673) 92.48% (0.4724) 93.75% (0.4119) 92.58% (0.4641) 92.73% (0.4636) 92.53% (0.4740) 92.95% (0.4509)
DenseNet 93.97% (0.3643) 94.27% (0.3540) 94.08% (0.3644) 94.20% (0.3341) 95.86% (0.2702) 93.68% (0.3924) 95.15% (0.3054) 94.11% (0.3804) 93.81% (0.3841) 94.07% (0.3627) 94.32% (0.3656)
WideResNet 95.02% (0.2705) 94.90% (0.2808) 94.96% (0.2872) 94.96% (0.2761) 96.57% (0.2005) 94.67% (0.3001) 95.98% (0.2318) 94.73% (0.2943) 94.71% (0.2842) 95.01% (0.2844) 94.96% (0.2842)
CapsNet* 74.74% (0.2017) 75.20% (0.1953) 74.43% (0.2022) 76.74% (0.1878) 77.35% (0.1875) 76.86% (0.1877) 77.33% (0.1838) 75.92% (0.1949) 74.71% (0.2004) 74.92% (0.2001) 74.43% (0.2015)

Sub-Imagenet
Automobile Ball Bird Dog Feline Fruit Insect Snake Primate Vegetable

InceptionV3 94.06% (0.1907) 94.22% (0.1968) 95.00% (0.1686) 93.91% (0.2787) 93.93% (0.1977) 93.60% (0.1997) 95.11% (0.1702) 94.60% (0.2031) 94.40% (0.1870) 94.33% (0.1937) 94.66% (0.3634)
ResNet-50 92.58% (0.2590) 91.04% (1.7212) 91.08% (1.0540) 92.91% (0.3529) 92.15% (0.3986) 31.40% (1.8681) 95.64% (0.1647) 94.17% (0.4806) 92.66% (0.2975) 94.02% (0.2278) 94.68% (0.2891)

Table 5: Classifier Accuracy (and loss value) on test dataset of the learned classes for different
architectures.

Table 5 shows the classifier accuracy and corresponding loss value on the test dataset of the learned
classes. All the classifiers except CapsNet are trained using standard cross-entropy loss. In contrast,
CapsNet uses ‘margin loss’ (Sabour et al., 2017) to train the parameters of the network. As Raw
Zero-Shot Classifier, forcefully excludes the images of a class for training, we get the accuracy of the
Raw Zero-Shot Classifier on N − 1 learned classes of the dataset.

D DETAILS ABOUT ADVERSARIAL DEFENCES

Defence Parameters
Gaussian Augmentation (G Aug) σ = 1.0

Feature Squeezing (FS) bit depth = 5
Spatial Smoothing (SS) window size = 3

Label Smoothing (LS) max value = 0.9
Thermometer Encoding (TE) num space = 16

Adversarial Training (AT) Attack: Projected Gradient Descent (PGD)
Attack Parameters: norm = L∞, ε = 8, εstep = 2, iterations = 10

Table 6: Description of Adversarial Defence Parameters

All the adversarial defences used in the article have been evaluated using Adversarial Robustness 360
Toolbox (ART v1.2.0) Nicolae et al. (2018). Table 6 describes the defence parameters used for the
evaluated adversarial defences. Table 7 shows the classifier accuracy and corresponding loss value
on the test dataset of the learned classes for various adversarial defences. All the classifiers except
CapsNet use standard cross-entropy loss, while CapsNet uses margin loss (Sabour et al., 2017). As
Raw Zero-Shot Classifier, forcefully excludes the images of a class for training, we get the accuracy
of the Raw Zero-Shot Classifier on N − 1 learned classes of the dataset.

E DETAILS ABOUT ADVERSARIAL ATTACKS

All the adversarial attacks used in the article have been evaluated using Adversarial Robustness
360 Toolbox (ART v1.2.0) Nicolae et al. (2018). We evaluated the test samples of Fashion MNIST,
CIFAR-10 and Sub Imagenet datasets for the adversarial attacks on standard classifiers. We fixed
the parameters of the attacks evaluated, and Table 8 describes the attack parameters used for the
evaluated adversarial attacks. Table 9 shows the adversarial accuracy and Mean L2 Score for each
classifier and adversarial attack pair. Here, Adversarial Accuracy corresponds to the percentage of
adversarial images misclassified by a standard classifier. While Mean L2 Score corresponds to the
Mean L2 norm of the perturbation in the adversarial image.
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Architecture Standard Raw Zero-Shot Classifiers (excluding one class)
Classifier Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

Gaussian Augmentation (G Aug)
LeNet 76.05% (0.7795) 76.35% (0.7736) 73.73% (0.8315) 77.15% (0.7151) 79.43% (0.6736) 76.57% (0.7396) 77.11% (0.7175) 76.20% (0.7579) 75.18% (0.7836) 75.91% (0.7763) 75.27% (0.7999)
VGG 92.64% (0.5276) 93.01% (0.5123) 92.58% (0.5392) 93.63% (0.4749) 94.63% (0.4425) 92.65% (0.5289) 94.21% (0.4566) 92.78% (0.5272) 92.77% (0.5074) 92.53% (0.5505) 92.96% (0.5291)
AllConv 87.74% (0.7554) 88.68% (0.6927) 86.95% (0.7693) 89.00% (0.6644) 90.33% (0.5983) 88.58% (0.6783) 90.27% (0.6190) 86.72% (0.8040) 88.12% (0.7196) 87.54% (0.7415) 86.88% (0.8059)
NIN 91.14% (0.4845) 91.31% (0.4728) 91.31% (0.4910) 91.96% (0.4600) 93.64% (0.3706) 91.31% (0.4791) 92.30% (0.4249) 91.04% (0.4803) 91.20% (0.4926) 91.02% (0.4811) 91.05% (0.4790)
ResNet 93.02% (0.4340) 93.33% (0.4232) 92.77% (0.4151) 93.57% (0.3862) 94.81% (0.3136) 93.13% (0.4103) 94.20% (0.3320) 92.76% (0.4058) 93.06% (0.4214) 92.63% (0.4466) 92.94% (0.4281)
DenseNet 94.56% (0.2963) 94.65% (0.2949) 94.81% (0.3136) 94.94% (0.2710) 96.08% (0.2036) 94.23% (0.3092) 95.80% (0.2255) 94.36% (0.2969) 94.47% (0.3068) 94.34% (0.3127) 95.01% (0.2850)
WideResNet 95.05% (0.2580) 95.24% (0.2529) 95.20% (0.2701) 95.42% (0.2406) 96.55% (0.1848) 95.22% (0.2532) 96.08% (0.2078) .% (0.) 94.86% (0.2673) 95.14% (0.2717) 95.25% (0.2485)
CapsNet 76.29% (0.1938) 77.08% (0.1833) 76.00% (0.1932) 78.20% (0.1771) 76.87% (0.1913) 78.21% (0.1790) 79.52% (0.1712) 77.21% (0.1864) 76.73% (0.1879) 75.87% (0.1926) 76.28% (0.1877)

Feature Squeezing (FS)
LeNet 73.92% (0.8218) 74.45% (0.7856) 74.94% (0.7945) 77.26% (0.7077) 79.38% (0.6630) 76.94% (0.7228) 78.22% (0.6987) 76.05% (0.7564) 75.95% (0.7608) 74.36% (0.7954) 75.61% (0.7736)
VGG 92.65% (0.5470) 92.77% (0.5377) 92.06% (0.5614) 93.25% (0.5026) 94.42% (0.4662) 92.67% (0.5250) 93.87% (0.4890) 92.88% (0.5402) 92.66% (0.5303) 92.52% (0.5424) 92.57% (0.5449)
AllConv 87.93% (0.6812) 88.63% (0.6488) 86.78% (0.7609) 89.00% (0.6310) 90.06% (0.5915) 87.87% (0.6744) 89.77% (0.6151) 87.46% (0.6768) 87.50% (0.7090) 87.36% (0.7027) 86.97% (0.7210)
NIN 90.54% (0.5032) 90.96% (0.4769) 90.52% (0.4995) 91.05% (0.4674) 92.80% (0.3966) 91.03% (0.4778) 92.03% (0.4321) 90.67% (0.4650) 90.12% (0.5162) 90.47% (0.5057) 90.18% (0.5090)
ResNet 92.54% (0.4707) 92.72% (0.4499) 92.50% (0.4802) 93.47% (0.4332) 94.08% (0.3690) 92.34% (0.4756) 93.82% (0.4114) 92.62% (0.4646) 92.85% (0.4656) 92.35% (0.4749) 92.98% (0.4519)
DenseNet 93.92% (0.3662) 94.23% (0.3553) 93.98% (0.3661) 94.35% (0.3338) 95.81% (0.2712) 93.72% (0.3938) 95.10% (0.3061) 94.08% (0.3799) 93.82% (0.3843) 94.02% (0.3665) 94.21% (0.3648)
WideResNet 94.96% (0.2722) 94.92% (0.2815) 94.81% (0.2876) 94.92% (0.2775) 96.58% (0.2001) 94.51% (0.3015) 95.93% (0.2332) 94.50% (0.2960) 94.77% (0.2859) 94.94% (0.2855) 95.00% (0.2870)
CapsNet 74.73% (0.2016) 75.26% (0.1952) 74.31% (0.2022) 76.80% (0.1879) 77.33% (0.1875) 76.80% (0.1877) 77.38% (0.1838) 75.81% (0.1947) 74.66% (0.2004) 74.88% (0.2001) 74.36% (0.2016)

Spatial Smoothing (SS)
LeNet 70.01% (0.9215) 69.64% (0.9056) 69.58% (0.9161) 73.24% (0.8163) 74.84% (0.7866) 71.96% (0.8391) 72.98% (0.8421) 71.16% (0.8789) 70.32% (0.9043) 69.44% (0.9182) 70.45% (0.8919)
VGG 83.32% (0.9154) 83.84% (0.9086) 83.13% (0.9237) 85.28% (0.8036) 86.71% (0.7975) 83.46% (0.8935) 86.31% (0.8000) 83.20% (0.9398) 83.75% (0.8702) 83.96% (0.8852) 83.71% (0.8982)
AllConv 81.31% (0.8986) 81.53% (0.9149) 79.12% (1.0347) 82.81% (0.8419) 82.75% (0.9173) 81.23% (0.8904) 83.66% (0.8442) 80.65% (0.9401) 81.84% (0.8994) 81.70% (0.8861) 82.55% (0.8602)
NIN 84.57% (0.7081) 85.11% (0.6947) 84.71% (0.7023) 85.84% (0.6542) 87.78% (0.5963) 84.86% (0.6872) 87.71% (0.5978) 84.94% (0.7071) 84.82% (0.7129) 85.16% (0.6877) 85.00% (0.6977)
ResNet 77.19% (1.4403) 74.57% (1.6944) 78.64% (1.3998) 79.53% (1.3088) 82.51% (1.0585) 76.51% (1.6006) 79.72% (1.3452) 78.96% (1.2993) 79.78% (1.2429) 77.46% (1.4125) 78.62% (1.3955)
DenseNet 78.59% (1.1361) 76.18% (1.4147) 77.20% (1.3156) 79.07% (1.2178) 80.38% (1.0384) 77.88% (1.1653) 80.24% (1.0934) 78.75% (1.2140) 79.35% (1.1429) 77.67% (1.2486) 79.26% (1.1859)
WideResNet 76.93% (1.1204) 77.41% (1.0795) 78.77% (0.9918) 77.33% (1.0777) 79.92% (0.9149) 77.16% (1.1398) 79.94% (0.9821) 77.77% (1.0508) 77.04% (1.1066) 77.62% (1.0670) 78.72% (0.9773)
CapsNet 72.58% (0.2213) 73.32% (0.2139) 71.55% (0.2226) 74.23% (0.2051) 74.68% (0.2072) 73.97% (0.2082) 74.52% (0.2034) 72.96% (0.2137) 72.23% (0.2184) 72.80% (0.2170) 71.96% (0.2204)

Label Smoothing (LS)
LeNet 75.15% (0.8138) 73.75% (0.8275) 74.04% (0.8233) 77.30% (0.7345) 78.94% (0.7011) 76.04% (0.7668) 77.65% (0.7297) 75.88% (0.7764) 74.70% (0.7967) 74.71% (0.8141) 74.93% (0.8047)
VGG 92.63% (0.5205) 92.94% (0.4901) 92.06% (0.5153) 93.25% (0.4723) 94.51% (0.4390) 92.46% (0.4896) 93.91% (0.4609) 92.46% (0.5008) 92.51% (0.4922) 92.56% (0.5025) 92.52% (0.5034)
AllConv 89.03% (0.5349) 89.23% (0.5044) 86.54% (0.5973) 89.37% (0.5091) 90.24% (0.4730) 89.06% (0.5272) 89.97% (0.4995) 88.51% (0.5381) 88.00% (0.5374) 87.85% (0.5568) 88.46% (0.5402)
NIN 90.28% (0.4102) 90.78% (0.3986) 90.13% (0.4148) 91.26% (0.3819) 92.95% (0.3297) 90.97% (0.3984) 92.02% (0.3582) 90.74% (0.3921) 90.56% (0.4020) 90.17% (0.4157) 90.34% (0.4085)
ResNet 92.48% (0.4126) 93.01% (0.3910) 92.54% (0.4036) 93.42% (0.3724) 94.38% (0.3399) 92.81% (0.3949) 94.02% (0.3500) 92.58% (0.4010) 92.06% (0.4166) 93.04% (0.3977) 92.41% (0.4048)
DenseNet 94.08% (0.3712) 94.70% (0.3424) 94.10% (0.3616) 94.85% (0.3405) 95.47% (0.3067) 94.03% (0.3606) 95.31% (0.3180) 94.50% (0.3485) 93.63% (0.3738) 94.30% (0.3620) 94.20% (0.3626)
WideResNet 95.12% (0.2954) 95.33% (0.2935) 95.03% (0.3014) 95.44% (0.2849) 96.61% (0.2486) 94.97% (0.3018) 95.84% (0.2646) 95.06% (0.2998) 95.21% (0.2957) 95.14% (0.2982) 95.18% (0.2914)
CapsNet 74.24% (0.2115) 75.95% (0.1979) 74.95% (0.2034) 77.83% (0.1849) 78.40% (0.1863) 72.74% (0.2220) 77.88% (0.1865) 76.48% (0.1978) 76.35% (0.2004) 75.35% (0.2004) 74.84% (0.2072)

Thermometer Encoding (TE)
LeNet 65.73% (1.0599) 64.36% (1.0869) 64.21% (1.0705) 68.68% (0.9427) 68.63% (0.9557) 67.84% (0.9763) 67.95% (0.9905) 64.60% (1.0635) 66.60% (1.0139) 65.70% (1.0272) 65.92% (1.0513)
VGG 84.01% (0.8730) 82.77% (0.9430) 83.72% (0.8934) 84.96% (0.8305) 86.97% (0.7566) 85.01% (0.8250) 85.74% (0.8114) 84.62% (0.8435) 83.78% (0.8753) 83.94% (0.8783) 81.83% (0.9777)
AllConv 77.71% (1.1347) 78.00% (1.0777) 76.86% (1.1854) 79.41% (1.0531) 81.21% (0.9174) 79.24% (0.9883) 80.01% (1.0531) 78.84% (1.0680) 78.40% (1.0330) 77.47% (1.0763) 77.34% (1.1180)
NIN 81.75% (0.8457) 82.80% (0.8031) 81.78% (0.8305) 83.48% (0.7702) 84.91% (0.7120) 82.80% (0.7990) 84.03% (0.7526) 82.00% (0.8240) 82.00% (0.8579) 81.38% (0.8481) 81.27% (0.8554)
ResNet 83.04% (1.0909) 83.55% (1.0777) 82.65% (1.1141) 84.56% (0.9993) 86.14% (0.8782) 83.81% (1.0596) 85.31% (0.9196) 83.44% (1.0720) 82.66% (1.1020) 82.91% (1.1110) 83.06% (1.1231)
DenseNet 85.08% (0.9698) 85.93% (0.9420) 84.73% (0.9839) 86.97% (0.8584) 88.05% (0.7693) 86.27% (0.9042) 87.41% (0.8407) 85.08% (0.9649) 85.33% (0.9369) 85.18% (0.9697) 85.93% (0.9338)
WideResNet 86.55% (0.7288) 86.33% (0.7479) 86.14% (0.7623) 87.78% (0.6851) 89.26% (0.5762) 86.83% (0.7120) 88.42% (0.6256) 86.48% (0.7444) 86.40% (0.7646) 86.16% (0.7493) 86.48% (0.7286)
CapsNet 32.45% (0.6018) 25.58% (0.6569) 60.31% (0.2874) 62.42% (0.2744) 49.08% (0.4128) 41.34% (0.5214) 60.75% (0.2868) 47.27% (0.4277) 41.77% (0.4795) 59.63% (0.2926) 44.30% (0.4665)

Adversarial Training (AT)
LeNet 60.87% (1.2041) 60.47% (1.1789) 61.47% (1.1583) 64.53% (1.0746) 65.66% (1.0460) 63.73% (1.0766) 65.13% (1.0730) 61.81% (1.1341) 61.91% (1.1414) 61.13% (1.1649) 61.62% (1.1502)
VGG 82.20% (0.7734) 83.35% (0.7194) 84.45% (0.7192) 84.96% (0.6834) 87.33% (0.6344) 85.11% (0.6706) 86.97% (0.6412) 82.95% (0.7273) 83.28% (0.7395) 83.80% (0.7537) 84.61% (0.7087)
AllConv 80.99% (0.7222) 81.23% (0.7077) 78.63% (0.7888) 82.55% (0.6645) 84.20% (0.6321) 81.42% (0.6756) 83.30% (0.6543) 80.45% (0.7303) 80.05% (0.7271) 79.95% (0.7501) 80.84% (0.7262)
NIN 83.98% (0.6079) 84.73% (0.5774) 83.21% (0.6130) 85.57% (0.5305) 87.57% (0.4820) 85.33% (0.5294) 86.92% (0.5127) 84.83% (0.5729) 84.38% (0.5866) 84.26% (0.5928) 85.41% (0.5868)
ResNet 82.53% (0.6259) 81.63% (0.6726) 83.72% (0.6039) 84.27% (0.5981) 86.56% (0.5302) 82.97% (0.6103) 84.45% (0.6006) 83.21% (0.6110) 82.00% (0.6728) 82.12% (0.6802) 79.30% (0.7027)
DenseNet 85.40% (0.5815) 84.95% (0.6055) 84.08% (0.6355) 86.34% (0.5379) 88.14% (0.4942) 85.91% (0.5378) 88.27% (0.5096) 85.16% (0.5934) 82.91% (0.8311) 84.16% (0.6158) 83.80% (0.6019)
WideResNet 84.67% (0.8057) 84.90% (0.7483) 84.11% (0.8626) 85.78% (0.7780) 88.43% (0.6124) 85.30% (0.8425) 87.57% (0.6585) 85.08% (0.7759) 84.50% (0.8096) 83.55% (0.8256) 84.35% (0.8034)
CapsNet 65.97% (0.2746) 65.75% (0.2678) 64.92% (0.2694) 69.87% (0.2457) 71.95% (0.2377) 70.55% (0.2425) 52.71% (0.3352) 62.71% (0.2842) 67.48% (0.2605) 65.63% (0.2697) 67.58% (0.2579)

Table 7: Classifier Accuracy on test dataset of the learned classes for different architectures.

Attack For Fashion MNIST For CIFAR-10 and
Sub Imagenet

FGM norm = L∞, ε = 0.3, εstep = 0.01 norm = L∞, ε = 8, εstep = 2

BIM norm = L∞, ε = 0.3, εstep = 0.01, norm = L∞, ε = 8, εstep = 2,
iterations = 80 iterations = 10

PGD norm = L∞, ε = 0.3, εstep = 0.01, norm = L∞, ε = 8, εstep = 2,
iterations = 40 iterations = 20

DF iterations = 100, ε = 0.02 iterations = 100, ε = 0.000001
NF iterations = 100, eta = 0.375 iterations = 100, eta = 0.01

Table 8: Description of Adversarial Attack Parameters

Classifier Adversarial Accuracy (in %) Mean L2 Score
FGM BIM PGD DF NF FGM BIM PGD DF NF

Fashion MNIST
MLP 91.08 91.29 91.29 27.16 25.39 210.73 638.83 638.83 309.41 289.28
ConvNet 86.89 89.20 89.18 23.63 22.67 306.25 669.56 665.76 314.81 263.65

CIFAR-10
LeNet 84.58 89.12 89.25 31.70 84.12 152.37 345.27 357.34 132.32 49.61
VGG 82.79 94.97 94.99 65.08 92.43 181.29 321.86 329.96 651.65 77.01
AllConv 67.09 69.11 69.11 51.46 61.86 155.95 273.90 274.15 487.46 61.05
NIN 72.49 74.26 74.26 59.94 66.76 140.46 216.97 216.96 492.90 54.78
ResNet 52.75 55.41 55.41 58.71 54.39 124.70 164.64 164.64 458.57 51.56
DenseNet 50.78 52.11 52.11 60.83 50.81 120.03 160.34 160.38 478.03 53.89
WideResNet 69.59 89.42 89.44 60.10 82.73 159.88 208.44 208.49 613.14 63.13
CapsNet 70.02 82.23 84.46 87.40 90.04 208.89 361.63 370.90 258.08 1680.83

Sub-Imagenet
InceptionV3 85.76 87.24 87.24 86.94 58.44 796.53 1204.01 1204.01 609.54 319.73
ResNet-50 85.74 86.72 86.72 84.78 60.84 826.06 1264.30 1264.34 633.30 336.80

Table 9: Adversarial Accuracy and Mean L2 Score for each classifier and adversarial attack pair.
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F VISUALISATIONS OF DAVIES-BOULDIN METRIC (DBM)

Figure 3: Visualisation of the DBM results for vanilla classifiers using a topology preserving two-
dimensional projection with Isometic Mapping (IsoMap). Each row represents a classifier trained
with a label excluded whose projection is visualised.

Figures 3-6 shows visualization of DBM metric using Isometric Mapping (IsoMap) (Tenenbaum
et al., 2000), t-Distributed Stochastic Neighbour Embedding (t-SNE) (Maaten & Hinton, 2008),
Multi-dimensional Scaling (MDS) (Kruskal, 1964), and Spectral Embedding (SE) (Belkin & Niyogi,
2003) respectively. The characteristic of IsoMap is that it seeks a lower-dimensional embedding
which maintains geodesic distances between all sample points that is it preserves the high-dimensional
distance between the points. t-SNE tries to model similar data points in higher-dimensional space
through small pairwise distances in lower-dimensional space. In other words, it tries to minimise the
Kullback–Leibler divergence between the two distributions of points in the map. SE is a non-linear
embedding, which finds a lower-dimensional representation of the sample points using a spectral
decomposition of the graph Laplacian Eigenmaps. It is to be noted that Isomap (Figure 3), t-SNE
(Figure 4), MDS (Figure 5), and SE (Figure 6) are different visualisations for the same feature space.
The idea for having these visualisations is to investigate whether the cluster for the unknown class
can be segregated into one or more different classes. In other words, we try to investigate visually
whether there exists a single combination of Amalgam Proportion for the unknown class.

The projections (Figures 4-6) of CapsNet is uniform and dense while the other networks have more
scattered non-uniform projections. The non-uniform projection, which can be split into multiple
clusters, of the other networks might suggest that the learned representation is not
continuous/homogeneous enough. Interestingly, LeNet have more dense and uniform projections
compared to other static neural networks, further suggesting the better representation of the LeNet.
These results are in accordance with the previous experiments (Section 5) on representation quality.

Another way to verify this interpretation is to look at the gaps in the projections, which is observing
the behaviour of different data points. For CapsNet, even if we form clusters to have different classes,
the gaps between the classes will be too small relative to other architectures. It also shows that
in the high-dimensional space, all the soft-labels are moderately close to each other, also verified
using Amalgam Metric (Table 2 and Figure 7). While for the other architectures, there exist some
points which can form their separate cluster and be termed as a different class. Hence, for these
architectures, it can have one or more different Amalgam proportion for the same unknown class
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Figure 4: Visualisation of the DBM results for vanilla classifiers using t-Distributed Stochastic
Neighbour Embedding (t-SNE). Each row represents a classifier trained with a label excluded whose
projection is visualised.

which is contradicting to our hypothesis that there should exist only a single Amalgam proportion for
a single unknown class. Note that, this dense projection does not necessarily mean that the unknown
class has converged to a single known class. It gives a visualisation that the Amalgam Proportion of
the unknown class is similar.
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Figure 5: Visualisation of the DBM results for vanilla classifiers using Multi Dimensional Scaling
(MDS). Each row represents a classifier trained with a label excluded whose projection is visualised.

Figure 6: Visualisation of the DBM results for vanilla classifiers using Spectral Embedding (SE).
Each row represents a classifier trained with a label excluded whose projection is visualised.
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G VISUALISATION OF AMALGAM METRIC (AM)

Color Encoddings Of Classes For Fashion MNIST, CIFAR-10 and Sub Imagenet (In Order)

Figure 7: Histograms of soft-labels (H ′ and H) from which the AM is calculated. Each row shows
the histograms of one classifier with one class excluded. Dark-shaded thinner and light-shaded
broader bins are respectively the soft-labels from the ground-truth (H ′) from the classifier trained on
all classes and the soft-labels of the classifier trained on N − 1 classes (H ′).

To enable the visualisation of the Amalgam Metric, the computed histograms (H ′ and H) is plotted
for every class and classifier (Figure 7). It is interesting to note that the histograms of CapsNet (Figure
7) are different from the other ones. This reveals that this metric can capture such representation
differences. It can be noted (Figure 7) that for most classes of CapsNet, the variation is relatively low
than the other architectures. This contributes to having a good representation of CapsNet.

A further study can also be carried out to analyse the characteristics of representation of the neural
network, which makes a class more robust than the other classes. Further investigations can be also
be carried out to analyse the effect of a class for an adversarial attack based on this. This can also
provide insight into the classes which are robust to adversarial attacks. However, these analyses are
beyound the scope for the current article, and hence, left for future work.
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H VISUALISATION OF PEARSON CORRELATION

Color Encoddings Of Classes For Fashion MNIST, CIFAR-10 and Sub Imagenet (In Order)

Figure 8: Visualisation of Pearson Correlation of Davies-Bouldin Metric (DBM) with Mean L2

Score of adversarial attacks (Table 3). Here, the x-axis represents the Mean L2 Scores while the
y-axis represents the DBM values. Each point represent a DBM value and Mean L2 Score for a
labelled class.

Color Encoddings Of Classes For Fashion MNIST, CIFAR-10 and Sub Imagenet (In Order)

Figure 9: Visualisation of Pearson Correlation of Amalgam Metric (AM) with Mean L2 Score
of adversarial attacks (Table 3). Here, the x-axis represents the Mean L2 Scores while the y-axis
represents the AM values. Each point represent an AM value and Mean L2 Score for a labelled class.

Here, we visualise the Pearson correlation between the Raw Zero-Shot metrics (DBM and AM) with
the adversarial metrics (Adversarial Accuracy and Mean L2 Score) mentioned in Tables 3. Figures 8
and 9, visualizes the relationship of Raw Zero-Shot metrics with adversarial metrics. In the Section 6,
we observed some anomalies in the Pearson correlation values (Table 3). Here we try to understand
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these anomalies with the help of our visualisation (Figure 9). On visualising the Pearson correlation,
we identify that DeepFool attacks the Airplane class of CapsNet with much less L2 score compared
to the other classes. This abnormal behaviour of DeepFool for the Airplane class causes the anomaly
for the Pearson Correlation.

I ANOTHER OUTLOOK ON LINK BETWEEN REPRESENTATION QUALITY AND
ADVERSARIAL ATTACKS

Classifier Confidence Score Pearson Correlation of AM with Confidence Score
FGM BIM PGD DF NF FGM BIM PGD DF NF

Fashion MNIST
MLP 0.63 0.90 0.90 0.38 0.35 0.95 (0.00) 0.99 (0.00) 0.99 (0.00) 0.86 (0.00) 0.87 (0.00)
ConvNet 0.62 0.90 0.90 0.33 0.34 0.86 (0.00) 0.99 (0.00) 0.99 (0.00) 0.85 (0.00) 0.82 (0.00)

CIFAR-10
LeNet 0.58 0.72 0.72 0.12 0.48 0.99 (0.00) 1.00 (0.00) 1.00 (0.00) 0.79 (0.01) 1.00 (0.00)
AllConv 0.82 0.91 0.91 0.71 0.69 0.92 (0.00) 0.97 (0.00) 0.97 (0.00) 0.99 (0.00) 0.98 (0.00)
NIN 0.87 0.93 0.93 0.78 0.75 0.94 (0.00) 0.98 (0.00) 0.98 (0.00) 0.99 (0.00) 0.99 (0.00)
ResNet 0.90 0.94 0.94 0.82 0.76 0.79 (0.01) 0.91 (0.00) 0.91 (0.00) 0.96 (0.00) 0.94 (0.00)
DenseNet 0.91 0.95 0.95 0.85 0.76 0.60 (0.07) 0.95 (0.00) 0.94 (0.00) 0.91 (0.00) 0.94 (0.00)
WideResNet 0.87 0.97 0.97 0.84 0.77 0.31 (0.39) 0.94 (0.00) 0.94 (0.00) 0.96 (0.00) 0.65 (0.04)
VGG-16 0.86 0.95 0.95 0.82 0.75 0.89 (0.00) 0.98 (0.00) 0.98 (0.00) 0.93 (0.00) 0.95 (0.00)
CapsNet 0.17 0.46 0.48 -0.10 0.15 0.89 (0.00) 0.93 (0.00) 0.93 (0.00) -0.52 (0.13) 0.24 (0.50)

Sub-Imagenet
InceptionV3 0.92 0.95 0.95 0.86 0.82 0.10 (0.78) 0.54 (0.11) 0.54 (0.11) 0.33 (0.35) 0.14 (0.70)
ResNet-50 0.90 0.94 0.94 0.85 0.81 0.44 (0.20) 0.75 (0.01) 0.75 (0.01) 0.67 (0.03) 0.53 (0.12)

Table 10: Confidence Difference Score and it’s Pearson Correation value (and p-value) for each
classifier and adversarial attack pair.

Color Encoddings Of Classes For Fashion MNIST, CIFAR-10 and Sub Imagenet (In Order)

Figure 10: Visualisation of Pearson Correlation of Amalgam Metric (AM) with Confidence Score
of adversarial attacks (Table 10). Here, the x-axis represents the Confidence Difference Scores. In
contrast, the y-axis represents the AM values. Each point represents an AM value and Confidence
Difference Scores for a labelled class.

In this section, we analyse the representation quality from the perspective of Confidence Score, which
is defined as the change in the confidence of the true label by an adversarial sample. To further
deeply analyse the statistical relevance of this link between representation quality and adversarial
attacks, we here conduct a Pearson Correlation test of Amalgam Metric of the vanilla classifiers with
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Confidence Score of the adversarial attacks. The Pearson correlation value of the Amalgam Metric
with Confidence Score is shown in Table 10 for every architecture and attacks. Table 10 also mentions
the Confidence Score of every classifier-attack pair. Moreover, similar to our previous analysis, these
Pearson relationships between the Amalgam Metric and Confidence Score can also be visualised
(Figure 10).

The purpose of evaluating the Confidence Score as an adversarial metric is because the score
effectively assesses the impact of the adversarial attacks on true class soft-label. This perspective
gives us the effectiveness of an attack on the soft-label of the representation we evaluate. Therefore,
here Confidence Score not only determines the alteration in the representation space, but it also
analyses the effectiveness of an attack across different classes.

The correlational analysis of our Amalgam Metric suggests a relationship between our Amalgam
Metric and the adversarial attacks in general. We do observe some anomalies in this Pearson
correlation also with AM of DeepFool for CapsNet. However, we believe this anomaly is due to
the adversarial attack itself. Note that in Table 10 the Confidence Score of the DeepFool attack
for CapsNet is negative, which suggests that DeepFool, instead of decreasing the soft-label of the
true-class, increases the soft-label of the misclassified class. We do note that more investigations are
required to better understand the behaviour of Capsule Networks, in general.

22


	Introduction
	Related Works
	Raw Zero-Shot
	Davies–Bouldin Metric (DBM) – Clustering Hypothesis
	Amalgam Metric (AM) – Amalgam Hypothesis

	Experimental Design And Results
	Link Between Representation Quality And Adversarial Defences
	Link Between Representation Quality And Adversarial Attacks
	General Discussion On Representation Quality
	Conclusions
	On Links Of Representation Quality With Adversarial Attacks And Defences
	Details About Customised Sub-Imagenet Dataset
	Details About Standard and Raw Zero-Shot Classifiers
	Details About Adversarial Defences
	Details About Adversarial Attacks
	Visualisations Of Davies-Bouldin Metric (DBM)
	Visualisation Of Amalgam Metric (AM)
	Visualisation Of Pearson Correlation
	Another Outlook On Link Between Representation Quality And Adversarial Attacks

