
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 7, JULY 2023 3835

Decoding LDPC Codes by Using Negative
Proximal Regularization

Yiming Chen , Rui Wang , Jinglong Zhu , and Zaiwen Wen

Abstract— The low-density parity-check (LDPC) decoding
problem can be expressed as an integer linear programming
(ILP) problem. One efficient method to solve the ILP problem
is to relax the integer constraints and add penalty terms to the
objective function, and the revised problem can be solved via the
alternating direction method of multipliers (ADMM) algorithm.
These penalty terms can punish the non-integral solutions and
improve the decoding performance of the decoder. However,
ADMM decoders are easily trapped in a local solution, which
limits the frame error rate (FER) performance of the decoders
at low signal-to-noise ratios (SNR). In this paper, we propose
a restartable ADMM-based decoder using a negative proximal
regularization. The negative proximal term will be updated
whenever the decoder finds a new local solution. Therefore,
the decoder can be restarted several times and the candidate
solution which satisfies the parity-check equations and has the
lowest objective function value can be selected as the decoder’s
output. Some properties, together with several choices of penalty
terms are discussed. We also investigate the convergence of our
proposed decoder, and prove that the possibility of decoding
errors is independent of the codeword that is transmitted.
Simulation results show that our proposed decoder outperforms
other ADMM-based decoders in most cases, while the decoding
complexity maintains the same.

Index Terms— LDPC, ADMM, negative proximal regulariza-
tion, restartable decoder.

I. INTRODUCTION

LOW-DENSITY parity-check (LDPC) codes were first
introduced by [1] in 1962, and they were rediscovered

by [2] and [3] in 1990s. The decoders for LDPC codes
were most commonly based on belief propagation (BP),
including the sum-product decoder and other variants [4], [5].
When using BP decoding, LDPC codes can perform near
the Shannon limit. However, in the high signal-to-noise ratio
(SNR) region, BP decoding often suffers the “error floor”
phenomenon, which refers that the error-rate cannot drop
rapidly as the SNR increases.
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The decoding problem can be equivalently expressed as an
integer linear programming (ILP) problem, and then solved by
linear programming (LP) relaxation. LP decoding for LDPC
codes was first introduced by [6] and another method to
transform the decoding problem to an LP problem was later
proposed by [7]. Compared with BP decoding, LP decoding
has several outstanding attributes. Firstly, LP decoding has a
better decoding performance at a high SNR level. Secondly,
LP decoding has the “maximum-likelihood (ML) certificate”
property, which refers that the integral solution to the LP
decoding problem is also the ML solution. One drawback
of LP decoding is the high computation consumption.
In [8], [9] and [10], several algorithms were proposed to
reduce the complexity of the LP decoders. In [10], the
alternating direction method of multipliers (ADMM) technique
was introduced to the LP decoders. The ADMM decoder has
closed-form solutions in each iteration, which significantly
improves the efficiency of LP decoding.

In the past decade, there have been two directions to
improve ADMM decoding. One direction is to accelerate
the decoding process. In the ADMM decoding process,
an Euclidean projection onto the parity-check polytope is
to be conducted in each iteration, which dominates the
complexity of ADMM decoding. Therefore, many works
[11], [12], [13], [14], [15], [16] focus on reducing the
complexity of the projection process. In [15], an iterative
projection algorithm was proposed, which had a linear
complexity in the worst case. In [16], a line segment projection
algorithm was introduced, which reduced the projection time
evidently without iterative operations. There are also some
works improving the efficiency of ADMM decoding from
other aspects. In [17], the authors proposed a check-polytope-
free ADMM framework for the LP model in [7], where a
linear complexity in terms of the length of codewords can be
guaranteed.

The other direction is to improve the decoding performance.
Since the LP model relaxes the binary constraints to
continuous ones, the optimal solution to the LP decoding
problem may be fractional. The ADMM decoder fails
whenever a non-integral solution, which is called pseudo-
codeword, is output. In [18], the authors added a penalty term
to the objective function of the LP model. The penalty term is a
symmetric function that takes smaller values at integral points
than that at fractional ones. Thus the decoder is more likely
to output an integral solution. The authors also investigated
several types of penalty functions and compared their decoding
performance. Reference [19] used a segmented function as
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the penalty term, which gained improvement in decoding
performance. In [20], a new penalty term was proposed,
which penalized the check nodes instead of the variable
nodes. Additionally, some authors improved the decoding
performance by introducing new constraints that play the same
role as the penalty term. Reference [21] introduced the ℓp-
box constraints, while [22] added an auxiliary variable and
introduced constraints that force the variable to be 0 or 1.

In this paper, we focus on improving the frame-error-rate
(FER) performance of ADMM decoding at low SNRs. Since
there is no guarantee that the ADMM decoding algorithm can
converge to the ML solution, the ADMM iterations may be
trapped in a local solution or a pseudo-codeword. Therefore,
we propose a restartable ADMM framework, which is obtained
by adding a negative proximal term to the objective function of
the LP model. Whenever the ADMM algorithm converges to
a stationary point, the negative proximal term will be adjusted
such that the ADMM algorithm can be restarted. The negative
proximal term suppresses the stationary points found during
the decoding process, pushing the algorithm to converge to
a new local minimum. There are many choices of negative
proximal terms, and we investigate the ℓ1-norm and ℓ2-norm-
square penalty functions in this paper.

There are two major differences between our proposed
decoder and other existing ADMM penalized decoders. First,
the penalty terms are different. We choose a symmetric
function that has a peak at a given point x̂ as the penalty
function. The point x̂ is initialized as a vector whose entries
are all 0.5. Thus our objective function is the same as that
of the ADMM penalized decoder [18] at the beginning of
the decoding process. However, after the ADMM algorithm
finds a stationary point, x̂ will be updated and our model
will have a different form from other decoders. Second,
the decoding processes are distinct. For other ADMM-based
decoders, the ADMM algorithm will be executed once, and
only one solution will be output by the decoder, even if the
solution is not a codeword. For our proposed decoder, the
ADMM algorithm will be conducted by several times, and
several candidate solutions will be found during the decoding
process. The optimal solution with the smallest objective
function value can be selected as the output of our decoder.

The main contributions in this paper are listed as follows:
• We propose a restartable ADMM decoding framework

by adding a negative proximal term to the LP decoding
model. We investigate several types of penalty functions
as the negative proximal term and design penalty
functions with weighted forms for irregular LDPC codes.

• We conduct theoretical analysis including the conver-
gence property of the ADMM algorithm and the all-zero
assumptions of our proposed decoder.

The rest of the paper is organized as follows. In Section II,
we review the LP decoding model and the ADMM penalized
decoder. Then we introduce our restartable decoding model.
In Section III, we present the ADMM algorithm to solve
our decoding model and introduce the restartable decoding
framework. Section IV includes the analysis of convergence
and other properties of our decoder. Simulation results, which
show the performance improvement of our proposed decoder,

are presented in Section V. Section VI makes a conclusion of
this paper.

II. PRELIMINARIES

Throughout this paper, we consider LDPC codes C of length
n, each specified by an m × n parity check matrix H. Let
I = {1, 2, . . . ,m} and J = {1, 2, . . . , n} denote the sets of
check nodes and variable nodes of C, respectively. Suppose
a codeword x = (x1, x2, . . . , xn)T ∈ C is transmitted over
a noisy memoryless binary-input output-symmetric channel,
resulting in a corrupted signal y = (y1, y2, . . . , yn)T . The
corresponding log-likelihood ratios are defined as

γj = log
(

Pr(yj |xj = 0)
Pr(yj |xj = 1)

)
, j ∈ J . (1)

A. ML Decoding Problem

The ML decoding problem can be formulated as the
following integer programming problem [6]:

min γT x, (2a)
s.t. [Hx]2 = 0, (2b)

x ∈ {0, 1}n, (2c)

where γ is an n-dimensional vector composed of the above
log-likelihood ratios and [.]2 denotes the modular-2 operator.

The difficulty of solving the ML decoding problem (2)
comes from the parity check constraints (2b) and the discrete
constraints (2c). In [6], J. Feldman et al. relaxed these
constraints and proposed an LP form of the decoding problem.

B. LP Relaxation

Denote the set Ci = {x ∈ {0, 1}n : [hix]2 = 0}, where hi

is the i-th row of H. Then the integer programming problem
(2) can be relaxed to the following form

min γT x, (3a)

s.t. x ∈ ∩i∈I conv(Ci), (3b)

where conv(Ci) denotes the convex hull of Ci. We now
introduce the notation Pi as the di×N binary selection matrix
which selects the sub-vector of x that participates the i-th
parity-check equation, where di denotes the number of 1s in
hi. An equivalent expression of (3) is

min γT x, (4a)
s.t. Pix ∈ PPdi

, ∀i ∈ I. (4b)

Here PPdi
is the parity polytope of dimension di, which

is the convex hull of all binary vectors that have even
weights. Solving (4) directly by a general LP optimizer is
not efficient. [10] reformulated (4) as the following problem
and solved it by the ADMM algorithm:

min γT x, (5a)
s.t. Pix = zi, (5b)

zi ∈ PPdi , ∀i ∈ I, (5c)

where zi is a di-dimensional vector. The introduction of
auxiliary variable zi makes the model fit the ADMM
algorithm.
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C. Penalized Decoding Model

LP decoding fails whenever it outputs a fractional solution
which is called a pseudo-codeword. Therefore, [18] tightened
the constraints (4b) by adding the penalty term g(xj) for each
variable xj to the objective function (4a) and proposed an
ADMM penalized model. This model is given as follows:

min γT x +
∑

j∈J
g(xj), (6a)

s.t. Pix = zi, (6b)
zi ∈ PPdi

, ∀i ∈ I. (6c)

The penalty function g(x) is an increasing function on [0, 0.5],
and is symmetric about 0.5. This makes the fractional solutions
to this model more costly than the integral ones.

D. Restartable Decoding Model

Though the penalty function penalizes the fractional
solution of (6) efficiently, there is no guarantee that the
ADMM algorithm for (6) can converge to the global minimum.
In this paper, we propose a restartable decoding algorithm,
which can be restarted whenever the algorithm converges to a
local minimum. To achieve this, we introduce a new penalty
function f(x) to the model (6). We are partially motivated
by [23], in which the authors added a negative proximal term
to the objective function to obtain an improvement of the
performance. We also discuss some properties of the penalty
function. Then several examples of the penalty functions and
their variable update rules are presented.

We formally state the restartable ADMM decoding problem
as follows:

min γT x− ρf(x− x̂), (7a)
s.t. Pix = zi, (7b)

zi ∈ PPdi , ∀i ∈ I. (7c)

In (7), ρ is the penalty parameter, and f(x− x̂) is the penalty
term. x̂ is set as the average of 0.5 and several stationary
points that have been reached during the iterations. Thus the
penalty term plays a role in pushing the algorithm to find
another integral solution which is far away from all the existing
solutions. The penalty function f =

∑
j∈J fj(xj), where each

fj should have the following properties:
• fj is an increasing function on [0, 1].
• fj is symmetric about 0.
• fj is non-negative and fj(x) > 0 at some x ∈ [0, 1].
Let ν be any positive constant satisfying

|γT x− γT y| ≥ ν, ∀x,y ∈ C, γT x ̸= γT y, (8)

where C denotes the set of all codewords. Since C is a finite
set, we can always find a proper ν satisfying the condition
(8). Then the next theorem shows that the integral solution of
(7) is also a solution of problem (2) when the parameter ρ is
chosen suitably.

Theorem 1: Suppose that the penalty parameter satisfies
0 < ρ < ν

M , where M = maxx∈[−1,1]n f(x). Then any
solution x∗ρ of (7) is also optimal for (2). Moreover, for any
solution x∗ of (2), we have

f(x∗ρ − x̂) ≥ f(x∗ − x̂). (9)

Fig. 1. A simple illustration of our proposed restartable decoding process,
where the feasible solutions and the optimal solution are denoted as the blue
crosses and red cross, respectively.

Proof: From the optimality and feasibility of x∗ρ, we have

γT x∗ρ − ρf(x∗ρ − x̂) ≤ γT x∗ − ρf(x∗ − x̂), (10)

which implies that

γT x∗ρ ≤ γT x∗ + ρ(f(x∗ρ − x̂)− f(x∗ − x̂))

≤ γT x∗ + ρM < γT x∗ + ν.

Moreover, the optimality of x∗ yields that γT x∗ − γT x∗ρ ≤
0 < ν. Thus we have |γT x∗ρ − γT x∗| < ν. Together with the
assumption (8), it follows that

γT x∗ = γT x∗ρ. (11)

From (10) and (11), the inequality (9) can be obtained
immediately.

Fig. 1 gives an explanation of our proposed restartable
decoding process. We apply our model to solve a two-
dimensional ILP problem. We use the crosses to denote all
the feasible solutions. Additionally, we use the blue polygon
and the orange polygon to represent the feasible region of the
LP relaxation and the convex hull of the feasible solutions,
respectively. The red cross is the optimal solution of this
problem. Our decoding process starts at the optimal solution of
the LP relaxation problem, which is denoted as x1. As shown
in Fig. 1(a), we set x̂1 as x1 at the first restart, and the gray
circle centered on x̂1 will be cut due to the negative proximal
term. Therefore, a new solution x2 will be found. In Fig. 1(b),
we set x̂2 as the average of x1 and x2. The green circular
region centered on x̂2 will be cut after the second restart, and
the decoder will find the third solution x3, which is exactly
the optimal solution of the ILP problem.

III. RESTARTABLE ADMM DECODING

In this section, we present the restartable ADMM decoding
framework. We discuss several choices of the negative
proximal term and design a weighted penalty function for
irregular LDPC codes. We also propose an algorithm to
produce a feasible codeword from a given binary vector, which
can be implemented as a post-treatment of our decoder to
improve the decoding performance.
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A. ADMM Decoding Algorithm

We next present the ADMM algorithm for solving problem
(7). The augmented Lagrangian function is

L(x, z, λ) = γT x− ρf(x− x̂) +
∑

i
λT

i (Pix− zi)

+
µ

2

∑
i
∥Pix− zi∥22. (12)

The iterative scheme of ADMM for this problem is given by

zk+1 = arg min
zi∈PPdi

L(xk, z, λk), (13a)

xk+1 = arg min
x∈[0,1]n

L(x, zk+1, λk), (13b)

λk+1
i = λk

i + µ(Pixk+1 − zk+1
i ). (13c)

Note that the minimization in (13a) is separable in zi, the
z-update rule can be expressed as

zk+1
i = arg min

zi∈PPdi

µ

2
∥zi∥2 − (µPixk + λk

i )T zi. (14)

Thus we can derive the explicit form of the z-update rule as

zk+1
i = ΠPPdi

(
Pixk +

λk
i

µ

)
. (15)

We now simplify the x-update rule. It can be seen that
PT

i Pi = Diag(hi) due to the property of the selection matrix.
By denoting w =

∑
i hi, i.e., the j-th coordinate wj equals

the number of the check nodes connected with variable j, the
augmented Lagrangian function can be rewritten as

L(x, z, λ) =
µ

2
xT Diag(w)x + (γ +

∑
i

PT
i (λi − µzi))T x

− ρf(x− x̂) +
∑

i

(µ

2
∥zi∥22 − λT

i zi

)
. (16)

For simplicity, we introduce the following notations:

D = µ Diag(w), tk = −γ −
∑

i
PT

i (λk
i − µzk+1

i ).

(17)

Then the x-update rule can be expressed as

xk+1 = arg min
x∈[0,1]n

1
2
xT Dx− xT tk − ρf(x− x̂). (18)

The explicit forms of the x-update formula for particular
choices of penalty term are given in Section III-B.

The ADMM algorithm for solving (7) is summarized in
Algorithm 1.

Algorithm 1 ADMM Algorithm
Input: ρ, x̂.
Output: local solution x.

1: repeat
2: Initialize x0 and λ0. Set k = 0.
3: Update z by (15).
4: Update x by (18).
5: Update λ by (13c).
6: until some convergence criteria have been satisfied.

B. Examples of Penalty Functions

In the following, we focus on two examples of penalty
functions.

1) ℓ1-Norm: f (1)(x) = ∥x∥1. In this case (12) becomes

L(x, z, λ) = γT x− ρ∥x− x̂∥1 +
∑

i
λT

i (Pix− zi)

+
µ

2

∑
i
∥Pix− zi∥22. (19)

By applying (18) to (19), we derive the x-update rule for this
case as

xk+1 = Π[0,1]n
[
D−1

(
tk − ρ sign(Dx̂− tk)

)]
. (20)

2) ℓ2-Norm-Square: f (2)(x) = ∥x∥22. Then (12) becomes

L(x, z, λ) = γT x− ρ∥x− x̂∥22 +
∑

i
λT

i (Pix− zi)

+
µ

2

∑
i
∥Pix− zi∥22. (21)

In this case, the x-update rule can be expressed as

xk+1 = Π[0,1]n [(D− 2ρI)−1
(
tk − 2ρx̂

)
]. (22)

For irregular codes, we can consider a weighted penalty
term assigning varied parameters to variables with different
degrees. The penalty function f can be selected as:
(a) f (3)(x) =

∑
j κj |xj |; (b) f (4)(x) =

∑
j κjx

2
j ,

corresponding to the ℓ1 and ℓ2 penalty respectively. Set W
as the total number of the non-zero elements in H. Then the
weighted vector κ can be selected as

κj = n
wj

W
. (23)

Then the x-update rule for penalty functions (a) and (b) can
be expressed in a coordinate-wise form:
• weighted ℓ1 norm:

xk+1
j = Π[0,1]

[
1

µκj
(tkj − ρκj sign(wj x̂j)

]
; (24)

• weighted ℓ2 norm:

xk+1
j = Π[0,1]

[
1

µwj − 2ρκj
(tkj − 2ρκj x̂j)

]
. (25)

C. Restartable ADMM Algorithm

We now present our restartable ADMM decoding frame-
work. In our proposed restartable decoding algorithm, x̂ is
initialized as ζ, which denotes the vector whose entries are all
0.5. The coefficient ρ is initialized as ρ0 = α+β0, where α and
β0 are two non-negative parameters. Whenever Algorithm 1
stops, we update x̂ and ρ according to the following rules
and restart Algorithm 1. To be specific, in the N -th restart
iteration, the parameter β is updated as βN = ξβN−1, where
ξ ∈ (0, 1) is an attenuation coefficient. Then the coefficient ρ
is updated by

ρN = α + βN . (26)

Denote xl as the output of the l-th restart of Algo-
rithm 1, we calculate the average of the historical outputs
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x̄N := 1
N−1

∑N−1
l=0 xl. Then x̂N is set as a convex

combination of ζ and x̄N , i.e.,

x̂N =
α

α + βN
ζ +

βN

α + βN
x̄N . (27)

Now we present the restartable decoding algorithm in
Algorithm 2.

Algorithm 2 Restartable ADMM Decoding Algorithm
Input: log-likelihood ratio γ.
Output: ĉ.

1: Initialization: Initialize x̂0 = ζ, parameters α, β0, βL and
ξ ∈ (0, 1). Compute ρ0 = α + β0. Set N = 0 and T .

2: repeat
3: xN ← ADMM(ρN , x̂N ) using a relaxed convergence

criterion in Remark 1.
4: N ← N + 1.
5: Compute βN ← max(ξβN−1, βL).
6: Compute ρN ← α + βN .
7: Compute S ← max(N, T ), L← N − S.
8: Compute x̄N ← 1

S

∑N−1
l=L xl.

9: Compute x̂N according to (27).
10: Compute ĉ← round(xN ).
11: until H⊗ĉ = 0 or the maximal iteration number has been

reached.

In each iteration of Algorithm 2, the ADMM framework
is applied to solve the problem (7). Whenever the ADMM
algorithm converges to a stationary point, the negative
proximal term will be updated and the ADMM solver will
be restarted. Since x̂ is an average of 0.5 and all the local
solutions that have been reached during the decoding process,
the negative proximal term will push the decoder to find new
solutions.

Remark 1: (i) To accelerate the ADMM iterations, we set
a relaxed convergence criterion for Algorithm 1. We calculate
the nearest binary vector to xk in each iteration, and stop the
ADMM process whenever this vector remains the same after
one iteration, i.e., round(xk) = round(xk+1). Thus the ADMM
algorithm can stop in a few iterations and output a local
solution. (ii) To reduce the memory usage and computational
complexity, we set x̂ as the average of at most the last T
solutions that the ADMM algorithm has generated instead
of all the historical ones. A lower bound βL is set to avoid
the parameter β from vanishing. (iii) Although our algorithm
needs some extra computation derived from the updates
of x̂, α, β, it still has similar computational complexity as
other ADMM-based algorithms, since the main computational
complexities are from the updates of the variables x, z, λ in
the ADMM steps which need multiplication of matrices and
vectors, and the extra computation of x̂, α, β only needs the
multiplication of scalars and the addition of vectors whose
complexities are significantly lower than the multiplication of
matrices and vectors. Besides, the extra variables x̂, α, β are
only updated in the outer iterations, while the updates of the
variables x, z, λ are conducted in each inner iteration.

IV. PERFORMANCE ANALYSIS

In this section, we make an analysis of Algorithms 1 and 2.
We consider two aspects of our proposed algorithm, including
convergence property and decoding performance analysis.

A. Convergence Property

We consider the case that f(x) = ∥x∥22 and define r(x) :=
γT x− ρf(x− x̂). Obviously, r(x) is Lipschitz differentiable
with constant 2ρ. We let δZ(·) denote the indicator function of

the set Z, i.e., δZ(z) =
{

+∞, if z ∈ Z,
0, if z /∈ Z.

Define the matrix

P := [P1;P2; . . . ;Pm] and observe that

PT P =
∑

i
PT

i Pi = Diag(w).

We denote τ by the smallest element of w. It is easy to see
that τ > 0.

Definition 1: (x∗, z∗, λ∗) is a stationary point of the
problem (7) if it satisfies the first-order necessary optimality
condition, that is,

0 = ∇r(x∗) +
∑

i
PT

i λi
∗,

0 = Pix∗ − z∗i , ∀ i ∈ I,
λ∗i ∈ ∂δPPdi

(z∗i ), ∀ i ∈ I.
(28)

Our main goal is to find conditions that ensure the
convergence of the proposed algorithm. We split the proof
of the main result into several lemmas.

Lemma 1: It holds that for any k = 1, 2, . . .,

∥λk+1 − λk∥ ≤ 2ρ√
τ
∥xk+1 − xk∥. (29)

Proof: It follows from the optimality condition of xk

that
∇r(xk) +

∑
i
PT

i λk−1
i + µ

∑
i
PT

i (Pixk − zk
i ) = 0,

which together with the iteration of λk in (13c) yields that

−∇r(xk) =
∑

i
PT

i λk
i = PT λk. (30)

Note that the image of selection matrix Pi satisfies Im(I) =
Im(Pi) = Rdi , which implies that λk+1

i −λk
i = µ(Pixk+1−

zk+1
i ) ∈ Im(Pi) for every i ∈ I. Then λk+1 − λk ∈ Im(P),

and thus there exists a vector v such that

λk+1 − λk = Pv. (31)

It gives us

∥λk+1 − λk∥2 = ∥Pv∥2 ≥ λmin(PT P)∥v∥2 = τ∥v∥2,

which implies that ∥v∥ ≤ 1√
τ
∥λk+1−λk∥. This together with

(31) yields that

∥λk+1 − λk∥2 = (λk+1 − λk)T Pv ≤ ∥PT (λk+1 − λk)∥∥v∥
≤ 1√

τ
∥PT (λk+1 − λk)∥∥λk+1 − λk∥.

Therefore,

∥λk+1 − λk∥ ≤ 1√
τ
∥PT (λk+1 − λk)∥

(30)
=

1√
τ
∥∇r(xk+1)−∇r(xk)∥

=
2ρ√
τ
∥xk+1 − xk∥,

which completes the proof.
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The next lemma ensures the descent property of the
proposed algorithm.

Lemma 2: If µ ≥ (4ρ + 2)/τ , there is a constant
C1 > 0 such that for any k = 1, 2, . . .,

L(xk, zk, λk)− L(xk+1, zk+1, λk+1)
≥ C1

(
∥xk − xk+1∥2 + ∥zk − zk+1∥2

)
. (32)

Proof: We first prove

L(xk, zk, λk)− L(xk, zk+1, λk) ≥ µ

2
∥zk − zk+1∥2. (33)

The optimality of zk+1 implies that for any i ∈ I,

λk
i + µ(Pixk − zk+1

i ) ∈ ∂δPPdi
(zk+1

i ).

Since the sub-differential of the indicator function at zk+1
i is

known as the normal cone of PPdi
, it can be seen directly

from its definition that(
λk

i + µ(Pixk − zk+1
i )

)T (
zk

i − zk+1
i

)
≤ 0.

Then for zk
i , zk+1

i ∈ PPdi
, we have the estimate

L(xk, zk, λk)− L(xk, zk+1, λk)

= −
∑

i

(
λk

i + µ(Pixk − zk+1
i )

)T (
zk

i − zk+1
i

)
+

µ

2
∥zk − zk+1∥2 ≥ µ

2
∥zk − zk+1∥2.

We next prove

L(xk, zk+1, λk)− L(xk+1, zk+1, λk+1) ≥ ∥xk − xk+1∥2.

Since the matrix P has full column rank, we can obtain

L(xk, zk+1, λk)− L(xk+1, zk+1, λk+1)

= r(xk)− r(xk+1) +
∑

i

(λk+1
i )T (Pixk −Pixk+1)

+
µ

2

∑
i

∥Pixk −Pixk+1∥2 − 1
µ
∥λk+1 − λk∥2

(30)
= r(xk)− r(xk+1)− ⟨∇r(xk+1),xk − xk+1⟩

+
µ

2
∥Pxk − Pxk+1∥2 − 1

µ
∥λk+1 − λk∥2

(29)

≥ −ρ∥xk − xk+1∥2 +
µτ

2
∥xk − xk+1∥2

− 4ρ2

τµ
∥xk − xk+1∥2 ≥ ∥xk − xk+1∥2, (34)

where the last inequality holds because

−ρ +
µτ

2
− 4ρ2

τµ
≥ −ρ + 2ρ + 1− ρ2

2ρ + 1
≥ 1.

Summing up (34) and (33) yields (32), where
C1 := min{−ρ + µτ

2 −
4ρ2

τµ , µ
2 }.

Now we are ready to prove the convergence property of the
proposed ADMM algorithm.

Theorem 2: The sequence {(xk, zk, λk)} generated by
Algorithm 1 converges globally to the unique limit point
(x∗, z∗, λ∗) for any sufficiently large µ ≥ (4ρ + 2)/τ , and
(x∗, z∗, λ∗) is a stationary point of the problem (7).

Proof: It suffices to verify the conditions in [24] for
ADMM to converge to a stationary point. Observe that the
model (7) can be equivalently written as

min r(x) +
∑

i

δPPdi
(zi),

s.t. Pix = zi, ∀ i ∈ I. (35)

We can observe that δPPdi
(zi) is a prox-regular function since

the set PPdi is the convex hull of all the binary vectors. The
matrix Pi satisfies Im(I) ⊆ Im(Pi) for every i ∈ I. We can
deduce from Lemma 2 that the sequence {(xk, zk)} generated
by the proposed algorithm is bounded. Then the conditions
from Theorem 1 in [24] hold for the problem (7). Hence the
sequence generated by Algorithm 1 is bounded and it has at
least one limit point.

Furthermore, we can easily verify that L(x, z, λ) +∑
i δPPdi

(zi) is a Kurdyka-Łojasiewicz (KŁ) function [25].
Then (xk, zk, λk) converges globally to the unique limit point
(x∗, z∗, λ∗), which is a stationary point.

Remark 2: Benefiting from the special structure of the
model (7), we show the convergence properties of Algorithm 1
even though the problem is nonconvex. Since the objective
function of our decoding model changed in each restart, it is
not straightforward to construct global convergence results for
Algorithm 2. However, in our simulation result, one can find
that Algorithm 2 can converge in most cases.

B. Decoding Performance Analysis

1) ML Test: Our proposed Algorithm 2 has the following
ML certificate properties.

Proposition 1: If the output from Algorithm 2 is a feasible
solution of (7) and is also integral, then it is a valid codeword.

Proof: This follows from all the feasible integral
solutions of (7) are valid codewords.

Proposition 2: If the output from Algorithm 2 is a global
minimizer of (7) and is also integral, and the corresponding ρ
satisfies the conditions in Theorem 1, then it is an ML solution.

Proof: This follows directly from Theorem 1.
In general, we cannot determine whether the output of

Algorithm 2 is a global solution of (7). However, Algorithm 2
has an ML certificate property similar to [18], where we can
test whether the integral output is the ML solution or not. This
test is shown as follows.

Proposition 3: If the output of Algorithm 2 is an integral
solution, we do one more restart by setting the parameter ρ
to zero. If the new output obtained in this way maintains the
same, then this solution is an ML solution.

Proof: By setting the parameter ρ to zero, we obtain the
LP decoding problem. Since the ADMM algorithm for the LP
problem has the guarantee to converge to a global minimum,
the output of Algorithm 2 is a global solution of (4). Therefore,
it is the ML solution by the ML certificate of LP decoding.

2) All-Zero Assumptions: Our proposed decoder satisfies
the all-zero assumption. Thus we can assume the codeword
transmitted by the channel is all-zero without loss of
generality. This property is presented formally as follows.

Theorem 3: The failure probability of Algorithm 2 is
independent of the transmitted codeword.
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TABLE I
PARAMETER SELECTION

Proof: We give a sketch of proof here, and the details
are shown in the appendix. Let c denote any codeword, and
B(c) denote the set of outputs of the channel that make the
decoder fail to decode c. We can prove that a one-to-one
mapping between B(c) and B(0) exists. Therefore the failure
probability for transmitting any codeword equals the failure
probability for transmitting the all-zero codeword.

V. SIMULATION RESULTS

In this section, several simulation results are presented to
show the effectiveness of the restartable ADMM decoder.
In Section V-A, we compare the decoding FER performance
and decoding efficiency of the restartable ADMM decoder
using both ℓ1 and ℓ2-square penalties with the min-sum
decoder, the sum-product decoder and other ADMM-based
decoders. In section V-B, we show the choice of parameters
of our proposed decoder.

A. Performances of the Proposed Algorithm

In this subsection, we present simulation results for six
binary LDPC codes. We choose three regular codes, denoted
by C1, C2 and C3, which are (96, 48) MacKay 96.33.964 LDPC
code, rate-0.89 MacKay (999, 888) LDPC code, and WiFi
(648, 432) LDPC code, respectively. We also test three
irregular LDPC codes, denoted by C4, C5 and C6, which
are 5G-LDPC code with base graph 1 and Zc = 16, rate-
0.5 WiMax (576, 288) LDPC code, and rate-0.75 WiMax
(1152, 864) LDPC code. The considered decoders include
QP-ADMM decoder [17], ADMM-based penalized decoder
(ADMM-PD) [18], and the classical sum-product decoder.

The parameters for our proposed decoder are set as follows:
µ is chosen to be 3 for the ℓ1 penalty and 4 for the
ℓ2-square penalty. The rest parameters of the ℓ2-square penalty
for six binary LDPC codes are set according to Table I. For the
irregular LDPC codes C4, C5 and C6, we apply the weighted
form penalty function claimed in Section III-B, where the
parameter κ is chosen according to (23). The parameters for
other ADMM-based decoders are chosen based on a grid
search. We stop iterations when the early termination scheme
[Hx]2 = 0 is satisfied or the maximum number of iterations
is reached. We set the maximum iteration number of all
the decoders as 500. Since our proposed decoding algorithm
contains inner iterations (ADMM updates) and outer iterations
(restarts), we consider the number of total iterations when
counting the iteration number of our proposed decoder. All
the codewords are transmitted over the additive white Gaussian
noise (AWGN) channel.

Fig. 2 shows the FER performance of the mentioned six
LDPC codes. The points plotted in all the curves are based
on collecting 100 frame errors except for the last two SNR

values, where we generate 20 errors due to limited computing
resources. We also impose a minimum number of simulated
frames as 50000 to reduce the statistical error. From Fig. 2(a),
one can see that our proposed decoder displays better FER
performance than other considered decoders in low SNR
regions. However, in high SNR regions, the gap between our
proposed decoder and the ADMM penalized decoder [18]
narrows. A similar phenomenon can also be observed in
Fig. 2(b). The sum-product decoder surpasses our proposed
decoder at high SNRs. Fig. 2(c) shows that our proposed
decoder using ℓ2 penalty achieves better FER performance
than other considered decoders at both low and high SNRs.
In Fig. 2(d), it can be seen that our proposed decoder obtains
a significant improvement in the FER performance compared
with other ADMM-based decoders. This is because the degrees
of variable nodes in 5G LDPC codes vary dramatically. The
negative proximal terms with weighted forms can improve
the error-correction performance in this case. Fig. 2(e) shows
that our proposed decoder outperforms the other ADMM-
based decoders and the min-sum decoder in a wide SNR
region, and performs similarly to the sum-product decoder.
Similarly to Fig. 2(a) and Fig. 2(b), the FER performance of
our proposed decoder in Fig. 2(e) gets close to that of the
ADMM penalized decoder in high SNR regions. In Fig. 2(f),
one can observe that the restartable decoder using ℓ2-square
penalty has the best decoding performance. Our decoder using
ℓ1 penalty performs similarly to the ADMM penalized decoder
and the sum-product decoder, and outperforms the QP-ADMM
decoder [17] and the min-sum decoder. From Fig. 2, one can
see that our proposed decoder attains better error-correction
performance in most cases.

Figs. 3(a)-8(a) compare the average number of total
iterations to output a codeword, i.e., a binary vector satisfies
Hx = 0, of C1-C6 between our proposed algorithm with
other considered ADMM-based decoders. In cases where the
algorithm cannot find a binary vector satisfying Hx = 0,
the number of total iterations will be counted as 500, i.e.,
the maximum number of iterations. From these figures, one
can find that all of the compared decoders at low SNRs
need more iterations to output a codeword. The reason is
that in low SNR regions transmitted bits are affected by
stronger noise, which makes it harder to recover the codeword
and the algorithm often reaches the maximum number of
iterations. Moreover, it can also be seen that our proposed
decoder shares similar iteration numbers with the ADMM
penalized decoder [18] in C1 and C2, and needs less number of
iterations in C3-C6. QP-ADMM decoder needs more iterations
to find a codeword in these cases. Thus, our proposed decoder
achieves lower decoding complexity than other ADMM-based
decoders in most cases. The min-sum decoder needs more
iteration numbers than our proposed decoder in the low SNR
region. However, it surpasses our proposed decoder at high
SNRs. The sum-product decoder needs the least iteration
number in many cases, but its computational complexity can
be higher due to the calculation of the tanh function in each
iteration.

Figs. 3(b)-8(b) plot the average number of restarts for our
proposed decoding algorithm to output a codeword using both
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Fig. 2. Comparisons of FER performance for six LDPC codes using different decoders, where “R-ADMM-l1” and “R-ADMM-l2” denote the restartable
ADMM decoder using ℓ1 and ℓ2 penalties, respectively.

Fig. 3. Numerical experiments on the convergence property of our decoder and other ADMM-based decoders for C1.

Fig. 4. Numerical experiments on the convergence property of our decoder and other ADMM-based decoders for C2.

ℓ1 and ℓ2 penalty functions. It can be seen that the number
of restarts decreases as the SNR increases. The reason is that
in high SNR regions, the ADMM algorithm can easily find a
codeword within a few iterations, and thus there is no need
for our decoder to restart. These curves can also explain the
phenomenon that the decoding performance of our proposed
decoder and the ADMM penalized decoder [18] get close in
high SNR regions.

Figs. 3(c)-8(c) show the convergence performance of our
proposed decoder for codes C1-C6. The y-axis denotes the
linear term of the objective function, and the x-axis denotes
the restart iteration, i.e., the current number of restarts of our
proposed decoder. All curves in Figs. 3(c)-8(c) are plotted
based on one million LDPC frames. We use all-zero vectors
as our transmitted code because our proposed decoder satisfies
the all-zero assumptions. When our decoding framework
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Fig. 5. Numerical experiments on the convergence property of our decoder and other ADMM-based decoders for C3.

Fig. 6. Numerical experiments on the convergence property of our decoder and other ADMM-based decoders for C4.

Fig. 7. Numerical experiments on the convergence property of our decoder and other ADMM-based decoders for C5.

Fig. 8. Numerical experiments on the convergence property of our decoder and other ADMM-based decoders for C6.

converges, the value of the linear term in our decoding model
(7) should be zero. From these figures, one can find that
our proposed decoding framework can converge within at
most 30 times of restarts in most cases, though the negative
proximal term is updated and the objective function of our
model is changed after each restart.

B. Choices of Parameters
The parameters in our proposed decoder can affect the

decoding performance. In this subsection, we show several
simulations based on different choices of these parameters.
From the simulation results, we can find the suitable choice
of parameters to obtain the best decoding performance.
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Fig. 9. FER performance of the (1152, 864) WiMax LDPC code plotted as
a function of α or µ with different SNRs.

Fig. 10. FER performance of the (1152, 864) WiMax LDPC code plotted
as a function of β0 with different βL/β0.

In Fig. 9, we plot the FER performance of code C6 as
the function of parameters α and µ at two different SNRs
with other parameters fixed according to Table I. We collect
100 frame errors for each data point in these curves. From
Fig. 9, one can find that the FER curves take on an initially
downward and then upward trend for parameters α and µ.
In comparison with the FER curve, we find that α ∈ [1.2, 1.8]
and µ ∈ [3, 4] lead to better decoding performance.

In Fig. 10, we investigate the effects of the parameters
β0 and βL. Since βL should never be greater than β0,
we plot the FER performance as the function of β0 with fixed
βL/β0 lower than 1. We consider two different SNR levels
in Fig. 10, and each curve is plotted based on 100 frame
errors. From Fig. 10, one can find that β0 ∈ [0.1, 0.5] and
βL = 0.3β0 can be a suitable choice for our decoder in this
case.

VI. CONCLUSION

In this paper, we propose a restartable ADMM-based
decoding algorithm. By introducing a negative proximal term
to the LP decoding problem, we present a restartable decoding
model and use the ADMM algorithm to solve it. Whenever
the ADMM algorithm converges, the negative proximal term
will be updated and the ADMM algorithm will be restarted.
The negative proximal term penalizes all the stationary points
that have been found during the decoding process, and pushes
the algorithm to find new local minimums. Therefore plenty
of candidate solutions will be found during one decoding
process, which can raise the possibility to obtain a codeword
that satisfies the parity-check equation. We propose some
properties the negative proximal term should have, and
investigate several choices of the negative proximal term.
We also discuss the convergence property of our proposed
decoder, and prove that the decoding error possibility is

independent of the transmitted codeword. We implement
numerical experiments which demonstrate that our proposed
decoder outperforms other ADMM-based in most cases and
obtains similar decoding complexity.

APPENDIX
PROOF OF THEOREM 3

In [18], the authors established this property for ADMM
penalized decoder which solved the problem (6). We now
prove Theorem 3 following the path in [18]. Denote
the set of all the possible outputs of the channel when
transmitting codeword c by A(c), then our target theorem is
a straightforward consequence of the following lemma:

Lemma 3: There exists a one-to-one mapping Z : y 7→
y0 from A(c) to A(0) that satisfies

1) Pr(y|c) = Pr(y0|0).
2) y ∈ B(c) if and only if y0 ∈ B(0).

Proof: The framework of our proof is the same as in [18].
We define the mapping Z : y 7→ y0 as

y0
i =

{
yi, if ci = 0,

y′i, if ci = 1,

where y′i is the symmetric symbol of yi with respect to
the channel. To complete our proof, we only need to verify
that Lemmas 18 and 19 in [18] also hold for our proposed
decoder. Therefore, we prove the following lemmas, where
Lemmas 4 and 5 correspond to Lemma 18 in [18], and
Lemma 7 corresponds to Lemma 19 in [18].

We use the same definitions for operators Rc and Tc with
respect to a codeword c as in [18]:

Rc(a)i =

{
ai, if ci = 0,

1− ai, if ci = 1,
Tc(a)i = Rc(a)i + ci.

We represent Rc(zi) by taking the same operations to zi with
respect to the corresponding sub-vector of c. Then we have
the following lemmas which claim that there exists a one-to-
one mapping between the iteration sequences of decoding any
codeword c and the all-zero codeword.

Lemma 4: Suppose that zi, x and λi are the variables in
the k-th iteration of Algorithm 1 when decoding y with input
ρ and x̂. z+

i , x+ and λ+
i are the (k + 1)-th iteration of

Algorithm 1. Meanwhile, suppose that z0
i , x0 and λ0

i are the
variables in the k-th iteration of Algorithm 1 when decoding
y0 with input ρ and x̂0. z0,+

i , x0,+ and λ0,+
i are the (k+1)-

th iteration of Algorithm 1. If zi = Rc(z0
i ), x = Rc(x0),

λi = Tc(λ0
i ) and x̂ = Rc(x̂0), then we have z+

i = Rc(z
0,+
i ),

x+ = Rc(x0,+) and λ+
i = Tc(λ

0,+
i ).

Proof: Let γ and γ0 denote the log-likelihood ratios
corresponding to y and y0 respectively. Now we verify x+ =
Rc(x0,+). From the definition of Rc, we only need to consider
the indices j that satisfy cj = 1. From Algorithm 1, x+

j is
the optimal solution to the following equation that has the
maximal distance with 0.5:

x+
j = arg minxj∈[0,1]

1
2
µwjx

2
j − tjxj − ρfj(xj − x̂j).

(36)

Authorized licensed use limited to: Peking University. Downloaded on October 01,2024 at 05:54:17 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: DECODING LDPC CODES BY USING NEGATIVE PROXIMAL REGULARIZATION 3845

Now we define u+
j as the root of the following equation:

µwjx− tj − ρf ′j(x− x̂j) = 0. (37)

Similarly, u0,+
j denotes the root of

µwjx− t0j − ρf ′j(x− x̂0
j ) = 0. (38)

Thus we have x+
j = Π[0,1](u+

j ) and x0,+
j = Π[0,1](u

0,+
j ).

Now we introduce the notations z
(j)
i and λ

(j)
i to denote the

j-th coordinate of PT
i zi and PT

i λi, respectively, then

tj = −γj −
∑

i∈N(j)
(λ(j)

i − µz
(j)
i ),

where N(j) denotes the set of all indices i that satisfy
Hi,j = 1. From the assumption, z

0,(j)
i = 1 − z

(j)
i , λ

0,(j)
i =

−λ
(j)
i , x̂0

j = 1− x̂j and γ0
j = −γj hold due to the symmetry

of the channel. Therefore,

t0j = −γ0
j −

∑
i∈N(j)

(λ0,(j)
i − µz

0,(j)
i )

= γj −
∑

i∈N(j)
(−λ

(j)
i − µ(1− z

(j)
i ))

= γj +
∑

i∈N(j)
(λ(j)

i − µz
(j)
i ) + µ

∑
i∈N(j)

1

= −tj + µwj .

We now verify 1−u+
j is the root of equation (38). Substituting

x = 1− u+
j in the left-hand side of equation (38), we have

µwj(1− u+
j )− t0j − ρf ′j(1− u+

j − x̂0
j )

= −µwju
+
j + tj − ρf ′j(x̂j − u+

j )

= −µwju
+
j + tj − ρf ′j(u

+
j − x̂j) = 0,

where the last equation is because u+
j is a root of (37) and

fj is symmetric about 0. We have shown that u+
j = 1−u0,+

j ,
it is clear that Π[0,1](u+

j ) = Π[0,1](1 − u0,+
j ). Thus we have

x+
j = x0,+

j .
Since the update rule for z and λ in Algorithm 1 is similar

to that in [18], we refer the reader to [18, Lemma 18] for the
rest of the proof.

Lemma 5: We now use Algorithm 2 to decode two channel
outputs, y and y0. Suppose that x[N ] denotes the N -th output
of the ADMM algorithm when decoding y, i.e., the output of
the N -th iteration of Algorithm 2. Similarly, we denote the
N -th output of the ADMM algorithm when decoding y0 as
x0,[N ]. If we initialize Algorithm 2 by letting x0 = 0.5, λi = 0
for all i, x̂[0] = 0.5, and set the convergence criterion of
Algorithm 1 as round(xk) = round(xk+1), then we have
x[N ] = Rc(x0,[N ]) for any N .

Proof: We use induction to prove our conclusion. Note
that x, λi and x̂ are initialized such that x = Rc(x0) = 0.5,
zi = Rc(z0

i ) = 0.5, λi = −λ0
i = 0 and x̂ = Rc(x̂0) = 0.5.

By Lemma 4, we conclude that for every ADMM iteration k,
we have

x[1],k = Rc(x0,[1],k),

where x0,[1],k denotes the variable x in the k-th iteration
of Algorithm 1 with the input ρ and x̂[0]. According
to the assumption, the ADMM iteration stops when
round(xk) = round(xk+1). Therefore, x[1] = x[1],k1+1

and x0,[1] = x0,[1],k2+1, where k1, k2 are the smallest
integers such that round(x[1],k1) = round(x[1],k1+1) and
round(x0,[1],k2) = round(x0,[1],k2+1), respectively.

It remains to prove that round(x[1],k) = round(x[1],k+1)
if and only if round(x0,[1],k) = round(x0,[1],k+1). It is true
because for any real numbers a, b we have round(a) =
round(b) if and only if round(1− a) = round(1− b).

We now assume that the conclusion holds for 1, 2, . . . ,
N − 1. From the above proof, we only need to show that
x̂[N ] = Rc(x̂0,[N ]). By definition, we have

x̂[N ] =
α

α + β[N ]
ζ +

β

α + β[N ]

1
S

∑N−1

l=L
x[l],

x̂0,[N ] =
α

α + β[N ]
ζ +

β

α + β[N ]

1
S

∑N−1

l=L
x0,[l].

From the assumptions we know that x[l] = Rc(x0,[l]) for
l = 1, 2, . . . , N − 1 and ζ = Rc(ζ) by the definition of ζ.
Thus we obtain the conclusion from the following lemma since
x̂[N ](x̂0,[N ]) is a convex combination of ζ and x[l](x0,[l]).

Lemma 6: Let x =
∑

l λlxl and y =
∑

l λlyl, where∑
l λl = 1 and xl = Rc(yl), then x = Rc(y).

Proof: We only need to consider indices j such that
cj = 1. Then yl

j = 1 − xl
j , and we have yj =

∑
l λly

l
j =∑

l λl(1− xl
j) = 1− xj .

The next lemma claims that there exists a one-to-one
mapping between the output of our proposed algorithm for
decoding any codeword c and the all-zero codeword.

Lemma 7: Let ĉ and ĉ0 be the output of Algorithm 2 for the
channel output y and y0, respectively. Suppose that we apply
the same initialization and convergence criterion as that stated
in Lemma 5. Then ĉ = Rc(ĉ0).

Proof: By Lemma 5, x[N ] = Rc(x0,[N ]) for all N .
It remains to prove that Algorithm 2 stops for decoding y and
y0 at the same iteration. We denote ĉ[N ] := round(x[N ]) and
ĉ0,[N ] := round(x0,[N ]). Note that Algorithm 2 stops whenever
[Hĉ[N ]]2 = 0. Thus we only have to verify [Hĉ[N ]]2 = 0 if
and only if [Hĉ0,[N ]]2 = 0.

Since x[N ] = Rc(x0,[N ]), we have ĉ[N ] = Rc(ĉ0,[N ]).
We now assume that [Hĉ[N ]]2 = 0 to prove the “only if”
part. To simplify the notation, we denote ĉ[N ] and ĉ0,[N ] by
r and r0, respectively. Note that any row of H induces the
equation [rj1 + rj2 + . . . + rjd

]2 = 0, which means that there
are even number of 1s among rj1 , . . . , rjd

. Since

r0
j =

{
rj , if cj = 0,

1− rj , if cj = 1.

Therefore,[∑
k

r0
jk

]
2

=

 ∑
{k:cjk

=0}

rjk


2

+

 ∑
{k:cjk

=1}

(1− rjk
)


2

=

[∑
k

rjk

]
2

+

 ∑
{k:cjk

=1}

1


2

= 0.

The last equation holds because c is a codeword and thus
there are even numbers of 1s among cj1 , . . . , cjd

. Therefore
we finish the “only if” part of the proof. The “if” part is similar
and we will not repeat it here.
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