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Abstract—3D body scan has been adopted for body 
composition assessment due to its ability to accurately capture 
body shape measurements. However, the complexity of mesh 
representation and the lack of fine-shape descriptors limit its 
applications for fat percentage analysis. Most studies rely on 
algorithms applied to anthropometric values derived from 3D 
scans, such as multiple girth measurements, which fail to 
account for the body’s detailed shape. To address these issues, 
we explore the feasibility of using point cloud representation. 
However, few existing point-based methods are aimed at the 
human body or regression tasks.  

In this study, we introduce a new model, D3BT, which 
utilizes a transformer-based network on the body point cloud to 
efficiently learn shape information for regional and global fat 
percentage regression tasks. The model dynamically divides the 
points into voxels for enhanced transformer training, providing 
higher density and better alignment across different subjects, 
which is more suitable for body shape learning. We evaluate 
different models predicting body fat percentage from 3D body 
scans, using ground truth data from dual-energy x-ray 
absorptiometry (DXA) reports. Compared to traditional 
methods that depend on anthropometric measurements and 
other point-based approaches, the proposed model shows 
superior results. In extensive experiments, the model reduces 
Root Mean Square Error (RMSE) by an average of 10.3% and 
achieves an average R-squared score of 0.86. 

Keywords— DXA, fat percentage, regression, point cloud, 
transformer learning, 3D body scan. 

I. INTRODUCTION 

High body fat percentage has been shown to be related to 
numerous diseases such as type 2 diabetes and hepatic 
steatosis [1][2]. There are various non-invasive techniques to 
evaluate the fat percentage in both clinical settings and home 
self-assessments. Medical imaging methods like magnetic 
resonance imaging (MRI), computed tomography (CT), and 
dual-energy x-ray absorptiometry (DXA) [3] can accurately 
calculate body composition. Bioelectrical impedance analysis 
(BIA) applies electric current for body composition 
calculation [4]. Anthropometric biomarkers like the waist-to-
height ratio are strongly correlated with fat percentage [5]. 
However, despite their accuracy, medical imaging procedures 
are costly and impractical for telehealth applications. BIA and 

anthropometric measurements lack sensitivity due to the 
absence of standard prediction equations for calculating fat 
percentage [6][7]. The accuracy of BIA can fluctuate greatly 
due to factors like hydration levels and recent exercise, 
leading to inconsistent results, especially in individuals with 
obesity [8]. Consequently, there is a need for reliable and low-
cost body composition assessment tools suitable for large-
scale studies and digital health purposes [3]. 

 
Fig. 1. An example of using a cell phone to capture body shape with the 
application Polycam, which provides 3D scanning capabilities utilizing both 
LiDAR and regular cameras. The outcome of the scan can be in either point 
cloud or mesh format. 

One alternative tool for estimating body composition is the 
3D body scan, which utilizes inexpensive equipment to 
accurately capture body shape [9][10]. These scans can 
measure body shape within minutes, with advanced devices 
achieving up to 97.5% accuracy in anthropometric 
measurements [11]. Accessible and affordable devices enable 
users to easily monitor the progress of body shape changes at 
home. The 3D body shape is less susceptible to short-term 
physiological changes, providing a more reliable option for 
detailed assessments. Fig. 1 shows the use of an iPhone 
(iPhone 15 Pro Max; Apple Inc) with the Polycam application 
(LiDAR & 3D Scanner; Polycam Inc) for body scanning using 
either LiDAR or regular cameras. 

The utilization of 3D body scans to predict fat percentage 
has been investigated in several studies [12][13][14]. Most 
research on body composition using 3D body shapes applies 
machine learning algorithms to anthropometric values derived 
from the mesh representation of body scans, with the accuracy 
of results being highly dependent on the precision of the mesh 
[12][15]. However, generating a mesh representation requires 
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additional processing steps compared to point clouds. A key 
challenge in utilizing 3D body meshes is the extraction of 
body features. Effective shape descriptors are important for 
accurate body composition estimation. Studies simplify the 
3D information into one-dimensional features like volume and 
surface area [16], leading to the loss of rich details inherent in 
3D meshes. Several studies also apply deep learning methods 
directly to 3D meshes [17][18]. However, meshes consist of 
vertex and edge information, requiring more computational 
resources (e.g., GPU memory size) to run the algorithms. 
Point clouds, in contrast, preserve the raw spatial information 
of the 3D scans and allow algorithms to be applied directly to 
them. It potentially offers a more straightforward and 
resource-efficient method for analyzing body fat percentage. 

A. Previous Work 

Many studies have employed 3D body scans to predict 
body composition using a variety of methods. For instance, a 
study by Bennett et al. indicates a strong agreement between 
fat mass values from DXA and those calculated from 3D body 
scans [19]. Pleuss et al. perform principal component analysis 
(PCA) and k-means clustering on shape anthropometry for 
body fat analysis [12]. Additionally, anthropometric features 
extracted from 3D body scans generated by smartphones are 
used to predict appendicular lean mass through the least 
absolute shrinkage and selection operator (LASSO) regression 
model [15]. Neural networks, based on anthropometric 
features, have also been applied to estimate appendicular 
skeletal muscle mass and liver fat percentage [20][21]. 3D 
body scans have been utilized across diverse populations as 
well. Tian et al. apply PCA on the meshes to parameterize the 
3D shape space and utilize linear regression to predict fat 
percentage in pediatric populations [13]. Furthermore, 3D 
body scans can estimate body fat percentage in patients with 
conditions such as malnutrition and sarcopenia [22]. 
However, anthropometric features from 3D meshes and 
feature reduction methods like PCA can result in the loss of 
detailed shape information. In the neural network models 
mentioned, these extracted features are often treated as 
independent variables, neglecting the correlations among 
them. Moreover, there are insufficient studies focused on 
investigating fat percentages in specific regional body parts, 
which could provide more insights into fat distribution. 

Using point clouds instead of features from the 3D mesh 
offers raw, detailed information about body shape. However, 
learning useful information from the points is challenging due 
to their unordered nature [23][24]. PointNet addresses this 
challenge by applying multi-layer perceptrons (MLP) and 
symmetry functions to the unstructured point set to achieve 
permutation invariance [23]. Building on this, PointNet++ 
employs local grouping and hierarchical structures to capture 
regional point information, followed by max-pooling to 
summarize these regions [24][25]. Transformers, which have 
had huge success in the natural language processing (NLP) 
domain, have been adapted for point cloud data. Proposed by 
Yan et al., PointASNL uses the self-attention mechanism for 
adaptive sampling within local point groups to fine-tune the 
distribution of points [26]. Point cloud transformer (PCT) 
replaces self-attention with an offset-attention structure, 
leveraging the Laplacian matrix, like graph convolution 
networks, to enhance feature learning [27]. The point 
transformer (PT-v1) combines self-attention and vector-
attention, followed by local aggregation modules to facilitate 
information exchanges among points [28]. By splitting the 
vector-attention, group attention helps the efficiency and 

generalization of the model [29]. Inspired by vision 
transformer (ViT) [30], Wu et al. serialize point clouds into a 
structured format and apply transformers to fixed-size patches 
[31]. 

 However, these models were initially designed for object 
classification and segmentation tasks, which deal with more 
irregular inputs than human body scans. Regression tasks, 
such as predicting body composition, require models to 
capture more detailed spatial structures. Therefore, while 
point clouds offer a rich representation of spatial information, 
effectively analyzing point data for regression tasks like body 
fat percentage estimation remains complex. Further 
refinement of models is necessary for accurate body 
composition analysis.  

To address the challenges in effectively utilizing point 
cloud data for fat percentage analysis, we propose a dynamic 
3D body transformer network (D3BT). This network adopts 
varying voxel sizes to create denser patches for transformer 
learning, providing better spatial alignment for the human 
body compared to fixed voxel sizes. Each patch includes 
features derived from point local aggregation, and position 
embedding, obtained through the patch indices, resembling 
the structure of the ViT. 

The main contributions of the paper are as follows: 

1) We explore the feasibility of applying point cloud deep 
learning methods, moving beyond traditional circumference-
based approaches, to estimate body fat percentages using 3D 
body scans. 

2) We propose a novel architecture that utilizes dynamic 
voxel sizes to construct suitable patch groups, enhancing 
feature representation for transformer learning specifically 
for the human 3D body shape. 

3) We demonstrate the efficiency of the proposed model 
for both local and global fat percentage regression 
calculations compared to existing models. In addition, we 
provide visual explanations of the model’s performance by 
highlighting the critical regions that are most important in 
determining body fat percentage. 

II. METHOD 

Our model addresses the challenges of applying 
transformer structures to human point clouds by partitioning 
the unstructured points into a fixed number of voxels after 
local aggregation training. This approach is inspired by 
advancements in the ViT, where images are divided into 
uniform patches. For example, images are split into nine 
patches, each containing 16*16 pixels, resulting in equal 
feature sizes after flattening. It allows for the easy infusion of 
position embedding features. This method takes advantage of 
the spatial relationships inherent in image data. However, 
irregular point clouds require additional considerations for 
patch creation. Two main issues arise naturally: 

1) Point clouds do not conform to structured grid-like 
image pixels, making it difficult to partition them into fixed 
patches without creating sparse or inconsistent patches. 

2) Maintaining a consistent feature size for each patch is 
not straightforward.  

A. Transformer 

Transformer and self-attention have been successfully 



applied to point cloud learning in classification and 
segmentation tasks. In self-attention, given the input features 
𝑋 ∈ ℝ୒×ୈ౟౤ , the query matrix 𝑄 , key matrix 𝐾 , and value 
matrix 𝑉  can be calculated by 𝑋 and three learnable linear 
transformations: 𝑊ொ , 𝑊௄ and 𝑊௏ by: 

(𝑄, 𝐾, 𝑉) = 𝑋 ⋅ ൫𝑊ொ , 𝑊௄ , 𝑊௏൯                       (1) 

where 𝑊ொ , 𝑊௄ ∈ ℝ஽೔೙×஽ೖ , 𝑊௏ ∈ ℝ஽೔೙×஽೔೙. 𝑁 is the input 
data size,  𝐷௜௡ is the input dimensions and 𝐷௞ is the dimension 
of the vectors in the 𝑄 and 𝐾.  

The self-attention weight is calculated as: 

𝐴௪௘௜௚௛ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 ൬
ொ⋅௄೅

ඥ஽ೖ
൰                        (2) 

The self-attention output 𝑂௔ is calculated by the attention 
weight and the value matrix via dot-product: 

𝑂௔ = 𝐴௪௘௜௚௛௧ ⋅ 𝑉                                  (3) 

However, preparing well-structured input features 𝑋 from 
point clouds remains challenging. In ViT, images are split 
into 𝑁 patches, each containing the same number of pixels, 
resulting in a structured and consistent input for the 
transformer architecture. While this grid representation is 
straightforward for 2D image data, it becomes much more 
complex for 3D point clouds. 

B. Dynamic Voxel 

For the first problem, to partition the points into fixed 
patches like 2D grids in image data, we intuitively utilize 
voxelization to represent patches. Voxels can organize 
unordered spatial point information into structured voxel 
features. However, most studies apply a uniform voxel size 
(cube) for the input point cloud [32]. Moreover, for the 
transformer structure, fixed voxel numbers are important, 
similar to fixed sentence lengths in NLP and fixed patch 
numbers in ViT, as this consistency allows for the easy 
incorporation of position embedding information. Using the 
cube format to generate fixed voxel numbers can be 
approached by either deforming the input points or applying a 
larger voxel size to cover whole-body scans for each subject. 
Rescaling the point cloud to fit fixed-number voxels can 
dramatically alter the shape structure, as shown in Fig. 2(b). 
Unlike classification and segmentation tasks, where some 
deformation might be tolerable, changing the body shape can 
seriously impact the accuracy of regression tasks such as fat 
percentage estimation. Increasing the voxel size, on the 
contrary, despite maintaining the original shape, has lower 
density results, as shown in Fig. 2(c). 

In Fig. 2(d), instead of the cube format, dynamic voxel 
sizes can maintain a consistent number of voxels across 
different body scans, providing a denser representation. The 
voxel size adjusts for each body scan, ensuring that the body 
shape remains undistorted. The voxel size for each axis can be 
calculated based on the range of the coordinates and the 
desired number of voxels along that axis. For the X-axis, the 
size of the voxel 𝑉௫  along the X-axis can be determined by: 

𝑉௫ = (𝑋௠௔௫ − 𝑋௠௜௡)/𝑁௫                           (4) 

where 𝑋௠௔௫  and 𝑋௠௜௡  are the maximum and minimum 
coordinates along the X-axis, respectively. 𝑁௫ is the pre-
defined number of voxels along the X-axis. Similarly, the 
voxel sizes along the Y-axis (𝑉௬ ) and Z-axis (𝑉௭ )  can be 
calculated in the same way. Each subject will have different 

voxel sizes but maintain the same total number of voxels 𝑁௏ 
without deforming the body shape. Along with offering a 
denser voxel representation, another reason for opting for 
dynamic voxel sizes in human body scans is the enhanced 
alignment of body regions across different subjects. Given that 
subjects are typically scanned in a standing posture with lifted 
arms in 3D body scans, voxels sharing identical indices are 
more likely to correspond to the same body regions across 
different subjects. The details of the region alignment are 
provided in the experiment section. 

 
Fig. 2. An overview of different types of point cloud voxelization. All types 
have 8*8*8 voxel numbers. With fixed voxel sizes, subfigures (b) and (c) 
showcase point deformation and the use of a larger voxel size, respectively. 
Subfigure (d) illustrates the outcome of dynamic voxelization. The color of 
the points indicates the depth information. 

C. Dynamic 3D body Transformer Network 

In the ViT, patch division is applied directly to raw image 
pixels. However, in our experiment, we found that directly 
using point normal vectors as patch input features does not 
perform well. We suspect this is due to the spatial information 
difference between image grids and point voxelization. To 
address this, local aggregation layers are applied before 
voxelization to improve local feature representation. The 
structure of D3BT, as depicted in Fig. 3, incorporates local 
aggregation layers adopted from PointNet++ [24]. Input 
points undergo Farthest Point Sampling (FPS), followed by 
the aggregation and grouping of local neighbors’ features via 
the Ball-Query algorithm. The resample ratios for the two 
aggregation layers are 0.5 and 0.25, respectively. After the 
local aggregation layers, the number of points 𝑁௉  decreases 
from 4096 to 512 while each point’s feature size 𝐶௉ increases 
from 3 to 256. This procedure enables the model to retain 
essential geometric features of the body while significantly 
reducing computational complexity. Additionally, it functions 
as an efficient pooling process, further enhancing overall 
performance. 

Maintaining consistent feature sizes across patches in 
images is achieved by flattening the pixels of each patch. 



However, each voxel may not uniformly contain the same 
number of points. To address the second issue, we utilize 
operators such as mean or max pooling for each voxel, 
ensuring uniform voxel feature sizes 𝐶௏. These voxel features 
are then added with position embeddings of matching feature 
sizes. During our experiment, we observed that single-head 
attention generally outperforms multi-head attention. Unlike 
image data, where each patch has pixel values, some voxels 
might not contain any points. Hence, similar to NLP’s padding 
token, we use the mask vectors to denote non-empty voxel 
indices. Consequently, during attention score calculation, 
empty voxels are disregarded.  

III. EXPERIMENT 

In this section, we provide a detailed description of the 
dataset and experimental setup, including evaluation metrics 
and training hyperparameters. We also outline the approach 
for integrating demographic features into the models. 

A. Dataset 

To assess the performance of our model, we conduct 
experiments on a dataset that includes both normal BMI 
subjects [33] and bariatric patients (BMI > 30). The bariatric 
patients are recruited from the George Washington University 
Hospital. Each subject has undergone a DXA (GE Lunar 
iDXA; GE Healthcare Lunar) scan to obtain their body fat 
percentage information. Additionally, 3D body scans of 
bariatric patients are obtained using a commercial scanner, 
Fit3D (ProScanner v6.0; Fit3D Inc), before their surgeries. As 
directed by the scanner, subjects are instructed to wear tight-
fitting clothing and stand in an "A" posture during scanning. 
Instead of raising their arms to shoulder height, they slightly 
lift their arms to hold adjustable handles, keeping their arms 
straight and stationary throughout the scan for better 
alignment. The dataset consists of a total of 620 scans (486 
normal BMI and 134 obese). 

A DXA report example is presented in Fig. 4. Notably, for 
obese patients whose width exceeds the scanning bed limits, 
only the right side of the body is scanned [33]. The left side’s 
body fat percentage values are estimated symmetrically. DXA 
reports provide body fat percentage information for five 

different local regions as well as the total body fat percentage. 
These reports serve as the ground truth for the experiments. 
The study was approved by the Institutional Review Board 
(IRB) of The George Washington University. 

 
Fig. 4. An example of a DXA report from an obese subject. The report 
provides fat percentages in various regions. (e): estimated. 

For analysis purposes, the 3D body scans are segmented 
into five anatomical parts: left arm, right arm, left leg, right 
leg, and trunk, corresponding to the DXA regional splitting. 
We uniformly sample 4096 points for each body part with 
each point characterized by its coordinates and vertex normal 
vector information. In addition, circumference features are 
extracted, encompassing 64 levels for each region to represent 
anthropometric measurements [20]. We combine the features 
from all five regions as whole-body features. 

B. Voxelization Comparison 

To evaluate the differences between the three voxelization 
approaches mentioned above, we conduct two tests: density 
and alignment. The voxel number is configured to 8*16*4, 

Fig. 3. The structure of the dynamic 3D body transformer network. Initially, two layers of local aggregation are applied to resample the point cloud, enriching 
the points features. The point cloud is then dynamically split into fixed-number patches (voxels) using a pooling operator. Before transformer layers, position 
embeddings are added to each patch. Masks containing valid voxel indices guide the attention score calculation through all four transformer layers. MLP: 
multi-layer perceptions. 



consistent with the training network. In the density test, we 
compare the ratio of non-empty voxels number to the total 
number of voxels. For the alignment test, we randomly select 
100 pairs of 3D body scans, with each pair including two 
different subjects. We use the mean Intersection over Union 
(mIoU) score to assess the overlap results in the five 
segmented parts. For example, we first calculate the voxel 
indices for the trunk region of two different subjects and then 
determine the IoU value for these two sets of voxel indices. 
This process is repeated for the other four local regions, and 
the results are averaged. 

C. Training Network 

For the fat percentage regression tasks, we include several 
comparison models. Non-point models consist of a model 
with only demographic features (DF) as inputs and a model 
with level circumferences (LC). To ensure a fair comparison 
with other point-based models, instead of traditional 
regression models, these two features are trained using deep 
learning architectures consisting of three linear layers. We 
also compare our results with popular point cloud deep 
learning models: PointNet (PN), PointNet++ (PN++), and 
Dynamic Graph CNN (DGCNN). In addition, we evaluate 
transformer-based point cloud models: Point Cloud 
Transformer (PCT), Point Transformer version 1 (PTv1), and 
Point Transformer version 2 (PTv2). Since the point cloud is 
voxelized, the model 3DCNN [35] is inherently included. In 
medical contexts, it is common to apply transfer learning on 
smaller datasets [36][37]. For transfer learning models, we 
pretrain the PN++ model on the ModelNet40 dataset [35], 
which includes 12,311 3D objects from 40 categories. We 
compare two types of transfer learning, one by simply 
combining the learned point features with MLP (TL) and the 
other by applying our voxelization and transformers on the 
learned features (TL + Ours).  

 
Fig. 5. The pipeline for integrating shape features with demographic 
information in models. The two sets of features are combined using standard 
concatenation, followed by additional training with linear layers for 
regression estimation. 

Since body fat percentage is influenced by demographic 
information [20], particularly gender, we incorporate 
demographic values: age, weight, height, gender, and race into 
all training models except the DF model through linear layers. 
Incorporating demographic factors helps capture variations in 
body composition that are often associated with these 
variables. These features are easily accessible and provide 
valuable context, allowing models to deliver more accurate 
predictions and converge more quickly, as they don’t need to 
infer these factors solely from body shape. Including BMI as 
a feature enhances prediction performance by capturing its 
direct relationship to fat percentage and introducing non-linear 
patterns. To even feature distribution, race is categorized into 
three groups: white, black, and others. Fig. 5 demonstrates the 

integration of shape features with demographic features. The 
combined features are then fed into the final MLP for fat 
percentage estimation. 

D. Training Setup and Hyperparameters 

We evaluate the performance of all models with Root 
Mean Square Error (RMSE) and R-squared score. In the 
experiment, we apply 5-fold cross-validation, testing after 
each epoch and selecting the best epoch result [23][24]. We 
choose the Mean Square Loss function and the Adam 
optimizer with an initial learning rate of 0.001. The learning 
rate decreases every 10 epochs with a decay factor of 0.7. The 
batch size is 16, and the number of epochs is 100. The voxel 
number is set to 8*16*4, and we report the impact of different 
voxel numbers as part of our ablation studies. All training is 
performed using Pytorch, with all layers implemented and run 
on one Nvidia RTX-4090 GPU. 

IV. RESULTS AND DISCUSSION 

A. Density and Alignment 

Table I compares the differences between the three 
voxelization approaches in terms of voxel density and 
alignment. Dynamic voxelization not only achieves a higher 
density ratio but also maintains better alignment between 
different subjects. The deformation method preserves density 
but performs poorly in alignment, whereas the larger-voxel 
approach maintains alignment but sacrifices density. 

B. Fat Percentage Prediction 

The experimental results for fat percentage assessment 
from different models are presented in Table II. Among the 
existing point-based models, PointNet++ and 3DCNN 
demonstrate superior performance across all regions, 
surpassing the network that relies solely on demographic 
features by a large margin. Notably, the circumference-based 
network achieves relatively high accuracy compared to 
existing point-based models. Our model delivers the most 
accurate results in all body parts except for the left arm region. 
Specifically, it achieves the lowest RMSE in whole body fat 
percentage at 4.22%, with an R-squared value of 0.89. It 
reduces the RMSE by an average of 10.3% compared to model 
LC. Transfer learning does not help reduce error rates, which 
may be attributed to the discrepancy in the domain of the 
pretrained dataset and the specific task of the experiment, as 
the regression task requires capturing more details of shape 
information. Circumference and point-based models 
outperform the demographic-only network highlights the 
importance of detailed shape information in accurately 
estimating fat percentage. Relying solely on demographic 
data, such as age, height, and weight, without considering 
physical shape details, is insufficient to capture body shape 
variations needed for precise predictions. 

 

TABLE I.  VOXEL DENSITY RATIO AND MEAN IOU RESULTS OF 
THREE DIFFERENT TYPES OF VOXELIZATION APPROACHES (VOXEL 

NUMBER: 8*16*4). 

 Density Ratio Mean IoU 
Deformation 40.052% 0.195 
Lager Voxel 15.796% 0.477 

Dynamic 42.032% 0.622 
 



C. Ablation Experiment 

1) Voxel Numbers 
To test the impact of voxel numbers on training results, we 

compare the accuracy and training time across different voxel 
number settings along three axes. Training time is measured 
in seconds for one epoch. Fig. 6 presents the results. The 
network with voxel numbers set to 8*16*4 demonstrates the 
best overall performance. Models with equal voxel numbers 
for each axis generally perform worse than those with the 
same total voxel numbers but different distributions across 
each axis. This is likely due to the human standing posture, 
where height > width > thickness, making the 8:16:4 ratio 
more effective for evenly splitting the points into voxels. With 
the same total voxel numbers, training times are similar 
despite variations in the three axes. Increasing the total voxel 
numbers can significantly impact training time without 
necessarily guaranteeing better results.  

 

2) Network Structure 
To prove the necessity of the local aggregation modules, 

we design a network (V3T) that applies voxelization at the 
beginning. In this network, the normal vector features are 
directly integrated into the patch features, like the ViT 
structure, where raw pixel features are forwarded into the 
patch features. Additionally, we design another network (LT) 
in which the voxelization and transformers are applied 
immediately after each local aggregation layer. The LT 
network has two local aggregations, two voxelizations, and 
two transformer modules. The first transformer voxel number 
is 8*16*4, while the second is 4*8*2 for larger receptive 
fields. Table III presents the average RMSE over local regions 
and the overall body fat percentage for the three structures. 
The results clearly show that the V3T model, which lacks local 
aggregation modules, performs worse than our model. This 
may be due to the inadequacy of the normal vector for 
transformer learning. With local aggregation operations, each 
point can integrate its neighbor region information to enrich 
feature presentation. Additionally, the LT model, with its two 

TABLE II.  COMPARISON WITH EXISTING MODELS ON WHOLE BODY AND FIVE REGIONAL BODY PARTS IN FAT PERCENTAGE ESTIMATION. ALL 
RESULTS ARE FROM 5-FOLD CROSS-VALIDATION. RMSE (FAT PERCENTAGE %) AND R-SQUARED SCORE ARE SELECTED AS EVALUATION METRICS.  

Model 
Whole Left Arm Right Arm Left Leg Right Leg Trunk 

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 

DF 5.399 0.820 6.046 0.768 5.771 0.787 5.679 0.772 5.624 0.780 6.572 0.809

LC 4.305 0.885 4.925 0.846 5.090 0.834 4.746 0.841 6.594 0.697 6.355 0.822

PN 5.267 0.829 5.804 0.786 5.654 0.795 5.409 0.793 5.599 0.782 6.417 0.818

PN++ 4.545 0.872 5.249 0.825 5.230 0.825 4.901 0.830 5.007 0.825 5.423 0.870

DGCNN 4.998 0.846 5.672 0.795 5.586 0.800 5.378 0.795 5.373 0.799 6.082 0.837

3DCNN 4.574 0.871 5.401 0.814 5.251 0.823 4.719 0.843 4.837 0.837 5.515 0.866

TL 4.772 0.859 5.714 0.792 5.492 0.807 5.019 0.822 4.971 0.828 5.856 0.848

PCT 4.939 0.849 5.697 0.794 5.724 0.790 5.328 0.799 5.326 0.802 6.339 0.822

PTv1 5.041 0.843 5.763 0.789 5.423 0.812 5.397 0.794 5.459 0.792 6.235 0.828

PTv2 4.757 0.860 5.645 0.797 5.628 0.797 5.536 0.783 5.436 0.794 6.132 0.834

TL + Ours 4.589 0.870 5.251 0.822 5.159 0.829 4.720 0.842 4.862 0.835 5.382 0.872

Ours 4.223 0.890 5.195 0.828 4.969 0.842 4.569 0.852 4.496 0.859 5.262 0.878

 

Fig. 6. The RMSE results and training times under different voxel number configurations. Subfigure (a) shows the RMSE result for six body parts. Subfigure 
(b) presents the time consumed per epoch, with models having the same total voxel numbers indicated in the same color. 



transformer modules, increases the RMSE, suggesting that 
adding transformers sequentially improves results compared 
to embedding transformers within local aggregation layers. 

D. Visualization 

We analyze the attention representations from the first 
layer [31] as part of understanding how the transformer 
processes 3D body scan data for whole-body fat percentage 
predictions. Fig. 7 visualizes the normalized attention scores 
of the voxels across three view angles for each individual scan. 
The visualization reveals that the head and feet regions receive 
lower attention scores compared to the central areas, 
indicating they may be less significant in predicting fat 
percentage. This aligns with typical fat distribution patterns, 
as these regions generally contain less fat. Additionally, the 
model assigns similar importance to voxels from both the front 
and back of the body. Notably, there are no significant 
differences in the attention map distribution between obese 
and normal BMI populations. 

 
Fig. 7. Representative examples of attention scores on the voxels from the 
first transformer layer. The figure includes three view angles: front, back, 
and side. The first two columns display voxels from the obese population, 
while the remaining columns represent individuals with normal BMI. Empty 
voxels, which are ignored during the transformer calculation, are not shown. 

V. CONCLUSION 

In this paper, we explore various point cloud deep learning 
models for body fat percentage assessment in regression tasks. 
We propose the model D3BT, a transformer-based neural 
network that dynamically partitions the body point cloud into 
fixed-number voxels to reduce fat percentage estimation error. 
In detail, the dynamic voxelization design enhances voxel 
density and region alignment, which are important for the 
position embedding in the transformer structure. The 
architecture improves the sensitivity of the network by 
optimizing the voxel number ratio along three axes to suit the 

human standing posture. Through extensive experiments, the 
algorithm demonstrates its effectiveness in both local and 
global fat percentage estimation using real-world 3D body 
scans. The superiority of D3BT over existing models suggests 
the potential for applying point cloud techniques to calculate 
fat percentage in real body scans without the need for clinical 
visits. This could be integrated into digital health routines, 
allowing individuals to monitor their body composition 
changes at home with affordable and accessible devices. 

Despite the promising results, this study has some 
limitations. One key limitation is the exclusion of certain 
populations, such as the geriatric population, whose body 
composition is often significantly impacted by sarcopenia. 
Expanding the dataset is essential to improve the model's 
generalizability. Another limitation is the potential variability 
introduced by different scanning devices, as they may require 
specific postures or produce 3D images at varying resolutions, 
potentially affecting the outcomes. Future work, particularly 
in telehealth applications, should involve testing the model 
with 3D body scans obtained from smartphones. Validating 
these results against commonly used methods like BIA will be 
important to establish the model’s reliability. As 3D body 
scans become more prevalent, future research should also 
investigate point-based models to assess other body 
compositions, such as lean mass. 

ACKNOWLEDGMENT  

The work is supported by the National Institutes of Health 
under grant number R01DK129809. The content is solely the 
responsibility of the authors and does not necessarily represent 
the official views of the National Institutes of Health. 

REFERENCES 
[1] J. Gómez-Ambrosi et al., “Body adiposity and type 2 diabetes: 

increased risk with a high body fat percentage even having a normal 
BMI,” Obesity, vol. 19, no. 7, pp. 1439–1444, Mar. 2011. 

[2] E. Petäjä and H. Yki-Järvinen, “Definitions of normal liver fat and the 
association of insulin sensitivity with acquired and genetic NAFLD—
a systematic review,” International Journal of Molecular Sciences, 
vol. 17, no. 5, p. 633, Apr. 2016. 

[3] G. D. Ceniccola et al., “Current technologies in body composition 
assessment: advantages and disadvantages,” Nutrition, vol. 62, pp. 25–
31, Jun. 2019 

[4] M. Marra et al., “Assessment of body composition in health and 
disease using bioelectrical impedance analysis (BIA) and dual energy 
X-ray absorptiometry (DXA): A critical overview,” Contrast Media & 
Molecular Imaging, vol. 2019, pp. 1–9, May 2019.  

[5] Ž. Tomas, T. Škarić‐Jurić, M. Zajc Petranović, M. Jalšovec, P. Rajić 
Šikanjić, and N. Smolej Narančić, “Waist to height ratio is the 
anthropometric index that most appropriately mirrors the lifestyle and 
psychological risk factors of obesity,” Nutrition & Dietetics, vol. 76, 
no. 5, pp. 539–545, Feb. 2019. 

[6] D. Naranjo-Hernández, J. Reina-Tosina, and M. Min, “Fundamentals, 
Recent Advances, and Future Challenges in Bioimpedance Devices for 
Healthcare Applications,” Journal of Sensors, vol. 2019, pp. 1–42, Jul. 
2019. 

[7] P. Piqueras, A. Ballester, J. V. Durá-Gil, S. Martinez-Hervas, J. Redón, 
and J. T. Real, “Anthropometric Indicators as a Tool for Diagnosis of 
Obesity and Other Health Risk Factors: A Literature Review,” 
Frontiers in Psychology, vol. 12, Jul. 2021. 

[8] N. Achamrah et al., “Comparison of body composition assessment by 
DXA and BIA according to the body mass index: A retrospective study 
on 3655 measures,” PLOS ONE, vol. 13, no. 7, p. e0200465, Jul. 2018. 

[9] M. M. Harbin, A. Kasak, J. D. Ostrem, and D. R. Dengel, “Validation 
of a three-dimensional body scanner for body composition 
measures,” European Journal of Clinical Nutrition, vol. 72, no. 8, pp. 
1191–1194, Aug. 2018. 

TABLE III.  COMPARISON OF THREE NETWORK STRUCTURES.  

 Mean RMSE 
V3T 5.118 
LT 5.502 
Our 4.786 

 



[10] B. Ng, B. Hinton, B. Fan, A. Kanaya, and J. Shepherd, “Clinical 
anthropometrics and body composition from 3D whole-body surface 
scans,” European journal of clinical nutrition, vol. 70, no. 11, pp. 
1265–1270, Nov. 2016. 

[11] C. J. Parker, S. Gill, A. Harwood, S. G. Hayes, and M. Ahmed, “A 
method for increasing 3D body scanning’s precision: Gryphon and 
consecutive scanning,” Ergonomics, vol. 65, no. 1, pp. 39–59, Jun. 
2021. 

[12] J. D. Pleuss et al., “A machine learning approach relating 3D body 
scans to body composition in humans,” European Journal of Clinical 
Nutrition, vol. 73, no. 2, pp. 200–208, Oct. 2018. 

[13] I. Y. Tian et al., “Automated body composition estimation from 
device-agnostic 3D optical scans in pediatric populations,” Clinical 
Nutrition, vol. 42, no. 9, pp. 1619–1630, Sep. 2023. 

[14] M. C. Wong et al., “Monitoring body composition change for 
intervention studies with advancing 3D optical imaging technology in 
comparison to dual-energy X-ray absorptiometry,” The American 
Journal of Clinical Nutrition, vol. 117, no. 4, pp. 802–813, Apr. 2023. 

[15] I. Y. Tian et al., “A device‐agnostic shape model for automated body 
composition estimates from 3D optical scans,” Medical Physics, vol. 
49, no. 10, pp. 6395–6409, Jul. 2022. 

[16] C. McCarthy et al., “Smartphone prediction of skeletal muscle mass: 
Model development and validation in adults,” The American Journal 
of Clinical Nutrition, vol. 117, no. 4, pp. 794-801, Feb. 2023. 

[17] R. Hanocka, A. Hertz, N. Fish, R. Giryes, S. Fleishman, and D. Cohen-
Or, “MeshCNN: A network with an edge,” ACM Trans. Graph., vol. 
38, no. 4, pp. 1–12, Jul. 2019. 

[18] S. Gong, L. Chen, M. Bronstein, and S. Zafeiriou, “SpiralNet++: A fast 
and highly efficient mesh convolution operator,” in Proc. IEEE/CVF 
Int. Conf. Comput. Vis. Workshop, 2019, pp. 0–0. 

[19] J. P. Bennett et al., “Assessment of clinical measures of total and 
regional body composition from a commercial 3-dimensional optical 
body scanner,” Clinical Nutrition, vol. 41, no. 1, pp. 211–218, Jan. 
2022. 

[20] Y. Zheng, Z. Long, X. Zhang, and J. K. Hahn, “3D body shape for 
regional and appendicular body composition estimation,” in Proc. 
SPIE, vol. 12464, 2023, pp. 531-539. 

[21] Y. Zheng, Q. Wang and J. K. Hahn, "Liver fat assessment with body 
shape," in Proc. 44th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2022, 
pp. 2716-2719. 

[22] A. K. Garber et al., “Cross-sectional assessment of body composition 
and detection of malnutrition risk in participants with low body mass 
index and eating disorders using 3D optical surface scans,” The 
American Journal of Clinical Nutrition, vol. 118, no. 4, pp. 812-821, 
Aug. 2023. 

[23] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on 
point sets for 3D classification and segmentation,” in Proc. IEEE Conf. 
Comput. Vis. Pattern Recognit., 2017, pp. 77–85. 

[24] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep 
hierarchical feature learning on point sets in a metric space,” in Proc. 
31st Int. Conf. Neural Inf. Process. Syst., 2017, pp. 5105–5114. 

[25] R. Cheng, H. Zeng, B. Zhang, X. Wang, and T. Zhao, “FFA-Net: fast 
feature aggregation network for 3D point cloud segmentation,” 
Machine Vision and Applications, vol. 34, no. 5, Jul. 2023. 

[26] X. Yan, C. Zheng, Z. Li, S. Wang, and S. Cui, “PointASNL: Robust 
point clouds processing using nonlocal neural networks with adaptive 
sampling,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2020, 
pp. 5589–5598. 

[27] M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin, and S.-M. Hu, 
“PCT: Point cloud transformer,” Comput. Vis. Media, vol. 7, no. 2, pp. 
187–199, Jun. 2021. 

[28] H. Zhao, L. Jiang, J. Jia, P. H. Torr, and V. Koltun, “Point transformer,” 
in Proc. IEEE/CVF Int. Conf. Comput. Vis., Oct. 2021, pp. 16259–
16268. 

[29] X. Wu, Y. Lao, L. Jiang, X. Liu, and H. Zhao, “Point transformer V2: 
Grouped vector attention and partition-based pooling,” in Proc. Adv. 
Neural Inf. Process. Syst., vol. 35, 2022, pp. 33330–33342. 

[30] X. Wu et al., “Point transformer V3: Simpler, faster, stronger,” 2023, 
arXiv:2312.10035. 

[31] A. Dosovitskiy et al., “An image is worth 16 × 16 words: Transformers 
for image recognition at scale,” in Proc. Int. Conf. Learn. Represent., 
2021, pp. 1–11. 

[32] J. Mao et al., “Voxel transformer for 3D object detection,” in Proc. 
IEEE Int. Conf. Comput. Vis., 2021, pp. 3144–3153. 

[33] Y. Lu, S. Zhao, N. Younes, and J. K. Hahn, “Accurate nonrigid 3D 
human body surface reconstruction using commodity depth 
sensors,” Computer Animation and Virtual Worlds, vol. 29, no. 5, p. 
e1807, May 2018. 

[34] A. Bazzocchi, F. Ponti, U. Albisinni, G. Battista, and G. Guglielmi, 
“DXA: Technical aspects and application,” European Journal of 
Radiology, vol. 85, no. 8, pp. 1481–1492, Aug. 2016. 

[35] Z. Wu et al., “3D ShapeNets: A deep representation for volumetric 
shapes,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 
1912–1920. 

[36] H. Huang, R. Wu, Y. Li, and C. Peng, “Self-supervised transfer 
learning based on domain adaptation for benign-malignant lung nodule 
classification on thoracic CT,” IEEE J. Biomed. Health Inform., vol. 
26, no. 8, pp. 3860–3871, Aug. 2022. 

[37] A. Pathak, K. Mandana and G. Saha, "Ensembled Transfer Learning 
and Multiple Kernel Learning for Phonocardiogram Based 
Atherosclerotic Coronary Artery Disease Detection," in IEEE Journal 
of Biomedical and Health Informatics, vol. 26, no. 6, pp. 2804-2813, 
June 2022. 

 


