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Abstract

Large language models are commonly trained on a mixture of filtered web data2

and curated “high-quality” corpora, such as social media conversations, books,3

or technical papers. This curation process is believed to be necessary to produce4

performant models with broad zero-shot generalization abilities. However, as larger5

models requiring pretraining on trillions of tokens are considered, it is unclear how6

scalable is curation, and whether we will run out of unique high-quality data soon.7

At variance with previous beliefs, we show that properly filtered and deduplicated8

web data alone can lead to powerful models; even significantly outperforming9

models trained on The Pile. Despite extensive filtering, the high-quality data we10

extract from the web is still plentiful, and we are able to obtain five trillion tokens11

from CommonCrawl. We publicly release an extract of 600 billion tokens from our12

REFINEDWEB dataset, and 1.3/7.5B parameters language models trained on it.13
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Figure 1: Models trained on  REFINEDWEB alone outperform models trained on curated
corpora. Zero-shot performance on our main-agg task aggregate (see Section 4.1 for details). At
equivalent compute budgets (in PetaFLOPS-days), our models significantly outperform publicly
available models trained on H The Pile, and match the performance of the ⌅ GPT-3 models.
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1 Introduction14

Progress in natural language processing is increasingly driven by sheer compute scale alone [1]: as15

more compute is expended to train large language models (LLM), they gain and exhibit powerful16

emergent capabilities [2, 3]. To best benefit from scaling, recent scaling laws dictate that both model17

size and dataset size should jointly be increased [4]. This is at variance with earlier findings, which18

had argued that scaling should focus on model size first and foremost, with minimal data scaling [5].19

This joint scaling paradigm raises significant challenges: although plentiful, text data is not infinite,20

especially so when accounting for data quality and licensing–leading some researchers to argue21

scaling may soon be bottlenecked by data availability [6]. Concretely, optimally training a GPT-322

sized model (175B parameters) would require no less than 3,500 billion tokens according to [4]. This23

is twice as much as the largest pretraining datasets publicly demonstrated [4, 7], and ten times more24

than the largest publicly available English datasets such as OSCAR [8], C4 [9], or The Pile [10].25

Massively scaling-up pretraining data is made even more challenging by the fact LLMs are commonly26

trained using a mixture of web crawls and so-called “high-quality” data [2, 10]. Typical high-quality27

corpora include curated sources of books, technical documents (e.g., research papers), human-selected28

web pages, code or social media conversations. The increased diversity and quality brought forth by29

these curated corpora is believed to be a key component of performant models [11]. Unfortunately,30

curation is labour intensive: typically, each source requires specialized processing, while yielding a31

limited amount of data. Furthermore, licensed sources can raise legal challenges.32

Nevertheless, most pretraining data is still sourced out of necessity from massive web crawls–as33

they can be scaled up to trillions of tokens with limited human intervention. However, the quality of34

this data has traditionally been seen as (much) inferior to that of the manually curated data sources.35

Even finely processed sources of web data, such as C4 [9] or OSCAR [8], are regarded as inferior to36

curated corpora for LLMs [12, 11], producing less performant models.37

To sustain the ever-increasing needs of larger and larger LLMs, and to streamline data pipelines and38

reduce the need for human-intensive curation, we explore how web data can be better processed to39

significantly improve its quality, resulting in models as capable as models trained on curated corpora.40

Contributions. We make the following contributions:41

• We introduce REFINEDWEB, a five trillion tokens web-only English pretraining dataset;42

• We demonstrate that web data alone can result in models outperforming both public43

and private curated corpora, challenging current views about data quality;44

• We publicly release a 600B tokens extract of RefinedWeb, and 1/7B parameters LLMs45

trained on it, to serve as a new baseline high-quality web dataset for the community.46

Table 1:  REFINEDWEB improves on existing English pretraining datasets for large language
models by combining extensive filtering with stringent deduplication at unprecedented scale.
For additional details, see the full version in Table 12 of Appendix H.3.

Dataset Size Availability Web CC Processing Deduplication

MASSIVE WEB DATASETS

C4 ⇠ 360GT Public 100% Rules + NSFW words blocklist Exact: spans of 3 sentences
OSCAR-21.09 ⇠ 370GT Public 100% Built at the line-level Exact: per line (⇠ 55% re-

moved)
OSCAR-22.01 ⇠ 283GT Public 100% Line-level rules + optional

rules & NSFW URL blocklist
Exact: per line (optional, not
used for results in this paper)

CURATED DATASETS

⌅ GPT-3 300GT Private 60% Content filter trained on known
high-quality sources

Fuzzy: MinHash (⇠ 10% re-
moved)

H The Pile ⇠ 340GT Public 18% jusText for extraction, filter
trained on curated data

Fuzzy: MinHash (⇠ 26% re-
moved)

F PaLM 780GT Private 27% Filter trained on HQ data Unknown

OURS

 REFINEDWEB ⇠ 5, 000GT Public (500GT) 100% trafilatura for text extrac-
tion, document and line-level
rules, NSFW URL blocklist

Exact & fuzzy: exact sub-
string+MinHash (⇠ 50% re-
moved)
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2 Related works47

Pretraining data for large language models. Both GPT and BERT identified the importance of48

datasets with long, coherent documents [13, 14]. Moving from sentence-wise datasets [15], they49

instead leveraged document-focused, single-domain corpora like Wikipedia or BookCorpus [16]. As50

models increased in scale, datasets based on massive web-scrape gained prevalence [8, 9]. However,51

further work argued that these untargeted web scrape fell short of human-curated data [17], leading52

to the wide adoption of curated datasets such as The Pile [10], combining web data with books,53

research articles, conversations, and more. At scale, it has been proposed to emulate the human54

curation process by leveraging weak signals: for instance, by crawling the top links of a forum [18].55

Targeted corpora can also produce domain-specific models [19], or broaden the expressiveness of56

models (e.g., for conversational modalities [20, 21]). Latest large language models [2, 12, 22, 23] are57

trained on giant aggregated corpora, combining both massive web-scrape and so-called “high-quality”58

curated single-domain sources. These targeted sources are often upsampled–from one to five times59

is most common–to increase their representation in the final dataset. The assumed diversity and60

higher-quality brought fourth by these aggregated datasets is thought to be central to model quality;61

web data alone is considered insufficient to train powerful large language models [24, 11].62

Pipelines for web data. Massive web datasets are typically built upon CommonCrawl, a publicly63

available scrape of the internet. Working with data scraped from all over the internet presents unique64

challenges: notably, a significant portion is machine-generated spam or pornographic content [25, 26].65

Accordingly, training on unfiltered web data is undesirable, resulting in poorly performing models [9].66

Modern pipelines focus on filtering out undesirable content [27]. Broadly speaking, these pipelines67

usually combine a variety of stages: (1) language identification, leveraging inexpensive n-gram68

models (e.g., fastText [28]); (2) filtering rules and heuristics, such as only keeping lines with valid69

punctuation, discarding lines with too many symbols, or removing documents containing banned70

words [29, 9]; (3) ML-based quality filtering, using lightweight models trained on known gold data71

to identify similar high-quality web documents [27, 2]; (4) deduplication, removing either exact72

duplicate spans or similar documents [30]. While some filtering is necessary, excessive filtering73

can introduce undesirable biases: this can overly impact minorities [31], motivating the adoption of74

practices such as pseudo-crawling, wherein allowed URLs are manually curated [32].75

Deduplication. Deduplication removes repeated extracts and documents from a dataset: these could76

either be exact matches, identical in every character, or approximate matches, based on some similarity77

metric. For exact duplicates, it is common to match exact substrings of a minimum length using78

suffix arrays [33]. For fuzzy duplicates, methods based on locally-sensitive hashes such as MinHash79

[34] or SimHash [35] have seen wide adoption [2, 36, 12]. Recently, [37] has proposed to leverage80

embeddings to imbue semantic understanding in approximate matching algorithms. Deduplication has81

been identified as playing a significant role in improving language models [38, 30]. Notably, it reduces82

memorization [39], which is especially problematic in large models [40]. Furthermore, repeated data83

has been shown to be increasingly harmful to model quality as parameter count increases [41]: for a84

1B parameters model, a hundred duplicates are harmful; at 175B, even a few duplicates could have a85

disproportionate effect. Concurrently to this work, the Pythia suite of models found that deduplicating86

The Pile had a limited impact on zero-shot performance [42], questioning whether deduplication is as87

relevant for curated corpora as it for predominantly web-based datasets as studied in Lee et al. [30].88

We provide an overview of some widely adopted pretraining English datasets for LLMs in Table 1,89

with additional information in Table 12 of Appendix H.3. We also note that recent popular open90

models [43, 7] often indirectly leverage The Pile [10] by doing a mix-and-match of its components.91

With REFINEDWEB, we extend upon the state-of-the-art in three ways: (1) we aggregate and combine92

best-practices for document preparation and filtering across multiple pipelines, and introduce line-93

wise corrections to fix lingering issues with text extraction; (2) we combine both exact and fuzzy94

deduplication at very large-scale; (3) the scale of our final dataset is unique, with a total 5,000 billion95

tokens, and a 600 billion tokens extract available for public use with permissive licensing. Training96

large models on RefinedWeb also lead us to challenge the commonly held belief that web data is97

worse than curated corpora, as our models outperform others trained on so-called ”high-quality” data.98
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3 Macrodata Refinement and RefinedWeb99

We introduce MDR (MacroData Refinement), a pipeline for filtering and deduplicating web data100

from CommonCrawl at very large scale. Using MDR, we produce REFINEDWEB, an English101

pretraining dataset of five trillion tokens based on web data only. We leverage strict filtering and102

stringent deduplication to uplift the quality of web data, distilling it down to a corpus matching the103

quality of aggregated corpora used to train state-of-the-art models.104

Design principles. We abide by the following guidelines:105

• Scale first. We intend MDR to produce datasets to be used to train 40-200B parameters106

models, thus requiring trillions of tokens [4]. For English-only RefinedWeb, we target a size107

of 3-6 trillion tokens. Specifically, we eschew any labour intensive human curation process,108

and focus on CommonCrawl instead of disparate single-domain sources.109

• Strict deduplication. Inspired by Lee et al. [30], which demonstrated the value of dedupli-110

cation for LLMs, we implement a rigorous deduplication pipeline. We combine both exact111

and fuzzy deduplication, and use strict settings leading to high removal rates.112

• Neutral filtering. To avoid introducing further undesirable biases into the model [31, 44],113

we avoid using ML-based filtering outside of language identification. We stick to simple114

rules and heuristics, and use only URL filtering for adult content.115

3.1 Document preparation: reading data, filtering URLs, extracting text, and language116

identification117

Reading the data. CommonCrawl is available in either WARC (raw HTML response), or WET118

files (preprocessed to only include plain text). Individual files correspond to a page/document/sample119

at a given URL. WET files would spare us from running our own HTML extraction; however, in line120

with previous works [10, 12], we found WET files to include undesirable navigation menus, ads, and121

other irrelevant texts. Accordingly, we start from raw WARC files, read with the warcio library.122

URL filtering. Before undertaking any compute-heavy processing, we perform a first filtering based123

on the URL alone. This targets fraudulent and/or adult websites (e.g., predominantly pornographic,124

violent, related to gambling, etc.). We base our filtering on two rules: (1) an aggregated blocklist of125

4.6M domains; (2) a URL score, based on the presence of words from a list we curated and weighed126

by severity. We found that commonly used blocklists include many false positives, such as popular127

blogging platforms or even pop culture websites. Furthermore, word-based rules (like the one used in128
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Figure 2: Subsequent stages of Macrodata Refinement remove nearly 90% of the documents
originally in CommonCrawl. Notably, filtering and deduplication each result in a halving of the
data available: around 50% of documents are discarded for not being English, 24% of remaining
for being of insufficient quality, and 12% for being duplicates. We report removal rate (grey) with
respect to each previous stage, and kept rate (shade) overall.
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Table 2: Macrodata Refinement aggregates best practices from the state-of-the-art and novel
approaches (URL scoring, line-wise filtering, etc.) to produce high-quality web data. On
deduplication, we note that MDR is unique in both the scale at which it is performed, and in applying
subsequently fuzzy and exact substring methods to improve coverage and scalability.

DOCUMENT PREPARATION FILTERING DEDUPLICATION

URL filtering Text extraction Language
identification

Document-wise
filtering

Line-wise
filtering

Deduplication URL dedupli-
cation

Aggregated
blocklist,
URL scor-
ing, common
HQ sources
blocked

From WARC
using warcio,
trafilatura
for extraction

fastText classi-
fier from CCNet,
thresholding on
top language
score

In-document
repetition
removal and
quality heuris-
tics from
MassiveWeb

Remove unde-
sirable lines
(call to actions,
navigation
buttons, social
counters, etc.)

Fuzzy dedu-
plication w/
MinHash +
exact substring
deduplication
w/ suffix arrays

Remove URLs
revisited across
Common-
Crawl dumps

Appendix I.1 Barbaresi [46] Wenzek et al. [27] Rae et al. [12] Appendix I.2 Lee et al. [30] Section 3.3

C4, [9]) can easily result in medical and legal pages being blocked. Our final detailed rules based on129

this investigation are shared in Appendix I.1. Since we intend RefinedWeb to be used as part of an130

aggregate dataset along with curated corpora, we also filtered common sources of high-quality data:131

Wikipedia, arXiv, etc. The detailed list is available in Appendix I.1.3.132

Text extraction. We want to extract only the main content of the page, ignoring menus, headers,133

footers, and ads among others: Lopukhin [45] found that trafilatura [46] was the best non-134

commercial library for retrieving content from blog posts and news articles. Although this is only a135

narrow subset of the kind of pages making up CommonCrawl, we found this finding to hold more136

broadly. We use trafilatura for text extraction, and apply extra formatting via regular expressions:137

we limit new lines to two consecutive ones, and remove all URLs.138

Language identification. We use the fastText language classifier of CCNet [27] at the document-139

level: it uses characters n-gram and was trained on Wikipedia, supporting 176 languages. We remove140

documents for which the top language scores below 0.65: this usually corresponds to pages without141

any natural text. For this paper, we focus on English; RefinedWeb can also be derived for other142

languages, see Appendix F for details.143

The data we retrieve at this stage, called RW-RAW, corresponds to what we can extract with the144

minimal amount of filtering. At this stage, only 48% of the original documents are left, mostly filtered145

out by language identification (and a small fraction by failures of the text extraction).146

3.2 Filtering: document-wise and line-wise147

Repetition removal. Due to crawling errors and low-quality sources, many documents contain148

repeated sequences: this may cause pathological behavior dowstream [47]. The later deduplication149

stage could catch this, but it is cheaper to catch it earlier document-wise. We implement the heuristics150

of Rae et al. [12], removing any document with excessive line, paragraph, or n-gram repetitions.151

Document-wise filtering. A significant fraction of pages are machine-generated spam, made152

predominantly of lists of keywords, boilerplate, or sequences of special characters. Such documents153

are not suitable for language modeling; to filter them out, we adopt the quality filtering heuristics of154

Rae et al. [12]. These remove outliers in terms of overall length, symbol-to-word ratio, and other155

criteria ensuring the document is natural language. We note we adapted these filters on a per language156

basis, as they may result in overfiltering if naively transferred from English to other languages.157

Line-wise corrections. Despite the improvements brought forth by using trafilatura instead of158

relying on preprocessed files, many documents remain interlaced with undesirable lines (e.g., social159

media counters [3 comments], navigation buttons [Home]). Accordingly, we devised a line-correction160

filter, targeting these undesirable items leftover from text extraction imperfections. If these corrections161

remove more than 5% of a document, we remove it entirely. See Appendix I.2 for details.162

The data we retrieve at this stage has gone through all of the filtering heuristics in the MDR pipeline.163

We refer to this dataset as RW-FILTERED. Only 23% of the documents of CommonCrawl are left,164

with around 50% of the documents of RW-Raw removed by the filtering.165
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3.3 Deduplication: fuzzy, exact, and across dumps166

After filtering, although data quality has improved, a large fraction of the content is repeated across167

documents. This may be due to the crawler indirectly hitting the same page multiple times, to168

boilerplate content being repeated (e.g., licences), or even to plagiarism. These duplicates can strongly169

impact models, favoring memorization instead of generalization [30, 41]. Since deduplication is170

expensive, it has seen limited adoption in public datasets [8, 9]. We adopt an aggressive deduplication171

strategy, combining both fuzzy document matches and exact sequences removal.172

Fuzzy deduplication. We remove similar documents by applying MinHash [34]: for each document,173

we compute a sketch and measure its approximate similarity with other documents, eventually174

removing pairs with high overlap. MinHash excels at finding templated documents: licenses with175

only specific entities differing, placeholder SEO text repeated across websites–see examples of176

the biggest clusters in Appendix J.1. We perform MinHash deduplication using 9,000 hashes per177

document, calculated over 5-grams and divided into 20 buckets of 450 hashes. We found that using178

less aggressive settings, such as the 10 hashes of The Pile [10], resulted in lower deduplication rates179

and worsened model performance. See Appendix I.3.1 for more details about our MinHash setup.180

Exact deduplication. Exact substring operates at the sequence-level instead of the document-level,181

finding matches between strings that are exact token-by-token matches by using a suffix array [33]182

(e.g., specific disclaimers or notices, which may not compromise the entire document as showcased in183

Appendix J.2). We remove any match of more than 50 consecutive tokens, using the implementation184

of Lee et al. [30]. We note that exact substring alters documents, by removing specific spans: we185

also experimented with dropping entire documents or loss-masking the duplicated strings instead of186

cutting them, but this didn’t result in significant changes in zero-shot performance–see Appendix I.3.2.187

188

URL deduplication. Because of computational constraints, it is impossible for us to perform189

deduplication directly on RW-Filtered. Instead, we split CommonCrawl into 100 parts, where each190

part contains a hundredth of each dump, and perform deduplication on individual parts. Most of the191

larger duplicate clusters (e.g., licences, common spams) will be shared across parts, and effectively192

removed. However, we found that CommonCrawl dumps had significant overlap, with URLs being193

revisited across dumps despite no change in content. Accordingly, we keep a list of the URLs of all194

samples we have kept from each part, and remove them from subsequent parts being processed.195

Table 3: To evaluate models trained on RefinedWeb and compare to the state-of-the-art, we
build four aggregates across 18 tasks on which to measure zero-shot performance. small was
built for internal ablations, based on tasks with consistent performance at small scale, core is based
on tasks commonly reported for public suites of models [48, 42], main is based on tasks from the
GPT-3 and PaLM paper [2, 22], and ext is based on tasks used by the BigScience Architecture and
Scaling group [11]. We flag with † results obtained in an arbitrary evaluation setup, and with ⇤ results
obtained with the EAI Harness [49], which we also employ for all our models.

Tasks Type Random small core main ext

HellaSwag [50] Sentence completion 25.0 X X X X

LAMBADA [51] Sentence completion 0.0 X X X

Winogrande [52] Coreference resolution 50.0 X X X X

PIQA [53] Multiple-choice question answering 50.0 X X X X

ARC [54] Natural language inference 25.0 X X X X

OpenBookQA [55] Multiple-choice question answering 25.0 X X X

BoolQ [56] Multiple-choice question answering 50.0 X X X

COPA [57] Sentence completion 50.0 X X

CB [58] Natural language inference 33.3 X X

RTE [59] Natural language inference 50.0 X X

ReCoRD [60] Question answering 0.0 X

ANLI [61] Natural language inference 33.3 X

LogiQA [62] Multiple-choice question answering 25.0 X

HeadQA [63] Multiple-choice question answering 20.0 X

MathQA [64] Multiple-choice question answering 20.0 X

PROST [65] Paraphrase identification 50.0 X

PubMedQA [66] Multiple-choice question answering 50.0 X

SciQ [67] Multiple-choice question answering 25.0 X X
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Table 4: Curation is not a silver bullet for zero-shot generalization: small-scale models trained
on  REFINEDWEB outperform models trained on web data (C4, OSCAR), and on curated
corpora (H The Pile). Average accuracy in zero-shot on the small-agg aggregate. All models
trained with identical architectures and pretraining hyperparameters, for the same amount of tokens.
We find that OSCAR-22.01 underperforms other datasets signficantly, perhaps because deduplication
is only optional. C4 is a strong baseline, with OSCAR-21.09 lagging slightly behind, but we find that
RefinedWeb outperforms both web datasets and the most popular curated dataset, The Pile. Both
filtering and deduplication contribute significantly to improving zero-shot performance.

MASSIVE WEB DATASETS CURATED OURS

OSCAR-21.09 OSCAR-22.01 C4 H The Pile RW-Raw RW-Filtered  REFINEDWEB

1B@27GT 55.0% 52.7% 55.7% 53.4% 52.7% 54.3% 56.2%
3B@60GT 59.1% 55.9% 59.6% 57.9% 57.4% 58.2% 59.8%

4 Experiments196

We now validate that models trained on RefinedWeb can match the zero-shot performance obtained197

with curated corpora and by state-of-the-art models. We first discuss our evaluation and pretraining198

setup, and models with which we compare. We perform experiments at small scale to internally199

compare with other datasets, and ablate the stages of RefinedWeb (raw, filtered, final). Then, we scale200

to 1B and 7B models trained on 350GT to compare with the state-of-the-art. Finally, we apply the201

MDR pipeline to existing datasets, and show that it can potentially deliver further improvements.202

4.1 Setting203

Evaluation. At variance with previous works studying pretraining datasets [12, 30], we focus our204

evaluation on zero-shot generalization across many tasks rather than measuring validation loss.205

Perplexity alone can be at odds with end-task performance [68], and modern works on LLMs206

predominantly report zero-shot performance [2, 12, 22]. Furthermore, zero-shot generalization is207

the “natural” setting for autoregressive decoder-only models, in which they perform best [69]. Our208

evaluation setup is inspired by the one used by the architecture and scaling group of Big Science [11].209

We base our evaluation on the Eleuther AI evaluation harness [49], allowing us to evaluate across a210

wide range of tasks. We identified aggregates allowing us to: (1) obtain signal (i.e., non zero zero-shot211

performance) at small scale for ablations; (2) compare with results reported by other models. We212

outline these aggregates small (for ablations), and core, main, ext (for comparisons) in Table 3.213

Comparisons across models trained and evaluated in different settings are difficult to untangle, as many214

externalities may influence the results (e.g., numerical precision of training vs inference, prompts215

used). We distinguish three levels of comparisons: (1) internal comparisons, with models trained and216

evaluated within our codebase, for which only the pretraining datasets differ; (2) benchmark-level217

comparisons, with models trained with a different codebase but evaluated with the Eleuther AI218

harness, taking results from [11, 70, 71, 48], thereafter flagged with a ⇤; (3) external comparisons219

with [2, 22], thereafter flagged with a †. For further details on evaluation, see Appendix H.1.220

Models. We train 1B, 3B, and 7B parameters autoregressive decoder-only models, based on configu-221

rations and hyperparameters similar to GPT-3 [2], diverging mostly on our use of ALiBi [72]. We use222

FlashAttention [73] in a custom codebase. We train internal models on both The Pile and RefinedWeb223

to control for deviations caused by our pretraining setup–we found The Pile models to perform in-line224

with others. For small-scale and ablation studies (first half of Section 4.2; Section 4.3), we train225

models to optimality according to the scaling laws of Hoffmann et al. [4]: on 27B and 60B tokens226

respectively for our 1B and 3B parameters models. For the main experiments demonstrating our227

approach (Falcon-RW models in Section 4.2), we train the models to 350GT, in line with popular228

public models [2, 74, 23]. Note that we do not compare against the recently introduced LLaMA229

models [7], as the smallest of them is trained on x2.5 more compute than our largest model, preventing230

a meaningful comparison from being made dataset-wise. For a more in-depth overview of the models231

and pretraining datasets with which we compare, see Appendix H.232
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4.2 Can web data alone outperform curated corpora?233

We endeavour to demonstrate that web data alone can result in models outperforming models trained234

on curated corpora. To do so, we first perform a small-scale study with 1B and 3B parameters models235

trained to optimality (27GT and 60GT) on popular web and curated datasets. Then, we scale up to 1B236

and 7B models trained on 350GT, and compare zero-shot generalization to state-of-the-art models.237

Small-scale study. We first consider public web datasets (OSCAR-2019 [8], OSCAR-2022 [75],238

C4 [9]), The Pile [10] as the most popular publicly available curated dataset, and variations of239

RefinedWeb (RW-Raw, RW-Filtered, and RW as described in Section 3). All models are trained with240

the same architecture, for the same amount of tokens, and using the same internal codebase; they are241

also all evaluated within the same framework–only pretraining datasets differ.242

Results averaged on the small aggregate of 6 tasks are presented in Table 4. We observe relatively243

strong performance of all web datasets compared to The Pile, showcasing that curation is not a244

silver bullet for performant language models. We find C4 to be a strong pretraining dataset, in line245

with the findings of Scao et al. [11]–however, The Pile underperforms more in our benchmarks.246

The disappointing results on OSCAR-22.01 may be due to the dataset being distributed without247

deduplication by default. Regarding RefinedWeb, both filtering and deduplication significantly248

improve performance. We also note that a 3B@60GT model trained on OSCAR-22.1 performs worse249

than a 1B@27GT model trained on RefinedWeb: data alone accounts for a 4x difference in pretraining250

compute, highlighting that compute budgets alone cannot compensate efficiently for inadequate data.251

Full-scale models. We now validate these results with comparisons with state-of-the-art models.252

We scale our previous experiments by training 1B and 7B models on 350GT; we also train a 1B model253

on 350GT on The Pile, as a control for the influence of our pretraining setup. We compare with the254

following models: the GPT-3 series [2], the FairSeq series [76], the GPT-Neo(X)/J models [77, 74, 70],255

the OPT series [43], the BigScience Architecture and Scaling Pile model [11], PaLM-8B [22], Aleph256

Alpha Luminous 13B [71], the Pythia series [42], and the Cerebras-GPT series [48]. For GPT-3, we257

distinguish between results obtained through the API (babbage and curie) with the the EleutherAI258

LM evaluation harness [49] (*), and results reported in their paper, with a different evaluation setup (†).259

For PaLM and OPT, results were obtained also with a different evaluation suite (†); for most other260

models they were obtained with the evaluation harness (*), allowing for more direct comparisons.261

Results on main-agg are presented in Figure 1, and in Figure 3 for core-agg and ext-agg. We262

find that open models consistently underperform models trained on private curated corpora, such263
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Figure 3: Models trained on REFINEDWEB alone outperform models trained on curated cor-
pora. Zero-shot performance averaged on our core-agg (left) and ext-agg (right) task aggregates
(see Section 4.1 for details, and Figure 1 for results on main-agg). Existing open models fail to
match the performance of the original GPT-3 series (left); however, models trained on RefinedWeb
significantly outperform models trained on H The Pile: including our direct comparison model (right),
ruling out our pretraining setup as the main source of increased performance. In fact, our RefinedWeb
models even match the performance of the ⌅ GPT-3 models.
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Table 5: Although improvements from filtering are not systematic across datasets, deduplication
brings a steady performance boost across the board. Zero-shot accuracy averaged on small-agg
aggregate; [+x.x] reports absolute gains compared to base, removal rates reported against base. Due
to limitations in our pipeline, we cannot apply the deduplication stage independently for RefinedWeb.

MASSIVE WEB DATASETS CURATED OURS

OSCAR-21.09 OSCAR-22.01 C4 H Pile  RefinedWeb

Base 55.0% 52.7% 55.7% 53.4% 52.7%
Filtered 55.4% [+.4] 52.3% [-.4] 56.2% [+.5] 54.2% [+.8] 54.3% [+1.6]
removal rate -25.0% -39.8% -16.4% -27.1% -50.8%
Deduplicated 55.6% [+.6] 55.6% [+2.9] 55.9% [+.2] 54.5% [+1.1]
removal rate -10.8% -60.8% -7.59% -45.3%
Filt.+Dedup. 55.5% [+.5] 55.4% [+2.7] 56.4% [+.7] 55.2% [+1.8] 56.2% [+3.5]
removal rate -28.2% -62.2% -17.9% -66.0% -75.4%

as GPT-3–even when using a similar evaluation setup. Conversely, models trained on RefinedWeb264

are able to match the performance of the GPT-3 series using web data alone, even though common265

high-quality sources used in The Pile are excluded from RefinedWeb (see Table 14 in Appendix).266

Finally, we note that our internal model trained on The Pile performs in line with the BigScience267

Architecture and Scaling model; this highlights that our pretraining setup is unlikely to be the main268

source of increased performance for models trained on RefinedWeb.269

Finding. Challenging beliefs on data quality, filtered and deduplicated web data alone allows
models to match the natural language tasks performance of models trained on curated data.

4.3 Do other corpora benefit from MDR?270

Ablating the contributions and evaluating the performance of individual components in the MDR271

pipeline is difficult: for most heuristics, there is no agreed-upon ground truth, and changes may be272

too insignificant to result in sufficient zero-shot signal after pretraining. In the first half of Section 4.2,273

we identified that subsequent stages of RefinedWeb (raw, filtered, final) led to improvements in274

performance. In this section, we propose to apply independently the filtering and deduplication stages275

of MDR to popular pretraining datasets, studying whether they generalize widely.276

We report results on the small-agg in Table 5. First, we find that improvements from filtering277

are not systematic. On The Pile, we had to adjust our line length and characters ratio heuristics to278

avoid expunging books and code. Despite improvements on OSCAR-21.09, C4, and The Pile, our279

filters worsen performance on OSCAR-22.01; generally, removal rates from filtering are not strongly280

correlated with downstream accuracy. Conversely, deduplication delivers a steady boost across all281

datasets, and removal rates are better correlated with zero-shot improvements. OSCAR-21.09 and282

C4 are already well deduplicated, while The Pile and OSCAR-22.01 exhibit 40-60% duplicates.283

OSCAR-22.01 is distributed without deduplication by default; for The Pile, this is consistent with284

the findings of Zhang et al. [43]. Finally, combining filtering and deduplication results in further285

improvements; although performance is now more uniform across datasets, differences remain,286

suggesting that flaws in the original text extraction and processing are not fully compensated for.287

By processing C4 with MDR, we are able to obtain subsets of data which might slightly outperform288

RefinedWeb; this combines both the stringent filtering of C4 (e.g., strict NSFW word blocklist,289

3-sentence span deduplication) with our own filters and deduplication. While this results in rejection290

rates that are unacceptable for our target of 3-6 trillions tokens, this is an interesting perspective for291

shorter runs, which may be able to extract extremely high-quality subsets from large datasets.292

Finding. While filtering heuristics may require source-dependent tuning, stringent deduplication
improves zero-shot performance across datasets consistently.
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5 Limitations293

Biases and harmfulness. We conduct an analysis of the toxicity of RefinedWeb in Figure 5 of the294

Appendix. We find RefinedWeb to be about as toxic as The Pile, based on the definition of toxicity of295

the Perspective API: ”content that is rude or disrespectful”. Notably, this definition does not cover296

social biases or harmfulness. Although it is unlikely that our pipeline introduces further issues than is297

already documented for popular datasets, we encourage quantitative work on our public extract.298

Performance beyond natural language. Our evaluation aggregates are overwelmingly targeting299

natural language tasks, and do not include code or mathematics evaluation–which are popular use300

cases for fully-fledged models. A natural question may be whether web data alone is sufficient301

to achieve strong code/mathematics performance; we do not think this is the case, and encourage302

practionners to combine RefinedWeb with code datasets such as The Stack [78] when training modles.303

However many of our findings apply equally: notably, Li et al. [79] found that deduplication helped304

with code data collected from GitHub as well. Broadly speaking, like web data is massively collected305

from CommonCrawl, code data is usually collected from GitHub, before undergoing extensive306

filtering and deduplication. This is similar to the spirit of RefinedWeb, and does not rely on a307

collection of curated sources. Finally, we note that specific domains (e.g., code, technical papers)308

exist on a spectrum, and that general natural language improvements may benefit technical tasks too:309

for instance, we find that models trained on RefinedWeb outperform on PubMedQA models trained310

on The Pile, despite not including any explicit medical data (The Pile includes PubMed).311

And beyond pretraining... Our study is strictly limited to language model pretraining, and does312

not address finetuning existing models. We note the value of high-quality samples for downstream313

specialization, for instance for improving chattiness or instruction-following capabilities [80].314

Multiple epochs. Instead of looking for ”unique” tokens for a trillion-scale pretraining dataset, one315

could simply repeat data over multiple epochs. Popular models like OPT and NeoX-20B train on316

up to 2 epochs [43, 70], and most curated datasets upsample corpora 2-5 times [2, 10]. However,317

Hernandez et al. [41] has recently shown that models with 100B+ parameters may be sensitive to318

even just a few epochs. Orthogonal to our work one could explore tradeoffs in the data-constrained319

regime: can deduplication help sustain more epochs? Are multiple epochs on higher quality data320

better than one epoch on lower quality data? See Appendix G.3 for a more in-depth discussion.321

Other results on deduplication. Biderman et al. [42] found a limited impact on zero-shot per-322

formance from deduplicating The Pile; we discuss in Appendix H.2 and suspect deduplication may323

be unreasonably effective on web datasets because it predominantly removes low quality content324

(see Appendix J for top samples). Muennighoff et al. [81] studied scaling laws for multiple epochs,325

and found that up to four epochs carried limited degradation–however, we note that many of the326

duplicates we find are present hundred to thousands of time in the raw data, far from this safe regime.327

6 Conclusion328

As LLMs are widely adopted, models trained past the recommendations of scaling laws are bound329

to become increasingly common to amortize inference costs [7]. This will further drive the need330

for pretraining datasets with trillions of tokens, an order of magnitude beyond publicly available331

corpora. We have demonstrated that stringent filtering and deduplication could result in a five trillion332

tokens web only dataset suitable to produce competitive models, even outperforming LLMs trained333

on curated corpora. We publicly release a 600GT extract of RefinedWeb, and note that RefinedWeb334

has already been used to train state-of-the-art language models, such as Falcon-40B [82].335

We publicly release the following artefacts:336

• A 600B tokens extract of RefinedWeb: https://huggingface.co/datasets/337

tiiuae/falcon-refinedweb;338

• The 1B and 7B models trained on RefinedWeb in this paper: https://huggingface.co/339

tiiuae/falcon-rw-1b and https://huggingface.co/tiiuae/falcon-rw-7b.340
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Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A426
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