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Abstract

The online bipartite matching problem, extensively studied in the literature, deals
with the allocation of online arriving vertices (items) to a predetermined set of
offline vertices (agents). However, little attention has been given to the concept of
class fairness, where agents are categorized into different classes, and the matching
algorithm must ensure equitable distribution across these classes.
We here focus on randomized algorithms for the fair matching of indivisible
items, subject to various definitions of fairness. Our main contribution is the
first (randomized) non-wasteful algorithm that simultaneously achieves a 1/2
approximation to class envy-freeness (CEF) while simultaneously ensuring an
equivalent approximation to the class proportionality (CPROP) and utilitarian
social welfare (USW) objectives. We supplement this result by demonstrating that
no non-wasteful algorithm can achieve an α-CEF guarantee for α > 0.761. In a
similar vein, we provide a novel input instance for deterministic divisible matching
that demonstrates a nearly tight CEF approximation.
Lastly, we define the “price of fairness,” which represents the trade-off between
optimal and fair matching. We demonstrate that increasing the level of fairness in
the approximation of the solution leads to a decrease in the objective of maximizing
USW, following an inverse proportionality relationship.

1 Introduction

The rapid advancement of technology and the widespread adoption of online platforms have revolu-
tionized the way we interact, conduct business, and access services. From ride-sharing platforms [5]
to online marketplaces [32], these platforms connect users with a vast array of resources, creating
unprecedented opportunities for dynamic resource allocation. However, efficiently matching supply
with demand in such online environments poses significant challenges, necessitating the exploration
of novel algorithms and strategies.

The fundamental online matching problem lies at the core of resource allocation in such platforms.
Unlike traditional matching problems where the entire set of agents and resources are known in
advance, the online matching problem involves making real-time decisions without complete in-
formation about future arrivals and requests. This inherent uncertainty and dynamic nature render
traditional static matching algorithms inadequate, demanding the development of new techniques
tailored specifically for online settings.

The objective of the online matching problem is to match as many arriving goods to static (offline)
agents as possible in an efficient manner. The realization of this objective may vary depending
on the specific application context. However, regardless of the objective, the challenge lies in
making immediate decisions while accounting for future arrivals and the scarcity of resources. The
performance evaluation of algorithms designed for this problem is based on their competitive ratio,
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(a) CEF Matching (b) NW Matching

Figure 1: Examples of class envy-free (CEF) and non-wasteful (NW) matchings where bolded lines
indicate a matching. Red nodes indicate agents in the first class, blue nodes indicate agents in the
second class, and white nodes indicate items.

representing the worst-case approximation ratio between the size of the produced matching and
the maximum possible size with complete hindsight. It is well known that the best deterministic
algorithm can only achieve a 1/2-approximation and the seminal work of Karp et al.[28] provides a
randomized algorithm with a tight (1− 1/e)-approximation guarantee.

To motivate the study of online matching under fairness constraints [21], we turn to the real-world
challenges presented by modern Internet economics and emerging marketplaces. These settings
demand solutions that balance transparency with fairness, as emphasized in Moulin’s “Fair Division in
the Internet Age” [35]. In various applications, such as allocating advertisement slots [32], assigning
packets in switch routing [4], distributing food donations [34], and matching riders to drivers in
ridesharing platforms [13], items or services must be matched to agents immediately and irrevocably
as they arrive. However, much of the existing work overlooks the need for fairness in matching
decisions. Consider, for instance, a food bank that must allocate perishable food items upon arrival.
Ensuring that these resources are distributed equitably across all communities is crucial to addressing
fairness concerns in these high-stakes scenarios.

It is for precisely this reason that [21] initiate the study of class fair matchings where a set of items
arriving online must be assigned to agents, who are partitioned into known classes, with the goal
of achieving fairness among classes. In this problem, similar to online bipartite matching, agents
either like an item (value 1) or do not like it (value 0), however our objective is to ensure equitable
treatment of different classes. We refer to the standard unfair objective that maximizes the number of
matched agents as the utilitarian social welfare (USW). When considering classes, the notion of class
envy-freeness (CEF) ensures that no class of agents can enhance their overall value by obtaining the
items allocated to another class, even if the items are optimally distributed within their own class.
It is important to note that in cases involving indivisible items, a class envy-free matching may not
always be possible (see Figure 1). Consequently, our research mainly focuses on addressing the
central unresolved question in the online class fair matching problem posed by [21]:
Open Problem 1. Can a randomized algorithm for matching indivisible items achieve any reasonable
CEF approximation together with either non-wastefulness or a USW approximation?

1.1 Our Results

Our work mainly focuses on randomized algorithms for matching indivisible items in a fair manner,
subject to the varying definitions of fairness adapted from the fair division literature. Notably, we
provide the first non-wasteful algorithm that simultaneously obtains approximate class fairness
guarantees in expectation, resolving Open Problem 1 posed by [21] in an affirmative manner. This
algorithm is a natural random matching procedure that exhibits notable constant factor approximations
in spite of its simplicity. Our main algorithmic result is stated formally as follows.

Theorem 1.1 (Randomized algorithm; informal). For randomized matching of indivisible items, the
RANDOM algorithm satisfies non-wastefulness, 1

2 -CEF, 1
2 -CPROP, and 1

2 -USW.

We highlight that the analysis of the various approximate fairness guarantees is highly non-trivial
due to the non-additive nature of the objective functions, to be discussed more formally in Section 3.
In exploring the tightness of our algorithmic guarantees, we additionally construct an upper bound
adversarial input that demonstrates the limits on achievable fairness in this problem setting.
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Indivis. USW CEF CPROP Divis. USW CEF CPROP
Alg. 1/2 1/2 1/2 Alg. 1/2 [21] 1− 1/e [21] 1− 1/e [21]

Bound 1− 1/e [28] e2−1
e2+1 1− 1/e 1 Bound 1− 1/e [28] 0.67 1− 1/e [21]

Table 1: The summary of our results on randomized algorithms. Each algorithm achieves its three
guarantees simultaneously, while the upper bound holds for any algorithm, separately for each
guarantee. Results from prior works in the divisible setting are noted with citation for completeness.

Theorem 1.2 (Indivisible CEF upper bound; Informal). Any non-wasteful (possibly randomized)
algorithm cannot achieve an α-CEF guarantee for α > e2−1

e2+1 ≈ 0.761.

This upper bound construction builds upon the results of [28] to demonstrate that CEF cannot be
achieved and will be presented in Section 4.1 with a complete analysis found in Section B.3. We
additionally note that while our results show a deviation in the guarantees from traditional fair division
problems, certain properties nicely translate to our problem setting – we expound on this fact in
Appendix A with a comprehensive discussion on the connections between class Nash welfare and
CEF1.

In Section 4.2, we additionally provide a strengthened upper bound for the divisible matching setting
through a careful input construction which further resolves an open problem left by [21].
Theorem 1.3 (Divisible CEF upper bound; Informal). No deterministic algorithm for divisible
matching can achieve β-CEF for any β > 0.677.

Finally, in an effort to further quantify the inherent gap between fair and unfair solutions to the
online matching problem, we conclude the paper with a definition for the “price of fairness” which is
intuitively the necessary trade-off between an optimal and a fair matching. We demonstrate that as we
strive for a higher level of fairness in the approximation of the solution, the objective of maximizing
utilitarian social welfare (USW) deteriorates, exhibiting an inverse proportionality relationship.
Theorem 1.4 (Price of fairness; Informal). For any ε > 0, there exists a problem instance such that
no (possibly randomized) online algorithm that guarantees α-CEF can achieve USW larger than
1

1+α + ε.

1.2 Related Work

Online Matching. For an extensive exploration of the vast literature on online matching, we refer
readers to [33], while summarizing key findings relevant to this paper. The seminal work by [28]
introduces the RANKING algorithm which, in our problem setting, corresponds to a randomized algo-
rithm for matching indivisible items that achieves a utilitarian social welfare (USW) approximation
of 1− 1/e. In the fractional matching domain, an identical result is achieved with a deterministic
algorithm [26]. The literature further explores randomized input models of online matching problems
to surpass this well-known 1− 1/e barrier. For online vertices that arrive in a random order (reducing
the power of an adversarial input) [31] and [27] demonstrate that the competitive ratio of the Ranking
algorithm falls between 0.696 and 0.727. Moreover, [24] propose a variant of Ranking that surpasses
the 1− 1/e barrier in vertex-weighted online matching under random-order arrivals, with a further
improvement to 0.668 presented by [25]. In stochastic matching, where items are drawn from a
known distribution, the best-known competitive ratios for unweighted and vertex-weighted online
stochastic matching are 0.711 and 0.700, respectively [15, 23].

Fair Division. In the offline setting, envy-freeness (EF) and proportionality (PROP), along with
their approximations, are commonly employed as criterions of fairness in the allocation of items to
agents. For divisible items, an allocation which is envy-free and pareto optimal (PO) always exists
[38] and can be computed efficiently when agent valuation functions are additive [14]. For indivisible
items, such allocations are not guaranteed to exist. As such, two relaxations are commonly studied:
envy-freeness up to one item (EF1) [30] and maximin share fairness (MMS) [10]. An allocation that
satisfies EF1 is guaranteed to exist when valuations are monotone, and are further PO when agents
have additive valuations [12]. However, the existence of MMS allocations is not guaranteed, even

1This fact trivially holds when considering the upper-triangular construction of [28] and k = 1 in our setting.
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for additive valuations. Nevertheless, there are various polynomial time approximation algorithms
[17, 18, 22, 20, 36]. In our fair matching problem, we effectively compute an online allocation that
satisfies the aforementioned fairness criteria by treating each class as an agent within the system.

Fair Online Matching. Most closely related to our work is the preliminary work of [21] that
introduces the online class fair problem. This paper provides the initial results for approximate
guarantees on the objectives of class envy-freeness (CEF), classs proportionality (CPROP), class
maximin share (CMMS), and utilitarian social welfare (USW). The authors’ contributions offer nearly
tight results for deterministic algorithms in both the context of indivisible and divisible item matching.
While the authors achieve a 0.593-CPROP approximation guarantee for indivisible matching using
a randomized algorithm, they do not address the challenge of simultaneously achieving a class
envy-freeness (CEF) guarantee while ensuring non-wastefulness. This crucial open problem serves as
the primary focus of our study. Furthermore, we explore various impossibility results for algorithms
that align with the fairness-agnostic online matching literature, shedding light on the limitations and
constraints of such approaches. While many other works examine online fair division [1, 8, 19, 39, 42],
the majority restrict attention to additive valuations, rendering their techniques inapplicable to the
matching setting. Finally, the recent work by [40] proposes a non-wasteful algorithm which guarantees
CEF with high probability when the number of agents approach infinity.

Price of Fairness The first set of results on the Price of Fairness (PoF) traces back to [9] and [11].
[9] analyze the upper bound on the utility loss (specifically, egalitarian social welfare) incurred by
fairness notions such as proportional fairness and max-min fairness in the allocation of divisible
goods. A key takeaway from their results is that for a small number of players, the PoF remains
relatively low; for example, for two players, the PoF for proportional fairness is at most 8.6%, and for
max-min fairness, it is 11.1%. [11] further extend these results by examining fairness notions like
proportionality, envy-freeness, and equitability for both divisible and indivisible goods and chores.
However, as [7] highlight, a significant limitation in the indivisible setting is that the guarantees do
not hold for every problem instance, as the results are not framed as a worst-case analysis. To address
this, [7] investigate PoF under worst-case scenarios for various fairness criteria, including Nash social
welfare, envy-freeness up to one good, balancedness, and egalitarian social welfare. It is important to
note that these results do not directly apply to our setting, as the notion of class envy-freeness is not
equivalent to any of the properties discussed above.

2 Model

For t ∈ N, define [t] = {1, ..., t}. Consider a bipartite graph G = (N,M,E) where N represents a
set of vertices henceforth referred to as “agents”, M a set of vertices called “items”, and E the set of
incident edges. We say that a ∈ N likes item o ∈ M if the two are adjacent in G, i.e., (a, o) ∈ E.
The set of agents N is partitioned into k (known) classes N1, ..., Nk such that Ni ∩Nj = ∅ for all
i ̸= j and

⋃k
i=1 Ni = N . We slightly abuse notation and call class Ni, class i.

Matching. We denote by the matrix X = (xa,o)a∈N,o∈M ∈ {0, 1}N×M a matching, where each
xa,o indicates if item o is matched to agent a. For divisible matchings, we replace {0, 1} by [0, 1].
Given such a matching, we refer to an agent as saturated when

∑
o∈M xa,o = 1 and an item as

assigned if
∑

a∈N xa,o = 1.

For some matching X , we let Y (X) =
(∑

a∈Ni
xa,o

)
i∈[k],o∈M

be the matrix containing the items
assigned to agents within each class. Further let Yi(X) denote the row of Y (X) corresponding to
class i. More specifically, this is the set of items matched to agents in class i:

Yi(X) = {o ∈M : xa,o = 1 for some a ∈ Ni}.

Class Valuations. For agent a ∈ N , the value of a matching X is given by Va(X) =∑
o∈M :(a,o)∈E xa,o and we slightly abuse notation by defining the value of class i from match-

ing X to be Vi(X) =
∑

a∈Ni
Va(X). This is the so-called utilitarian social welfare (USW) of the

matching for the agents in class i, and is equivalent to the standard matching size objective in the
online bipartite matching literature.
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Given a vector y = (yo)o∈M ∈ {0, 1}M representing the allocation of different items, the optimistic
valuation, V ∗

i (y), of class i for y is the size of the maximum matching between the agents of Ni

and the items of y. V ∗
i is equivalent to the maximum size of the integral matching between the items

and agents in Ni which can be computed with a standard LP – we defer the reader to [21] for more
exposition on this definition. We emphasize that the optimistic valuation function is subadditive,
and not additive as is a standard assumption leveraged in the fair division literature to obtain many
algorithmic guarantees. As demonstrated in [21], it is exactly this functional property that prevents
any deterministic algorithm for indivisible matchings from being non-wasteful and CEF1. Moreover,
this aspect of the problem instance will necessarily make the analysis of our algorithmic guarantees
and impossibility results non-trivial as compared to their additive counterparts.

2.1 Definitions of Fairness

The aim in the present work is to distribute the arriving goods among classes in a way that respects
certain fairness criteria or principles. The commonly studied fairness criteria that we use here are
envy-freeness [16], and proportionality [37].

For envy-freeness, we compare the value of Vi(X) for the matched items to class i and V ∗
i (Yj(X)),

the optimistic value of class j’s matching according to i. Note that the optimistic valuation is
necessarily larger than what could be obtained in the online model, so this is a particularly strong
notion of fairness.
Definition 2.1 (Class Envy-Freeness). A matching X is α-class envy-free (α-CEF) if for all classes
i, j ∈ [k], Vi(X) ≥ α · V ∗

i (Yj(X)). For α = 1, we simply call the matching class envy-free (CEF).

In general, CEF allocations cannot be guaranteed for indivisible matchings (ie. one item arrives to be
distributed across two classes). We thus also consider the relaxed notion of class envy-freeness up to
one item, consistent with the EF1 notion introduced by [30].
Definition 2.2 (Class Envy-Freeness Up to One Item). A matching X is α-class envy-free up to
one item (α-CEF1) if for every pair of classes i, j ∈ [k], either Yj(X) = ∅ or there exists an item
o ∈ Yj(X) such that Vi(X) ≥ α · V ∗

i (Yj(X) \ {o}). When α = 1, we simply refer to the matching
as class envy-free up to one item (CEF1).

At the class level, the proportional share of class i is defined as

propi = max
X∈I

min
j∈[k]

V ∗
i (Yj(X))

where I is the set of (possibly divisible) matchings of the set of items M to the set of agents N .
Definition 2.3 (Class Proportional Fairness). We say that a matching X is α-class proportional
(α-CPROP) if for every class i ∈ [k], Vi(X) ≥ α · propi. When α = 1, we simply call this class
proportional (CPROP).

We highlight that [21] demonstrate that any algorithm which assigns deterministically at the class
level or within classes must be at best 1

2 -CPROP. Therefore, we must introduce randomness at both
stages to surpass the performance of a deterministic algorithm. This further motivates the present
studies’ emphasis on randomized algorithms.

2.2 Definitions of Efficiency.

We consider two notions of efficiency. The first, non-wastefulness, ensures that no item is discarded if
a matching is possible. In our integral assignment setting, non-wastefulness corresponds to a maximal
matching.
Definition 2.4 (Non-Wastefulness). We say that a matching X is non-wasteful (NW) if there is no
pair of agent a and item o such that a likes o, a is not saturated, and o is not fully assigned.

The second efficiency measure is utilitarian social welfare which quantifies the size of the resul-
tant matching. This is consistent with the classical objective for online matching when ignoring
considerations of fairness.
Definition 2.5 (Utilitarian Social Welfare). The utilitarian social welfare (USW) of a matching is
given by usw(X) =

∑
a∈N

∑
o∈M :(a,o)∈E xa,o. We say that a matching is α-USW if usw(X) ≥

α · usw(X∗) for all matchings X∗. When α = 1, we refer to X as the USW-optimal matching.
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It is well-known that maximal matchings (both divisible and indivisible) are a at least a 1/2-
approximation to the maximum. The proof of this fact is standard in the literature for maximum and
maximal matchings, but is included in Appendix B for full clarity.

Proposition 2.6. Every non-wasteful matching is 1
2 -USW.

2.3 Online Model

In the online setting, the items in M arrive one-by-one in an arbitrary order. We refer to the step
in which item o ∈M arrives as step o. Upon the arrival of item o, the incident edges, (a, o), to the
agents in a ∈ N are revealed from G. At this point, the algorithm must make an irrevocable decision
to match the item one of the agents in N who is not currently saturated (ie. not already included in
the matching). We examine both deterministic (for analytic purposes) and randomized algorithms to
construct these matchings.

In the online setting we define the online fairness metrics using the standard notion of a competitive
ratio as our approximation factor as follows.
Definition 2.7. For α ∈ (0, 1], a deterministic online algorithm for matching items is α-CEF (resp.,
CEF1, CPROP, USW, or NW) if it produces an α-CEF (resp., CEF1, CPROP, USW, or NW) matching
after all items have arrived.

For randomized algorithms, we require that all fairness constraints hold in expectation after all items
have arrived.

3 Randomized Algorithms

We here present our randomized algorithm for constructing a matching that achieves simultaneous
guarantees for the CEF and CPROP fairness objectives, as well as non-wasteful efficiency. While
wastefulness makes the fairness objectives somewhat trivial to obtain, our enforced non-wasteful
condition showcases the complexity of maintaining a fair matching. We begin by analyzing the
simple random algorithm and later use this procedure to validate the impossibility result on the α-CEF
guarantee of any algorithm.

Our algorithm is a simple variant on a completely random matching procedure to ensure non-wasteful
efficiency. Upon the arrival of an item o, it is revealed which classes i ∈ [k] have a currently
unmatched agent, a, that likes the item (ie. (a, o) ∈ E and xa = 0). Over this set of classes, we
select one at random and then randomly assign the item to an unmatched agent that likes the item
within this class. Though this nested randomization appears obvious, the proof of its near optimal
fairness guarantees requires a nontrivial analysis. The following theorem establishes the approximate
fairness and efficiency guarantees of our algorithm – the pseudocode is provided in Algorithm 1.

Restatement of Theorem 1.1 (Formal). For randomized matching of indivisible items, Algorithm 1
satisfies non-wastefulness, 1

2 -CEF, 1
2 -CPROP, and 1

2 -USW

Proof Sketch. We here provide a sketch of the analysis needed to verify the result and defer the reader
to Appendix B.2 for the complete analysis.

Algorithm 1 RANDOM

1: for o ∈M do
2: So ← ∅
3: for i ∈ [k] do
4: if ∃a ∈ Ni s.t. (a, o) ∈ E and xa = 0 then
5: So ← So ∪ {i}
6: end if
7: end for
8: Pick an i ∈ So uniformly at random
9: Pick an a ∈ Ni with (a, o) ∈ E and xa = 0 uniformly at random

10: Set xa,o = 1
11: end for
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The non-wastefulness of the algorithm is direct from its definition: each arriving item is allocated
to an unsaturated agent that likes the item. The USW approximate guarantee then follows from
Proposition 2.6.

For the CEF objective, we invoke a novel proof technique specific to the challenging analysis of
optimistic valuations used throughout the fair matching objective framework. Specifically, we show
that for any two distinct classes i, j, the expected value E [Vi(X)] ≥ 1

2 ·E [V ∗
i (Yj(X))] by introducing

dummy items to analyze the value of some augmented input set Ai, proving that V ∗
i (Ai) ≤ 2 ·Vi(X).

With this augmented set, we more readily obtain the desired approximate guarantees and demonstrate
that the optimal solution on Ai dominates the true solution on Yj(X). Combining this fact with a
lemma relating the expected values, we establish the 1

2 -CEF guarantee. We suspect this novel proof
technique will be useful in follow up works that examine similar, nonadditive, solution concepts – a
key problem identified by the preliminary work of [21].

Lastly, for the CPROP objective, the analysis modifies the Equal-Filling-OCS approach of [21] by
using a simpler independent rounding method. More concretely, for an arriving item o ∈ M we
construct the vector (xa,o)a∈N where each entry is the corresponding probability of an agent being
matched to the given item under the RANDOM algorithm. After all items have arrived, each agent a
is matched to an item with probability

1−
∏
o∈M

(1− xa,o) ≥ 1− exp

(
−
∑
o∈M

xa,o

)
and by integrating according to this density function over the agents in each class and comparing to
the upper bound on the propi value from [21], we obtain the desired approximation ratio.

We here highlight that while the more sophisticated OCS rounding scheme and, as a result, the
Equal-Filling-OCS algorithm yields a stronger 0.593-CPROP guarantee, the algorithm does not lend
itself to analysis of the CEF objective (it remains an open problem to obtain any such approxima-
tion for the algorithm). Thus, although our algorithm is slightly weaker with respect the CPROP
fairness definition, our simple algorithm further gives a 1

2 -CEF approximation while maintaining
non-wastefulness.

4 Improved CEF Upper Bounds

In this section, we provide improved CEF upper bounds of 0.761 for any randomized indivisible and
0.677 for any deterministic divisible algorithm.

4.1 Indivisible setting

Our upper bound for the indivisible setting showcases the near tightness of our algorithmic guarantees
proven in Section 3.2

The seminal paper of [28] showed that no online algorithm can get a competitive ratio better than
1− 1/e for the USW objective by an “upper triangular graph” (the graph whose adjacency matrix is
upper triangular) construction. In this graph, there are n arriving items and n agents. The first item to
arrive has an edge to all n agents, the second has an edge to n − 1 of the agents, the third to only
n− 2 of them, and so on.

We will proceed with demonstrating that by an extension on the result of [28], we can upper bound
the α-CEF guarantee of any randomized algorithm. Specifically, we prove the following theorem:

Restatement of Theorem 1.2 (Formal). No randomized online algorithm for matching indivisible
items can achieve an α-CEF guarantee for any α >

(
e2−1
e2+1

)
and non-wastefulness.

Our construction for CEF impossibility extends the problem instance of [28] to include a second
class which can be uniquely matched to each arriving item (See Figure 2a for an illustration of

2We note that, trivially, an upper bound of 1− 1/e exists for the USW objective by the classic result of [28].
This bound persists for CPROP by considering the problem instance where k = 1.
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(a) (b)

Figure 2: Impossibility constructions for the upper bound results of Theorems 1.2 and 1.3. (a) the
indivisible setting construction for an at most

(
e2−1
e2+1

)
-CEF approximation, (b) the divisible setting

construction for an at most 0.677-CEF approximation.

this instance). We proceed to show that this instance admits at best a e2−1
e2+1 approximation to the

CEF objective by first showing that the RANDOM algorithm admits this approximation factor in
expectation and subsequently showing that no algorithm can do better on the given instance, thus
bounding the performance of any randomized algorithm in general.

Most crucial to the argument that bounds α is the computation of a “stopping time” after which no
further items can be matched to Class 1 since all potential agents will have been previously saturated
in a suboptimal manner – a result of the ambiguity in matching from the upper triangular instance
and randomization of our algorithm. After this stopping time, by non-wastefulness, all items will be
matched to the second class. This necessarily results in an unfair distribution of items and by deriving
the stopping time as a fraction of the number of items, we obtain our upper bound approximation.

The full proof of this theorem is deferred to Appendix B.3 due to space constraints.

4.2 Divisible setting

In this section, we improve upon the established bounds of [21] and move closer towards resolving the
open problem on what is the best achievable α-CEF guarantee for non-wasteful divisible matchings
through a novel input construction. Prior to this work, the best known upper bound bound was 3/4
with an algorithm that guarantees at least 1− 1/e. Our improved bound of 0.677 is thus nearly tight.
Note that our CEF upper bound is subject to non-wastefulness because an algorithm can trivially
achieve fairness on its own by throwing away every item.

Theorem 4.1. No non-wasteful deterministic algorithm for matching divisible items can achieve
β-CEF for any β > 0.677.

Proof Sketch. Due to space constraints, the full proof is found in Appendix B.3. We here briefly give
the intuition for the impossibility result.

We construct an adversarial instance for which we cannot achieve β-CEF for β > 0.677. Consider
two classes, each comprised of n agents, and an input stream of 2n items. For the first class, items
numbered 1 and 2 are connected to all the agents. And for each i, items numbered 2i+ 1 and 2i+ 2
are connected to all the agents that items 2i− 1 and 2i are, except one arbitrary agent from the class.
Therefore, items 2i− 1 and 2i are connected to n− i+ 1 agents for each i. For the second class, we
simply have a complete graph wherein each agent of the class has an edge connecting her to each
item. The full construction for n = 3 case is depicted in Figure 2b for clarity.

To verify the result for the given instance, assume there is an algorithm that guarantees α-CEF. The
proof then follows from the synthesis of two key facts: (i) any α-CEF algorithm should distribute
items equally among agents within Class 1 for this input instance to maximize their saturation
(Lemma B.7), and (ii) that any such algorithm must further divide arriving items between the two
classes such that Class 1 receives 1+α

2 and Class 2 receives 1−α
2 . This ratio is optimal against an

adversarial input, ensuring neither class is overly envious (Lemma B.8).

8



The first result is proven by the nature of a non-wasteful online algorithm, and the second is achieved
by induction: assume the α-CEF guarantee holds up to step t − 1. For step t, if the item is not
allocated according to the prescribed ratio, an adversary can force a violation of the α-CEF guarantee.
Thus, maintaining the ratio ensures the guarantee persists.

The theorem is finally proven by bounding the matching size for each class given the two above
facts. We can ultimately determine the maximum value of α that maintains the α-CEF guarantee,
concluding that α ≤ 0.677.

5 Price of Fairness

Stemming from the highly influential work of [28], it is well-known that no algorithm for the online
matching problem can achieve an approximation better than 1 − 1/e to the maximal matching
objective (USW in our context). Moreover, by the result of Theorem 1.2, we demonstrate that a
comparable approximation bound persists for the CEF objective. It is, thus, only natural to explore
the following question: is it possible to achieve both an optimal CEF and USW approximation
simultaneously?

We here address this question with an impossibility result that provides an initial trade-off between
the fairness of a solution and its optimality with respect to the (unfair) USW objective – a relationship
we refer to as the price of fairness for online matching. More formally, our result is as follows.
Theorem 5.1. For any ε > 0, there exists a problem instance such that no (possibly randomized)
non-wasteful online algorithm with an α-CEF guarantee can achieve an approximation to the USW
objective greater than 1

1+α + ε.

Proof Sketch. The proof proceeds by considering an instance with k − 1 classes of q agents, as well
as a k-th class comprised of q(k − 1) agents. The adversarial input stream consists of two phases.
In the first phase, p(k − 1) + q items arrive, each of which has incident edges to every agent in the
graph, whereas in the second phase, k − 1 groups of items arriving sequentially where the i-th such
group consists of q items with edges to all the agents in class i.

In this instance, we first show that any non-wasteful α-CEF algorithm should allocate at least
p(k − 1) items to the class 1, 2, . . . , k − 1. Then, since these items cannot be further matched to
class 1, . . . , k − 1 in the second phase, we can upper bound the utilitarian social welfare at the
end of the second phase by p(k − 1) + qk − p(k − 1) = qk. Observing that the offline optimal
solution in hindsight allocates all items in the first phase to class k, while allocating the remaining
q items specific to each class to their corresponding class in the second phase, the optimal USW is
p(k − 1) + q + q(k − 1). The proof follows from selecting proper parameters for p and q.

With this novel price of fairness result, we observe that if α > 1
e−1 ≈ 0.582, then our result for

α-CEF implies a USW guarantee that is strictly smaller than 1− 1
e , the well known bound by [28].

Thus, USW must be sacrificed to achieve fairness. Further, if there exists any algorithm that achieves
the 0.761-CEF guaranteed by Theorem 1.2, it would necessarily have USW smaller than 0.568 (larger
than 0.5 by maximality), which is considerably smaller than the 1− 1

e ≈ 0.632 by [28].

6 Discussion & Open Problems

Our work closes the long-standing open conjecture on whether a non-wasteful randomized algorithm
can achieve non-trivial fairness guarantees in the context of online matching problems. By conducting
a detailed and non-trivial analysis of a natural randomized matching procedure, we have successfully
developed an algorithm that not only complements our previously established 0.76-CEF upper bound
construction but also aligns with the known upper bounds for the CPROP and USW efficiency
guarantees.

Moreover, we demonstrate that the algorithmic guarantee of [21] for deterministic and divisible
matchings is almost tight, with a novel input construction that exhibits a 0.67-CEF upper bound.
We lastly define “price of fairness” for the online matching problem and present an interesting
impossibility result on the trade-off between fair and optimal solutions. Namely, we demonstrate
that any approximation to the CEF objective follows an inverse proportionality relationship to the
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possible USW approximation any algorithm can obtain. This demonstrates that we must allow some
degradation in solution quality to ensure equitable treatment of classes.

Future work should address the natural gaps between the upper and lower bounds discussed above.
Perhaps most importantly, can a randomized algorithm achieve a USW approximation better than
1
2 while maintaining the given fairness guarantees? Is the price of fairness result tight, ie. does an
algorithm exist that ensures α-CEF while simultaneously guaranteeing 1

1+α -USW? We believe that
some of these answers may result from a careful extension on the RANKING algorithm that will
naturally rely on some priority ordering over both classes and agents.
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A Fairness and Efficiency in Online Class Matching

We here extend the classical notion of Nash social welfare (NSW) to the class fair matching problem
setting and demonstrate its intersection with the notion of CEF1. Concretely, we demonstrate that the
former implies the latter, but a reverse implication is not guaranteed.
Definition A.1 (Class Nash Social Welfare). A class Nash social welfare (CNSW) of a matching X
is defined by

CNSW(X) =

(
k∏

i=1

Vi(X)

)1/k

.

We say that a matching is CMNW if it maximizes CNSW.

The NSW has been typically viewed as a balance between fair and efficient allocations of items to a
set of agets. Most recently, [41] showed the NSW objective is the only welfarist function of agent
valuations whose maximization leads to allocations that are EF1 and PO. In spite of its tremendous
value, it is also widely known that maximizing the objective is generally hard even to approximate
within polynomial time without strong problem assumptions [6]. We here demonstrate that, given
such a maximizing matching for the CNSW objective, we further obtain the CEF1 guarantee in line
with the fair division literature. For a more complete discussion on the NSW objectives role in fair
division, we defer the reader to [2].
Theorem A.2. A CMNW matching satisfies non-wastefulness and is CEF1.

Proof. Consider a matching X that maximizes the CNSW objective. We first note that any wasteful
matching can necessarily increase the CNSW objective by matching any wasted item, so we have
non-wastefulness must hold.

Now, towards contradiction, suppose that X does not satisfy CEF1. By the definition of CEF1, this
implies that there exists two classes i, j ∈ [k] such that

Vi(X) < V ∗
i (Yj(X) \ {o}),

for some o ∈ Yj(X). Let Vi(X) = |Xi| = s. By the assumption above, we must have

V ∗
i (Yj(X) \ {o}) > Vi(X) = |Xi| = s,

and thus |Yj(X) \ {o}| ≥ s + 1 for some o ∈ Yj(X) since s is an integer. Combining this result
with the non-wastefulness of a CNSW maximizing matching, we further have that Vj(X) = |Xj | =
|Yj(X)| ≥ s+2 > Vi(X) + 1. We now verify the following claim that will be crucial in proving the
final CEF1 result.
Claim A.3. There exists an item o′ ∈ Yj(X) such that

Vi(Xi ∪ {o′}) > Vi(Xi)

Before proving this claim, we show how it yields the CEF1 guarantee: starting from matching X ,
consider a modified allocation X ′ that moves the item o′ ∈ Yj(X) from Claim A.3 to Xi. We
compute the CNSW of this modified matching as

CNSW(X ′) =

(Vi(X) + 1) · (Vj(X)− 1)
∏

[k]∋s ̸=i,j

Vs(X)

1/k

≥

Vi(X) · Vj(X)
∏

[k]∋s ̸=i,j

Vs(X)

1/k

= CNSW(X)

where the inequality follows from the contradictory assumption. Naturally, this contradicts the
maximality of CNSW(X), thus we must have that X is a CEF1 matching.

We conclude the theorem’s proof by verifying Claim A.3.
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Figure 3: Hardness instance for Theorem A.4.

Proof of Claim A.3. Fix an item o ∈ Yj(X) and let Si denote the set of agents in class i who are
matched under X . We similarly define S∗

i be the set of saturated agents in class i under the optimistic
matching of items in Yj(X) \ {o}. Since V ∗

i (Yj(X) \ {o}) > Yi(X), we have |S∗
i \ Si| ≥ 1.

Now, pick any agent a′ ∈ S∗
i \Si, and let o′ denote the item that is matched to a′ under the optimistic

matching on Yj(X) \ {o}. By the selection of a′ and o′, we must have that o′ can be matched to
agent a′ without any conflicts. Therefore, Vi(Yi(X) ∪ {o′}) > Vi(X).

We demonstrate that although the CMNW matching provides the favorable CEF1 fairness guarantee,
the opposite relationship is not necessarily ensured. The following theorem formalizes this notion
that CMNW is a strictly stronger property than CEF, which itself is stronger than CEF1.
Theorem A.4. A non-wasteful CEF matching is not guaranteed to maximize CNSW.

Proof. Consider two classes N1 and N2, each of which consists of four agents, denote these agents
by a1, a2, a3, a4 and b1, b2, b3, b4 respectively. Fix an adversarial sequence of six items indexed by
1, 2, . . . , 6. Items 1, 2, 3 and 4 have edges with all the agents in class N2, and item 1 further has
an edge with agent a1. Items 5 and 6 have edges with agents a3 and a4. Consider a matching X
that matches items 1, 2, 3, 4 to class N2 and 5, 6 to class N1 (See Figure 3 for a depiction). Due to
the construction of edges, this must be a non-wasteful matching and the NSW is computed to be√
2 · 4. Note further that allocating items 1, 2, 3, 4 to class N1 only induces a matching to class N2

of optimistic value V2(Y
∗
1 (X) = 2, and thus X is CEF. On the flip side, if we consider an allocation

X ′ that allocates items 2, 3, 4 to class N2 and 1, 5, 6 to class N1, this also constitutes a non-wasteful
matching and the NSW is

√
3 · 3 >

√
2 · 4. Therefore, a non-wasteful CEF matching does not

necessarily maximize the CNSW objective.

B Omitted Proofs

B.1 Proofs from Section 2

Proof of Proposition 2.6. Let X∗ be a matching that maximizes the USW objective, and let X be
any non-wasteful matching in the same instance. By definition of non-wastefulness above, we must
have that each edge in the graph G has at least one end point included in the matching, ie. for every
(a, o) ∈ E,

∑
o′∈M xa,o′ = 1 or

∑
a′∈N xa′,o = 1. Therefore, we have

usw(X∗) =
∑
a∈N

∑
o∈M

x∗
a,o

≤
∑

(a,o):x∗
a,o=1

(∑
a′∈N

xa′,o +
∑
o′∈M

xa,o′

)

≤
∑
a∈N

∑
o′∈M

xa,o′ +
∑
a′∈N

∑
o∈M

xa′,o

= 2 · usw(X)

where the first inequality comes from the fact that x∗
(a,o) = 1 implies at least one of the end points

for each (a, o) included in the maximum maching must be in the non-wasteful matching. By the
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summation properties on edges in a non-wasteful matching we obtain the final equality and, therefore,
a 1

2 -USW approximation.

B.2 Proofs from Section 3

Proof of Theorem 1.1. The non-wastefulness of the algorithm follows immediately from its definition:
at each step, the arriving item is allocated to an unsaturated agent that likes the item. Also, USW
immediately follows from Proposition 2.6. Thus, in what follows, we focus on proving CEF and
CPROP guarantees of the algorithm.

CEF. Let X be the matching constructed by the randomized algorithm after the arrival of all items in
M . Consider any two distinct classes i, j ∈ [k]. We seek to prove that

E [Vi(X)] ≥ 1

2
· E [V ∗

i (Yj(X))] .

According to our algorithm, for any item o liked by at least one agent in the class i, the probability of
allocating this item to i is at least that of allocating to another class j unless, at step o, all agents who
like the arriving item are already saturated.

For ease of analysis, we consider a simple upper bounding scheme that leverages the above fact.
Specifically, upon the arrival of item o that is liked by at least one agent in i but all such agents are
saturated, we create a dummy item o that is identical to o and add it to the set of matched items to
class i. We therefore augment the set Xi to include these dummy items which we denote as the set
Ai ⊇ Xi. Using this, we prove the following claim.

Claim B.1. The optimistic value of set Ai to class i, denoted as V ∗
i (Ai), is at most twice the size of

its matching in X . More formally:

V ∗
i (Ai) ≤ 2 · Vi(X).

Proof. We first observe that if Ai = Xi, then V ∗
i (Ai) = V ∗

i (X) and since the optimistic value
constructs a maximal matching, the claim holds by application of Proposition 2.6.

We therefore assume that Xi ⊊ Ai. By the order of arrival of items, we must have that Vi(X) =
Vi(Ai) since the items in Ai \Xi can only be matched to agents that are currently saturated. However,
under the optimistic valuation, the matching can only increase in size, i.e., V ∗

i (X) ≤ V ∗
i (Ai). Again,

by application of Proposition 2.6 and the maximality of the optimistic value of Ai, we must have that

V ∗
i (Ai) ≤ 2 · Vi(Ai) = 2 · Vi(X)

completing the proof of the claim.

We lastly need the following lemma to proof the main theorem.

Lemma B.2. For any two distinct classes i, j ∈ [k], E [V ∗
i (Ai)] ≥ E [V ∗

i (Yj(X))] where expectations
are taken over the randomness of Algorithm 1.

The combination of this lemma with Claim B.1, we have that

E [Vi(X)] ≥ 1

2
· E [V ∗

i (Ai)] ≥
1

2
· E [V ∗

i (Yj(X))]

thus, we have the 1
2 -CEF guarantee and have proven the theorem.

It therefore remains to prove Lemma B.2.

Proof of Lemma B.2. To prove the lemma, we need to verify two essential claims.

Claim B.3. For an arbitrary item, o, liked by an agent in class i ∈ [k], the probability that o (or its
copy) is in Ai is greater than or equal to the probability that o ∈ Yj(X) for i ̸= j ∈ [k].
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Proof. If there exists an agent in class i that likes o and is unsaturated at the time of its arrival, then
the item will be added to Xi with equal probability to any other class j containing such an agent, so
the claim holds.

If instead all such agents in class i are saturated, then a copy of o will be added to Ai with probability
1. Thus, we have the claim.

We now leverage this claim to prove a slightly stronger result which will ultimately yield the lemma
result.

Claim B.4. For an arbitrary item o liked by an agent of class i, we must have that at least one of the
following properties hold:

1. for j ̸= i ∈ [k],Pr [o ∈ Yj(X)] = 0

2. Pr [o ∈ Ai] = 1

3. or Pr [o ∈ Yj(X)] = Pr [o ∈ Ai]

Proof. Upon the arrival of o ∈M , there are three possibilities for its irrevocable assignment. If there
is no agent in j that likes o, we must have that Pr [o ∈ Yj(X)] = 0. Alternatively, if such an agent
exists and is currently unsaturated but all the viable agents in i are saturated, we must have that o is
added to Ai. Lastly, if both classes have unsaturated agents that like the item, then either Yj(X) or
Xi ⊆ Ai will receive the item with equal probability. Thus, we have the claim.

We now have the necessary tools to argue about the expected optimistic values of the sets Ai and
Yj(X) according to class i. Clearly, only items in Yj(X) that are liked by agents of class i contribute
to the optimistic valuation. By the above claims, each such item is allocated to Ai with greater than
or equal to the probability that they are allocated to Yj(X). We therefore have the result by linearity
of expectations for these item assignments.

CPROP. The analysis of our CPROP guarantee relies on a modification to that of Equal-Filling-OCS
from [21].

Proof. Let f(x) denote the number of agents who are matched at least x ∈ [0, 1] (where x = 1 would
imply the agent is saturated) under the divisible matching that corresponds to the probabilities from
RANDOM. At each step of the online input stream, an item o ∈M arrives and the random algorithm
produces a vector (x̃a,o)a∈N of probabilities for selecting each agent as follows: if an agent does
not like the item, then xa,o = 1, otherwise we set this value to be the probability of its selection by
RANDOM. We then select an agent to be matched to the item with probability x̃a,o.

By the end of the item arrivals, each agent is selected to match to an arriving item with probability

1−
∏
o∈M

(1− x̃a,o) ≥ 1− e−
∑

o∈M x̃a,o .

We henceforth denote the above probability bound by p(x̃a) for brevity. We can therefore bound the
expected value of the matching to a class i by:

E [Vi(X)] ≥
∑
a∈Ni

p(x̃a)

= −
∫ ∞

0

p(θ)df(θ)

=

∫ ∞

0

p′(θ)f(θ)dθ

where the first equality comes from the definition of f(θ) and the last from an integration by parts.
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As noted in [21], we have that for any divisible matching X̃ denoted by Ỹi for i ∈ [k] such that∑
i∈[k] Ỹi,o = 1 for each o ∈M :

∑
j∈[k]

V ∗
i (Ỹj) ≤ k ·

(∫ θ

0

f(z)dz + f(θ)

)
∀θ > 0.

Therefore, the propi value (which is a maximization over divisible matchings) can be upper bounded
as

propi ≤
∫ θ

0

f(z)dz + f(θ)

for all θ > 0. We can further multiply this bound by non-negative coefficients and integrate with
respect to θ to obtain

propi ·
∫ ∞

0

c(θ)dθ ≤
∫ ∞

0

c(θ)

(∫ θ

0

f(z)dz + f(θ)

)
dθ

=

∫ ∞

0

c(θ)

∫ θ

0

f(z)dzdθ +

∫ ∞

0

c(θ)f(θ)dθ

=

∫ ∞

0

(∫ ∞

z

c(θ)dθ + c(z)

)
f(z)dz

If we now choose the coefficients so that the relation
∫∞
z

c(θ)dθ + c(z) = p′(z) holds for all z > 0 ,
we obtain that

propi ·
∫ ∞

0

c(θ)dθ ≤
∫ ∞

0

p′(z)f(z)dz ≤ E [Vi(X)] .

We lastly obtain the approximation factor by directly computing the integral∫ ∞

0

c(θ)dθ =

∫ ∞

0

−eθ
∫ ∞

θ

p′′(y)e−ydydθ

=

∫ ∞

0

eθ
∫ ∞

θ

e−2ydydθ

=
1

2

∫ ∞

0

e−θdθ =
1

2
.

Thus, we have the result.

B.3 Proofs from Section 4

B.3.1 Indivisible Setting

Proof of Theorem 1.2. Let τ denote the step in the input stream where no further items can be
matched to the first class and note that τ ≥ n

2 . Further note that, after step τ , all items will be matched
to class 2. Let n1(t) be the random variable denoting the number of available agents in class 1 for
the item arriving at time t and let x(t) denote the number of items remaining in the input stream.
We additionally let OPTt denote the optimal matching agent in class 1 at time t. Further denote
∆n1 = n1(t)− n1(t− 1) and ∆x = x(t)− x(t− 1). Naturally, ∆x = −1 after every iteration, but
for the n1(t) value we must consider three potential scenarios:

• ∆n1 = 0 : this occurs when OPTt is already saturated and the arriving item is matched to
class 2.

• ∆n1 = −2 : this occurs when OPTt is unsaturated and the arriving item is not optimally
matched to this agent.

• ∆n1 = −1 : this occurs in all other events.
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Using these facts, we obtain the following lemma.
Lemma B.5. In the setting of the proof of Theorem 1.2, the expected value of τ is n

e2 + o(n).

Before proving the lemma, we demonstrate how it is used in conjunction with the optimality of
RANDOM for the given instance to complete the theorem’s proof. Observe that

E [V1(X)] =
∑
t

Pr [ot matched to class 1]

=
∑
t

1

2
Pr [n1(t) ̸= 0]

=
1

2

∑
t

Pr [n1(t) > 0]

=
1

2
E [τ ]

where the second equality draws from the fact that, while there is an available matching in class
1, an item has a 1

2 probability of being matched to that class. Lastly, combining with the result of
Lemma B.5 we have

E [V1(X)] =
1

2

(
n− n

e2
− o(n)

)
with the remaining items going to class 1. Comparing the two class matching sizes obtains the desired
bound of 1−1/e2

1+1/e2 ≈ 0.762.

Lastly, by invoking the final key lemma below, we obtain the result.
Lemma B.6. The CEF performance of any non-wasteful online matching algorithm is upper bounded
by the expected size of the matching produced by the RANDOM algorithm on the instance of instance
(I, π).

Thus, the competitive ratio proved above is the best achievable for the given instance and we are
done.

It remains to verify the two crucial lemmas leveraged in the proof above.

Proof of Lemma B.5. We proceed computing the expected value of ∆n1 under two different condi-
tions: OPTt being saturated or not.3

First, assume OPTt is saturated at some earlier iteration. Then, with probability 1
2 the item arriving

at time t is matched to class 2 and ∆n1 = 0, otherwise we must have that ∆n1 = −1. Therefore, we
obtain

E [∆n1|OPTt saturated] =
1

2
(−1) + 1

2
(0) = −1

2
.

Next, we assume OPTt is unsaturated. Again, with probability 1
2 the arriving item is matched to

class 2 and we decrease by -1. If, instead, the item is matched to class 1 then ∆n1 can be either -1 or
-2 depending on how the item is matched. Since at time t there are n1(t) potential agents in class 1,
the probability that the item is matched optimally is 1

n1(t)
. Thus, we have

E [∆n1|OPTt unsaturated] =
1

2
(−1) + 1

2

(
1

n1(t)
(−1) +

(
1− 1

n1(t)

)
(−2)

)
=

1

2

(
1

n1(t)
− 3

)
.

It remains to compute the probability that OPTt is saturated. Note that by construction of our instance
and the random algorithm, the probability that OPTt is unsaturated by time t is exactly equal to the
number of n1(t) sized subsets of {1, . . . , x(t)} which include the optimal agent [28]. Thus,

Pr [OPTt unsaturated] =
n1(t)

x(t)
.

3Note that we are also implicitly assuming throughout this argument that n1(t) > 0, i.e., at least one agent is
still unsaturated in class 1.
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We can now finally compute that

E [∆n1] = −
1

2
·
(
1− n1(t)

x(t)

)
+

1

2
· n1(t)

x(t)

(
1

n1(t)
− 3

)
.

Rearranging and simplifying we obtain that

E [∆n1] = −
1

2

(
1 +

2n1(t)− 1

x(t)

)
⇒ E [∆n1(t)]

∆x(t)
=

1

2

(
1 +

2n1(t)− 1

x(t)

)
and by Kurtz’ theorem [29], this is closely approximated by the following differential equation with
probability tending to 1 as n tends to infinity:

dn1

dx
=

1

2

(
1 +

2n1 − 1

x

)
Solving with the initial condition that n1 = x = n and setting the resultant equation equal to 0, we
obtain that the expected stopping time is τ = n(1− 1

e2 )− o(n).

Proof of Lemma B.6. We first note that any item in instance (I, π) allocated to class 2 can only be
matched to one specific agent, so there is no decision to be made for items in this class. Moreover, for
items that are allocated to class 1, the best possible matching is achieved in expectation by allocating
completely at random to the potential agents, as proven in [28]. We therefore need only prove that
RANDOM is optimal at the class level. We proceed to verify this by comparing with a general
algorithm representative of the other possible class matchings.

For any arriving item, if only one class has a potential matching then by non-wastefulness we must
give the item to that class. Therefore, assume item o ∈M arrives and can be matched to either class
(i.e., both have a potential matching to a currently unsaturated agent). However, from the perspective
of the algorithm, there is no way of distinguishing the two classes and any bias towards one can
be exploited by the adversary by flipping the given problem instance. Thus, the best we can do is
randomly pick one of the two classes to match the item and we have the result of the lemma.

B.3.2 Divisible Setting

Assume we have an algorithm that guarantees β-CEF.
Lemma B.7. To ensure a maximal number of agents in Class 1 are saturated, it is optimal to distribute
arriving items equally among the agents in this class.

Proof of Lemma B.7. For some i, consider the associated items 2i − 1 and 2i. We argue that it is
optimal to distribute these two items equally within Class 1.

By the adversarial construction of the adjacency in Class 1, we know that one of the agents who
likes these items does not like any of the following items. In the offline setting, it is straightforward
to match the items to their associated agent and ensure a perfect matching. However, in the online
setting, we do not know which of the current agents will be unavailable for future matching in the
adversarial input stream. Therefore, to in maximizing the USW, it is optimal to distribute this item
equally within the first class.

Now, let α = 1−β
1+β and reciprocally define β = 1−α

1+α . We proceed to demonstrate that any β-CEF
algorithm must allocate arriving items in a strategic manner between the two classes of the given
adversarial input to maintain this approximate guarantee.
Lemma B.8. Upon arrival of item ot, if there exists a ∈ N1 such that

∑
k<t xa,ok < 1 then any

β-CEF algorithm must divide ot among the two classes such that the first class receives 1+α
2 and the

second receives 1−α
2 .

Intuitively, we demonstrate that the above ratio is optimal when working against an adversary who
can easily flip the input instance of Figure 2b for the two classes if the algorithm biases its decision
making too heavily. We then show that the β ratio is the best possible strategy against the possible
adversarial input instances.
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Proof of Lemma B.8. Our algorithm must ensure that neither class is envious of the other (more than
the aforementioned threshold, β). Otherwise, the adversary has an instance that one class is envious
of the other one and contradicts the threshold. Here, we show that if it at any iteration the β-CEF
guarantee holds, we can strategically divide the next item to maintain the necessary inequality.

For the given construction, we can always match items to Class 2 which implies that V ∗
2 (Y (X1)) =

V1(X1). Therefore, in achieving a β-CEF we must match as much of each item to the first class as
possible to achieve equitable treatment. In other words, we give the maximum possible proportion of
each item to the first class in a way that it does not contradict with β-CEF.

We will proceed by induction argument on the input stream. For the base case, assume towards
contradiction that the first arriving item is not allocated according to the specified distribution, i.e.
Class 1 is not fully saturated and the item is not distributed with ratio 1 + α to 1− α to the first and
second classes respectively. Observe that we cannot give more than a 1+α

2 fraction of the arriving
item to Class 1 without violating the β-CEF guarantee.

For each of the subsequent items, we must match up to a 1+α
2 fraction of the item or less if all agents

become saturated in Class 1. In each instance, the remaining portion of the item is given to the second
class. We proceed to prove that if the allocation was β-CEF after each item’s division, then this
property must persist. To this end, assume that the argument holds for t− 1 for some t ≥ 2.

First, we examine the second classes’ perspective. We claim that matching the arriving item at
iteration t > 1 according to the prescribed ratio ensures V2(X

t
2) ≥ β · V1(X

t
1). At round t, we must

have that this inequality was true prior to iteration t by the induction assumption and by matching item
ot according to the distribution between the two classes. Assume towards contradiction that we do not
match according to the defined ratios at iteration t – by matching the arriving item with a portion higher
than 1+α

2 , an adversary can instead flip the input instance and force the algorithm to allocate a smaller
portion of the item than is needed for the β-CEF guarantee. Thus, after allocating item ot we cannot
have given more than 1+α

2 to the first class and we still have V2(X2) ≥ β ·V1(X1) = β ·V ∗
2 (Y (X1)),

where the last equation follows from the fact that we can always match every item to Class 2 that was
matched to Class 1.

We lastly claim that V1(X1) ≥ β · V ∗
1 (Y (X2)). From the perspective of the first class, we must have

that the β-CEF inequality holds after allocating the first item according to the defined ratio. Following
the prior item’s arrival, we demonstrated that the inequality held. From the construction, we further
have that each item is connected to more agents compared to items arriving later. To be more precise,
if item o1 arrives before item o2, o1 is connected to a set of agents, let’s say S1, and o2 is connected
to a set of agents, let’s say S2. Then S1 is a superset of S2. As a result, when we divide the arriving
item, we have possibly decreased the portion of the next items (which were connected to fewer agents
in class 1) and instead increased the portion of the current item (which is connected to a superset of
the agents the next items are connected to). Therefore, if previously we had V1(X1) ≥ β · V2(X2),
then the inequality persists.

Combining the results of Lemma B.7 and Lemma B.8, we have conditions under which we maintain
a β-CEF approximation. It remains to analyze the maximum such β value which satisfies these
conditions.

Proof of Theorem 1.3. We begin by bounding the size of the matching to each class.

First, we claim that Class 2 will be saturated and its valuation will be n. Since we have 2n items
and our algorithm is non-wasteful, we must match items in each step until the classes are satisfied.
Further note that Class 2 will always have an available matching by construction. Now since Class 1
can only match at most n items, we must have that V2(X2) = n.

We next bound the final step i after which no arriving items will be matched to Class 1 as a result
of our equal distribution within the class (as proven in Lemma B.7). By synthesis of the two above
lemmas, we have that Class 1 receives a 1+α

2 ·
1
n portion of the first two items. Furthermore, the i-th

pair of items will contribute 1+α
2 ·

1
n−i+1 to the size of Class 1’s matching.Therefore, it is sufficient
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to find the first value of i such that
1 + α

2

∑
0≤k<i

1

n− k
=

1 + α

2
(Hn −Hn−i) ≥

1

2
,

where Hn is the n-th Harmonic number. By the Euler–Maclaurin formula [3], we have

Hn = lnn+ γ +
1

2n
− ϵn, 0 ≤ ϵn ≤

1

8n2

where γ is the Euler-Mascheroni constant. We now define ϵ = 1
2n − ϵn −

(
1

2(n−i) − ϵn−i

)
and

rewrite the desired expression as

1 = (1 + α)(Hn −Hn−i)

= (1 + α)(lnn− ln (n− i) + ϵ) .

This further implies

lnn− ln(n− i) =
1

1 + α
− ϵ . (1)

which is equivalent to the following

i

n
= 1− e−

1
1+α+ϵ . (2)

Since i is the last item that is partially matched to Class 1, Lemma B.8 guarantees that this class
receives a 1 + α fraction of the item. Therefore, we must have that the matching to Class 1 is

β ≤ i(1 + α)

n
,

where the factor of n comes from the bound on Class 2’s matching and the inequality from the
algorithm’s approximation guarantee. Expanding on this ineqaulity using Equation (2) implies

β ≤ i(1 + α)

n

= (1 + α)
(
1− e−

1
1+α+ϵ

)
=

2

1 + β

(
1− e−

(1+β)
2 +ϵ

)
=
(
1− e

−(1+β)
2 · eϵ

) 2

1 + β
,

It remains show the limiting behavior of this bound on our approximation ratio as n increases.
Claim B.9. limn→∞ ϵ = 0

Proof. By definition of ϵ and the bound of ϵn < 1
8n2 , we can compute

|ϵ| =
∣∣∣∣ 12n +

1

2(n− i)
+ (ϵn−i − ϵn)

∣∣∣∣
≤ 1

2n
+

1

2(n− i)
+

1

8(n− i)2

≤ 1

2
+

1

2
+

1

8
≤ 2.

Now by invoking Equation (2) we can expand the definition of ϵ as

|ϵ| ≤ 1

2n
+

1

2n
· e

1
1+α−ϵ +

1

8

(
1

n
· e

1
1+α−ϵ

)2
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We lastly compute the limit:

lim
n→∞

|ϵ| ≤ lim
n→∞

(
1

2n
+

1

2n
· e

1
1+α−ϵ +

1

8

(
1

n
e

1
1+α−ϵ

)2
)

≤ lim
n→∞

(
1

2n
+

1

2n
· e

1
1+α−2 +

1

8

(
1

n
e

1
1+α−2

)2
)

= 0

completing the claim.

Using the result of Claim B.9, we have that limn→∞ eϵ = 1 and thus by taking n→∞ we have

β ≤
(
1− e

−(1+β)
2

) 2

1 + β

By direct computation, we obtain that β ≤ 0.677. Therefore, we cannot achieve β-CEF for β >
0.677.

B.4 Proofs from Section 5

Proof of Theorem 5.1. Suppose that an algorithm, A, is α-CEF for some α ∈ (0, 1). Let p and q be
coprime integers such that |α− p/q| < ϵ for some small ϵ > 0. Assume we have k− 1 classes with q
agents, as well as a k-th class comprised of q(k − 1) agents. An adversary constructs an input stream
wherein the items arrive in two phases. In the first phase, p(k− 1)+ q items arrive, each of which has
edges to every agent in the graph. The second phase consists of k − 1 groups arriving sequentially,
where the i-th such group is comprised of q items with edges to all the agents in class i. Let ci(t) be
a random variable that indicates the number of items allocated to class i at the end of round t and let
τ = p(k − 1) + q. We first prove the following claim for the given instance.
Claim B.10. For any non-wasteful α-CEF algorithm and τ = p(k − 1) + 1, we must have that
E
[∑k−1

i=1 ci(τ)
]
≥ p(k − 1).

Proof. Assume towards contradiction that E
[∑k−1

i=1 ci(τ)
]
< p(k − 1). Since the algorithm is

assumed to be non-wasteful, this implies that the k-th class must have E [ck(τ)] ≥ q to account for
all the items arrived thus far. By the pigeonhole principle, our assumption further implies that there
exists some i ∈ [k − 1] such E [ci(τ)] < p. Thus, we must have that

Vi(X) = E [ci(τ)] < p < q ≤ E [ck(τ)] = V ∗
i (Yk(X))

contradicting our assumption on the α-CEF guarantee.

We now proceed to analyze the class matching size in the second phase of item arrivals. Of the q
arriving items specific to some class i, exactly ci(τ) must remain unmatched since all feasible agents
will already be saturated. This implies that the utilitarian social welfare at the end of the second phase
is

USW(X) =

(
k−1∑
i=1

ci(τ) + ck(τ)

)
+

k−1∑
i=1

(q − ci(τ)) =

k∑
i=1

ci(τ) +

k−1∑
i=1

q −
k−1∑
i=1

ci(τ)

Now, using the fact that p(k − 1) + q items arrive in the first phrase where all can be matched to any
agents, we further have that

USW(X) = p(k − 1) + q +

k−1∑
i=1

q −
k−1∑
i=1

ci(τ) = p(k − 1) + qk −
k−1∑
i=1

ci(τ)

where the remaining equalities are mere algebra manipulation on the summations. Now, as a result of
Claim B.10 we have that in expectation:
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E [USW(X)] = E

[
p(k − 1) + qk −

k−1∑
i=1

ci(τ)

]
≤ qk.

Lastly, observe that the optimal offline solution for this adversarial input instance would instead
allocate all items in the first phase to class k, and the remaining q items specific to each class to their
corresponding class, giving a USW value of p(k− 1) + q + q(k− 1). Thus, the competitive ratio for
the USW objective is given by

qk

qk + p(k − 1)
=

1

1 + α(k − 1)/k

which tends towards a lower bound of 1
1+α as k increases. Thus, we have the result of the theorem.
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Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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