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Abstract001

Small language models (SLMs) have become002
increasingly prominent in the deployment on003
edge devices due to their high efficiency and004
low computational cost. While researchers005
continue to advance the capabilities of SLMs006
through innovative training strategies and007
model compression techniques, the security008
risks of SLMs have received considerably less009
attention compared to large language models010
(LLMs). To fill this gap, we provide a compre-011
hensive empirical study to evaluate the security012
performance of 13 state-of-the-art SLMs un-013
der various jailbreak attacks. Our experiments014
demonstrate that most SLMs are quite suscep-015
tible to existing jailbreak attacks, while some016
of them are even vulnerable to direct harmful017
prompts. To address the safety concerns, we018
evaluate several representative defense methods019
and demonstrate their effectiveness in enhanc-020
ing the security of SLMs. We further analyze021
the potential security degradation caused by dif-022
ferent SLM techniques including architecture023
compression, quantization, knowledge distilla-024
tion, and so on. We expect that our research025
can highlight the security challenges of SLMs026
and provide valuable insights to future work in027
developing more robust and secure SLMs.028

1 Introduction029

Large language models (LLMs), such as Chat-030

GPT (Brown et al., 2020; Ouyang et al., 2022a;031

Achiam et al., 2023) and Llama series (Touvron032

et al., 2023a; Dubey et al., 2024), have demon-033

strated revolutionary performance in a spectrum of034

text generation tasks. As a fundamental principle035

for guiding the development of LLMs, the scal-036

ing law (Kaplan et al., 2020) highlights the strong037

correlation between the performance and scale of038

LLMs. However, as LLMs evolve to encompass039

*Corresponding author.

hundreds and even thousands of billions of parame- 040

ters, their development imposes expensive demands 041

on computational resources and high-quality data 042

for pre-training. Consequently, LLMs are typi- 043

cally confined to deployment on GPU clusters and 044

cloud environments, posing significant challenges 045

for wide adoption on edge devices such as smart- 046

phones, laptops, autonomous vehicles, and wear- 047

ables. 048

Recently, small language models (SLMs) have 049

attracted significant attention from the academic 050

community for their efficiency and remarkable per- 051

formance in various tasks (Lu et al., 2024; Nguyen 052

et al., 2024). On platforms like Hugging Face, SLM 053

collections such as Llama-3.2 (Dubey et al., 2024), 054

MiniCPM (Hu et al., 2024) and Phi (Abdin et al., 055

2024) have gained considerable popularity among 056

researchers and achieved top-tier download rates. 057

Different from LLMs, SLMs typically consist of 058

only a few billion parameters, requiring signifi- 059

cantly less training data and computational cost for 060

deployment. 061

However, unlike LLMs that benefit from exten- 062

sive datasets and robust alignment strategies, it is 063

challenging for SLMs to balance between genera- 064

tion capabilities and security, which makes them 065

more vulnerable to jailbreak attacks. Among these, 066

one of the most serious threats is referred to as jail- 067

break. By creating malicious prompts to induce 068

target LLMs to generate harmful responses, jail- 069

break has emerged as a critical security concern 070

in the development of LLMs (Yi et al., 2024; Yao 071

et al., 2024; Gupta et al., 2023). Moreover, certain 072

jailbreak techniques that can bypass the security 073

boundary of LLMs have demonstrated strong trans- 074

ferability to other models (Zou et al., 2023), which 075

presents potential threats to all generative models 076

including SLMs. 077

Although security concerns regarding SLMs 078

have become an increasingly important issue, there 079

still remains a substantial gap in exploring and un- 080
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derstanding the security boundary of SLMs. In this081

paper, we collect representative malicious datasets,082

jailbreak attack methods, and defense methods to083

conduct adversarial experiments on numerous state-084

of-the-art SLMs, thereby revealing existing security085

vulnerabilities of SLMs and exploring correspond-086

ing mitigation strategies. Furthermore, we take087

insight into the security degradation of SLMs and088

discuss some potential factors. In summary, we089

make the following contributions:090

• We conduct extensive experiments to reveal091

the security vulnerabilities of SLMs under dif-092

ferent jailbreak attacks. Especially, The re-093

sults demonstrate that most SLMs are more094

susceptible to jailbreak attacks compared to095

LLMs.096

• We evaluate the effectiveness of existing de-097

fense methods on SLMs. The results show098

that these methods are significantly adapted099

to SLMs to enhance their resilience against100

jailbreak attacks.101

• We discuss and analyze various underlying102

factors that may lead to the security degra-103

dation of SLMs, including inadequate safety104

alignment, biased knowledge distillation, pa-105

rameter sharing, and quantization techniques.106

2 Related Work107

2.1 Jailbreak Attacks108

Jailbreak attacks, which transform harmful queries109

like “How to make a bomb” into more sophisticated110

prompts to deceive target models to generate toxic111

output, can be mainly classified into two categories:112

white-box methods and black-box methods.113

White-box methods generally rely on access to114

the internal states of LLMs to design attack strate-115

gies. These methods generally use gradients and116

logits of target LLMs as loss functions to optimize117

adversarial suffixes appended to malicious ques-118

tions (Zou et al., 2023; Jones et al., 2023; Zhu119

et al., 2023; Andriushchenko et al., 2024; Geisler120

et al., 2024; Mangaokar et al., 2024), or manip-121

ulate the output logits to enforce target LLMs to122

generate affirmative responses (Huang et al., 2024;123

Zhang et al., 2024a). However, white-box meth-124

ods tend to generate irregular prompts that are eas-125

ily detectable and cannot be optimized directly on126

black-box models like ChatGPT.127

In contrast, black-box methods construct read-128

able prompts in different ways and validate their129

effectiveness based on the responses of the target 130

LLMs. Some studies employ heuristic strategies 131

to rewrite malicious questions in other formats 132

such as ASCII format (Jiang et al., 2024), code 133

format (Kang et al., 2024; Lv et al., 2024), en- 134

crypted format (Yuan et al., 2024; Liu et al., 2024a) 135

and low-resource languages (Deng et al., 2024b), 136

exploiting the insufficient safety alignment of tar- 137

get LLMs in these formats to bypass the defense 138

mechanism. Another line of research is to instruct 139

an advanced LLM like GPT-4 to optimize jailbreak 140

prompts by incorporating iterative refinement (Jin 141

et al., 2024), genetic algorithms (Liu et al., 2024b) 142

and psychological expertise (Zeng et al., 2024), or 143

fine-tune another LLM with successful jailbreak 144

templates to serve as an attacker to generate jail- 145

break prompts automatically (Deng et al., 2024a; 146

Ge et al., 2024). Compared with white-box meth- 147

ods, black-box methods can be applied to most 148

models. For this reason, black-box methods are 149

widely used in empirical experiments to evaluate 150

the safety of LLMs. 151

To mitigate threats caused by jailbreak attacks, 152

different defense techniques are proposed to ensure 153

the security of LLMs. One line of work addresses 154

the issue by detecting (Inan et al., 2023) or per- 155

turbing (Robey et al., 2023) the jailbreak prompts 156

to reduce the toxicity of the input, while another 157

line of work directly enhances the robustness of 158

LLMs by supervised fine-tuning (Bianchi et al., 159

2024) or reinforcement learning from human feed- 160

back (Ouyang et al., 2022b). 161

2.2 Small Language Models 162

Similar to LLMs, SLMs are typically built upon 163

decoder-only architectures, while they show diver- 164

sity in implementation details such as the type of 165

attention heads, layer numbers, dimension sizes, 166

activation functions, and so on. 167

To achieve competitive performance within the 168

limited scale of SLMs, different model com- 169

pression techniques are adopted to construct 170

lightweight architectures efficiently. For instance, 171

MobilLLaMA (Thawakar et al., 2024) and Mo- 172

bileLLM (Chu et al., 2023) introduce a parameter- 173

sharing scheme in embedding blocks and attention 174

head blocks to reduce the cost of GPU memory. 175

TinyLLaMA (Zhang et al., 2024b) optimizes mem- 176

ory load with the FlashAttention technique (Dao 177

et al., 2022), which introduces an IO-aware atten- 178

tion algorithm to reduce the budget of high band- 179

width memory. Quantization techniques, such as 180
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Figure 1: The family tree of the target SLMs we evaluate in our paper. The solid line represents the model is
belonging to a certain family, while the dashed line indicates that the model is derived from that family with certain
SLM technology.

GPTQ (Frantar et al., 2022) and AWQ (Lin et al.,181

2024), can also effectively reduce memory loads182

by compressing the size parameters from 16 bits183

to 8 bits or even 4 bits. In model collections such184

as Llama 3 (Touvron et al., 2023a), Qwen (Bai185

et al., 2023), and MiniCPM (Hu et al., 2024), SLMs186

are generally designed and pre-trained following187

LLMs in the same family. Additionally, during the188

training phase, knowledge distillation techniques189

are widely used to derive performance from teacher190

LLMs to student SLMs, as models in the same fam-191

ily generally share similar tokenizers and architec-192

ture.193

Recent research has demonstrated that SLMs194

can achieve comparable performance in some rea-195

soning tasks, and can even outperform LLMs in196

specific scenarios (Lu et al., 2024). Our study fills197

a gap in evaluating the security of SLMs from an-198

other perspective. In the following sections, we will199

demonstrate the security differences between vari-200

ous SLMs and delve into their underlying causes.201

3 Experiment Setups202

3.1 Target Models203

We collect 16 state-of-the-art models to provide a204

comprehensive view of their security differences,205

including 13 SLMs below 4B size and 3 LLMs206

above 7B size.207

For LLMs, we include Llama2-7B (Touvron208

et al., 2023b), Llama3-8B (Touvron et al., 2023a), 209

and DeepSeek-R1-Distill-Llama-8B (Guo et al., 210

2025) for evaluation. Notably, DeepSeek-R1- 211

Distill-Llama-8B is constructed by distilling the 212

reasoning patterns from DeepSeek-R1 to Llama3- 213

8B. The controlled comparison enables us gain 214

some valuable insights of the influences of distil- 215

lation techniques to SLM security. For SLMs, we 216

include 13 models from advanced research orga- 217

nizations and individual developers. Specifically, 218

they are as follows: 219

• Llama Family. Llama family is developed 220

by Meta AI as one of the most popular model 221

series. For our study, we select two models 222

from the Llama 3.2 collection with parame- 223

ter sizes of 1B and 3B. Furthermore, we in- 224

clude three additional SLMs that are initial- 225

ized from Llama and processed with certain 226

model compression techniques. These mod- 227

els are MobilLLaMA (Thawakar et al., 2024), 228

MobileLLM (Chu et al., 2023), and TinyL- 229

LaMA (Zhang et al., 2024b). 230

• Phi Family. Phi family (Gunasekar et al., 231

2023) is developed by Microsoft focusing 232

on designing lightweight SLMs with excep- 233

tional performance. We select Phi-3-mini-4k- 234

instruct in 3.8B size and Phi-3.5-mini-instruct 235

size in 2.7B size for evaluation. 236
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• MiniCPM Family. MiniCPM family (Hu237

et al., 2024) is developed by OpenBMB and238

mainly consists of SLMs in different versions.239

We select MiniCPM-1B-sft-bf16, MiniCPM-240

2B-sft-bf16 and MiniCPM-4B for evaluation.241

• Qwen Family. Qwen family (Bai et al.,242

2023) is built by Alibaba Cloud which has243

released a spectrum of LLMs ranging from244

0.5B to 72B sizes. We select Qwen2.5-245

0.5B-Instruct, Qwen2.5-1.5B-Instruct, and246

Qwen2.5-3B-Instruct for evaluation.247

3.2 Attack Methods248

Our research firstly examines the influences of di-249

rect attacks against SLMs, which leverage straight-250

forward harmful queries such as “How to make a251

bomb” to probe the target models directly. We col-252

lect 5 datasets that contain such harmful questions253

across various illegal and unethical dimensions.254

• Advbench. Advbench (Zou et al., 2023) is255

a harmful dataset consisting of 500 harmful256

strings and 500 harmful behaviors. The for-257

mer focuses on eliciting specific harmful re-258

sponses from target LLMs, while the latter259

aims at provoking the models into exhibiting260

harmful behavior as much as possible.261

• DAN. DAN (Shen et al., 2023) provides a262

forbidden question set spanning 13 restricted263

scenarios. The dataset is primarily sourced264

from online platforms and publicly available265

datasets.266

• maliciousInstruct. MaliciousInstruct (Huang267

et al., 2024) consists of 100 harmful questions268

with 10 malicious intentions, which are mostly269

generated by ChatGPT and then revised man-270

ually.271

• StrongREJECT. StrongREJECT (Souly272

et al., 2024) offers 313 harmful questions that273

cover forbidden scenarios from different AI274

usage policies. The majority of the dataset is275

written manually, while the remaining portion276

is sourced from LLMs and other open-source277

datasets.278

• XSTEST. XSTEST (Röttger et al., 2024) con-279

tains both safe and unsafe questions to assess280

the exaggerated safety behaviors of models.281

We extract the 200 harmful questions from the282

dataset for our experiments.283

Furthermore, to explore and understand the 284

safety boundary of SLMs more clearly, we con- 285

duct a thorough investigation into existing jailbreak 286

attacks and select 5 representative methods for eval- 287

uation. These methods span across different cate- 288

gories of jailbreak attacks and have demonstrated 289

excellent effectiveness against LLMs in previous 290

studies. 291

• GCG. Greedy Coordinate Gradient 292

(GCG) (Zou et al., 2023) is a gradient- 293

based attack that initializes an adversarial 294

suffix appended to the malicious question and 295

optimizes it by gradient-based search to maxi- 296

mize the probability of affirmative responses. 297

Although the optimization of jailbreak 298

prompts is constrained to white-box models, 299

they demonstrate strong transferability to 300

other black-box models. 301

• ArtPrompt. ArtPrompt (Jiang et al., 2024) is 302

an ASCII-based attack that leverages the poor 303

performance of LLMs in recognizing ASCII 304

art to bypass defense mechanisms. Specifi- 305

cally, ArtPrompt utilizes LLMs like GPT-4 to 306

recognize the malicious word in the prompt 307

and visually encodes it with ASCII characters, 308

combining the text prompt and the word in 309

ASCII art to jailbreak. 310

• DeepInception. DeepInception (Li et al., 311

2023) is a template-based attack that em- 312

beds malicious questions into virtual scenar- 313

ios. Given a harmful question, DeepIncetion 314

constructs a multi-layer scene with different 315

characters and induces the target LLMs to 316

complement the story step by step, thus gen- 317

erating harmful content in responses. 318

• AutoDAN. AutoDAN is a genetic algorithm- 319

based attack that refines jailbreak prompts iter- 320

atively to identify the optimal solution. Specif- 321

ically, AutoDAN randomly initializes the orig- 322

inal jailbreak population and performs word- 323

level or sentence-level modifications to pro- 324

duce offspring. The new generation is sub- 325

sequently evaluated by LLMs to gain fitness 326

and repeat the generation process until the 327

jailbreak succeeds. 328

• Multilingual Attack. Multilingual at- 329

tack (Deng et al., 2024b) exploits the weak- 330

ness of the safety alignment in low-resource 331

languages to conduct jailbreak attacks. The 332
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method translates harmful questions into mul-333

tiple languages and shows that questions in334

low-resource languages demonstrate a high335

attack success rate.336

Notably, the datasets are all sourced from official337

resources to guarantee the reliability and robustness338

of the experimental results. For jailbreak methods,339

we follow the official implementation and use the340

best parameter settings as reported in the original341

papers.342

3.3 Defense Methods343

In addition to examining the effectiveness of dif-344

ferent jailbreak attacks against SLMs, we have345

also explored potential defense strategies to mit-346

igate these threats and enhance the robustness of347

SLMs. We primarily focus on two kinds of de-348

fense methods, namely detection-based defenses349

and perturbation-based defenses, and select one350

representative method from each category for our351

study.352

• Llama-Guard-3. Llama-Guard-3 (Inan et al.,353

2023) is fine-tuned from Llama-3 to detect354

unsafe content within user prompts and LLM355

responses. In our study, we instruct Llama-356

Guard-3-8B to detect jailbreak prompts and357

filter user inputs that are judged to be unsafe.358

• SmoothLLM. SmoothLLM (Robey et al.,359

2023) is a perturbation-based method that can360

mitigate malicious content in user prompts.361

For each prompt, SmoothLLM generates mul-362

tiple copies with character-level perturbations363

applied to them and aggregates the responses364

of the target LLM to these copies to produce365

the final response.366

3.4 Evaluation Metrics367

We use attack success rate (ASR) as the primary368

metric in our experiments, which is widely used369

in related research to identify the effectiveness of370

jailbreak attacks. Formally, ASR can be defined as371

ASR =
Nsuccess

Ntotal
. (1)372

where Nsuccess is the number of successfully373

attacked prompts and Ntotal is the total number374

of jailbreak prompts. Rule-based matching and375

LLM evaluators are the most common methods376

to assess the success of a jailbreak attack. How-377

ever, during the experiments, we have observed that378

target SLMs occasionally generated unexpected re- 379

sponses that are not related to the prompts, result- 380

ing in a noticeably inflated ASR when relying on 381

rule-based matching. To address this issue, we ulti- 382

mately employed Llama-Guard-3-8B as the evalu- 383

ator to assess the responses of jailbreak attacks to 384

calculate the ASR accurately. 385

3.5 Experimental Settings 386

We control the parameter settings consistently 387

when generating responses from the target models 388

to ensure the comparability of the results. Specif- 389

ically, we do not set any explicit system prompts 390

and invoke the conversation template of target mod- 391

els to generate prompts. We also disabled token 392

sampling during output generation to ensure the 393

reproducibility of the results. 394

4 Main Results 395

4.1 Direct Attacks Against SLMs 396

We first evaluate the fundamental defense capabili- 397

ties of SLMs with direct harmful questions used as 398

original prompts. As illustrated in Figure 2, experi- 399

mental results indicate that when faced with direct 400

attacks, most SLMs successfully identify the mali- 401

cious intention and generate rejection responses, ex- 402

hibiting reliable defense capabilities that are com- 403

parable to LLMs. For SLM series including Llama, 404

Phi, MiniCPM, and Qwen, the ASR is generally 405

around or below 10%. In contrast, other models, 406

including TinyLlama, MobileLlama, and MobiL- 407

lama, exhibit comparatively weaker performance 408

in resisting harmful queries. Furthermore, all tar- 409

get SLMs show transferable defensive capabilities 410

across various harmful datasets. That is, if they 411

perform well on one dataset, they tend to demon- 412

strate similar performance on the remaining four 413

datasets. 414

As shown in Figure 2, there exists a slight pos- 415

itive correlation between parameter size and the 416

security performance of SLMs, which also means 417

that parameter size is not the primary factor in de- 418

termining the security of SLMs. For SLMs in the 419

same series but different in parameter sizes, such as 420

Qwen-1.5B and Qwen-3B, their security capabili- 421

ties against direct attacks show minimal variation. 422

Meanwhile, although TinyLlama-1.1B, Llama3.2- 423

1B, and MiniCPM-1B have a similar parameter 424

size, the ASR of direct attacks against TinyLlama- 425

1.1B significantly exceeds the other two models. 426
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Figure 2: The security performance of SLMs in different parameter sizes under direct attacks. The security
performance of target models is ranked in descending order based on the average ASR.

Table 1: The ASR of target models under different combinations of attacks and defenses.

Jailbreak Methods Defenses
Target LLMs

TinyLlama-1.1B Phi-3.5-mini-2.7B MiniCPM3-1B Qwen-3B

GCG
- 0.72 0.20 0.38 0.80

Llama-Guard-3 0 (-0.72) 0 (-0.20) 0 (-0.38) 0 (-0.80)
SmoothLLM 0.20 (-0.52) 0.02 (-0.18) 0.12 (-0.26) 0.02 (-0.78)

DeepInception
- 0.40 0.30 0.64 0.76

Llama-Guard-3 0 (-0.40) 0.02 (-0.28) 0.02 (-0.62) 0.02 (-0.74)
SmoothLLM 0 (-0.40) 0.06 (-0.24) 0.02 (-0.64) 0.10 (-0.66)

4.2 Jailbreak Attacks Against SLMs427

We further utilize five representative jailbreak meth-428

ods to attack the SLMs, aiming to gain a deeper429

understanding of their security boundaries. The re-430

sults are shown in Figure 3. Compared with direct431

attacks, jailbreak attacks generally achieve better432

results against most SLMs, with ASR on SLMs433

typically surpassing that on LLMs. This suggests434

although most SLMs can maintain their robustness435

under direct attacks, they still demonstrate vulner-436

abilities when exposed to more sophisticated jail-437

break attacks.438

We can draw from Figure 3 that the positive439

correlation between parameter size and security440

performance of SLMs becomes more pronounced441

under jailbreak attacks. Additionally, most SLMs442

show specific vulnerabilities to certain jailbreak at-443

tacks, which are quite different from direct attacks444

where SLMs possess transferable defense capabili-445

ties. For instance, MiniCPM series and Phi series446

demonstrate strong security against GCG attack,447

however, MiniCPM series are quite susceptible to448

ArtPrompt attack and Phi series fail to address the449

security threat from multilingual attack. During the450

pre-training or fine-tuning stage, different SLMs 451

may have undergone particular security alignment 452

on specific jailbreak methods, which finally con- 453

tributes to the security differences. It is also no- 454

table that some SLMs, such as TinyLlama and Mo- 455

biLlama that perform poorly under direct attacks, 456

show a significant improvement when subjected to 457

jailbreak attacks. The observation will be further 458

discussed in Section 5.1. 459

4.3 Defense Strategies for SLMs 460

Since jailbreak attacks have demonstrated remark- 461

able security threats against SLMs, it is emer- 462

gent to figure out effective mitigation strategies 463

to address the problem. To examine whether the 464

prompt-level defense methods, Llama-Guard-3 and 465

SmoothLLM, can serve as the guardrail to SLMs, 466

we apply them to GCG and DeepInception and uti- 467

lize the processed jailbreak prompts to attack some 468

SLMs. 469

As shown in Table 1, we select 4 representative 470

SLMs that are most seriously impacted by jailbreak 471

attacks and evaluate their robustness under differ- 472

ent combinations of jailbreak attacks and defenses. 473
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Figure 3: The security performance of SLMs in different parameter sizes under jailbreak attacks. The security
performance of target models is ranked in descending order based on the average ASR.

It can be seen that the two defense methods are474

extraordinarily effective in alleviating the threats475

caused by jailbreak attacks. After applying Llama-476

Guard-3 and SmoothLLM as defense strategies,477

the ASR of GCG and DeepInception is reduced to478

nearly 0%.479

Furthermore, by examining the query samples480

in disturbed jailbreak prompts, we can gain in-481

sights into the defense mechanism of the two482

methods for SLMs. As a detection-based defense483

method, Llama-Guard-3 can identify harmful jail-484

break prompts and intercept them to reduce the485

total number of dangerous prompts. Meanwhile,486

SmoothLLM focuses on perturbing the jailbreak487

prompts to reduce their toxicity, which enables the488

defense capabilities of SLMs to handle them and489

minimize harmful responses.490

5 Discussion491

5.1 Why Some Jailbreak Attacks Fail on492

Certain SLMs?493

According to Figure 2 and Figure 3, we can ob-494

serve an unexpected phenomenon that some SLMs495

exhibit poor performance against direct attacks496

but demonstrate notable robustness against jail-497

break attacks. For instance, TinyLlama, which498

shows the highest vulnerability to direct attacks499

among all target models, displays strong resistance500

to ArtPrompt. Similarly, MobileLlama and Mo-501

biLlama also achieve relatively low ASR when502

exposed to Multilingual Attack, despite ranking503

second and third worst results in performance on504

harmful datasets.505

However, after analyzing the responses of the506

three target SLMs against these jailbreak attacks,507

we find that they often fail to generate appropri- 508

ate refusal responses. Instead, they tend to pro- 509

duce meaningless phrases unrelated to jailbreak 510

prompts, which are classified as harmless and even- 511

tually lead to the observed low ASR. To understand 512

the unexpected result, we take an insight into the at- 513

tack mechanism of these jailbreak attacks including 514

ArtPrompt and Multilingual Attack. Specifically, 515

Multilingual Attack requires the target models to 516

possess multilingual abilities in low-resource lan- 517

guages to understand the question, and ArtPrompt 518

requires the target models to reconstruct the origi- 519

nal jailbreak prompts from ASCII art. These tasks 520

may have exceeded the reasoning capabilities of 521

SLMs, causing them to misinterpret the jailbreak 522

prompts and produce irregular responses. 523

Thus, the observed robustness of SLMs against 524

certain jailbreak attacks does not stem from in- 525

herent security mechanisms but rather from their 526

limited generalization capabilities. The limitation 527

prevents them from processing sophisticated jail- 528

break prompts effectively, thereby reducing the 529

likelihood of generating harmful responses. 530

5.2 What Mainly Contributes to Security 531

Degradation of SLMs? 532

From previous experiments, we can notice that the 533

defense capabilities of SLMs are obviously inferior 534

to LLMs, which highlights the need to find out the 535

underlying causes of the security degradation. 536

As revealed in previous experiments, the secu- 537

rity of SLMs tends to degrade as their scale de- 538

creases. Figure 4 and Figure 5 plot an overall view 539

of the security performance of SLMs in different 540

parameter sizes. The empirical evidence suggests a 541

negative correlation between the size of the param- 542

7



Figure 4: The security performance of SLMs in different
parameter sizes under direct attacks. The security is
measured by the average ASR of 5 harmful datasets.

Figure 5: The security performance of SLMs in different
parameter sizes under jailbreak attacks. The security is
measured by the average ASR of 5 jailbreak methods.

eters and the robustness of security performance.543

Due to the limited parameter size, SLMs usually544

prioritize helpfulness over harmlessness, leading545

to insufficient emphasis on safety alignment. Addi-546

tionally, the compression techniques used to design547

lightweight architectures for SLMs may further548

exacerbate the security issues. For instance, Mo-549

biLlama leverages parameter sharing techniques to550

compress the scale, which may affect the propor-551

tion of safety-critical parameters in the model.552

Quantization is another widely used model com-553

pression technique to reduce the memory cost for554

LLMs and SLMs. To explore the impact of quanti-555

zation on the security of SLMs, we assess Qwen2.5-556

1.5B-Instruct and its quantized versions, including557

AWQ, GPTQ-Int4, and GPTQ-Int8. Their security558

performances under jailbreak attacks are illustrated559

in Figure 6. Surprisingly, we find that quantization560

techniques do not obviously weaken the security of561

SLMs and sometimes even slightly enhance their562

robustness. From this point of view, quantization563

can balance both efficiency and security in model564

compression.565

Figure 6: The ASR of Jailbreak Attacks against
Qwen2.5-1.5B-Instruct with Different Quantization
Techniques.

Biased knowledge distillation can also lead to 566

security loss in SLMs. For instance, DeepSeek-R1- 567

Distill-Llama-8B is significantly weakened com- 568

pared to Llama3-8B. Besides, MobileLlama shows 569

relatively poor security among all target models, 570

which has also adopted knowledge distillation from 571

Llama-2 to enhance reasoning capabilities. During 572

knowledge distillation, if the training dataset lacks 573

data focused on security, the student model may 574

excessively inherit reasoning capabilities from the 575

teacher model, thereby leading to a degradation in 576

its security performance. 577

6 Conclusion 578

In this paper, we present a systematic empirical 579

study to explore the security vulnerabilities of the 580

state-of-the-art SLMs. We demonstrate that most 581

SLMs are highly susceptible to malicious input, 582

where jailbreak attacks pose a particularly signif- 583

icant threat. We also evaluate the effectiveness of 584

several defense strategies when applied to SLMs, 585

and further discuss the underlying factors that may 586

cause the security degradation of SLMs. We hope 587

that our study can raise awareness of the secu- 588

rity risks associated with SLMs and offer valuable 589

insights for developing more robust and resilient 590

SLMs in the future. 591

7 Limitations 592

This paper presents a comprehensive overview of 593

the security problems inherent in SLMs, while also 594

exploring the fundamental causes due to different 595

SLM techniques. However, the research predomi- 596

nantly focuses on empirical studies to uncover the 597

8



security issues in the rapid development of SLMs.598

Future works can explore more advanced SLM599

techniques that can enhance robustness without600

compromising the overall performance, or design601

effective and efficient defense techniques tailored602

to SLMs.603

8 Ethical Considerations604

The primary goal of this research is to reveal and605

discuss the security issues of SLMs. We believe606

that some explorations of the research, especially607

the fact that some SLMs are quite vulnerable to608

even direct attacks, can raise the awareness of the609

research community and prevent the SLMs from610

being misused.611
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Table 2: The Overall ASR of 5 harmful datasets against 15 target SLMs. SLMs from the same family are grouped
together for comparison of their security

Target Models Avg. Harmful Datasets

Advbench DAN maliciousInstruct StrongREJECT XSTEST

DeepSeek-R1-Distill-Llama-8B 0.474 0.542 0.431 0.540 0.530 0.325
Llama2-7B 0.012 0.006 0.023 0.000 0.013 0.020
Llama3-8B 0.059 0.094 0.051 0.050 0.070 0.030

Llama3.2-1B 0.020 0.012 0.054 0.010 0.013 0.010
Llama3.2-3B 0.047 0.025 0.059 0.060 0.045 0.045
TinyLlama-1.1B 0.638 0.619 0.541 0.650 0.754 0.625
MobileLlama-1.4B 0.308 0.382 0.263 0.247 0.426 0.220
MobiLlama-1B 0.210 0.227 0.192 0.158 0.300 0.172

Phi-3-3.8B 0.014 0.010 0.044 0.000 0.013 0.005
Phi-3.5-mini-2.7B 0.014 0.008 0.038 0.000 0.006 0.015

MiniCPM-1B 0.145 0.135 0.123 0.170 0.246 0.050
MiniCPM-2B 0.076 0.108 0.074 0.030 0.147 0.020
MiniCPM3-4B 0.141 0.075 0.146 0.200 0.195 0.090

Qwen-0.5B 0.079 0.073 0.090 0.030 0.163 0.040
Qwen-1.5B 0.013 0.000 0.018 0.000 0.042 0.005
Qwen-3B 0.008 0.002 0.021 0.000 0.013 0.005

Table 3: The Overall ASR of 5 jailbreak attack methods against 15 target models. SLMs from the same family are
grouped together for comparison of their security.

Target Models Avg. Jailbreak Attacks

GCG ArtPrompt DeepInception AutoDAN Multilingual Attack

DeepSeek-R1-Distill-Llama-8B 0.313 0.420 0.039 0.440 0.540 0.125
Llama2-7B 0.223 0.140 0.025 0.180 0.590 0.179
Llama3-8B 0.210 0.160 0.180 0.060 0.570 0.078

Llama3.2-1B 0.074 0.020 0.075 0.100 0.050 0.124
Llama3.2-3B 0.235 0.180 0.097 0.200 0.580 0.118
TinyLlama-1.1B 0.352 0.720 0.089 0.400 0.350 0.200
MobileLlama-1.4B 0.351 0.480 0.319 0.380 0.500 0.075
MobiLlama-1B 0.169 0.280 0.234 0.040 0.210 0.082

Phi-3-3.8B 0.288 0.200 0.255 0.220 0.510 0.255
Phi-3.5-mini-2.7B 0.298 0.200 0.249 0.300 0.480 0.260

MiniCPM-1B 0.359 0.380 0.219 0.640 0.380 0.177
MiniCPM-2B 0.299 0.020 0.310 0.500 0.510 0.153
MiniCPM3-4B 0.351 0.020 0.418 0.620 0.530 0.165

Qwen-0.5B 0.343 0.800 0.122 0.280 0.380 0.132
Qwen-1.5B 0.419 0.800 0.199 0.520 0.460 0.116
Qwen-3B 0.504 0.800 0.058 0.760 0.690 0.211
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