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Abstract—Policy search methods in Reinforcement Learning
(RL) have shown impressive results in contact-rich tasks such as
dexterous manipulation. However, the high variance of zero-order
Monte-Carlo gradient estimates results in slow convergence and
a requirement for a high number of samples. By replacing these
zero-order gradient estimates with first-order ones, differentiable
simulators promise faster computation time for policy gradient
methods when the model is known. Contrary to this belief, we
highlight some of the pathologies of using first-order gradients and
show that in many physical scenarios involving rich contact, using
zero-order gradients result in better performance. Building on
these pathologies and lessons, we propose guidelines for designing
differentiable simulators, as well as policy optimization algorithms
that use these simulators. By doing so, we hope to reap the benefits
of first-order gradients while avoiding the potential pitfalls.

I. INTRODUCTION

Reinforcement Learning (RL) is fundamentally concerned
with the problem of minimizing a stochastic objective,

min
θ

F (θ) = min
θ

Ewf(θ,w).

Many algorithms in RL heavily rely on zeroth-order Monte-
Carlo estimation of the gradient ∇F [27, 22]. Yet, in contact-
rich robotic manipulation where we have model knowledge
and structure of the dynamics, it is possible to differentiate
through the physics and obtain exact gradients of f , which can
also be used to construct a first-order estimate of ∇F . The
availability of both options begs the question: given access to
gradients of f , which estimator should we prefer?

In stochastic optimization, the theoretical benefits of using
first-order estimates of ∇F over zeroth-order ones have mainly
been understood through the lens of variance and convergence
rates [10, 16]: the first-order estimator often (not always)
results in much less variance compared to the zeroth-order one,
which leads to faster convergence rates to a local minima of
nonconvex smooth objective functions. However, the landscape
of RL objectives that involve long-horizon sequential decision
making (e.g. policy optimization) is challenging to analyze,
and convergence properties in these landscapes are relatively
poorly understood. In particular, contact-rich systems can
display complex characteristics including nonlinearities, non-
smoothness, and discontinuities (Figure 1) [29, 17, 25].

Nevertheless, lessons from convergence rate analysis tell
us that there may be benefits to using the exact gradients
even for these complex physical systems. Such ideas have been
championed through the term “differentiable simulation”, where
forward simulation of physics is programmed in a manner that
is consistent with automatic differentiation [8, 12, 28, 30, 9],
or computation of analytic derivatives [3]. These methods

Fig. 1. Examples of simple optimization problems on physical systems. Goal
is to: A. maximize y position of the ball after dropping. B. maximize distance
thrown, with a wall that results in inelastic impact. C. maximize transferred
angular momentum to the pivoting bar through collision. Second row: the
original objective and the stochastic objective after randomized smoothing.

have shown promising results in decreasing computation time
compared to zeroth-order methods [13, 8, 11, 6, 5, 19].

However, due to the complex characteristics of contact
dynamics, we show that the belief that first-order gradients
improve performance over zero-order ones is not always true
for contact-rich manipulation. We illustrate this phenomenon
through couple pathologies: first, even under sufficient regular-
ity conditions of continuity, the choice of contact modeling can
cause the first-order gradient estimate to have higher variance
compared to the zeroth-order one. In particular, this may occur
in approaches that utilize the penalty method [14], which
requires stiff dynamics to realistically simulate contact [9].

In addition, we show that many contact-rich systems dis-
play nearly/strictly discontinuous behavior in the underlying
landscape. The presence of such discontinuities causes the first-
order gradient estimator to be biased, while the zeroth-order one
still remains unbiased. Furthermore, we show that even when
continuous approximations are made, such approximations are
often stiff and highly-Lipschitz. In these settings, the first
order estimator still suffer from what we call empirical bias
under finite-sample settings. The compromise of the first order
estimator in the face of more accurate description of contact
dynamics hints at a fundamental tension between realism of
the dynamics and the performance of first-order gradients.

From these pathologies, we suggest methods in simulation, as
well as algorithms, that may improve the efficacy of first-order
gradient estimates obtained using differentiable simulation. We
advocate for the use of implicit contact models that are less
stiff, and thus have low variance of the first-order gradient.
In addition, we show they can be analytically smoothed out
to mitigate discontinuities. Finally, we introduce a method to
interpolate gradients that escapes these identified pitfalls.



II. PRELIMINARIES

A. Policy Optimization Setting
We study a discrete-time, finite-horizon, continuous-state

control problem with states x ∈ Rn, inputs u ∈ Rm, transition
function ϕ : Rn × Rm → Rn, and horizon H ∈ N. Given a
sequence of costs ch : Rn × Rm → R, a family of policies
πh(·, ·) : Rn × Rd → Rm parameterized by θ ∈ Rd, and a
sequence of injected noise terms w1:H ∈ (Rm)H , we define
the cost-to-go functions

Vh(xh,wh:H ,θ) =
∑H

h′=h ch(xh′ ,uh′),

s.t. xh′+1 = ϕ(xh′ ,uh′), uh′ = π(xh′ ,θ) +wh′ , h′ ≥ h.

Our aim is to minimize the policy optimization objective

F (θ) := Ex1∼ρE
wh

i.i.d.∼ p
V1(x1,w1:H ,θ), (1)

where ρ is a distribution over initial states x1, and w1, . . . ,wH

are i.i.d. according to p which we assume to be a zero-mean
Gaussian with covariance σ2In.

B. Zeroth-order estimator.
The policy gradient can be estimated only using samples of

the function values [31].

Definition II.1. Given a single zeroth-order estimate of the
policy gradient ∇̂[0]Fi(θ), we define the zeroth-order batched
gradient (ZoBG) ∇̄[0]F (θ) as the sample mean,

∇̂[0]Fi(θ) :=
1

σ2
V1(x1,w

i
1:H ,θ)

[ H∑
h=1

Dθπ(x
i
h,θ)

⊺wi
h

]
∇̄[0]F (θ) := 1

N

∑N
i=1 ∇̂[0]Fi(θ),

where xi
h is the state at time h of a trajectory induced by the

noise wi
1:H , i is the index of the sample trajectory, and Dθπ

is the Jacobian matrix ∂π/∂θ ∈ Rm×d.

The hat notation denotes a per-sample Monte-Carlo estimate,
and bar-notation a sample mean. The ZoBG is also referred
to as the REINFORCE [31], score function, or the likelihood-
ratio gradient. In practice, a baseline term b is subtracted from
V1(x1,w

i
1:H ,θ) for variance reduction. One example is the

zero-noise rollout as the baseline b = V1(x1,01:H ,θ):

C. First-Order Estimator.
In differentiable simulators, the gradients of the dynamics

ϕ and costs ch are available almost surely (i.e., with prob-
ability one). Hence, one may compute the exact gradient
∇θV1(x1,w1:H ,θ) by automatic differentiation and average
them to estimate ∇F (θ).

Definition II.2. Given a single first-order gradient estimate
∇̂[1]Fi(θ), we define the first-order batched gradient (FoBG)
as the sample mean:

∇̂[1]Fi(θ) := ∇θV1(x1,w
i
1:H ,θ)

∇̄[1]F (θ) := 1
N

∑N
i=1 ∇̂[1]Fi(θ).

The FoBG is also referred to as the reparametrization
gradient [15], the pathwise derivative [21], or Back Propagation
through Time (BPTT).

III. PITFALLS OF FIRST-ORDER GRADIENTS

In this section, we shows pathologies in contact-rich systems
for which the FoBG can perform worse than the ZoBG.

A. Bias under discontinuities

Under standard regularity conditions, it is well-known that
both estimators are unbiased estimators of the true gradient
∇F (θ). However, care must be taken to define these conditions
precisely, as such conditions are broken for contact-rich systems.
Fortunately, the ZoBG is still unbiased under mild assumptions,

E[∇̄[0]F (θ)] = ∇F (θ).

In contrast, the FoBG requires strong continuity conditions in
order to satisfy the requirement for unbiasedness. However,
under Lipschitz continuity, it is indeed unbiased.

Lemma III.1. If ϕ(·, ·) is locally Lipschitz and ch(·, ·) ∈ C∞,
then ∇̄[1]F (θ) is defined almost surely, and

E[∇̄[1]F (θ)] = ∇F (θ).

Lemma III.1 tells us that FoBG can fail when applied
to discontinuous landscapes. We illustrate a simple case of
biasedness through a counterexample.
Example III.2 (Heaviside). [2, 25] Consider the Heaviside
function,

f(θ,w) = H(θ +w), H(t) = 1t≥0

whose stochastic objective becomes the error function

F (θ) = Ew[H(θ +w)] = erf(−θ;σ2),

However, since ∇θH(θ +w) = 0 for all θ ̸= −w, we have
Ewiδ(θ +wi) = 0. Hence, the Law of Large Numbers does
not hold, and FoBG is biased as the gradient of the stochastic
objective, a Gaussian, is non-zero at any θ. We further note that
the empirical variance of the FoBG estimator in this example
is zero. On the other hand, the ZoBG escapes this problem
and provides an unbiased estimate, since it always takes finite
intervals that include the integral of the delta.

Fig. 2. From left: heaviside objective f(θ,w) and stochastic objective F (θ),
empirical values of the gradient estimates, and their empirical variance.

B. The “Empirical bias” phenomenon

One might argue that strict discontinuity is simply an artifact
of modeling choice in simulators; indeed, many simulators
approximate discontinuous dynamics as a limit of continuous
ones with growing Lipschitz constant [9, 7]. In this section, we
explain how this can lead to a phenomenon we call empirical
bias, where the FoBG appears to have low empirical variance,



but is still highly inaccurate; i.e. it “looks” biased when a
finite number of samples are used. Through this phenomenon,
we claim that performance degradation of first-order gradient
estimates do not require strict discontinuity, but is also present
in continuous, yet stiff approximations of discontinuities.

Definition III.3 (Empirical bias). Let z be a vector-valued
random variable with E[∥z∥] < ∞. We say z has (β,∆, S)-
empirical bias if there is a random event E such that Pr[E ] ≥
1 − β, and ∥E[z | E ] − E[z]∥ ≥ ∆, but ∥z − E[z | E ]∥ ≤ S
almost surely on E .

A paradigmatic example of empirical bias is a random scalar
z which takes the value 0 with probability 1 − β, and 1

β

with probability β. Setting E = {z = 0}, we see E[z] = 1,
E[z | E ] = 0, and so z satisfies (β, 1, 0)-empirical bias. Note
that Var[z] = 1/β − 1; in fact, small-β empirical bias implies
large variance more generally.

Lemma III.4. Suppose z has (β,∆, S)-empirical bias. Then
Var[z] ≥ ∆2

0

β , where ∆0 := max{0, (1− β)∆− β∥E[z]∥}.

Empirical bias naturally arises for discontinuities or stiff
continuous approximations.
Example III.5 (Coulomb friction). The Coulomb model of
friction is discontinuous in the relative tangential velocity
between two bodies. In many simulators [9, 4], it is common to
consider a continuous approximation instead. We idealize such
approximations through a piecewise linear relaxation of the
Heaviside that is continuous, parametrized by the width of the
middle linear region ν (which corresponds to slip tolerance).

H̄ν(t) =

{
2t/ν if |t| ≤ ν/2

2H(t)− 1 else
.

In practice, lower values of ν lead to more realistic behavior
in simulation [28], but this has adverse effects for empirical
bias. Considering fν(θ,w) = H̄ν(θ +w), we have Fν(θ) =
Ew[H̄ν(θ + w)] := erf(ν/2 − θ;σ2). In particular, setting
cσ := 1√

2πσ
, then at θ = ν/2, ∇Fν(θ) = cσ, whereas, with

probability at least cσν, ∇fν(θ,w) = 0. Hence, the FoBG
has (cσν, cσ, 0) empirical bias, and its variance scales with
1/ν as ν → 0. The limiting ν = 0 case, corresponding to the
Coulomb model, is the Heaviside from Example III.2, where
the limit of high empirical bias, as well as variance, becomes
biased in expectation (but, surprisingly, zero variance!). We
empirically illustrate this effect in Figure 3. We also note that
more complicated models of friction (e.g. that incorporates the
Stribeck effect [24]) would suffer similar problems.
Example III.6. (Discontinuity in geometry). Another source
of discontinuity in simulators comes from the discontinuity of
surface normals. We show this in Figure 4, where balls that
collide with a rectangular geometry create discontinuities. It is
possible to make a continuous relaxation [7] by considering a
smoother geometry, depicted by the addition of the dome
in Figure 4. While this makes FoBG no longer biased
asymptotically, the stiffness of the relaxation still results in
high empirical bias.

Fig. 3. Top column: illustration of the physical system and the relaxation of
Coulomb friction. Bottom column: the values of estimators and their empirical
variances depending on number of samples and slip tolerance. Values of
FoBG are zero in low-sample regimes due to empirical bias. As ν → 0,
the empirical variance of FoBG goes to zero, which shows as empty in the
log-scale. Expected variance, however, blows up as it scales with 1/ν.

Fig. 4. Left: example of ball hitting the wall. The green trajectories hit a
rectangular wall, displaying discontinuities. Right: the pink trajectories collide
with the dome on top, and show continuous but stiff behavior.

C. High Variance from Stiffness

Even without the phenomenon of empirical bias, we show
that certain choices of contact models can cause the FoBG
to suffer from high variance. In particular, approximations of
rigid contact with high-stiffness spring models (i.e. penalty
method) causes the gradient may have a high norm.

Example III.7. (Pushing with stiff contact). We demonstrate
this phenomenon through a simple 1D pushing example in
Figure 5, where the ZoBG has lower variance than the FoBG
as stiffness increases, until numerical semi-implicit integration
becomes unstable under a fixed timestep.

Fig. 5. The variance of the gradient of V1, with running cost ch = ∥x2
h −

xg∥2, with respect to input trajectory as spring constant k increases. Mass m
and damping coefficient c are fixed.



IV. TACKLING THE PATHOLOGIES: A PATH FORWARD

In this section, we comment on methods that can alleviate
the pathologies that were found in the previous section.

A. Less Stiff Formulations of Contact Dynamics

In order to avoid high variance of the FoBG, we must
ensure that the norm of the gradient is low. Yet, as illustrated
by Example III.7., approximating contact using stiff springs,
as done in works that model contact with the penalty method,
inevitably results in trading off stiffness and physical realism.

Therefore, we advocate less stiff contact models that are
based on implicit time-stepping [23], whose per time-step
computation relies on solving optimization problems such
as the Linear Complementary Problem (LCP), which can be
further relaxed into solving convex Quadratic Programs (QP)s
[1]. The derivatives of such systems can be obtained by the
implicit function theorem, differentiating through the optimality
conditions of the problems. We give one example of such a
convex QP as below. Correctly using gradients from implicit
time-stepping can vastly improve the efficacy of FoBG by
ensuring that their norm stays reasonably bounded.

Example IV.1. (Implicit Time-Stepping for Pushing). We
illustrate implicit time-stepping with a 1-dimensional example
consisting of a point mass and a wall. The state of the system
is (x, v) ∈ R2, where x is the position and v the velocity of
the point mass.The non-penetrable wall occupies x ≤ 0.

The equations of motion of the system is

m(v+ − v) = u+ λ, (2a)
x+ = x+ hv+, (2b)

0 ≤ x+ ⊥ λ ≥ 0, (2c)

where (x+, v+) represent the system state at the next time step;
h is the step size; m is the mass; u is the impulse applied to the
point mass by actuation; and λ is the impulse due to contact
with wall. Constraint (2a) is the momentum balance of the
point mass. Constraint (2c) is the complementarity constraint
that ensures the wall can only push on the point mass when
they are in contact. We can indeed see that the equations of
motion (2) is the KKT condition of the following QP:

minimize
v+

1
2m(v+ − v)2 − uv+ (3a)

subject to
x

h
+ v+ ≥ 0 (3b)

B. Smooth Analytic Approximations of Dynamics

Although we show that strict discontinuity is not required to
have degradation of performance for the FoBG, soft relaxations
of discontinuities still behave much better. To this end, we
also advocate for analytically providing a smooth surrogates
of the discontinuous dynamics in simulation, and increasingly
lowering the relaxation during the policy optimization step.
To overcome the pathologies of using FoBGs, we believe
that providing such a feature should be a requirement for
differentiable simulators for them to be useful in policy
optimization.

Fig. 6. Left: Visualization of wall and block examples in Example IV.1 and
Example IV.2. Note that both schemes do not require using the spring constant
k, where as the penalty method will. This alleviates problems associated
with stiffness of the gradients. Right: Results of simulating the methods of
Example IV.1 and Example IV.2 at (x, v) = 0. The resulting positions x+

are plotted as functions of input impulse u.

Previous works have provided smooth surrogates to the
penalty method of contact [9, 13, 32], which reasonably
addresses discontinuities, yet still suffers from stiffness. Instead,
we show that a smooth approximation can be made to implicit
time-stepping methods by using common constraint relaxation
methods such as the log-barrier function used in interior-point
method.
Example IV.2. (Smooth Relaxation for Pushing). The
optimization-based dynamics of Example IV.1 can be smoothed
by replacing the non-penetration constraint (3b) with an
additional log-barrier term in the objective (3a):

minimize
v+

1
2m(v+ − v)2 − uv+ − 1

κ log(xh + v+), (4)

which is an unconstrained convex optimization program, whose
optimality condition can be obtained by setting the derivative
of the objective (4) to 0:

m(v+ − v) = u+ [κ (x/h+ v+)]
−1

. (5)

The optimality condition (5) can be interpreted as the
momentum balance of the point mass, but the wall now acts as
a force field, exerting on the object a force whose magnitude is
inversely proportional to the distance to the wall. The strength
of the force field is controlled by the log-barrier weight κ. As
κ → ∞, the solution of (4) converges to that of (3).

C. Gradient Interpolation
Finally, we mention some recent advances on the algorithm

side. If we can compute both the FoBG and the ZoBG using
uncorrelated samples, we can consider an interpolated gradient,

∇̂[α]Fi(θ) := α∇̂[0]Fi(θ) + (1− α)∇̂[1], Fi(θ) (6)

where α ∈ [0, 1]. Previous works on gradient interpolation
[20, 18] shows that we can optimally interpolate the two
gradients based on computing empirical variance. However,
as Example III.2 shows, the empirical variance can be an
unreliable estimate if FoBG is biased under discontinuities.

To mitigate this problem, we can test the correctness of the
FoBG against the unbiased ZoBG by constructing a confidence
interval based on samples of the ZoBG, and choosing an
optimal value of α subject to a chance constraint on the
allowable value of the interpolated gradient [26].
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Kelley, and Frédo Durand. Difftaichi: Differentiable programming for physical
simulation. ICLR, 2020.

[13] Zhiao Huang, Yuanming Hu, Tao Du, Siyuan Zhou, Hao Su, Joshua B. Tenenbaum,
and Chuang Gan. Plasticinelab: A soft-body manipulation benchmark with
differentiable physics. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=xCcdBRQEDW.

[14] K. H. Hunt and F. R. E. Crossley. Coefficient of Restitution Interpreted as Damping
in Vibroimpact. Journal of Applied Mechanics, 42(2):440–445, 06 1975. ISSN
0021-8936. doi: 10.1115/1.3423596. URL https://doi.org/10.1115/1.3423596.

[15] Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local
[23] David Stewart and J.C. (Jeff) Trinkle. An implicit time-stepping scheme for rigid

reparameterization trick. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28.
Curran Associates, Inc., 2015.

[16] Shakir Mahamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte
carlo gradient estimation in machine learning. In Jennifer Dy and Andreas Krause,
editors, Journal of Machine Learning Research, volume 21, pages 1–63, 4 2020.

[17] Matthew T. Mason. Mechanics of Robotic Manipulation. The MIT Press, 06
2001. ISBN 9780262256629. doi: 10.7551/mitpress/4527.001.0001. URL https:
//doi.org/10.7551/mitpress/4527.001.0001.

[18] Luke Metz, C. Daniel Freeman, Samuel S. Schoenholz, and Tal Kachman. Gradients
are not all you need, 2021.

[19] Miguel Angel Zamora Mora, Momchil Peychev, Sehoon Ha, Martin Vechev, and
Stelian Coros. Pods: Policy optimization via differentiable simulation. In Marina
Meila and Tong Zhang, editors, Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 7805–7817. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/
mora21a.html.

[20] Paavo Parmas, Carl Edward Rasmussen, Jan Peters, and Kenji Doya. PIPPS:
Flexible model-based policy search robust to the curse of chaos. In Jennifer Dy
and Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 4065–4074. PMLR, 10–15 Jul 2018.

[21] John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient
estimation using stochastic computation graphs. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 28. Curran Associates, Inc., 2015.

[22] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms, 2017.
body dynamics with coulomb friction. volume 1, pages 162–169, 01 2000. doi:
10.1109/ROBOT.2000.844054.

[24] R. Stribeck. Die wesentlichen Eigenschaften der Gleit- und Rollenlager. Mitteilungen
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