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ABSTRACT

Graph Neural Networks (GNNs) have become increasingly popular in recom-
mender systems due to their ability to model complex user-item relationships.
However, current GNN-based approaches face several challenges: They primarily
rely on sparse user-item interaction data, which can lead to overfitting and limit
generalization performance. Moreover, they often overlook additional valuable
information sources, such as social trust and user reviews, which can provide
deeper insights into user preferences and enhance recommendation accuracy. To
address these limitations, we propose a multi-view GNN framework that inte-
grates diverse information sources using contrastive learning and language models.
Our method employs a lightweight Graph Convolutional Network (LightGCN)
on user-item interactions to generate initial user and item representations. We
use an attention mechanism for the user view to integrate social trust information
with user-generated textual reviews, which are transformed into high-dimensional
vectors using a pre-trained language model. Similarly, we aggregate all reviews
associated with each item and use language models to generate item representations
for the item view. We then construct an item graph by applying a meta-path to
the user-item interactions. GCNs are applied to both the social trust network and
the item graph, generating enriched embeddings for users and items. To align and
unify these heterogeneous data sources, we employ a contrastive learning mecha-
nism that ensures consistent and complementary representations across different
views. Experimental results on multiple real-world datasets such as Epinions, Yelp,
and Ciao demonstrate significant performance improvements over state-of-the-art
methods.

1 INTRODUCTION

Recommender systems are powerful techniques widely adopted in various domains, including e-
commerce platformsWang et al. (2020), online advertisingGharibshah and Zhu (2021), and video
streaming services Liu et al. (2019). The main task of recommender systems is to predict whether
a user will interact with a specific item. Collaborative filtering (CF) methods are among the most
successful approaches in recommender systems, effectively predicting how likely a user is to interact
with specific items Wang et al. (2019b). However, collaborative filtering (CF) methods face challenges
like data sparsity and the cold start problem. Data sparsity occurs when there are limited interactions
between users and items, making it difficult to generate accurate recommendations. GNNs have
significantly succeeded in recommender systems due to effectively capturing complex user-item
interactionsChen et al.He et al. (2020). Unlike traditional methods, GNNs can model direct and
indirect relationships by leveraging the graph structure of user-item interactions. This allows them
to learn rich, high-quality representations that account for collaborative patterns across the entire
network. GNNs have successfully addressed challenges such as data sparsity and the cold start
problem, leading to more accurate and personalized recommendations in domains like e-commerce,
social media, and content streaming.

Neural Graph Collaborative Filtering (NGCF)Wang et al. (2019b) and LightGCNHe et al. (2020) are
examples of successful GNN-based recommender models that have made significant contributions
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to improving recommendation accuracy. These models use graph convolution to capture local
information and aggregate data from neighboring nodes, incorporating collaborative signals into user
and item representations. GNNs in recommender systems rely heavily on user-item interactions,
which are often sparse, leading to several challenges, such as limiting the model’s ability to learn
meaningful patterns, propagating noisy information, which reduces the accuracy, over-smoothing,
and scalability issues. To address these issues, contrastive learning has recently been employed
to provide more robust and high-quality representations for users and items Yu et al. (2023). By
leveraging both positive interactions (e.g., items a user interacts with) and negative samples (e.g.,
items they don’t interact with), contrastive learning helps the model differentiate between similar and
dissimilar user-item interactions, resulting in more discriminative embeddings and improving the
overall recommendation accuracy, even in sparse data environments. However, additional sources of
information, such as user social interactions and user reviews, are available in the form of unstructured
text and can be utilized to improve the accuracy of GNN-based recommender systems. The question
is how to effectively integrate multi-source information, like user social data and reviews, into GNN-
based models. Specifically, since user reviews are unstructured, how can we leverage them to extract
meaningful semantic information and combine this data with GNNs to enhance recommendation
performance?

Present work. The present work proposes a multi-view graph representation learning strategy
designed explicitly for recommender systems, addressing the limitations of traditional methods that
often rely on sparse user-item matrices. By integrating multiple sources of information, such as user
trust relationships and user reviews, this approach creates a more robust and informative framework.
Incorporating user trust networks captures implicit connections between users, significantly enhancing
recommendation accuracy by factoring in social influences on user preferences. Additionally, the use
of a pre-trained language model like BERT allows the system to transform user-generated reviews
into meaningful embeddings, leveraging the nuanced sentiments expressed in these texts to enrich
user and item representations. A contrastive learning mechanism aligns these diverse representations,
ensuring consistency and complementarity among the various data sources, which fosters a cohesive
understanding of user preferences and item characteristics. By embracing this multi-view perspective,
the method effectively captures the complexities of user behavior and item attributes, offering a
more comprehensive solution compared to existing graph neural network-based recommenders
that typically focus on a singular view. The key properties of the proposed method are listed as follows:

• The proposed method incorporates trust relationships and user reviews alongside tradi-
tional user-item interactions, enriching the data landscape for representation learning.

• By utilizing pre-trained language models like BERT for review embeddings, the method
uses advanced natural language processing techniques to gain deeper insights into user sentiments
and preferences.

• The contrastive learning approach used in the method helps integration of data taken from
various sources.

• The integration of user trust dynamics enables the model to adapt to the social context of
interactions, providing a more personalized recommendation experience.

2 RELATED WORKS

GNN-based recommender systems: GNNs have emerged as a powerful approach in graph-based
recommender systems by effectively capturing complex relationships within user-item networksTang
et al. (2008). These networks leverage the inherent graph structure of interactions to learn meaningful
patterns. Typically, GNNs operate using the message-passing framework, where information is
propagated and aggregated across multiple layers. This process allows the model to incorporate
local and global information from neighboring nodes, enabling it to learn more expressive and rich
representations for users and items. GNNs model user-item interactions as a graph to generate user
and item embeddings by leveraging cross-layer information propagation. This process allows the
model to capture both local and global patterns in the graph, as information from neighboring nodes is
propagated through multiple layers. By aggregating this information, GNNs can produce more robust
and informative embeddings for users and items, leading to improved recommendation accuracy
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(Chen et al. Wang et al. (2019b)). Some studies, such as GraphRec Fan et al. (2019) and KCGN
Huang et al. (2021), have utilized user social interactions to enhance recommendation performance
by incorporating the influence of social connections into GNN-based models. Other models, such
as KGAT Wang et al. (2019a), extend GNNs to operate on knowledge graphs, which provide rich,
structured semantic information about entities and their relationships.
Contrastive Self-Supervised Learning on Graphs: Contrastive learning is a widely used self-
supervised technique that leverages both positive and negative samples to learn discriminative features
from data. By contrasting similar (positive) pairs with dissimilar (negative) ones, this approach helps
models differentiate between meaningful patterns, leading to more robust and effective representations.
In the context of recommender systems, a positive pair typically consists of a user and an item with
which they have interacted (e.g., a purchase, rating, or click), while a negative pair consists of a
user and an item they have not interacted with. Recent studies show contrastive learning has gained
attention for its ability to address challenges such as data sparsity and noisy interactions. Some
methods, such as HGCL Chen et al. (2023), propose a contrastive multi-view model that utilizes
meta-path to capture multi-views of heterogeneous graphs. In Zou and Wang (2023), a contrastive
learning model was proposed to learn representations by contrasting a heterogeneous graph with
a meta-path-based homogeneous graph extracted from the heterogeneous graph. The approach
leverages the structural differences between these two types of graphs. By applying contrastive loss,
the model aims to capture meaningful distinctions between the homogeneous and heterogeneous
graphs, thereby learning richer and more informative representations that reflect local and global
data patterns. SimGRACE Xia et al. (2022) is a self-supervised learning framework that introduces
contrastive learning by generating contrastive views through perturbations applied directly to the
GNN encoder. Unlike traditional methods that create contrastive views by augmenting the input
data (such as node features or graph structures), SimGRACE perturbs the GNN model parameters
themselves to create different perspectives of the same graph. Zou and Wang (2023) employs
contrastive learning to integrate the embeddings generated from user-item interactions with those
obtained from homogeneous graphs constructed using meta-paths.

3 PRELIMINARIES

Graph Convolutional Networks (GCNs) Kipf and Welling (2016) are designed to operate directly
on graph-structured data, allowing for effective representation learning from the connections between
nodes. In the context of a graph, the input consists of an adjacency matrix A that encodes the
relationships between nodes, and a feature matrix X that contains the features of each node. The
fundamental operation in a GCN is performed through a series of graph convolutional layers. The
update rule for node embeddings at layer l is defined as follows:

Z(l+1) = σ
(
ÃZ(l)W (l)

)
. (1)

where Z(l) represents the node embeddings at layer l (for layer 0, Z(0) is the input feature
matrix),W (l) is the trainable weight matrix at layer l, σ is a non-linear activation function (e.g.,
ReLU), and Ã is the normalized adjacency matrix defined as Ã = D̂−1/2ÂD̂−1/2. Here D̂ = A+ I
is the adjacency matrix with self-loops (adding the identity matrix I to include each node’s own
feature in the aggregation). D̂ is the degree matrix of Â, where D̂ii =

∑
j Âij and D̂−1/2 is the

normalized degree matrix (square root inverse of the degree matrix). This normalization ensures
that the node features are scaled properly, preventing exploding or vanishing gradients during training.

LightGCN (Lightweight Graph Convolutional Network) He et al. (2020) a graph-based
approach designed for recommender systems, focusing on efficient representation learning from
user-item interactions. The core idea in LightGCN is to leverage the graph structure of user-item
interactions while simplifying traditional GCNs. The user-item interaction graph can be represented
as an adjacency matrix A, where each entry Dii indicates the interaction between user ui and item ij.
The update rules for user embedding at layer l is obtained as follows Z(l)

U = AUZ
(l−1)
U +AIZ

(l−1)
I ,

where AU represents the user-user adjacency matrix, capturing implicit relationships between users,
derived from the user-item interaction matrix A as AU = A · AT . Similarly, the update rules for
item embedding at layer l is obtained as Z

(l)
I = AlZ

(l−1)
I + A

(l−1)
Z , where AI is the item-item

adjacency matrix derived from the user-item interaction as AI = A · AT . After L layers of graph
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convolution, the final user and item embeddings are obtained by aggregating the outputs from all
layers ZU =

∑L
l=1 Z

(l)
U and ZI =

∑L
l=1 Z

(l)
I . The final recommendation score for a user-item pair

is computed as the dot product of their corresponding embeddings ŷ = ZU · ZI .

BERT (Bidirectional Encoder Representations from Transformers) Lee and Toutanova
(2018) is a transformer-based model designed to generate contextual embeddings for text. It processes
input sequences through several stages, starting with pre-processing, where the text is tokenized into
sub-word units and encoded as numeric representations. The input text is tokenised, where each
token is transformed into token IDs represented by the matrix X = [x1, x2, . . . , xn], where each xi

is a token ID. These IDs are mapped to dense vector representations using three types of embeddings:
token embeddings, position embeddings (indicating the token’s position), and segment embeddings
(distinguishing between different sentences). The total input embedding for each token is calculated
as H(0) = Etoken(xi) + Eposition(i) + Esegment(s) where s indicates the segment. BERT consists
of multiple transformer layers, each employing self-attention and feedforward networks to refine
the embeddings. The self-attention mechanism uses learned matrices for queries Q, keys K, and
values V, computed from the input embeddings H(l) at layer l as Q = H(l)WQ, K = H(l)WK , and
V = H(l)Wv. The attention scores are calculated as Attention(Q,K,V) = softmax(QKT /d)V .
Multi-head attention applies this process multiple times in parallel with different weight matrices and
concatenates the results, followed by a linear transformation as H ′(l) = MultiHead(H(l)). After
self-attention, the output is passed through a position-wise feedforward network as:

H(l+1) = ReLU(H ′(l)W1 + b1)W2 + b2 (2)

where W1, W2 are weight matrices and b1, b2 are biases. After processing through all layers, the final
output matrix HL contains contextual embeddings for each token, with HL = [h

(L)
1 , h

(L)
2 , . . . , h

(L)
n ],

where each h
(L)
i is a d-dimensional vector representing the contextual encoding of token i. Ultimately,

BERT outputs the contextual embeddings as H(L) = BERT (X), providing rich representations for
the input text.

4 METHODOLOGY

The proposed method is a multi-view graph GNN-based framework for recommender systems that
integrates multiple sources of information such as user-item interactions, user trust networks, item
profiles, and user reviews into a unified structure. This enables the system to capture different
perspectives and enhance its predictive power. The framework consists of three distinct views named
user-item view, user view, and item view. The overall architecture of the proposed framework is show
in Figure 1.
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Figure 1: Overall structure of MvL-GNN.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

User-item view: In this view, user-item interaction data is leveraged to capture the rela-
tionships between users and items. We follow the similar strategy proposed in He et al. (2020)
to learn user embeddings ZUI

U and item embeddings ZUI
I from the user-item interaction graph.

Let AUI is adjacency matrix of the user-item interaction graph where AUI
ij = 1 indicates the

interaction between user ui and item ij . The update rules for user embedding at layer l obtained as
follows H(l)

U = AUI
U H

(l−1)
U + AUIH

(l−1)
I , where AUI

U the user-user adjacency matrix, computed
AUI

U = AUI
U · AUI

U
T . Similarly, the update rules for item embedding at layer l is obtained as

H
(l)
I = AUI

I H
(l−1)
I + AUIH

(l−1)
U , where AUI

I is the item-item adjacency matrix computed as
AUI

U = AUIT · AUI . After L layers of graph convolution, the final user and item embeddings are
obtained by aggregating the outputs from all layers ZUI

U =
∑L

l=1 H
(l)
U and ZUI

I =
∑L

l=1 H
(l)
I .

These embeddings encode latent features from historical interactions, allowing the system to
understand user preferences and item characteristics.

User view: This view aims to combine multiple sources of information to generate a com-
prehensive user representation by leveraging both the user’s trust network and their textual reviews.
First, we apply the GCN to the user trust graph, where users are connected based on trust relationships.
Let GTr = (U,E) represents the trust graph, with U as the set of users and E as the trust relationships.
The adjacency matrix ATr

U of this graph and the initial feature matrix Xu for users are used in a GCN,
where each layer updates the user embeddings. The GCN’s propagation rule for layer l is given by:

H(l+1)
u = σ

(
D̂Tr

U
− 1

2 ÂTr
U D̂Tr

U
− 1

2H(l)
v W (l)

)
(3)

where ÂTr
U = ATr

U + I , D̂U is the degree matrix on ÂTr
U , W (l) is a learnable weight matrix, and σ(·)

is an activation function, such as ReLU. After applying L layers, the final user trust embedding is
ZTr
U = H

(L)
U . In addition to trust data, we utilize user reviews, which are textual data. These reviews

are encoded using a pre-trained BERT model, transforming the reviews for user u into an embedding
denoted as ER

u = BERT (Reviewsu). Since BERT embeddings are typically high-dimensional,
we apply a linear transformation to reduce their size to match the dimensionality of ZT

U , using the
equation:

ZR
U = WRE

R
U + bR (4)

where WR is the weight matrix and bR is the bias term. To combine the user trust embedding ZT
U

and the review embedding ZR
U , we apply a node attention mechanism that assigns different weights

to each component. Attention coefficients βTr and βR are calculated for ZT
U and ZR

U as follows:
βTr = tanh(WT · [Zu∥ZT

r ]) and βR = tanh(WR · [Zu∥ZT
r ]), where ∥ denotes concatenation and

WT and WR are learnable weight matrices. The final user representation is a weighted combination
of the two embeddings:

ZTrR
U = βTrZTr

U + βRZR
U (5)

This mechanism allows the model to balance the information from both the trust network and the
review text based on their relative importance.

Item view: This view aims to generate item’s representation by combining two key sources of
information: a graph of item interactions and item reviews. We first construct a homogeneous item
graph using an m:I-U-I metapath, where items are connected through shared users in the user-item
interaction matrix. Let AI represent the adjacency matrix for the item graph, where the connections
between items are based on interactions with the same users. It can be constructed from the original
user-item interaction matrix as AMe

I = AT
UIAUI . We then apply the GCN to learn item embeddings

ZMe
I . Let XI be the initial feature matrix of the items (this can be a one-hot encoded vector or any

other feature representation). Similar to the user view, we propagate item features through the GCN
using the normalized adjacency matrix ÂMe

I . The update rule for the GCN layers is:

H
(l+1)
I = σ

(
ÃMe

I H
(l)
I W

(l)
I

)
(6)

where H
(l)
I is the item representation at layer l with H

(0)
I = XI , and w

(l)
I is the learnable weight

matrix for layer l. After applying L layers, we obtain the final item embedding from the interaction
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graph ZMe
I = H

(L)
I . Next, similar to the user view, we consider the textual reviews associated

with each item. For each item, we collect all user reviews and encode them using a pre-trained
BERT model. Let the reviews for item i be denoted as Reviewsi. We apply BERT to generate a
textual embedding for these reviews ER

i = BERT (Reviewsi). The output of BERT is typically a
high-dimensional embedding, so we reduce its dimensionality using a linear transformation to match
the size of ZMe

I . The reduced embedding from the reviews is given by ZR
I = WRE

R
I + bR. The

final embedding ZMeR
I is obtained by combing ZR

I using the same attention mechanism used in
user-view.

Training the model: In this framework, we employ two types of loss functions: a super-
vised loss function and a self-supervised contrastive loss function, which are combined to train the
model effectively. Supervised loss is based on Bayesian Personalized Ranking (BPR), which is
commonly used in recommender systems. The goal of this loss is to model the relative preferences
between items for each user. For a user ui and an item ij , the model predicts the recommendation
score using the dot product of their embeddings from the user-item interaction view:

ŷij = ZUI
U (i) · ZUI

I (j) (7)

where ZUI
U (i) and ZUI

I (j) show the embeddings of user ui and item ij respectively. The actual
recommendation label is denoted by yij . The BPR loss function aims to maximize the margin
between observed interactions (i.e., recommended items) and unobserved interactions (i.e.,
non-recommended items). Mathematically, the BPR loss is formulated as:

Lbpr = −
∑

(i,j,k)∈D

log σ (ŷij − yik) (8)

where σ is the sigmoid function, D is the set of user ui, positive item ij , and negative item ik
triplets. In addition to the supervised loss, we use a contrastive loss to align the two different
embeddings for users and items. Each user and item has embeddings from two different views: the
user-view/item-view and the user-item interaction view. The goal of the contrastive loss is to ensure
that these different embeddings for the same user or item are consistent. For the user, we have two
embeddings: ZTrR

U (the user embedding from the user-view) and ZUI
U (the user embedding from the

user-item interaction view). The goal is to maximize the agreement between ZTrR
U (u) and ZUI

U (u)
for the same user u, while minimizing the similarity between embeddings of different users. The
contrastive loss for users is given as:

LU
con = −

∑
u

log
exp(sim(ZTrR

U (u), ZUI
U (u)/τ)∑

u′∈U exp(sim(ZTrR
U (u′), ZUI

U (ui))/τ)
(9)

where τ is the temperature parameter that controls the sharpness of the softmax distribution and
sim(.,.) is the similarity (often cosine similarity) between the user embeddings. Similarly, for items,
we align the item embeddings from the item-view (ZMeR

I ) and the user-item interaction view (ZUI
I )

using the InfoNCE loss denoted as LI
con. The loss encourages item embeddings from the two views

to be similar for the same item while distinguishing them from embeddings of different items. The
total contrastive loss combines both user and item contrastive losses as Lcon = LU

con + LI
con. The

total loss function is the sum of the supervised BPR loss and the contrastive loss:

Lcon = Lbpr + λLcon (10)

Here,λ controls the relative weight of the contrastive loss, allowing the model to balance learning
good representations from the supervised BPR loss and aligning the embeddings from different views
using the InfoNCE loss. We use this loss functions to train the learnable parameters of the framework.

5 EXPERIMENTS

5.1 DATASETS AND PERFORMANCE MEASURES

To assess the performance of the MvL-GNN method, we conducted a series of experiments on three
real-world datasets: Yelp, Ciao, and Epinions. The details of these datasets are shown in Table 1. We
investigate the effectiveness of our model by conducting different experimental scenarios designed to

6
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address the following key questions:
Q1: In what ways does our model outperform existing state-of-the-art methods in terms of recommen-
dation accuracy and robustness?

Q2: How does the performance of our model vary across different evaluation scenarios, such as
varying data sparsity and cold start conditions?

Q3: What is the impact of hyperparameter tuning on the effectiveness and efficiency of the proposed
method?

Table 1: Real-world Dataset

Datasets Users# Items# Interactions#

Ciao 6776 101415 265308

Epinions 11734 23396 26517

Yelp 161305 114852 957923

5.2 COMPARISION WITH STATE-OF-THE-ART METHODS

In response to Q1, we performed a set of experiments to compare the proposed method (i.e. MvL-
GNN) with a set of state-of-the-art methods including HAN Wang et al. (2019c), HeCoWang et al.
(2021), HGT Hu et al. (2020), MHCN Yu et al. (2021), SMIN Long et al. (2021), HGCL Chen et al.
(2023). Table 2 reports the comparison results for Ciao, Epinions and Yelp datasets in terms of
HR(Hit Ratio) and NDCG (Normalized Discounted Cumulative Gain) metrics. The results indicate
that MvL-GNN consistently outperforms all other models across all datasets and metrics, highlighting
its potential to enhance recommender system performance significantly.

Table 2: Performance of different methods on three datasets

Datas Metrics HAN HeCo HGT MHCN SMIN HGCL MvL-GNN

Ciao HR@10 0.6772 0.6867 0.6939 0.7053 0.7008 0.7310 0.7400
ND@10 0.4708 0.4469 0.4867 0.4869 0.4928 0.5199 0.5301

Epinions HR@10 0.7630 0.7998 0.8150 0.8201 0.8045 0.8323 0.8474
ND@10 0.5810 0.6026 0.6145 0.6158 0.6234 0.6376 0.6595

Yelp HR@10 0.7731 0.8359 0.8364 0.8344 0.8401 0.8743 0.8862
ND@10 0.5601 0.5838 0.5880 0.5800 0.6012 0.6295 0.6402

5.3 EVALUATION UNDER VARIOUS SCENARIOS

To address Q2, several experiments were conducted under various scenarios to verify that incorpo-
rating multiple views of users and items is essential for learning high-quality representations. Here,
we primarily focus on the impact of source information in each user-view and item-view embedding
on recommendation performance. Our framework considers multiple perspectives of user and item
interactions (user-view, item-view, and the user-item interaction view). The user-view embedding
combines the user’s trust network with their interactions based on textual reviews. In contrast, the
item-view embedding integrates a meta-path-based graph of item interactions and reviews. In this
section, we aim to analyze the impact of each information source and its influence on extracting
high-quality embeddings for conducting contrastive learning with the user-item view embedding
in the proposed method. We evaluated the impact of user and item information and defined five
evaluation scenarios to demonstrate the effectiveness of each aspect of our approach. Details of
these scenarios are explained in Figure 2. The performance of our proposed method, along with
the compared scenarios, is presented in Figure 2 for both Hit Ratio and NDCG metrics. From these
results, we can conclude that the user’s trust network plays a crucial role in the user-view embedding.
Additionally, for the item-view embedding, the item’s reviews significantly influence the item’s
representation. Finally, in the fifth scenario (MvL-GNN), we observed that the performance of
our proposed method improves by incorporating both sources of information—user trust and item
reviews—into the user-view and item-view embeddings.
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Figure 2: Evaluation of MvL-GNN across different scenarios. w/o_ir:We trained the model without
using the item representations extracted by the transformer model, meaning that the item review
information was removed from the item view.w/o_ii: In this scenario, we removed the meta-path-
based graph and used only the item’s reviews to extract the item-view embedding.w/o_ur: In this
scenario, we excluded the user interactions based on review information. w/o_uu: In this scenario,
we excluded the user’s trust network, meaning the model does not capture the knowledge-aware
dependencies among users during training.

5.4 IMPACT OF THE HYPERPARAMETERS

The proposed method includes several adjustable parameters, such as the number of layers, final
embedding dimensions, and learning rate, which must be optimized to achieve the best performance.
To address the issue of over-smoothing common in GNNs, we experimented with different numbers
of layers to evaluate their influence on the model’s performance. To address Q3, we analyzed the
experimental performance on the Epinions and Yelp datasets using different numbers of layers, as
shown in Figure 3. The results indicate that the best performance for both datasets is achieved when
the model uses two layers. The reason for this is that adding more layers leads to over-smoothing,
a common issue in GNNs that becomes more pronounced as the number of layers increases. As
the model performs repeated aggregation and transformation steps, the node representations tend to
converge toward a uniform representation. This convergence reduces the model’s ability to capture
nuanced differences between nodes, ultimately hindering its performance.
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Figure 3: Evaluation of MvL-GNN over a different number of layers.

Figure 4 illustrates the performance of our method with respect to the final embedding dimension. The
results show that performance begins to decline when the dimension exceeds 32. This decline can be
attributed to the importance of selecting an appropriate dimension for effectively capturing semantic
information. Increasing the dimension beyond a certain point may introduce redundant information,
negatively impacting the model’s generalization ability. Therefore, selecting the embedding dimension
to achieve optimal performance is crucial.
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Figure 4: Evaluation of MvL-GNN over different dimension values and learning rates.

Figure 4 also illustrates the impact of different learning rates on the performance of MvL-GNN. The
experiments reveal that increasing the learning rate initially leads to significant improvements in
performance. However, once the learning rate exceeds 0.001, the model’s performance on the Yelp
and Epinions datasets declines. It is crucial to strike a balance, as setting the learning rate too high
can cause unstable training and hinder convergence. At the same time, a learning rate that is too low
may result in slow progress and the model getting stuck in suboptimal local minima.
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Figure 5: Impact of τ on model performance.

Figure 5, represents the impact of τ on the performance of the model. For the Epinions dataset, the
optimal τ is between 0.1 and 0.5, while for Yelp, it is between 0.2 and 0.7. The performance on the
Ciao dataset follows a similar trend to that of Epinions.

6 CONCLUSION

In this paper, we proposed MvL-GNN, a multi-view graph representation learning method specifically
designed to address the limitations of traditional recommender systems. This method addresses
the limitations of traditional approaches by incorporating multiple data sources, such as user trust
relationships and user reviews, to enhance recommendation accuracy. The approach leverages user
trust networks to capture implicit social influences. It integrates a pre-trained language model like
BERT to transform user-generated reviews into meaningful embeddings, which helps capture nu-
anced user sentiments. Furthermore, the method employs contrastive learning to align and integrate
diverse data representations, ensuring consistency and complementarity between the different sources
of information. Through extensive experimentation on three real-world datasets (Yelp, Ciao, and
Epinions), we demonstrated the effectiveness of MvL-GNN in outperforming state-of-the-art models
across multiple metrics, including Hit Ratio and NDCG. Including multiple perspectives—user trust
networks, item reviews, and meta-path-based item graphs—proved crucial in generating high-quality
user and item embeddings, enhancing accuracy and robustness in recommendation tasks. Conse-
quently, MvL-GNN has proven to be an effective solution for capturing the complex relationships
between users and items in a recommendation setting, leveraging multiple sources of information to
address common challenges such as data sparsity and cold start problems. Future work could explore
further enhancements to MvL-GNN by incorporating additional data sources or experimenting with
more advanced contrastive learning techniques.
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7 APPENDIX

Table 3: Performance of NGCF and LightGCN methods on three datasets

Datas Metrics NGCF LightGCN MvL-GNN p-val
Ciao HR@10 0.6710 0.6801 0.7400 7e-9

ND@10 0.4612 0.4798 0.5301 8e-9
Epinions HR@10 0.7845 0.7985 0.8474 3e-6

ND@10 0.5845 0.5990 0.6595 3e-6
Yelp HR@10 0.7991 0.8079 0.8862 2e-5

ND@10 0.5700 0.5802 0.6402 1e-4
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Figure 6: Performance comparison with respect to different data sparsity degrees on Yelp and Ciao
datasets.

Figure 6, represents the effect of the MvL-GNN, HGCL and SMIN models in different sparsity. We
divide the set of users into five groups to represent diverse user active degrees. The HR metric of each
method is presented in the right side of y-axis. The left side y-axis represents the number of average
number of interactions in each user group with bars. It is obvious that our proposed method out
perform other two methods under different sparsity environments. The improvements of MvL-GNN
comes from the integration of multiple sources of information, such as user trust relationships and
user reviews and the use of a language model that allows the system to transform user-generated
reviews into meaningful embeddings. Therefore, through the conducted experiments, MvL-GNN is
able to maintain a decent performance even with sparse user-item interactions.
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