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Abstract
Scaling test-time compute is crucial for enhanc-
ing the reasoning capabilities of large language
models (LLMs). Existing approaches typically
employ reinforcement learning (RL) to maximize
a verifiable reward obtained at the end of reason-
ing traces. However, such methods optimize only
the final performance under a large and fixed to-
ken budget, which hinders efficiency in both train-
ing and deployment. In this work, we present a
novel framework, AnytimeReasoner, to optimize
anytime reasoning performance, which aims to
improve token efficiency and the flexibility of rea-
soning under varying thinking budget constraints.
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To achieve this, we truncate the complete think-
ing process to fit within sampled token budgets
from a prior distribution, compelling the model to
summarize the optimal answer for each truncated
thinking for verification. This introduces verifi-
able dense rewards into the reasoning process,
facilitating more effective credit assignment in RL
optimization. We then optimize the thinking and
summary policies in a decoupled manner to max-
imize the cumulative reward. Additionally, we
introduce a novel variance reduction technique,
Budget Relative Policy Optimization (BRPO), to
enhance the robustness and efficiency of the learn-
ing process when reinforcing the thinking policy.
Empirical results in mathematical reasoning tasks
demonstrate that our method consistently outper-
forms GRPO across all thinking budgets under
various prior distributions, enhancing both train-
ing and token efficiency.
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Figure 1: Left: We optimize anytime reasoning by sampling thinking budgets from a prior distribution pB and maximizing
the rewards at sampled budgets to push up the area under the curve. This objective naturally introduces verifiable dense
rewards into the thinking process. Right: Budget Relative Policy Optimization (BRPO) leverages these dense rewards to
improve advantage estimation via the Monte Carlo return (R) and an interpolated baseline that combines current progress
(V1) and the average return within the rollout group (V2).
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1. Introduction
OpenAI o1 (OpenAI, 2024) and DeepSeek-R1 (Guo et al.,
2025) have shown that scaling test-time compute via RL
is crucial for LLM reasoning. This involves an extensive
thinking process using the chain of thought (CoT) (Wei et al.,
2022) before producing an answer. RL is then employed
to maximize the outcome reward provided by a rule-based
verifier to check the correctness of the generated answer.
While RL for LLM reasoning is an active area of research,
most existing work focuses on optimizing final performance
based on the complete thinking process. This approach can
be inefficient in both training and deployment, as long CoTs
are costly, especially for online services.

In our work, we focus on optimizing anytime reasoning for
LLMs via RL. This is conceptually similar to the anytime
algorithms introduced in (Dean & Boddy, 1988; Zilberstein
& Russell, 1995), where the system can be interrupted at any
point during computation, providing the best possible solu-
tion so far and is expected to improve the solution quality
when more resources are allocated. Concretely in LLM rea-
soning, we assume the thinking process can be interrupted
at any time, and the model should be able to summarize the
best solution from incomplete thinking. This capability can
significantly extend the serving capacity for online services
with limited computing resources. When there are too many
requests to handle, the service can choose to interrupt in-
progress requests once the thinking length is able to give
sufficient accuracy, reserving longer thinking with better ac-
curacy when resources are available. Moreover, users may
want to control the thinking budget as in Gemini 2.5(Co-
manici et al., 2025) and Qwen 3(Yang et al., 2025a), but the
optimal budget is often agnostic. Compared to budget-aware
reasoning(Han et al., 2024; Aggarwal & Welleck, 2025), our
design supports an economical strategy by incrementally
increasing the budget, as it allows for continued thinking
and reuses the computation already spent.

To achieve optimal performance for anytime reasoning, we
propose sampling the thinking budget from a prior dis-
tribution while learning, rather than using a fixed, large
budget as in prior work (Liu et al., 2025; Zeng et al., 2025;
Luo et al., 2025). This approach makes the model per-
formance robust to potential interruptions in the thinking
process, while incentivizing it to reach correct answers more
efficiently. By achieving a balance between token efficiency
and thorough exploration (Qu et al., 2025), these models
are also able to obtain better performance when given larger
budgets.

We investigate how to efficiently train LLMs with RL under
sampled thinking budgets. By forcing the model to summa-
rize the answers at predefined thinking budgets (drawn from
the support of the prior distribution), we introduce verifiable
dense rewards into the reasoning process. These rewards

provide richer signals and better credit assignment during
training (Qu et al., 2025; Cui et al., 2025). We also propose
a novel variance reduction technique termed Budget Rel-
ative Policy Optimization (BRPO) that advances beyond
GRPO (Shao et al., 2024) to improve training stability and
efficiency under this dense reward framework. As illustrate
in Figure 1 (right), we leverage rewards at previous bud-
gets to compute the advantage function, combining with the
average return of a group of reasoning trajectories. Empiri-
cally, we observe that generating a high-quality summary is
critical for both final and anytime performance. Thus, we
decouple the optimization of the thinking and summary
policies, always sampling from a uniform distribution to
derive a better summary policy, thereby improving training
efficiency.

We term our overall framework as AnytimeReasoner. Exper-
imental results demonstrate that AnytimeReasoner consis-
tently surpasses GRPO in both final and anytime perfor-
mance. We conduct extensive ablation studies to evaluate
the impact of each component. By independently incor-
porating decoupled optimization, variance reduction, and
budget sampling into GRPO, we observe significant perfor-
mance enhancements, underscoring the effectiveness of our
methods. Notably, even when merely using the maximum
token budget (without budget sampling), our method still
outperforms GRPO in both standard and anytime reasoning,
highlighting the robustness of our approach.

2. Methodology
In a training paradigm similar to R1-Zero (Guo et al., 2025),
the model is tasked with generating a comprehensive CoT
within a designated "thinking box" upon receiving a ques-
tion. Subsequently, the model summarizes the answer based
on this thinking process. A rule-based reward is then calcu-
lated according to the summarized answer. The RL objective
is to maximize the expected reward:

J (θ) = Ex ∼ pX︸ ︷︷ ︸
question

Ez ∼ πθ(·|x)︸ ︷︷ ︸
thinking process

Ey ∼ πθ(·|x, z)︸ ︷︷ ︸
answer

[r(x, y)] (1)

where x represents the question, z denotes the thinking
process, y is the summarized answer, and r(x, y) is the
reward function.

In previous studies (Zeng et al., 2025; Liu et al., 2025; Luo
et al., 2025), the generation of thinking process and sum-
mary are typically sampled together. If the thinking process
exceeds the predefined generation limit, the response is con-
sidered a negative sample. We contend that this approach
is impractical, particularly in online services where a valid
summary should be provided even if the thinking process
is incomplete. We propose decoupling the generation of
the thinking process and its summary, allocating separate
token budgets for each. When the thinking process is halted
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due to budget constraints, we insert ellipses followed by a
</think> to prompt the model to produce a summary (see
Appendix A), similar to Muennighoff et al. (2025) and Qu
et al. (2025).

To differentiate between the thinking and summary policies,
we denote the thinking policy as πθ and the summary policy
as πϕ. By defining rϕ(x, z) = E

y∼πϕ(·|x,z)
[r(x, y)], the

objective can be expressed as:

J (θ, ϕ) = E
x∼pX ,z∼πθ(·|x)

[rϕ(x, z)] . (2)

Given that |y| ≪ |z|, multiple summaries can be sampled
to better estimate the expected reward for each thinking pro-
cess, while incurring only a small computational overhead.

2.1. Optimizing Anytime Reasoning

Test-time scaling (OpenAI, 2024) is crucial for enhancing
the reasoning capabilities of LLMs. This concept oper-
ates on the premise that increased computational effort dur-
ing the reasoning process generally leads to better perfor-
mance. However, in typical RL training setups like R1-Zero-
like (Guo et al., 2025), the performance on anytime reason-
ing is not guaranteed. The reward evaluation is based on
the entire thinking process, lacking insight into whether in-
cremental thinking consistently improves performance (Qu
et al., 2025).

To optimize anytime reasoning, we propose sampling the
thinking budget from a prior distribution rather than using
a fixed token budget. Let b represent the token budget for
thinking, sampled from a prior distribution pB over a set
of increasing budgets {b1, . . . , bm} (Pj = pB(b = bj) for
simplicity). The anytime reasoning objective is:

Janytime(θ, ϕ) = E
b∼pB,x∼pX ,z∼πθ(·|x)

[rϕ(x, z≤b)]

= E
x∼pX ,z∼πθ(·|x)

[
m∑

j=1

Pjrϕ(x, z≤bj )

]
,

(3)

where z≤b is the truncated thinking process at length of the
token budget b,

z≤b =

{
z, if b ≥ |z|
truncate(z, b), if b < |z| .

Instead of focusing solely on the final score based on the
entire thinking process as in standard reasoning task, we
maximize the expected score over all possible budgets with
distribution pB. As illustrated in Figure 1, this is akin to
maximizing the area under the score curve when pB is a
uniform distribution across every token budget. However,
evaluating for all token budgets is impractical and unnec-
essary, so we evaluate the score only at a small predefined
budget support (with m ≤ 8 in our experiments).

𝑥 𝑧! 𝑧" 𝑧# 𝑧$

𝑟$ = 1.0

Reasoning 
process 𝑥 question

𝑧 thinking

Intermediate 
reward

𝑅" = 1.9Cumulative 
Return 𝑅! = 1.9

Figure 2: By introducing dense rewards, we achieve better
credit assignment during RL training. We assume a uniform
distribution over thinking budgets and omit the probability
for simplicity.

It is important to note that this approach transforms the prob-
lem into a dense reward framework, introducing verifiable
dense rewards for each thinking budget. This facilitates
better credit assignment during RL training and enhances
the identification of each component’s contribution to a suc-
cessful reasoning process. As illustrated in Figure 2, the
dense rewards for budgets prior to reaching a correct an-
swer are low. However, the cumulative return is relatively
higher if the reasoning process ultimately arrives at a cor-
rect answer. In contrast, the cumulative return after the first
correct answer is relatively low, localizing and highlighting
the tokens that contributed to the initial correct answer. This
approach is distinct from typical sparse reward RL training
for standard reasoning tasks, where all tokens receive the
same return. Such sparse reward structures typically lead
to unstable and inefficient RL training, while our dense re-
ward approach provides more informative learning signals
throughout the entire reasoning process.

Relation to Standard Reasoning Tasks A larger thinking
budget is supposed to yield better performance in expecta-
tion. Since z≤b is always a prefix of z, the optimal summary
policy πϕ∗ should satisfy:

E
z∼πθ(·|x)

[rϕ∗(x, z≤b)] ≤ E
z∼πθ(·|x)

[rϕ∗(x, z)] , (4)

for any b and x. Then we have:

Janytime(θ, ϕ
∗) ≤ J (θ, ϕ∗) (5)

This justifies the anytime reasoning objective as a lower
bound of the standard reasoning objective. Therefore, max-
imizing performance in anytime reasoning should also en-
hance performance in standard reasoning tasks. In an ex-
treme case where Pm = 1 (training only with full reasoning
length), Janytime falls back to the standard reasoning objec-
tive J . For detailed proof, refer to Appendix C.

2.2. Budget Relative Policy Optimization

By defining jt = argminj bj ≥ t, which represents the
nearest token budget after t, the gradient for the thinking

3



Optimizing Anytime Reasoning via Budget Relative Policy Optimization

policy can be computed as follows:

∇θJanytime(θ, ϕ) = E
x∼pX ,z∼πθ(·|x) |z|∑

t=1

∇θ log πθ(zt|x, z<t) (R(x, z, jt)− V (x, z<t))

 ,

(6)

where

R(x, z, jt) =

m∑

j=jt

Pjrϕ(x, z≤bj ),

and V (x, z<t) is the variance reduction term, which should
be a function correlated to R(x, z, jt) but invariant with
respect to zt.

Typically, we set

V (x, z<t) = E
z≥t∼πθ(·|x,z<t)

[R(x, [z<t, z≥t], jt)]

, representing the expected future return (Sutton & Barto,
2018). In traditional RL, GAE(Schulman et al., 2015) is
often used by estimating this value with a critic model. How-
ever, training a critic model for LLM can be both costly and
noisy (Guo et al., 2025). An alternative is sampling-based
approach, as in VinePPO (Kazemnejad et al., 2024) and
Remax (Li et al., 2023), but this requires significant addi-
tional computation across all thinking budgets. Group-based
methods, such as GRPO (Shao et al., 2024) and RLOO (Ah-
madian et al., 2024), treat generation as a bandit and use
the average score of multiple responses for variance reduc-
tion. However, they are unsuitable in our scenario due to
the presence of dense rewards.

In LLM generation, newly sampled tokens (actions) are
consistently appended to the existing context (states). This
implies that the current context (z<t) always serves as a pre-
fix for any future context ([z<t, z≥t]). This unique property
distinguishes it from traditional RL but is often overlooked.
Assuming a perfect summary policy that consistently ex-
tracts the best answer from the thinking process, the reward
should increase monotonically with the number of generated
tokens, satisfying rϕ(x, z<t) ≤ rϕ(x, [z<t, z≥t]). Conse-
quently, the current reward rϕ(x, z<t) is correlated with any
future reward rϕ(x, [z<t, z≥t]), particularly when t is large
enough to yield a correct answer or when |z<t| ≫ |z≥t|.
This correlation justifies its use as a suitable baseline for
variance reduction.

Building on this insight, we introduce Budget Relative
Policy Optimization (BRPO) for efficient variance reduc-
tion. Specifically, we employ the following variance reduc-
tion term:

V1 =

∑jt−1
j=1 λjt−jrϕ(x, z≤bj )∑jt−1

j=1 λjt−j

m∑

j=jt

Pj , (7)
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Figure 3: Left: The correlation coefficient of V1 and V2

with R(x, z, jt). Right: The normalized variance of our
BRPO. We evaluate the R1-Distill-1.5B model under the
scenario where λ = 0.5, and pB is a uniform distribution
over {1000, 2000, ..., 8000}.

where the evaluated scores at previous budgets, weighted by
a discount factor λ, serve as the reward baseline (highlighted
in red), and are multiplied by the sum of probabilities after
jt to align with the scale of R(x, z, jt).

As illustrated in Figure 3, when t is small, the effectiveness
of V1 may diminish because a short thinking process z<t

provides limited information. In such cases, we apply a
variant of GRPO as a complement. We sample a set of
thinking processes {z1, z2, . . . , zG} and compute:

V2 =
1

G

G∑

i=1

R(x, zi, jt), (8)

which represents the expected return after jt given the ques-
tion x. Note that the correlation between V2 and R(x, z, jt)
decreases as t increases, as shown in Figure 3, due to differ-
ing prefixes (z<t) in these thinking processes.

By combining V1 and V2, the overall variance reduction
term is:

V (x, z<t) =
jt − 1

m
V1 +

m− jt + 1

m
V2. (9)

As demonstrated in Figure 3, our BRPO significantly out-
performs GRPO in reducing variance, especially when the
thinking is long.

2.3. Decoupled Optimization for Thinking and
Summary

In a rigorous derivation, the optimization of thinking and
summary policies should share the same prior budget distri-
bution pB. However, an optimal summary policy is crucial
when the thinking process is incomplete, and its effective-
ness is significantly influenced by pB. An imbalanced prior
distribution can lead to suboptimal summary policy. To
achieve a robust anytime reasoning performance, we de-
couple the optimization of thinking and summary policies
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Figure 4: The comparison of anytime reasoning performance between GRPO and our AnytimeReasoner with various prior
budget distributions. Notably, the accuracies at the maximum token budget (8000) reflect the performance in the standard
reasoning task.

by using a different budget distribution, p′B, for the sum-
mary policy. The decoupled gradient of the summary policy
with respect to the anytime reasoning objective 3 can be
computed as follows:

∇ϕJanytime(θ, ϕ) = E
x∼pX ,z∼πθ(·|x)[

m∑
j=1

P ′
j E
y∼πϕ(·|x,z≤bj

)

[
∇ϕ log(πϕ(y|x, z≤bj ))r(x, y)

]]
.

(10)

In our experiments, we set p′B as a uniform distribution over
the budget support {b1, . . . , bm}. We employ a distinct ap-
proach to optimize the summary policy. Specifically, for
each question x and thinking process z≤bj , we sample a
group of summaries and use GRPO to stabilize the optimiza-
tion.

Typically, a shared model (ϕ = θ) is used for both thinking
and summary policies. In such cases, the overall gradient is:

∇θJanytime(θ) = ∇θJanytime(θ, ϕ)
∣∣
ϕ=θ

+∇ϕJanytime(θ, ϕ)
∣∣
ϕ=θ

.

3. Experiments
We implement our algorithms based on the Verl framework
(Sheng et al., 2024), incorporating several key modifications
as detailed in Appendix B. We employ Proximal Policy
Optimization (PPO) (Schulman et al., 2017) to optimize
both thinking and summary policies. For the thinking policy,
we use BRPO to compute the advantage function, as detailed

in Section 2.2. During training, we allocate four token
budgets (m = 4) for thinking: {2000, 4000, 6000, 8000}.
For each question, we sample a group of 8 complete thinking
processes (stopped either by </think> or when exceeding
8000 tokens). We sample 4 answers to calculate the average
score at each thinking budget, which is used to compute the
advantage function as in Dr. GRPO (Liu et al., 2025). The
summary length is restricted to 128 tokens. We extract the
first answer and use a rule-based verifier to determine the
0/1 outcome reward. As detailed in Section 2.3, we employ
different prior distributions for the thinking and summary
policies. Unless otherwise specified, the prior distribution
p′B for the summary policy is set to a uniform distribution.

We fine-tuned DeepSeek-R1-Distill-Qwen-1.5B (Guo et al.,
2025) on 40,315 math problems from DeepScaleR (Luo
et al., 2025) for a single epoch, using a batch size of 64 ques-
tions per policy iteration. Our experiments were conducted
on 8 NVIDIA A100 80G GPUs, with each experiment tak-
ing approximately 30 hours to complete (less than 10%
overhead in total compared to GRPO). During training, we
evaluate the average scores of AIME2024 and AMC2022 ev-
ery 20 steps and report their performance curves, sampling
32 responses for each question. After training, we assess
the final model using five benchmarks: AIME2024 (Li et al.,
2024a), AMC2022 (Li et al., 2024a), MATH500 (Hendrycks
et al., 2021), Minerva Math (Lewkowycz et al., 2022), and
Olympiad Bench (He et al., 2024), with 32 uniform token
budgets ranging from 0 to 8000. We compare our methods
with GRPO (Shao et al., 2024), incorporating the corrections
introduced in Dr. GRPO (Liu et al., 2025).
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Figure 5: Ablation on verifiable dense rewards.

3.1. Main Results

We consider the following prior distributions pB when opti-
mizing the thinking policy by equation 3:

• Base: We only optimize the final performance as in
standard reasoning task, namely Pm = 1.

• Uniform: We set pB as a uniform distribution.

• Linear: We assign probability proportional to the bud-
get length, such that pB(b) ∝ b.

We evaluate the final models after training and plot the score
curves under varying thinking budgets in Figure 4. For
each question in AMC and AIME, we sample 320 thinking
processes to compute the average score. For other datasets,
we sample 80 thinking processes per question.

As shown in Figure 4, all variants of our method consis-
tently outperform GRPO by a large margin across varying
prior distributions. With small budgets, AnytimeReasoner-
uniform excels by prioritizing optimization of these budgets.
When the thinking budget is large, AnytimeReasoner with
different prior distributions tends to converge to similar per-
formance, demonstrating the robustness of our approach.
Notably, even for AnytimeReasoner-base, where we opti-
mize performance only under the maximum thinking budget
as in the GRPO baseline, we still achieve significant better
performance at all thinking budgets. This improvement is
due to the decoupled optimization and our variance reduc-
tion technique (discussed further in Section 3.2.3). More
details can be found in Appendix D.1.

3.2. Ablations

To further investigate which aspects of our framework con-
tribute to performance improvements, we conduct detailed
ablations considering three factors: verifiable dense rewards
(Section 3.2.1), decoupled optimization (Section 3.2.2), and
variance reduction (Section 3.2.3). We report three metrics
during training. Anytime Accuracy: the average accuracy
over thinking budgets at {2000, 4000, 6000, 8000}. Final
Accuracy: the accuracy at the maximum budget (8000). Av-
erage Thinking Length: the average thinking length under
the maximum budget (8000).

3.2.1. VERIFIABLE DENSE REWARDS

We investigate the effectiveness of verifiable dense rewards
by modifying the objective of the thinking policy to equa-
tion 3 with a linear prior distribution, while keeping the
summary policy training consistent with GRPO. Specifi-
cally, we use V2 as the variance reduction term to align with
GRPO and eliminate the influence of enhanced variance
reduction. We also compare our method with reward shap-
ing, where we add a length penalty for correct answer as an
alternative to budget sampling. As in (Aggarwal & Welleck,
2025), the reward will be 1− 0.2|z|

bm
for the correct answer

and 0 for wrong answer.

As illustrated in Figure 5, incorporating dense rewards im-
proves both the anytime and final performance. Notably,
since our objective diverges from directly optimizing final
performance as in the GRPO baseline, the observed im-
provements can be attributed to enhanced credit assignment
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Figure 6: Ablation on decoupled optimization for summary policy.

facilitated by dense rewards. Another prominent observa-
tion is that the average thinking length is clearly shorter
than the GRPO baseline under the maximum budget. This
is because the thinking policy is encouraged to arrive at a
correct answer as quickly as possible, making the model
favor shorter, correct responses. Although reward shaping
with length penalty can also reduce the thinking length, it
sacrifices the performance and is unstable during training.

3.2.2. DECOUPLED OPTIMIZATION

To study the impact of decoupled optimization for thinking
and summary policies (detailed in Section 2.3), we mod-
ify the training of summary policy in GRPO to align with
AnytimeReasoner, while keeping the thinking policy train-
ing unchanged. Specifically, we sample 4 answers for each
thinking budget in {2000, 4000, 6000, 8000}, applying
GRPO within each summary group. This approach trains a
summary policy under uniformly distributed thinking bud-
gets, while the thinking policy optimizes performance only
under the maximum budget (8000).

As shown in Figure 6, the decoupled GRPO clearly outper-
forms the vanilla GRPO, especially in the AMC benchmark.
Notably, the significant improvement in anytime accuracy
(the average score under sampled thinking budgets) indi-
cates that decoupled optimization results in a better sum-
mary policy for anytime reasoning.

3.2.3. VARIANCE REDUCTION

To evaluate the effectiveness of our BRPO variance reduc-
tion (as detailed in Section 2.2), we modified the training
of the thinking policy by incorporating BRPO’s variance
reduction techniques, while maintaining the summary policy

training consistent with GRPO. Specifically, we set m = 4
and P (bm) = 1 in equation 7, aligning the objective exactly
with GRPO.

Figure 7 shows that our approach enhances performance
on the AIME benchmark. As discussed in Section 3.2.2,
the suboptimal summary policy in GRPO may constrain
the potential of BRPO’s effectiveness. To address this, we
introduced decoupled optimization (detailed in Section 2.3)
to improve the summary policy, resulting in further perfor-
mance gains.

4. Related Works
Reinforcement Learning with Verifiable Rewards
Since the introduction of DeepSeek-R1 (Guo et al., 2025),
a growing body of research has adopted the reinforcement
learning with verifiable rewards (RLVR) paradigm (Lam-
bert et al., 2024) to improve the reasoning capabilities of
large language models (LLMs). SimpleRL (Zeng et al.,
2025) provides the first open-source replication of R1-Zero
in mathematical domains and analyzes RL dynamics across
various base models. Hu et al. (2025) demonstrate that re-
moving the KL regularization used in RLHF (Christiano
et al., 2017) improves both RL efficiency and asymptotic
performance. Liu et al. (2025) identify an optimization bias
in GRPO (Shao et al., 2024) and propose Dr.,GRPO, which
applies a Monte Carlo policy gradient method with a base-
line (Sutton & Barto, 2018). While these works improve our
understanding of R1-Zero-style training, they still depend
on sparse outcome-based rewards, which pose challenges
for credit assignment and learning efficiency (Kazemnejad
et al., 2024). In contrast, our method introduces a novel
policy optimization framework that leverages cheaply esti-
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Figure 7: Ablation on variance reduction.

mated verifiable dense rewards to improve sample efficiency
and learning stability.

Token Budget Efficiency of Reasoning Models Previ-
ous efforts have studied budgeted reasoning by reducing
response length through prompting (Jin et al., 2024; Nayab
et al., 2024; Lee et al., 2025; Ma et al., 2025) or adaptive
sampling (Yang et al., 2025b). While these training-free
approaches can shorten outputs, they often entail a trade-off
between conciseness and task performance. More recent
work explores token efficiency within online RL frame-
works, enabling models to jointly optimize for accuracy and
brevity. Yeo et al. (2025) observe that the output lengths
on harder questions tend to grow during RL training, and
propose a cosine-shaped reward to constrain length. Liu
et al. (2025) trace this issue to optimization bias in GRPO
and show that correcting it enhances token efficiency. Fur-
ther, Arora & Zanette (2025) and Aggarwal & Welleck
(2025) apply explicit reward shaping to target shortened
or fixed outputs. Our work differs by operating in an any-
time reasoning framework, where the reasoning process
can be interrupted at anytime and the best-effort solution
should be provided (Dean & Boddy, 1988; Zilberstein &
Russell, 1995). Despite not explicitly enforcing conciseness,
our objective naturally encourages efficient reasoning, as
demonstrated empirically.

Connection to MRT An independent work to ours, MRT
(Qu et al., 2025), optimizes test-time compute by minimiz-
ing cumulative regret relative to an oracle. Since the oracle
is unknown, they employ meta-RL (Xiang et al., 2025; Beck
et al., 2023) as an approximation, aiming to maximize the
"progress" of each newly generated episode. Despite shar-

ing a similar high-level goal, our formulation fundamentally
differs. Rather than minimizing regret, we optimize any-
time performance by sampling the thinking budget from a
prior distribution, remaining tractable with standard RL tech-
niques. These foundational distinctions lead to significant
methodological differences. Firstly, our approach operates
on a per-token basis, instead of on episode which is ambigu-
ous and can be hackable in RL if not well handled. Secondly,
our method is grounded in principled RL, explicitly account-
ing for long-term returns. In contrast, MRT adopts a greedy
strategy, optimizing the progress of immediate next episode
only. Our experimental results also significantly outperform
their reported outcomes. We achieve an accuracy of 32.7%
compared to their reported 30.3% on AIME 2024.

5. Conclusion
The effectiveness of test-time scaling in LLM reasoning is
commonly attributed to the generation-verification gap (Xi-
ang et al., 2025), where verifying solutions is substantially
easier than generating them. During reasoning, the model
engages in an iterative search process, exploring potential
solutions until a valid one is found. Once generated, the so-
lution is verified for correctness, and this search-verification
loop continues until a confident answer is produced.

In this work, we present a framework that systematically
exploits this generation-verification gap. Our approach is
based on the key observation that verifying answers and
extracting them from partial reasoning traces is easy and
computationally cheap. Building on this insight, we de-
sign our framework to produce answers at some predefined
thinking budgets, thereby introducing verifiable dense re-
wards to enhance RL training. Furthermore, we utilize these
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additional rewards to construct a more effective variance
reduction baseline than GRPO, significantly improving the
stability and efficiency of RL training. By integrating these
techniques, our framework achieves superior performance
in both standard and anytime reasoning tasks.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Implementation Details
We illustrate the implementation details about how we truncate the reasoning process and prompt the model to output an
answer.

<｜User｜>For how many values of the constant $k$ will the
polynomial $x^{2}+kx+36$ have two distinct integer roots? Let's
think step by step and output the final answer within \boxed{}.
<｜Assistant｜><think>
Okay, so I have this problem here: For how many values of the
constant \( k \) will the polynomial \( x^{2} + kx + 36 \) have two
distinct integer roots? Hmm, let me try to figure this out step by
step. 

...

So, we have 4 positive and 4 negative pairs, making 8 pairs in
total.
</think>

**Final Answer**
The number of values of \( k \) is \boxed{8}.

(a) Thinking is stopped by </think>.

<｜User｜>For how many values of the constant $k$ will the
polynomial $x^{2}+kx+36$ have two distinct integer roots? Let's
think step by step and output the final answer within \boxed{}.
<｜Assistant｜><think>
Okay, so I have this problem here: For how many values of the
constant \( k \) will the polynomial \( x^{2} + kx + 36 \) have two
distinct integer roots? Hmm, let me try to figure this out step by
step. 

...

So, we have 4 positive and 4 negative pairs, making ...

...

</think>

**Final Answer**
The number of values of \( k \) is \boxed{8}.

(b) Thinking is stopped due to out of budget.

Figure 8: We decouple the generation of thinking and its summary. Given the question, the model first generates the thinking,
which can be stopped by a special token </think> or the budget limit. Then we insert ∗ ∗ Final Answer ∗ ∗ (and two
ellipsis · · · plus </think> for out of budget cases) to prompt the model to summarize the answer. In training, these
inserted tokens will be ignored when calculating the loss.

B. Tree-like Generation and Training

𝑥 𝑧! 𝑧" 𝑧# 𝑧$

𝑦"! 𝑦"% 𝑦#! 𝑦#% 𝑦$! 𝑦$%
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incorrect Answer

correct AnswerGeneration

Training

𝑥 question

𝑧 thinking

Figure 9: Our methods utilize a tree-like structure for generation and training.

Unlike previous methods with sequential question-response generation and training, our approach employs a tree-like
structure. In this section, we introduce how to address implementation challenges for efficient training.

During generation, we use the prefix caching feature of vLLM (Kwon et al., 2023) to reuse computations. We sample a
complete thinking process z for a question x, then split it based on predefined token budgets ({i, j, k} in Figure 9). Each
partial thinking process is appended with a special end-of-think token (</think>), and the model is prompted to output the
answer directly (see Appendix A for more details).

During training, each response is typically concatenated with its corresponding question using FlashAttention (Dao et al.,
2022) for speed. However, this introduces significant duplicated computation for tree-like structures, making it impractical
due to high computational demands for LLM training. We implement a tree structure attention mask based on FlexAttention
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(Li et al., 2024b). As shown in Figure 9, we append all summaries at the end of the thinking process and record their
connection positions in a 1D tensor. This tensor is converted to a block mask by FlexAttention, avoiding 2D tensors that can
cause out-of-memory issues for long generation lengths.

C. Relation Between Standard and Anytime Reasoning
In this section, we provide a proof for the inequality below:

Janytime(θ, ϕ
∗) ≤ J (θ, ϕ∗) ≤ 1

Pm
Janytime(θ, ϕ

∗).

According to equation 4, we have:

E
z∼πθ(·|x)

[rϕ∗(x, z≤b)] ≤ E
z∼πθ(·|x)

[rϕ∗(x, z)] ,

Thus, it follows that:

Janytime(θ, ϕ
∗) = E

x∼pX ,z∼πθ(·|x)

[
E

b∼pB
[rϕ(x, z≤b)]

]

≤ E
x∼pX ,z∼πθ(·|x)

[rϕ(x, z)]

= J (θ, ϕ∗).

(11)

Assuming r(x, y) ≥ 0, which is always achievable by adding a constant to each reward, we also have:

Janytime(θ, ϕ
∗) = E

x∼pX ,z∼πθ(·|x)

[
E

b∼pB
[rϕ(x, z≤b)]

]

≥ E
x∼pX ,z∼πθ(·|x)

[Pmrϕ(x, z≤bm)]

= E
x∼pX ,z∼πθ(·|x)

[Pmrϕ(x, z)]

= PmJ (θ, ϕ∗).

(12)

Combining 11 and 12, we can get

Janytime(θ, ϕ
∗) ≤ J (θ, ϕ∗) ≤ 1

Pm
Janytime(θ, ϕ

∗). (13)

This completes the proof.

D. Experimental Results
D.1. Main Results

We present the training curves of our AnytimeReasoner in Figure 10, corresponding to the experiments in Section 3.1. We
also evaluate the performance of the models at training step of 600, and report the final accuracy in Table 1 and the anytime
accuracy in Table 2.
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Figure 10: The training curves for main results.

Algorithm AMC22 AIME24 MATH500 Minerva OlympiadBench Avg.

R1-Distill-1.5B 56.4 22.3 81.1 26.3 42.0 45.6
GRPO 65.0 28.9 84.7 28.9 45.9 50.7
AR-base 68.4 32.7 85.5 29.6 47.3 52.7
AR-linear 68.6 32.1 85.6 29.6 47.3 52.6
AR-uniform 68.5 32.2 85.6 29.2 47.2 52.5

Table 1: The Final Accuracy by evaluating the maximum budget (8000) for the final models.

Algorithm AMC22 AIME24 MATH500 Minerva OlympiadBench Avg.

R1-Distill-1.5B 48.2 16.3 74.5 24.1 36.0 39.8
GRPO 53.4 19.0 77.2 26.6 38.8 43.0
AR-base 57.0 21.9 78.2 27.3 40.2 44.9
AR-linear 58.2 22.3 79.0 27.7 40.9 45.6
AR-uniform 58.8 22.9 79.4 27.5 41.2 46.0

Table 2: The Anytime Accuracy by evaluating 32 budgets (every 250 tokens) for the final models.
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