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Abstract

In recent years, graph neural networks (GNNs) have been the dominant approach for graph
representation learning, leading to new state-of-the-art results on many classification and
prediction tasks. However, they are limited by the fact that they cannot effectively learn
expressive node representations without the guide of labels, thus suffering from the labeled
data scarcity problem. To address the challenges of labeling costs and improve robustness in
few-shot scenarios, pre-training on self-supervised tasks has garnered significant attention.
Additionally, numerous prompting methods have been proposed as effective ways to bridge
the gap between pretext tasks and downstream applications. Although graph pre-training
and prompt tuning methods have explored various downstream tasks on undirected graphs,
directed graphs have been largely under-explored, and these models suffer limitations in
capturing directional and topological information in directed graphs. In this paper, we pro-
pose a novel topology-guided directed graph pre-training and prompt tuning model, named
TopoDIG, that can effectively capture intrinsic directional structural and local topological
features in directed graphs. These features play essential roles in transferring knowledge
from a pre-trained model to downstream tasks. For model architecture, TopoDIG consists
of an encoder in the form of a magnetic Laplacian matrix, a topological encoder, and a graph
prompt learning function. Experimental results on both real-world and synthetic directed
graphs demonstrate the superior performance of TopoDIG compared to prominent baseline
methods.

1 Introduction

With the growing prevalence of applications where data originate from non-Euclidean domains and are nat-
urally represented as graphs—such as social networks, citation networks, and biochemical structures—graph
data, rich in relational information, play a crucial role in numerous learning tasks (Zhou et all 2020; [He
et al.| [2024b)). These tasks include predicting and modeling social interactions, protein interfaces, classifying
diseases, learning molecular fingerprints, and modeling physical systems (Zhou et al.| [2020; He et al., 2025)).
In many cases, these relationships inherently exhibit a sense of direction. For instance, the WebKB dataset
(Pei et al., 2020)) consists of university websites connected by hyperlinks. In this setting, one website may
link to another without necessarily receiving a reciprocal link. Such datasets are naturally represented by di-
rected graphs/networks. Directed networks, with asymmetric sending and receiving patterns, are important
with many applications, such as clustering time-series data with lead-lag relationships (He et al., |2022b)),
ranking from pairwise comparisons (He et all 2022a), angular synchronization (He et al., [2024a)), detect-
ing influential groups in social networks (He et al., 2022b} [Zhang et al. [2021b), and IIoT-based cognitive
manufacturing (Liu et al., [2022a)). Indeed, He et al.| (2022b]) points out that even in the absence of any
edge density differences, directionality (i.e., edge orientation) can reveal latent properties of network flows.
Moreover, [Zhang et al.| (2021b) introduces MagNet, a spectral Graph Neural Network (GNN) designed for
directed graphs. MagNet is built on the magnetic Laplacian, a complex Hermitian matrix that captures
both geometric and directional structure: the magnitude of its entries encodes undirected geometric rela-
tionships (here we refer to connection patterns), while their phase represents directional information (e.g.,
how information flows on a graph, or source and target information for edges). A tunable "charge' parameter
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is introduced, which asymptotically allows control over the emphasis on directionality for small parameter
values. More generally, different charge parameter values induce sensitivity to different directed subgraph
motifs. Although these models achieve promising results in the directed graph domain, they cannot simulta-
neously capture directional and topological structures which may result in the loss of important higher-order
directional information (which is crucial for certain tasks).

Besides, recent trends in graph transfer learning have led to a proliferation of studies that learn useful graph
representations that can be applied to various downstream tasks or different domains. Among transfer
learning methods, graph prompt learning is a major area of interest and a number of recent efforts have been
made on graph pre-training, graph prompt design, and graph fine-tuning (Sun et al.| 2023b)). For example,
GPPT (Sun et al.,[2022) employs edge prediction as a pre-training objective and redefines node classification
within this framework by introducing labeled tokens into the original graph and aligning the classification
task with the pretext objective. GraphPrompt (Liu et al., [2023) unifies pre-training and downstream tasks
within a common task template while incorporating a learnable prompt that guides the downstream task
in identifying the most relevant knowledge from the pre-trained model in a task-specific manner. All-in-
One (Sun et al.l |2023a) introduces a meta-learning technique to the design of graph prompt which improve
multi-task performance. Nonetheless, most graph prompt learning do not take directed graph structure into
account or may discard this salient information, e.g., (Zi et al., 2024)) lists six different pre-training methods
and 5 graph prompt learning methods, however, none of these methods has been applied to directed graphs.

To address those two issues, in this work, we first propose a Topology-Guided Directed Graph Pre-
training and Prompt Learning (TopoDIG) approach on directed graphs which learn from direc-
tional and topological information generated by magnetic Laplacian-based graph convolutional networks
and Dowker complex-based topological representation learning module, respectively. In essence, our main
contributions can be summarized as follows:

e We propose an innovative directed graph pre-training framework, which brings the concepts of mag-
netic Laplacian, Dowker complex-based topological features, and topological representation learning
to the directed graph domain.

e We design a topology-empowered graph prompt function that improves the transfer and generaliza-
tion capabilities of GNN.

o We present extensive experimental studies on both real-world and synthetic datasets and find that
our proposed TopoDIG outperforms the competitive baselines in various few-shot node classification
tasks. These observations demonstrate the effectiveness of our framework in practical applications.

2 Related Work

2.1 Graph Neural Networks for Directed Graphs

Graph Neural Networks (GNNs) are specifically designed to learn node representations by leveraging neu-
ral networks that operate directly on graph structures. Among the various deep learning approaches, the
message-passing framework has emerged as the dominant paradigm in recent works, including models such
as Graph Convolutional Networks (GCN) (Kipf & Welling}, [2017)), GraphSAGE (Hamilton et al., 2017)), and
Graph Attention Networks (GAT) (Velickovi¢ et al., 2018). Through iterative aggregation steps, these meth-
ods enable each node’s representation to incorporate information from its neighboring nodes across multiple
hops which is crucial for enhancing the performance of downstream tasks. However, in directed graphs, these
traditional GNNs struggle to fully capture the directional relationships between nodes. That is, the inherent
symmetry of message-passing methods often disregards the edge direction, leading to a loss of important
structural information. This limitation becomes particularly pronounced in tasks where the directionality of
the graph plays a critical role such as in the analysis of causal relationships or in recommendation systems.
To relieve this limitation, recently, several methods focus on handling directional structure during the prop-
agation and leverage the power of directed Laplacian to uncover complex patterns. For instance, DGCN
(Tong et al.l |2020b) leverages first- and second-order proximity by constructing three Laplacians, but it can
be inefficient in terms of space and computation speed. DiGCN (Tong et al,, |2020al) simplifies DGCN by
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introducing a directed Laplacian based on PageRank and aggregating information while considering higher-
order proximity. MagNet (Zhang et al. [2021b) builds a complex Hermitian matrix where the magnitude of
its entries encodes undirected geometric structure, and their phase captures directional information.
proposes a directed network data augmentation technique, Laplacian perturbation, and applies
it to contrastive learning in directed graphs. DiGCL focuses on directed network clustering,
introducing novel imbalance objectives and evaluation metrics based on flow imbalance measures.

2.2 Graph Pre-Training and Prompt Tuning

Most transfer learning approaches in graph representation learning follow the "pre-train & fine-tune"
paradigm. This framework involves leveraging readily available information through a pretext task (e.g.,
node-level, edge-level, or graph-level) to learn meaningful representations which are subsequently fine-tuned
on a downstream task using the pre-trained model as initialization. The primary objective of graph pre-
training is to capture structural patterns from input graphs in a self-supervised manner. In general, pre-
training methods can be categorized into three approaches based on their tailored learning architectures,
i.e., node-level, edge-level, and graph-level respectively. Significant advancements have been made in each
category. For the graph-level learning, BRep-BERT integrates GNNs with Transformers
and incorporates graph structural information into the Transformer to learn both global and local entity
feature representations. At the edge-level, EdgePreGPPT (Sun et al) [2022) estimates link probabilities
between node pairs using dot product calculations, and enhances the similarity of contextual subgraphs of
linked pairs and reduces similarity for unlinked pairs by sampling triplets from label-free graphs. At the
node-level, MoAMa introduces a novel node-masking technique that enables the model to
capture long-range inter-motif structures for graph pre-training. Additionally, the adaptation of knowledge
from an unlabeled graph to a target downstream task is typically achieved through fine-tuning where the pre-
trained GNN is refined using a limited amount of labeled data . Furthermore, graph prompt
functions mandate a pre-training task that can be readily emulated and integrate the pre-trained model into
downstream tasks smoothly. ProG (Zi et al., [2024) provides a comprehensive overview of 5 state-of-the-art
graph prompt techniques from GPPT (Sun et al.,2022) to GPF-plus (Fang et al.,|2023)) to All-in-one (Sun]
. The fine-tuning strategy is inherently related to the pre-training method. Specifically, if
pre-training is conducted at the graph-level, an appropriate graph-level fine-tuning approach should be em-
ployed, e.g., S2PGNN provides an adaptive fine-tuning framework for preserving the global
information that optimally tailors the fine-tuning process to the characteristics of the pre-trained GNN and
the downstream dataset in graph-level tasks. However, all these approaches fall short in their ability to
incorporate directional structure and topological information, the essence of directed graphs.

2.3 Deep Learning with Topology

Topological data analysis (TDA) (Wasserman| 2018} [Chazal & Michell 2021} |Carlsson et all [2012)), a collec-
tion of methods derived from algebraic topology, has demonstrated significant utility across various machine
learning tasks due to its robustness to noise and adaptability to diverse data modalities, including images,
time series, and graphs. Among TDA techniques, persistent homology (PH) has gained prominence in image
classification, graph learning, and text mining by capturing topological structures across multiple intensity
levels. Additionally, approaches such as discrete Morse theory, topological interactions, and center-line trans-
forms have further contributed to performance improvements in these domains. In graph learning tasks, TDA
has been leveraged in graph neural networks for topology learning by incorporating topological descriptor
embeddings or PH-based loss functions to enhance GNN’s performance (Carriere et al., 2020; |Chen et all
[2021}; |Zhao & Wang), |2019; [Arafat et al.| 2025; Horn et al. [2022)). Despite these advancements, conventional
persistent homology pipelines often face substantial scalability challenges when applied to large-scale graphs.
Standard constructions such as Vietoris—Rips or clique complexes typically incur prohibitive computational
and memory costs, as the number of simplices grows exponentially with graph density and size. To address
this issue, new approaches based on weaker complexes such as Dowker complex which can effectively reduce
computational complexity (Dowker} [1952; [Liu et al.| |2022b; |Choi et al., [2024} [Li et all, [2025), which con-
stitute a promising research direction. However, prior research primarily concentrate on undirected graphs,
and Dowker complex has untapped potential in transfer learning for directed graphs where learning mean-
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Figure 1: Overview of the TopoDIG pre-training and prompting framework. Given an input directed graph
with node attributes, TopoDIG learns transferable representations through two complementary pathways
(with the gray box). The first branch (i) applies magnetic Laplacian-based graph convolution (MLGC)
layers to capture directional and local structural information. In parallel, the second branch (ii) constructs a
Dowker complex to encode higher-order relational structures, which are transformed into compact topolog-
ical embeddings via the topological representation learning (TPL) module. The structural and topological
representations are fused to form joint node embeddings. Pre-training is performed using a pairwise pre-
diction objective on both node-node and token-node pairs with a shared MLP and pretext loss, enabling
topology-aware and prompt-compatible representations for downstream tasks.

ingful representations across tasks remains challenging. Our work, TopoDIG, introduces a novel framework
that integrates directed geometric structure learning, topology-level information learning, graph prompting,
and fine-tuning to facilitate knowledge transfer in the directed graph domain. More specifically, by leverag-
ing PH to extract topological features, our approach enhances the adaptability of pre-trained models while
preserving critical directional structural properties. This represents a significant departure from previous
applications of TDA and extends its impact beyond unsupervised topology discovery to informed transfer
learning across complex graph domains.

3 Method

Problem Definition. Denote a (possibly weighted) directed graph (digraph) with node attributes as
G = (V,&,w,X), with V the set of nodes, £ the set of directed edges/links, and w € [0, 00)/¢! the set of edge
weights. G may have self-loops, but no multiple edges. The number of nodes is n = V|, and X € R"*dfeat jg
a matrix whose rows encode node features. This network can be represented by the node feature matrix X
and the adjacency matrix A = (4;;)i jev, with A;; = 0 if no edge exists from v; to v;; if there is an edge e
from v; to v;, we set A;; = w., the edge weight.

In this section, we will introduce, in detail, the TopoDIG framework, which leverages directional structural
features and topological information of the directed graph to enhance the expressiveness and generalization
capability of GNNs. TopoDIG mainly comprises three modules: magnetic Laplacian-based GNN module,
topological signature modeling module, and graph prompt learning module. Figure [l provides an intuitive
illustration of the design of pre-training and prompting framework (including magnetic Laplacian-based
GNN module and topological signature modeling module) within TopoDIG.
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3.1 Magnetic Laplacian-Based Graph Neural Networks

MagNet (Zhang et al., |2021b)) applies the concept of a magnetic Laplacian to directed graph neural networks,
building on a parameterized family of magnetic Laplacians (Fanuel et al.l 2017; |F. de Resende & F. Costa,
2020). Our spectral GNN part is built upon MagNet. We first define a symmetrized adjacency matrix and
a corresponding degree matrix as follows:

1

A= §(Ai,j +Aj i), 1<4,j<n,

1 n
=3 D (Aij+Aj), 1<i<n,

with f)i,j = 0 for ¢ # j. To incorporate directional information, [Zhang et al.| (2021b) introduces a phase
matrix ®@ by @E?j) = 2mq(A; ; — A, ;), where ¢ € R is the so-called "charge parameter'. Using elementwise
multiplication (denoted by ®) and the imaginary unit i, we define a complex Hermitian matrix as H@ =
A © exp(i®@), where exp(i®?) is applied elementwise by exp(i®(?); ; = exp(i@)ﬁ?}).

Since ANiS symmetric and ©(9 is skew-symmetric, H®@ is Hermitian. Notably, setting ¢ = 0 results in
H©) = A, effectively symmetrizing the input graph and removing directional information.

Given H@ | we define the unnormalized and normalized magnetic Laplacians as follows
L(q) D-HY =D - Aoexp(i®?),

and y o
L@ =1 (D—WAD—W) ® exp(i©).

These Laplacian matrices are Hermitian, positive-definite, and the eigenvalues of Lg\?) lie in [0, 2].

Given L (one of the Laplacian matrices, in our experiments, the normalized one), let u;...,u, be an
orthonormal basis of eigenvectors satisfying Luy = Agug. Let U be a matrix whose k-th column is ug, for
1 < k < n. The Fourier transform of a signal x : V — C is defined as X(k) = (x,uy) = uzx7 and equivalently,

%X = U'x. Since U is unitary, we obtain the Fourier inversion formula

x=Ux=)Y (k). (1)
k=1
The convolution of x with a filter y is defined as the elementwise multiplication in the Fourier domain:
y*x(k) = y(k)X(k). By equation |1} this implies y * x = UDiag(y)X = (UDiag(y)U")x, where Diag(z)
denotes a diagonal matrix with the vector z on its diagonal. Thus, we define a generalized convolution
matriz Y as
Y = UxU', (2)
for a diagonal matrix . This generalizes the spectral convolutions introduced in Bruna et al.| (2014).

Following |Zhang et al.| (2021b)), we approximate spectral convolutions using polynomials of L. We set X =
Zé{:o 04T (A) as a polynomial in L, using Chebyshev polynomials T(-), where A = +2—A — I normalizes
eigenvalues to [—1,1]. For 0 < k < K, T} is the Chebyshev polynomials defined by TO(x =1,Ti(z) = =z,
and Ty (z) = 22Ty_1(z) + Th—o(z) for k > 2. Since U is unitary, we have (UAUT)* = UA*UT, and thus,
letting L= X 2_L —1, we have

max

K

K
Yx=UD 0:Tu(A)U'x =Y 0, T(L)x. (3)
k=0

Let Z(l) be the input matrix at layer ! (with Z(go) = X being an n x Fy input matrix with columns

Z(go,)17~ z(gO)FU)7 and L denotes the number of convolution layers. As in [Zhang et al.| (2021bf), we use a



Under review as submission to TMLR

complex activation function defined by o(q) = ¢, if —7/2 < arg(q) < 7/2, and o(q) = 0 otherwise, where
arg(-) is the complex argument of ¢ € C. Let F; be the number of channels in the ¢-th layer. For 1 </ < L,

1<i<Fpand1<j<Fyp_q,let Ygf) be a convolution matrix defined by Eq. equationor Eq. equation

Given the (¢ — 1)-st layer hidden representation matrix Z(gé_l), we define Z(gé) columnwise by

Fy_q

) _ 0 _(£—1) (0)

zg; =0 |y Yizg, +b |, (4)
=1

©
J

where b;é) is a bias vector with equal real and imaginary parts, Real(by)) = Imag(b
write Hg) =QW® (Hgfl)), where Q® is a hidden layer of the form Eq. equation In our experiments,

). In matrix form, we

we utilize convolutions of the form equation |3 with L = Ls\?) and set K = 1, in which case we obtain
2 = o (2 WG+ T 7 W, B0 ®

where Wigf and Wffe)igh are learned weight matrices corresponding to the filter weights of different channels

and B® = (b{”, ..., b})).

3.2 Persistent Homology

PH is a subfield in computational topology, where the main goal is to detect, track, and encode the evolution
of shape patterns in the observed object along various user-selected geometric dimensions (Edelsbrunner
et al.l [2000). These shape patterns represent topological properties such as connected components, loops,
and, in general, n-dimensional "holes", that is, the characteristics of the graph G that remain preserved at
different resolutions under continuous transformations. By employing such a multi-resolution approach, PH
addresses the intrinsic limitations of classical homology and allows for retrieving the latent shape properties
of G which may play an essential role in a given learning task. The key approach here is to select some
suitable scale parameters v and then to study changes in the shape of G that occur as G evolves concerning
v. That is, we no longer study G as a single object but as a filtration G,, C ... C G, = G, induced
by monotonic changes of v. To ensure that the process of pattern selection and counting is objective and
efficient, we build an abstract simplicial complex .#°(G,,) on each G,,, which results in filtration of complexes
H(Gy,) C ... C#(G,,). Note that, the abstract simplicial complex is a combinatorial structure specifying
the adjacency of nodes, edges, triangles, and so on [Edelsbrunner & Harer| (2010). For example, for an edge-
weighted graph (V, &, w), with the edge-weight function w : £ — R, we can set G<,,, = (V, E,w (=00, 1))
for each v, j = 1,...,n, yielding the induced sublevel edge-weighted filtration. Similarly, we can consider
a function on a node set V, for example, node degree, which results in a sequence of induced subgraphs of
G with a maximal degree of v; for each j = 1,...,n and the associated degree sublevel set filtration. We
can then record scales b; (birth) and d; (death) at which each topological feature first and last appear in the
sublevel filtration G,, € G,, C G,, ... C G, . Figure |Z| shows examples of degree-based filtration and power
filtration.

Although the inherent nature of PH appears as a perfect fit to  Degree-basedfiltration

capture the topological characteristics of the graph, computa- ®
tional complexity remains the major roadblock on the way of
wider adoption of PH in practice. For example, for O-dimensional o—2
G2 G3

PH, the currently best available algorithm to compute PH has power i 91.
the complexity of @ = (ma(m)), where m denotes the number e ="

of simplices and «(-) denotes inverse of the Ackermann function.
. il s . . 1 2 1
One intuitive idea to address this fundamental problem is to use .\. A
somehow only a subset of the available nodes when computing 6 G,
PH. However, can we do so, without sacrificing the topological

information? The answer to this question is positive if we invoke Figure 2: Degree-based filtration (upper)

the notion of a Dowker complex on graphs. Dowker complex be- and power filtration (bottom).
longs to the family of weaker complexes which also includes, for
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example, witness complex |Ghrist| (2014); |Chazal et al| (2014); Chowdhury & Mémoli (2018)), and also may
be viewed as the witness complex counterpart on graphs (for more discussion on similarities and differences
of witness and Dowker complexes see [Aksoy et al.|(2023)). The ultimate idea is to assess shape of the graph
based only a substantially smaller subset of nodes, called landmarks, while using all other remaining nodes
as witnesses which dictate appearances of simplices in the Dowker complex.

Definition 1. Dowker Complex. For a graph G = (V,E), the Dowker Complex D(L, W) is a simplicial
complez constructed from the landmark set L and the witness set W as follows:

D(G)={c CL|3weW such that Vi€ o, d(l,w) <€},

where € represents the mazimum allowable distance between landmark nodes and witness nodes. Each simplex
o in D(L,W) corresponds to a subset of landmark nodes. A k-simplex is included in D(L, W) if there exists
at least one witness node w € W that is within distance € from every landmark node in o.

To select the suitable set L of landmark nodes for the Dowker complex, we leverage the e-nets algo-
rithm [De Silva & Carlsson| (2004)); Arafat et al|(2020; |2025)), which ensures computational efficiency without
loss of topological information. Given the Dowker complex of the graph D(G), then we compute the Dowker
complex-based persistence diagram (i.e., DC-PD) as follows DCp, = E(D(G)) where = denotes the function
that computes Dowker persistence.

In this paper, to encode the above topological information presented in a DC-PD DCp, into the embedding
function, we use its vectorized representation, i.e., persistence image (PI)|Adams et al| (2017). The PI is
a finite-dimensional vector representation obtained through a weighted kernel density function and can be
computed in the following two steps (see more details in Deﬁnition. First, we map the DC-PD DCp, to an
integrable function opcy,,, : R? — R?, which is referred to as a persistence surface. The persistence surface
0DCp, 18 constructed by summing weighted Gaussian kernels centered at each point in DCpgy. Second, we
integrate the persistence surface opc,,, over each grid box to obtain the value of the Dowker complex-based
PI (i.e., DCpr) (see its definition [2| in Appendix [A).

For a given DC-PD vectorization (e.g., the differentiable distribution-based transformation described above),
stability is a fundamental property from a statistical perspective. That is, stability requires that small
perturbations in the input DC-PD lead to only small changes in its vectorized representation. To formalize
this notion, distances between DC-PDs are measured using the Wasserstein distance, which provides a
principled metric for comparing persistence diagrams. A vectorization function is said to be stable if the
distance between vectorized representations is bounded by a constant multiple of the Wasserstein distance
between the corresponding DC-PDs. This guarantees robustness of the learned topological features to small
perturbations in the underlying graph structure. Formal definitions of the Wasserstein distance and the
associated stability results are provided in Appendix [A] Figure [3] displays different network structures and
their corresponding Dowker complex-based persistence images.

3.3 Topological Representation Learning

To capture the underlying topological features of the graph G, we employ K filtration functions: f; : V —
R for i« = {1,...,K}. Each filtration function f; gradually reveals one specific topological structure at
different levels of connectivity, e.g., degree centrality score, betweenness centrality score, closeness centrality
score, and other node centrality measurements. With each filtration function f;, we construct a set of
two persistence images of resolution P x P using tools in PH analysis (since we focus on both 0- and 1-
dimensional topological features). Combining two persistence images of resolution P x P from K different
filtration functions, we construct a multi-view topological representation, i.e., the set of Dowker complex-
based PIs [DCY; , DCY) ,DCY) . DCY) ,...,DCY)  DCY) | with the dimension K x 2 x P x P. We design
a topological convolutional layer ®(-) to (i) jointly extract and learn the latent topological features and (ii)
leverage and preserve the multi-dimensional graph structural information. Firstly, hidden representations of
the set of PIs are achieved through a combination of a CNN-based model and global pooling, which can be
defined as

0 1 0 1 0 1
Zr = ®([X, DOy, , DOy}, DCY) . DCY) ..., DCY)_, DCY) ), (6)
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Figure 3: Ilustration of network structures and their corresponding Dowker complex-based persistence
images for (a) Texas, (b) Cornell, and (c) Wisconsin respectively.

where ®(-) embeds Dowker complex-based PIs to a high-dimensional space, and [--- ,---] denotes the con-
catenation operation. This step is crucial for graph representation learning as the resulting topological
embedding contains rich topological information encoded in the graph and can be integrated into any graph
prompting functions. Based on Zg and Z7, we utilize the aggregation and combination operation to obtain
the node representations which is defined as follows

Z = AGG-COMB(Zg, Z7), (7)

where AGG-COMB operation collects the node and topology embeddings, and combines them using
sum, mean, or max functions to generate the joint embedding for nodes. In this work, we employ
the link prediction task for pre-training, i.e., deciding if nodes are connected which is generated as
ming ¢ Zu,v LP7(fe (2w, 20); g(u,v)), where f¢ is the projection head with trainable parameters ¢ (we adopt
the Multi-Layer Perceptrons (MLP)) which computes the similarity between node embeddings, and g(u,v)
is the label of node pair (i.e., if any pair of nodes are connected or not) based on the adjacency matrix A.

3.4 Prompting for Downstream Tasks

Most existing graph prompting methods construct prompts purely from node-level attributes, where a
prompting function fprompt(-) maps a node’s standalone feature vector into a structured token. While
effective in undirected or feature-rich settings, such approaches are often insufficient for directed graphs
where label semantics are governed by asymmetric flows and higher-order structural patterns that cannot
be fully captured by node features alone. To address this limitation, in this paper, we introduce a topology-
empowered prompting strategy that injects the joint directional and topological representations learned
during pre-training directly into the downstream prompt tokens. Specifically, after fusing the magnetic
Laplacian—based structural embedding Zg and the Dowker complex-based topological embedding Z; into
a joint node representation Z (see Eq. , we treat the resulting node embedding z, as a topology-assisted
structure token for each node u € Virompt € V/, denoted by

EG = Zy. (8)
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That is, the obtained representation encodes both local directional connectivity and higher-order topolog-
ical signatures which enables the prompt to reflect intrinsic graph organization rather than isolated node
attributes. Following the GPPT-based prompting paradigm , we reformulate downstream
node classification as a compatibility prediction task between a node and a class-specific task token. Let

{y1,...,yc} denote the set of class labels (total C classes), and associate each class y. with a learnable task
token Tiask(ye). The final prompt token for node w under class ¢ is constructed as
TG
taak u .f rompt( ) = [TtHSk(yC)a gu ]7 (9)
where [-, -] denotes concatenation. Intuitively, the task token Ti.k(y.) acts as a class-specific query, while

the topology-assisted structure token £I'“ provides a topology-guided representation of node u, allowing

the model to retrieve task-relevant structural knowledge encoded during pre-training. Given a pre-trained
projection head fpre( -), we compute a compatibility score between node w and class ¢ as

( ) fpre( task u) . (10)

The downstream objective is then formulated as a cross-entropy loss over the prompted nodes

min o Z Epre( (Ttask(yc) )) s.t. amlt — epre’ d)mlt — d)pre. (11)

0,6,E,...,
(u,ye)

where I(-) denotes the ground-truth label associated with a node pair, E*, ..., EM denote M sets of learnable
prompt embedding matrices (i.e., we first adopt the METIS (Karypis & Kumar] [1998) to pre-process and
split nodes into M non-overlapped clusters), where each E™ = [e*, ..., e’g]T € RE*? stores the class-specific
prompt tokens e’ associated with label y. (these embeddings are optimized during downstream prompt
tuning), and L£P™(-;-) denotes the cross-entropy loss function. This optimization strategy preserves the
pre-trained encoder and projection parameters while enabling task adaptation through prompt tuning, i.e.,
reducing task mismatch and improving generalization in few-shot settings. In contrast to conventional graph
prompting approaches (which rely solely on node attributes), our proposed method prompts on topology-
assisted representations that integrate directional structural cues and higher-order connectivity patterns.
This design allows downstream tasks to directly leverage causally relevant graph structure learned during
pre-training, leading to more robust and transferable performance on directed graph classification tasks.

4 Experiments

4.1 Datasets

In this study, we evaluate TopoDIG on 10 real-word and synthetic datasets. For 5 real-world directed graphs,
we use (i) Texas, Wisconsin, and Cornell which belong to the WebKB collection and these
datasets capture hyperlink connections between webpages from computer science departments at different
universities. In each network, nodes represent webpages, edges indicate hyperlinks, and features are based on
a bag-of-words model. The webpages are manually classified into 5 categories such as student, project, course,
staff, and faculty; and (ii) ogbn-arxiv and ogbn-Papers100M from the Open Graph Benchmark (OGB)
which are large-scale citation networks representing paper—paper citation relationships. In these
datasets, nodes denote scientific papers, directed edges denote citation links, and node features are derived
from paper abstracts. The node labels indicate subject areas, with 40 classes in ogbn-arxiv and 172 classes in
ogbn-Papers100M. For synthetic data, we use Directed Stochastic Block Models (DSBMs) introduced in
(2022b)), which generate directed graphs with clusters defined by network flows between groups/blocks.
Each block represents a cluster in the directed graph, where clustering is a partition of the set of nodes into
K disjoint sets (clusters) V = CoUCy U---UCgk_1 (ideally, K > 2). In Appendix |A] we provide detailed
descriptions of synthetic graph generation, and Tables [I] and [2| show dataset statistics of real-world and
synthetic graph datasets.

4.2 Baselines and Experiment Setups

In our experiments, we compare our approach with representative graph neural networks, i.e., Graph Con-
volutional Networks (GCN) (Kipf & Welling], [2017), Graph Isomorphism Network (GIN) (Xu et al, [2019),
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Table 1: Overview of the real-world datasets.

Dataset ‘ Cornell Texas Wisconsin ogbn-arxiv ogbn-Papers100M
# Nodes 183 183 251 169,343 111,059,956
# Edges 295 309 499 1,166,243 1,615,685,872
# Features | 1,703 1,703 1,703 128 128
# Classes 5 5 5 40 172

Table 2: Overview of the synthetic datasets.
Dataset |Cycle (4, 0.1) Cycle (4, 0.01) Complete (5, 0.01) Star (5, 0.02) Path (5, 0.02)

# Nodes 1,000 1,000 1,000 1,000 1,000
# Edges 50,052 5,021 4,900 10,309 9,985
# Features 8 8 8 8 8
# Classes 4 5 5 5 5

Table 3: Evaluation results for node classification on Texas, Cornell, and Wisconsin, reporting the mean
plus/minus one standard deviation over 5 runs. Best results are in bold.

Method Texas Cornell Wisconsin
GCN 57.81 £0.78 53.91 £ 1.98 47.54 + 3.10

GAT 62.50 £0.78 56.56 + 4.09 49.49 + 3.82

GIN 60.16 +2.34 51.41 +0.58 41.14+1.95
GraphTransformer | 62.50+3.12 | 56.87 +3.18 | 58.17+1.93
DiGCN 48.44 +9.94 | 44.53 £4.50 47.66 £ 3.50
MagNet 58.98 +£2.73 60.00 £+ 1.67 55.54 + 3.85
GCN+CNA 59.73 £ 6.01 60.12 £ 1.55 56.79 + 3.61
AdapterGNN 57.47 +4.31 59.61 £ 1.79 57.80 £ 1.52
TopoDIG (Ours) 64.84 +2.34 | 61.56 =2.49 | 57.94 £+ 2.86

Graph Attention Networks (GAT) (Velickovi¢ et al, [2018), and GCN+Cluster+Normalize+Activate (CNA)
modules (Skryagin et al., 2024), a transfer learning method, i.e., AdapterGNN (Li et all 2024)), and a
graph transformer model (i.e., GraphTransformer) (Shi et al., 2021). For directed graphs specifically, we
compare TopoDIG with DiGCN (Tong et al., 2020a) and MagNet (Zhang et al., |2021b). We train all
“pre-train and prompt” models on 4 NVIDIA RTX A5000 GPU cards with 24GB memory, and report
the mean accuracy (in %) and standard deviation over 5 runs with different random seeds. In the pre-
training phase, we use cross-entropy loss on positive (i.e., adjacency matrix) and negative (via random
sampling) connected edges for link prediction. We save the best-performed pre-trained model parameter
within 1000 epochs using an early stop strategy for downstream prompting tasks. Since this paper mainly
focuses on the pretraining strategy, we leverage a prompting strategy proposed in |Sun et al. (2022)) for
downstream few-shot node classification tasks. To provide fairness comparisons, we set the seed to 42 and
tune each model with learning rate in {5e=3,5¢ =%, 5¢75,5¢ 7%}, hidden dimension in {128,256, 512}, number
of GNN layers in {2,3}. Additionally, "charge parameter" q used in MagNet and TopoDIG tune within
{0.05,0.1,0.15,0.2,0.25}, and pixel size for generating the topological features tuned within {0.2,0.5,0.8}.
Code can be found at https://anonymous.4open.science/r/directed_graph_pretraining-D460.

4.3 Results

We provide few-shot node classification results within the pre-train and prompt paradigm in Tables [3] [ [B]
and [6] while seeing that TopoDIG performs well across all datasets. As shown in Table [3] our proposed
TopoDIG outperforms all baselines on Texas and Cornell except for Wisconsin (which may be due to Graph-
Transformer utilizes global attention to enhance information aggregation from sparse data and TopoDIG
still achieves the runner-up result on Wisconsin). Based on the results in Tables 4| and |5, our method
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Table 4: Evaluation results for 3-shot node classification (in %) on ogbn-arxiv.

Method

ogbn-arxiv

GPPT (Sun et all [2022)
All-in-one (Sun et al., [2023a))
GraphPrompt (Liu et al., 2023)
GPF (Fang et al., [2023)

23.35 £ 0.70
16.79 £+ 6.81
82.07 £ 3.19
77.50 £ 7.23

TopoDIG (Ours)

86.78 £+ 2.20

Table 5: Results (in %) of fine-tuning the pretrained GNN with 1% and 5% labeled training data on ogbn-

Papers100M.
Method Label ratio 1% Label ratio 5%
CCA-SSG (Zhang et al.| [2021a)) 55.68 + 0.24 59.78 £+ 0.08
GRACE (Zhu et al.| [2020) 55.45 + 0.23 59.38 £ 0.15
BGRL (Thakoor et al., [2022) 55.12 £+ 0.23 60.40 £+ 0.54
GraphMAE (Hou et al., [2022) 58.29 £+ 0.15 62.00 £ 0.12
GraphMAE2 (Hou et al., [2023) 58.69 + 0.38 62.87 £+ 0.64
TopoDIG (Ours) 59.42 + 0.41 64.05 + 0.59

Table 6: Evaluation results for node classification on synthetic datasets, reporting the mean plus/minus one

standard deviation over 5 runs. Best results are in bold.

Method Cycle (4, 0.1)|Cycle (4, 0.01)|Complete (5, 0.01)|Star (5, 0.02)|Path (5, 0.02)
GCN 26.97 £ 1.48 31.94+1.25 36.91 +£0.98 37.20 + 1.87 39.26 +£1.74
GAT 24.11 £ 1.07 31.40 + 1.47 35.29 £ 1.59 30.66 = 1.20 31.46 +£1.61
GIN 27.66 £5.73 38.00 £ 1.12 43.29 £+ 0.52 25.71+£1.91 23.66 £1.15
GraphTransformer| 38.86 &+ 2.16 41.31 £1.56 45.57 £ 2.08 37.03£1.51 43.71 £2.28
DiGCN 24.60 = 1.57 27.11+1.01 27.49 4+ 1.66 20.94 +0.62 22.51 £1.62
MagNet 26.69 + 8.35 39.26 + 1.48 46.89 + 0.735 35.97 +4.02 43.26 + 2.06
GCN+CNA 38.74 £ 4.98 46.65 £ 2.81 44.01 +2.30 36.25 +4.35 41.65 £ 1.53
AdapterGNN 38.00 +£4.01 35.15 £ 2.57 40.74 + 3.06 38.30+£1.13 39.10 £ 1.02
TopoDIG (Ours)| 50.26 +4.52 | 71.43 +12.39 47.31+1.16 43.11 +£3.10 | 43.97+3.91

Table 7: Ablation experiment results, reporting the mean plus/minus one standard deviation over 5 runs.

Best results are in bold.

Method Texas Cornell Wisconsin

w/o MLGC 60.09 £ 5.74 59.56 £ 1.36 56.14 + 3.80
w/o Topo 58.32 £4.18 60.25 + 2.02 57.83 +£1.37
TopoDIG (Ours) | 64.84 £2.34 | 61.56 £2.49 | 57.94 + 2.86

TopoDIG consistently and substantially outperforms all competing baselines across both few-shot and low-
label regimes. On the 3-shot node classification task on ogbn-arxiv (see Table 7 TopoDIG achieves the
highest accuracy, surpassing the strongest baseline Gprompt by a clear margin, while dramatically outper-
forming earlier prompting-based and fine-tuning approaches. This demonstrates the effectiveness of TopoDIG
in extremely label-scarce settings on large-scale directed citation graphs. For fine-tuning with limited la-
beled data (see Table[5)), TopoDIG again delivers the best performance under both 1% and 5% label ratios,
respectively. Compared to the strongest self-supervised baseline, GraphMAE2, TopoDIG yields consistent
gains while maintaining comparable variance, highlighting its superior representation quality and robust-

ness.

11

Overall, these results confirm that incorporating topology-aware representations enables TopoDIG
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Figure 4: (a) and (b): Sensitivity study of the pixel size of the persistence image on Cornell and Cycle (5,
0.02). (c) and (d): Sensitivity study of the parameter ¢ on Cornell and Cycle (4, 0.1). All plots show the
mean (dot) and variance (error bar) on 5 runs.

Table 8: Graph prompt function performance comparison (Accuracy=+std).

Method Texas Cornell Wisconsin
TopoDIG with GPPT (ours) 64.84 £2.34 61.56 +£2.49 57.94 4+ 2.86
TopoDIG with GPrompt 63.12 4+ 2.58 59.91 4+ 2.41 55.47 £ 2.77
TopoDIG with GPF 65.27 £=2.41 60.38 £2.57 58.42+2.73

to more effectively leverage structural information, leading to superior performance on large-scale directed
graphs. In Table [6] we use 5 synthetic graphs with different structures. While setting the total number of
nodes per graph invariant to 1000, and we observe that TopoDIG outperforms all baselines across various
graph densities and connectivity patterns with a relative average gain of 25.84% overall 5 synthetic datasets.
Furthermore, we provide a detailed computational complexity analysis in Appendix [B]

4.4 Ablation Studies

To evaluate the effectiveness of each module in TopoDIG, we compare it with 2 model variants. Specifically,
“w/o SGNN” and “w/o Topo” represent methods without using MLGC module and topological represen-
tation learning module (Topo). Table [7| shows results on Texas, Cornell, and Wisconsin. It is shown that
TopoDIG consistently outperforms 2 variants on all 3 datasets, thereby demonstrating the effectiveness of
each module in TopoDIG. For the ablation scope, we have conducted additional experiments, i.e., except
GPPT, we utilize GraphPrompt (Liu et al} [2023) and GPF (Fang et al.,|[2023) for directed graph learning on
Texas, Cornell, and Wisconsin data. As shown in Table|8] we observe that (1) TopoDIG with GPPT always
outperform TopoDIG with Gprompt; (2) TopoDIG with GPF achieves the highest accuracy on Texas and
Wisconsin data, however, it achieves a slightly lower accuracy compared to TopoDIG with GPPT on Cor-
nell; (3) compared to other baselines (shown in Table [3)), TopoDIG with different prompt functions achieves
state-of-the-art performances.

4.5 Sensitivity Analysis

We conduct a sensitivity analysis on pixel size in generating topological features, where increasing the pixel
count results in smaller persistence image sizes. As shown in Figure [4| (a & b), different datasets achieve
optimal performance with different pixel sizes. For downstream node classification tasks, it is important to
ensure that the connectivity signal does not dominate the node features themselves. Therefore, the size of
the input node feature plays a crucial role when selecting the pixel size. In the cases of Cornell and Cycle(5,
0.02), which have input feature sizes of 1,703 and 8, respectively, the best performance is observed at pixel
sizes of 0.5 and 0.8. We also conduct sensitivity analysis of the parameter ¢q. Figure [4] (¢ & d) shows results
of sensitivity analysis on Cornell and Cycle (4, 0.1) datasets. We find that, on Cornell data, the performance
remains relative stable across different values of ¢ which suggests that our model is not highly sensitive to the
g on this data which is a sparse graph. However, on Cycle (4, 0.1), the performance fluctuates significantly
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with different values of ¢ (especially, we can observe a sharp decline at ¢ = 0.05 and ¢ = 0.15) which indicates
that the parameter ¢ selection is crucial for dense graph analysis.

5 Conclusion

In conclusion, this work introduces the Topology-Guided Directed Graph Pre-training and Prompt Learn-
ing (TopoDIG), a pioneering framework designed to the graph prompting study on directed graphs with
applying magnetic Laplacian and persistent homology. Through a novel integration of magnetic Laplacian-
based graph convolutional networks module and Dowker complex-based topological representation learning
module, TopoDIG effectively captures directional and local topological information of directed graphs. Our
experiments demonstrate our TopoDIG’s superior performance on various real-world and synthetic datasets.
In the future, we will extend our approach to dynamic directed graphs and other different graph learning
tasks.
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A Datasets and Visualization

Here we provide more details of the DSBM model. A DSBM model is defined by the number of clusters,
K, and edge probabilities, with edges being independently assigned given cluster memberships. In our
experiments, the DSBM is characterized by a meta-graph adjacency matrix F = (Fy ;) =0, k1, its filled
version F = (Fk,l)k,l:o,...,K—l, and a noise level n < 0.5. The matrix F is derived from a meta-graph structure
M. Here we do not have an ambient background as in . We follow to define
four structures of F without any ambient nodes, where 1 denotes the indicator function. In this study, we
choose the number of clusters, K, the meta-graph structure, and the edge probability p. We set the number
of nodes n to be 1000 and the (approximate) ratio, p, between the largest and the smallest cluster size, to
be 1, and the direction flip parameter n = 0.05.

e “Cycle” Fry=(1—n)L(l = ((k+1) mod K))+ni(l = ((k—1) mod K))+11(l = k).

o “Path”: Fry=1—-—nl(l=k+1)+nl(l=k—-1)+ %]l(l =k).
e “Complete”: assign diagonal entries % For each pair (k,1) with k <, let Fi; be n and 1 — n with
equal probability, then assign ¥y, =1 —Fy ;.

o “Star”: select the center node as w = |[£=1| and set Fjy = (1 — n)L(k = w,l odd) + nl(k =

w,l even) + (1 —n)1(l = w, k odd) + nl(l = w,l even).

For synthetic graph generation, in our experiments, we choose the number of clusters, K, the meta-graph
structure, and the edge probability p. We set the number of nodes n to be 1000 and the (approximate)
ratio, p, between the largest and the smallest cluster size, to be 1, and the direction flip parameter n = 0.05.
Our DSBM, which we denote by M (K, p, p) is built according to . Due to p is set to 1, we
simplify the notation to M(K,p) and M represents the structures, such as, “Cycle”, “Path”, “ Complete”,
and “Star”. For each node v; € Cj, and each node v; € C;, independently sample an edge from node v;
to node v; with probability p - Fy;. Based on He et al| (2022b), we use the O3* | term with the naive
pair selection method to compute an imbalance score for the ground-truth labels for our datasets, in order
to explain the level of flow imbalance related to directionality. Roughly speaking, the larger this imbalance

score, the more directed this network is, with respect to its class labels.

Wasserstein distance (or matching distance) is defined as follows. Let DCpy(G") and DCpy(G~) be Dowker
complex-based persistence diagrams of two graphs G* and G~ (We omit the dimensions in DC-PDs). Let
DCp,y(G*t) = {qj}UA‘* and DCp,y(G~) = {q; }UA~ where A¥ represents the diagonal (representing trivial
cycles) with infinite multiplicity. Here, q;r = (bj+7 d;r) € DCpy(G™) represents the birth and death times of
a k-hole o;. Let ¢ : DC’kDg(g+) — DC’kDg(g_) represent a bijection (matching). With the existence of the
diagonal A* on both sides, we make sure of the existence of these bijections even if the cardinalities \{q;r}|
and |{q; }| are different. Then, p'" Wasserstein distance fy, defined as fyw, (DCpy(GT),DCpy(G7)) =
ming (3 g — (;5((1?)“@0)%, where p € Z*. Here, the bottleneck distance is fyy. (DCpgy(G1), DCpg(G7)) =
max; [|g] — ¢(¢; )|lco- Then, function ¢ is called stable if d(¢™,¢~) < C - f,(DCpy(GT), DCpy(G7)),
where ™ is a vectorization of DCp,(GF) and d(.,.) is a suitable metric in the space of vectorizations. Here,
the constant C' > 0 is independent of G*. This stability inequality interprets that as the changes in the
vectorizations are bounded by the changes in DC-PDs.

Definition 2 (Dower Complex-Based Persistence Image). Let g : R? +— R be a non-negative weight
function for the persistence plane R. The value of each pivel = € R? is defined as DCpr(z) =

(z—pz)? + (y*“y)2

I 2 erpen,) zigigye—( 297 293 >dydm, where T(DCpy) is the transformation of the DCpy (i.e.,
z

for each (z,y), T(z,y) = (z,y —x)), p = (e, ptyy) € R?, and 6, and 6, are the standard deviations of a
differentiable probability distribution in the x and y directions, respectively.
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B Computational Complexity

The computational complexity of persistent homology (PH) for persistence diagram is O((n + m)*) where
w = 2.3728596. Dowker complex can reduce the complexity of computing 0- and 1-dimensional features
to O((n' + m')*) where n’ denotes the number of landmark nodes, and m’ is the number of edges in the
subgraph induced by those landmarks. For the magnetic Laplacian module, the computational complexity
is O(|E| - Fy—1 + |V| - Fy—1F;) where Fy_; denotes the embedding dimension of each node at the input of
layer ¢ and Fy denotes the embedding dimension of each node at the output of layer ¢. The complexity of
CNN + pooling topological encoder is O(K - P2 -Conn) where K denotes the number of filtration functions,
P denotes the resolution size of the persistence image, and Cony denotes the interaction between input
and output channels in standard convolution operations. We also compare the running time (training time
per epoch; along with the accuracy (%)) between our TopoDIG model and 5 runner-ups, i.e., DGCN,
GCN+CNA, AdapterGNN, GPF (Fang et al.,[2023)), and GraphMAE2 2023)). From Table@ our
TopoDIG consistently achieves competitive or faster training efficiency compared to all baselines on small-
scale benchmarks (i.e., Texas, Cornell, Wisconsin), the large-scale graph (i.e., ogbn-arxiv), and synthetic
settings (i.e., Cycle (4, 0.01) and Complete (5, 0.01)). Importantly, despite its favorable computational
efficiency, TopoDIG also delivers consistently superior accuracy across all datasets (see Tables @ 7
which indicates a more effective trade-off between representational expressiveness and computational cost.
These results demonstrate that the proposed TopoDIG enables improved direct link prediction performance
without incurring additional training overhead, and in many cases, and offers both accuracy and efficiency
gains over existing methods. Furthermore, for the ogbn-arxiv data, as shown in Table [I0] the topological
preprocessing requires 5.0 minutes for Dowker complex construction and 1.5 minutes for persistence image
generation, and is performed once per graph and reused across runs. Training takes 25.30 seconds per
epoch and full-graph inference requires 2.6 seconds. During topological preprocessing (Dowker complex
construction and persistence image computation), the peak CPU memory usage is around 35 GB. During
model training, the GPU memory peak is around 9.0 GB. The resulting topological features are compact
and reusable, which requires around 0.5 GB.

Table 9: Running time analysis (seconds per epoch).

Model Texas Cornell Wisconsin ogbn-arxiv Cycle (4, 0.01) Complete (5, 0.01)
DGCN 1.38 s 0.50 s 0.32 s 3443 s 0.69 s 0.58 s
GCN+CNA 0.82s 0.29 s 0.18 s 21.60 s 0.40 s 0.35 s
AdapterGNN 0.96 s 0.34 s 0.22 s 24.80 s 0.48 s 0.42 s
GPF 1.10 s 0.40 s 0.26 s 28.90 s 0.56 s 0.49 s
GraphMAE2 1.25 s 0.45 s 0.29 s 31.70 s 0.62 s 0.54 s
TopoDIG (Ours) 1.04s 0.35s 0.21s 25.30 s 0.45 s 0.38 s

Table 10: Running time analysis of different modules within the TopoDIG on ogbn-arxiv.

Module Dowker complex Persistence image Training Inference

ogbn-arxiv 5.0 mins 1.5 mins 25.30 seconds 2.6 seconds
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