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Abstract

The recent success of generative AI highlights the crucial role of high-quality
human feedback in building trustworthy AI systems. However, the increasing use
of large language models (LLMs) by crowdsourcing workers poses a significant
challenge: datasets intended to reflect human input may be compromised by
LLM-generated responses. Existing LLM detection approaches often rely on
high-dimensional training data such as text, making them unsuitable for structured
annotation tasks like multiple-choice labeling. In this work, we investigate the
potential of peer prediction—a mechanism that evaluates the information within
workers’ responses—to mitigate LLM-assisted cheating in crowdsourcing with
a focus on annotation tasks. Our approach quantifies the correlations between
worker answers while conditioning on (a subset of) LLM-generated labels available
to the requester. Building on prior research, we propose a training-free scoring
mechanism with theoretical guarantees under a novel model that accounts for
LLM collusion. We establish conditions under which our method is effective
and empirically demonstrate its robustness in detecting low-effort cheating on
real-world crowdsourcing datasets.

1 Introduction

High-quality human feedback plays a crucial role in shaping modern AI systems, such as ChatGPT,
to be trustworthy, safe, and aligned with human preference Ouyang et al. [2022]. This feedback is
usually collected through crowdsourcing, where a requester posts tasks and recruits trained experts or
general participants to complete them. For example, platforms like Amazon Mechanical Turk and
Prolific are widely used by researchers for tasks such as data labeling and survey administration.

However, the integrity of this data collection process is increasingly threatened by the very AI models
it seeks to improve. Evidence suggests that many agents rely on large language models (LLMs) to
complete tasks such as abstract summarization [Veselovsky et al., 2023] and peer review [Liang et al.,
2024], leading to datasets that no longer reflect genuine human input, a phenomenon known as LLM
contamination. While LLM-assisted annotations or responses may sometimes be more accurate or
coherent than human’s [Gilardi et al., 2023, Törnberg, 2023, Kaikaus et al., 2023], their widespread
use undermines the fundamental goal of gathering diverse and authentic human opinions. This issue
is particularly concerning in applications that depend on human subjectivity or expertise, such as
preference labeling and toxicity detection, where human judgment remains the gold standard.
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How to detect potential LLM-misuse and evaluate the quality of a human-contributed dataset?
Existing black-box methods for detecting LLM-generated content primarily focus on distinguishing
human-written text from AI-generated text by analyzing statistical differences in writing style
[Gehrmann et al., 2019, Mao et al., 2024, Koike et al., 2024, Hu et al., 2023]. While effective in
open-ended text generation tasks, these training-based approaches are not well-suited for structured
annotation tasks like multiple-choice labeling, where the discrete responses lack the rich textual
features needed for classification.

In this paper, we develop a theoretically robust scoring metric to evaluate the quality of human
contributions in addition to existing LLM answers, effectively distinguishing workers with less
informative responses. Our method builds on peer prediction, a scoring mechanism designed to
incentivize truthful reporting in the absence of ground truth Miller et al. [2005], Shnayder et al.
[2016]. Traditional peer prediction methods evaluate a worker based on the correlation between
her responses and those of her peers. In the standard model, every worker independently observes
only high-effort signals, denoted as Xi for worker i, after working on a set of i.i.d. questions. Peer
prediction mechanisms are shown to be information monotone, meaning that workers maximize their
expected score by truthfully reporting their high-effort signals.

However, these methods are ineffective when workers can coordinate on cheap signals, denoted as
Zi for worker i, that are highly correlated and require minimal effort to produce. In our settings,
LLM responses serve as such cheap signals. To address this limitation, we extend peer prediction
by measuring correlations between workers’ responses while conditioning on a signal Z that is
observable to the requester. For example, Zi and Z could represent responses to the questions
independently generated by the same LLM or different LLMs. Intuitively, by conditioning on Z, our
method scores the information within workers’ responses beyond what can be obtained from LLMs
alone, ensuring that human effort is properly rewarded while AI-reliant is penalized.

Theoretically, we identify the conditions under which our mechanism maintains information mono-
tonicity under two regimes: (1) for any form of manipulation strategy and (2) for a subset of practical
cheating strategies, which we refer to as lazy-reporting strategies. A lazy-reporting strategy, for
instance, includes blindly relying on LLM on a fraction of the tasks while answering the rest truthfully.
To achieve information monotonicity in the general case, for an arbitrary pair of workers, i’s cheap
signal Zi has to be approximately uncorrelated with j’s high-effort signal Xj and their cheap signal
Zj , conditioned on Z (Assumptions 4.1 and 4.2). For lazy-reporting strategies, a weaker condition
suffices: conditioning on Z, the correlation between high-effort signals (Xi, Xj) is stronger than the
correlation between both (Zi, Xj) and (Zi, Zj) (Assumption 4.5).

Empirically, we test our assumptions using two subjective labeling datasets and five types of com-
monly used LLMs. Our findings show that human responses consistently exhibit stronger correlations
than LLM-generated responses when samples of Z and Zi originate from the same model, supporting
the validity of Assumption 4.5. However, the correlations between independent samples of LLMs
responses are usually non-zero, suggesting that Assumptions 4.1 and 4.2 are too strong to hold in
practice. Finally, under scenarios where Assumption 4.5 holds, we evaluate the effectiveness of our
method in detecting low-effort agents. Echoing our theoretical insights, we show that our approach
has the most robust performance on mixed crowd compared with all the baselines.

2 Related Work

Our study relates to the studies on LLMs usage in crowdsourcing. Cegin et al. [2023] find that
ChatGPT can partially replace human workers in paraphrase generation, and Kaikaus et al. [2023]
report that GPT labels are more consistent than humans in sentiment annotations. Ashktorab et al.
[2021] demonstrate that “batch labeling”, a framework of using AI to assist human labeling by
allowing a single labeling action to apply to multiple records, can increase the overall labeling
accuracy and increase the speed. However, several studies also highlight potential downsides: del
Rio-Chanona et al. [2023] report a 16% decline in Stack Overflow activity following the rise of LLMs,
and Ashwin et al. [2023] find that LLMs exhibit greater bias than human annotators in qualitative
analysis. In this context, our paper introduces a scoring mechanism that quantitatively measures the
informativeness of human reports relative to the information already provided by AI.

Our work builds on advancements in information elicitation, particularly peer prediction. As a
generalization of the correlated agreement (CA) mechanism [Shnayder et al., 2016], our method
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can score the quality of human responses conditioned on an external information source. We chose
the CA mechanism for its simplicity and robust empirical performance [Burrell and Schoenebeck,
2021, Zhang and Schoenebeck, 2023a]. Our approach is also inspired by Kong and Schoenebeck
[2018], who proposed using conditioned mutual information to elicit hierarchical information. Their
framework assumes an information hierarchy where more effort yields strictly more informative
signals, so low-effort signals can be elicited first, which are used to further elicit high-effort signals.
In contrast, our method assumes that the principal has access to samples of low-effort signals, which
is more straightforward and practical in the LLM-influenced crowdsourcing settings. Lastly, we
propose a heuristic generalization of our method to handle textual data (Appendix F), which is related
to methods that elicit textual information using LLMs [Lu et al., 2024, Wu and Hartline, 2024].

The studies on LLM-content detection are also related. Common approaches for LLM content
detection include watermarking [Gu et al., 2022, Lee et al., 2023, Zhao et al., 2023, Yang et al., 2023],
which embeds identifiable markers into data, models, or generated text; statistical detection, which
leverage differences in output by analyzing logits statistics [Su et al., 2023, Vasilatos et al., 2023] or
vocabulary statistics [Gehrmann et al., 2019, Mao et al., 2024]; and deep learning-based methods,
which train models to distinguish AI-generated content from human-written text [Koike et al., 2024,
Hu et al., 2023, Shah et al., 2023]. However, these methods typically rely on abundant textual data for
training and detection. In contrast, our approach is training-free and addresses LLM-contamination
in non-textual responses scenarios, such as answering multi-choice questions.

3 Model

Consider a truth-discovery setting where there are m i.i.d. questions. The principal (requester)
distributes these questions to n agents (workers) such that each agent answers multiple questions and
each question is answered by more than one agent. We first present the information structure when
two agents, denoted as i and j, answer an arbitrary question. Because questions are i.i.d., the same
information structure will be applied to any question.

Xj

Y

Zi Zj

X̂i X̂jZ

Xi

Figure 1: The causal relationship
among key variables.

Signals Suppose the underlying ground truth of the question
is Y ∈ Σ. For example, if the answer to the question is either
“yes” or “no”, then |Σ| = 2. Suppose agents i and j both answer
this question. After exerting effort, they each observe a signal
Xi and Xj respectively. For simplicity, we assume the signal
space is the same as the ground truth space, i.e. Xi, Xj ∈ Σ.
We can interpret Xi and Xj as the full-effort signals that the
agents can obtain which are their best guesses of Y .

In addition to full-effort signals, agents can obtain cheap signals
Zi, Zj ∈ Σ that may or may not depend on Y . Cheap signals
are usually mutually correlated with each other, sometimes even
more correlated than agents’ full-effort signals. For example,
these can be the responses of two (potentially different) LLMs.

We present the causal relationship among these variables in
Figure 1. Note that we assume Xi and Zi are independent
conditioned on Y , meaning that the full-effort signal is only
correlated with the cheap signal via the ground truth. However, Zi and Zj may have additional
correlations conditioned on Y . This may happen when agents rely on LLMs trained on similar data.

Strategies The principal’s goal is to recover the ground truth as accurately as possible. We con-
sider scenarios where AI underperforms human agents, motivating the principal to seek full-effort
information from human agents. Such situations arise when the notion of ground truth is inherently
subjective, shaped by human preferences—such as when labelers are asked to rank LLM responses
according to personal preference, a common practice in reinforcement learning with human feedback.

However, agents can strategically report based on their high-effort signal Xi and the cheap signal
Zi. Mathematically, the report X̂i is a (random) function of Xi and Zi, denoted as X̂i = θi(Xi, Zi)
where θi ∈ Θ. Let τ be the truth-telling strategy, i.e. τ(Xi, Zi) = Xi, and let µi denote a no-effort
strategy such that µi(Xi, Zi) is independent of Xi conditioned on Zi. The argument for X̂j and θj
are analogous.
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We highlight a special type of strategy, called the lazy-reporting strategy, which is more practical
and common on crowdsourcing platforms.
Definition 3.1. A lazy-reporting strategy ν ∈ Θν is a convex combination between truth-telling and
a no-effort strategy µ, i.e.

ν(Xi, Zi) =

{
Xi with probability pi < 1,

µ(Xi, Zi) otherwise.

In particular, ν does not make X̂i depend jointly on both Xi and Zi on the same question. Examples
of lazy-reporting strategies include: exerting effort and reporting Xi for some questions while
randomly selecting answers for the rest; or fully relying on an LLM and always reporting Zi. In
contrast, non-lazy reporting strategies are typically complex and impractical, often resembling
malicious rather than mere low-effort behavior. For example, an agent may first exert effort to obtain
Xi for each question and then mix it with Zi by reporting “yes” if either Xi or Zi is “yes”, and “no”
otherwise.

Principal Information The principal can observe the reports X̂i and X̂j , but not the underlying
signals Xi, Xj and Zi, Zj . This implies that the principal cannot directly evaluate human responses
using the ground truth Y . Without knowing Y , the principal cannot distinguish the real information
Xi and the cheap signal Zi without further assumptions. Our method assumes that the principal can
observe a signal Z that is (strongly) correlated with the agents’ cheap signals. In the context of LLM
contamination, for example, the principal can generate answers to a fraction of the questions using a
popular LLM.

The effectiveness of our method necessarily depends on the quality of Z—how well the principal’s
information can block the correlation between agents’ cheap signals. We will introduce our method
and the assumptions in Section 4 and empirically verify the assumptions in Section 5.2.

3.1 Objectives and Problem Statement

In practice, the principal may collect responses from multiple agents, resulting in an n×m response
matrix X̂ where each entry X̂i,k ∈ Σ if agent i answers question k and X̂i,k = ∅ otherwise. Given
X̂ and the principal’s samples of the cheap signal Z, a scoring mechanism designs a score for each
agent. Our goal is to design a scoring mechanism that satisfies information monotonicity. Let
Si(X̂i, X̂−i | Z) denote the expected score of agent i, where X̂−i is the reports of all agents but i.

Definition 3.2. A mechanism is information monotone for lazy-reporting strategies if, for any agent i,
Si(Xi, X−i | Z) > Si(X̂i, X̂−i | Z) for any lazy-reporting strategy νi ∈ Θν with X̂i = νi(Xi, Zi).

A mechanism is ϵ-information monotone if it is information monotone for lazy-reporting strategies
and, additionally, Si(Xi, X−i | Z) ≥ Si(X̂i, X̂−i | Z) − ϵ holds for any strategy θi ∈ Θ with
X̂i = θi(Xi, Zi).

At the individual level, information monotone scores can be used to identify low-effort agents. At the
dataset level, the score distribution across agents can help interpret the quality of the crowdsourced
dataset.

We note that the same concept is termed informed truthfulness or informed strategy-proofness in the
peer prediction literature, where the objective is to incentivize agents to report truthful information
Shnayder et al. [2016].

4 Our Method

Classic peer prediction methods often struggle with cheap signals, which are highly correlated with
one another but only weakly correlated with the ground truth. In this section, we generalize a
prior work—the correlated agreement (CA) mechanism (introduced in Appendix B)—and propose a
mechanism that achieves information monotonicity when the principal can obtain some noisy samples
of the cheap signal. In the context of LLM contamination, these samples can be the labels generated
by a popular LLM on a fraction of the crowdsourced questions.
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We call our generalization the conditioned CA mechanism, which scores an agent based on the
correlation between her responses and her peers’ conditioned on the principal’s samples of Z. Our
method has two main steps.

Learn the scoring function. A scoring function determines whether a pair of signals “agree” or
not, which is learned based on data. We first estimate the empirical conditioned joint distribution
P̃ (X̂i, X̂j | Z), computed using the frequency of observing a pair of signals on the same question
conditioned on Z.2 Next, we compute the delta tensor

∆̃h,l,k = P̃
(
X̂i = h, X̂j = l | Z = k

)
− P̃

(
X̂i = h | Z = k

)
P̃
(
X̂j = l | Z = k

)
,

which is the difference between the joint distribution and the product of marginal distributions of
the reports, conditioned on Z. This gives us the scoring function T∆̃ = sign(∆̃), i.e. T∆̃(h, l, k) = 1

if ∆̃h,l,k > 0 and 0 otherwise. This step becomes unnecessary if the true scoring function T∆ =

sign(∆) is already known, where ∆ is defined analogously to ∆̃, but based on the true signals Xi

and Xj . For example, for binary questions with positively correlated signals, ∆·,·,k is an identity
matrix for any k ∈ Σ.

Compute the bonus/penalty score. Fixing a k ∈ Σ, we then repeatedly sample a bonus question q
and a penalty question q′ while ensuring Zq = Zq′ = k. For each pair of samples, the score for agent
i is:

T∆̃(X̂i,q, X̂j,q, k)− T∆̃(X̂i,q, X̂j,q′ , k),

where j is a randomly selected agent who answers both q and q′. The final score for agent i is
obtained by averaging over all k ∈ Σ and the sampled pairs of q and q′.

Intuitively, the conditioned CA mechanism encourages agents to agree on the same question and
penalizes agents when they agree on two distinct questions, given that the principal’s sampled signal
is identical on both questions. If agents rely purely on the cheap signal or respond independently of
the true signal, the bonus score and the penalty score cancel out in expectation. This results in a score
that is close to zero. We defer more details to Appendix C.

4.1 Theoretical Insights

We demonstrate the effectiveness of our method and clarify the conditions under which the mechanism
performs reliably. Before we start, we first present an intuitive way to interpret the score computed
by our mechanism. In a prior work, Kong and Schoenebeck [2019a] show that the score of the CA
mechanism can be interpreted as a type of mutual information between agents’ reports called the total
variation distance (TVD) mutual information. Inspired by this prior work, we show that when agents
report the high-effort signal and the underlying scoring function T∆ is applied, the expected score
computed by the conditioned CA mechanism is essentially the conditional TVD mutual information:

ITVD(Xi;Xj | Z) =
∑
z∈Σ

Pr(Z = z)
∑

σ,σ′∈Σ

|Pr(Xi = σ,Xj = σ′ | z)− Pr(Xi = σ | z) Pr(Xj = σ′ | z)| .

The proof of this observation can be found in Appendix D.1.

4.1.1 Conditions for ϵ-Information Monotonicity

We first present the following pair of assumptions which require that the principal’s information
Z can approximately block any correlation between an agent’s cheap signal and the ground truth
(Assumption 4.1) and the correlation between agents’ cheap signals (Assumption 4.2).
Assumption 4.1. We assume Zi and Y are approximately independent conditioned on Z,
i.e. |Pr(Zi, Y | Z)− Pr(Zi | Z) Pr(Y | Z)| ≤ ϵi for any i ∈ [n].
Assumption 4.2. We assume Zi and Zj are approximately independent conditioned on Y and Z,
i.e. |Pr(Zi, Zj | Y, Z)− Pr(Zi | Y,Z) Pr(Zj | Y,Z)| ≤ ϵ for any i, j ∈ [n].

We first show that these two assumptions are sufficient to guarantee (approximate) information
monotonicity.

2We can use all agents’ reports to estimate the same distribution because we assume agents are homogeneous
and questions are i.i.d.. This assumption is primarily made for practical concerns, as there is usually a shortage
of data to estimate the distribution accurately for each pair of agents.
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Theorem 4.3. If T∆ is known and ITVD(Xi;Xj | Z) > ϵ̂ :=
(
(ϵ+ ϵi + ϵj)|Σ|2 + (ϵi + ϵj)|Σ|3

)
,

then under Assumption 4.1 and 4.2, the conditioned CA mechanism is ϵ̂-information monotone.

We defer the proof to Appendix D.1. When agents report the high-effort signals truthfully, the
expected score is the TVD mutual information between Xi and Xj . Theorem 4.3 suggests that if Z
approximately blocks the correlation between Zi with Xj and Zj , then any manipulation can only
decrease the TVD mutual information between X̂i and X̂j up to an error.

We further show the necessity of the assumptions for information monotonicity. The following
proposition suggests that if Zi and Zj have some correlation that is not captured by Z, then there
exists a signal structure following the relationship in Figure 1, such that the score computed by the
conditioned CA mechanism is not maximized by reporting Xi and Xj .
Proposition 4.4. Suppose T∆ is known. If there exist (zi, zj , y, z) such that |Pr(Zi = zi, Zj =
zj | Y = y, Z = z) − Pr(Zi = zi | Y = y, Z = z) Pr(Zj = zj | Y = y, Z = z)| = d
for some 0 < d ≤ 1

4 , then there exists a joint distribution Pr(Xi, Xj , Zi, Zj , Y, Z) that satisfies
the causal relationship described in Figure 1 and a strategy profile (θi, θj) ̸= (τ, τ) such that
Si(X̂i, X̂j | Z) ≥ Si(Xi, Xj | Z) + 8d2 where X̂i = θi(Xi, Zi) and X̂j = θj(Xj , Zj).

Before we provide the full proof (deferred to Appendix D.2), we briefly introduce the high-level
idea. Consider a signal structure with a binary signal space Σ = {0, 1}. Suppose agent i’s high-
effort signal Xi is perfectly accurate at predicting Xj when Xi = 0 but is noisy when Xi = 1,
i.e. Pr(Xj = 0|Xi = 0, Z) = 1 and Pr(Xj = 1|Xi = 1, Z) < 1. On the other hand, the
cheap signal Zi is perfectly accurate at predicting Zj when Zi = 1 but is noisy when Zi = 0,
i.e. Pr(Zj = 1|Zi = 1, Z) = 1 and Pr(Zj = 0|Zi = 0, Z) < 1. In this case, it is intuitive that agent
i can be better off if both agents combine their signals—reporting 0 if and only if Xi = Zi = 0
and reporting 1 otherwise. Note that although this example only indicates that Assumption 4.2 is
necessary, the same recipe can be straightforwardly applied to show the necessity of Assumption 4.1.

4.1.2 Conditions for Information Monotonicity Under Lazy-reporting Strategies

We know Assumption 4.1 and 4.2 are necessary for the conditioned CA mechanism to be ϵ-information
monotone. However, these assumptions are designed to guard against complex, unrealistic strategies,
such as those where agents first obtain the full-effort signal and then blend it with the cheap signal. If
we instead restrict our focus to lazy-reporting strategies, these assumptions on Z can be significantly
relaxed.
Assumption 4.5. For any pair of agents i and j, we assume the conditional TVD mutual information
between Xi, Xj , Zi, Zj satisfies that

ITVD(Xi;Xj | Z) > max (ITVD(Zi;Zj | Z), ITVD(Zi;Xj | Z)) .

Proposition 4.6. If T∆ is known and Assumption 4.5 holds, the conditioned CA mechanism is
information monotone for lazy-reporting strategies.

We defer the proof to Appendix D.3. Intuitively, a lazy-reporting strategy is essentially a mixture of
truth-telling and no-effort strategies. We show that when both agents follow lazy-reporting strategies,
the score-maximizing equilibrium must fall into one of the following three cases: 1) both agents exert
full effort, achieving an expected score of ITVD(Xi;Xj | Z); 2) both agents report cheap signals, with
expected score ITVD(Zi;Zj | Z); 3) one agent exerts full effort while the other reports a cheap signal,
yielding expected score ITVD(Zi;Xj | Z). Therefore, the inequality in Assumption 4.5 ensures that
full effort strictly dominates lazy-reporting strategies, establishing the proposition.

Note that Assumption 4.5 is significantly weaker than Assumption 4.1 and 4.2, which require both
ITVD(Zi;Zj | Z) and ITVD(Zi;Xj | Z) to be close to zero.
Remark 4.7. Thus far, we have assumed that the true scoring function T∆ is known. In Appendix E,
we show that the theoretical guarantees still hold even when we have to learn the scoring function
from the noisy and potentially corrupted data.

5 Experiments

We evaluate the effectiveness of our proposed method using real-world crowdsourcing datasets. We
focus on labeling tasks where human judgment remains as the gold standard, given that current LLMs
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still fall short of perfect performance. We first empirically examine the conditions under which the
key assumptions underlying our method are likely to hold, as well as when they may fail. Next,
we simulate a mixed, noisy crowd of labelers and assess whether our method can detect unreliable
labelers better than several well-established baselines. The datasets and code of our experiments are
available at https://github.com/yichiz97/LLM contamination.

5.1 Datasets

Hatefulness/Offensiveness/Toxicity Labeling We first consider a toxicity labeling dataset which
includes 3459 social media user comments posted in response to political news posts and videos on
Twitter, YouTube, and Reddit in August 2021 [Schöpke-Gonzalez et al., 2025]. MTurk workers are
assigned these comments and are requested to annotate them as hateful, offensive, and/or toxic. The
definitions of hatefulness, offensiveness, and toxicity are selected from highly cited previous literature.
Every question is answered by 5 workers and each worker answers 73 questions on average.

Preference Alignment We further use an alignment dataset where each question compares two
LLM-generated answers to the same prompt. Labelers rate their preference on a 0–4 scale (0: A
clearly better, 4: B clearly better, 2: tie). The comparison is scored from several more detailed angles,
while we only focus on the overall preference. The dataset contains 10 461 questions, each labeled
by two crowd workers and two experts. On average, each labeler answers about 180 questions. For
more details, refer to Miranda et al. [2024].

5.2 Assumption Verification

We empirically test the following hypotheses while varying the LLMs that generate Zi, Zj , and Z.

1. Zi and Xj are approximately independent given Z, i.e. ITVD(Zi;Xj | Z) ≈ 0.
2. Zi and Zj are approximately independent given Z, i.e. ITVD(Zi;Zj | Z) ≈ 0.
3. Xi and Xj are more correlated than Zi and Xj given Z, i.e. ITVD(Xi;Xj | Z) >

ITVD(Zi;Xj | Z).
4. Xi and Xj are more correlated than Zi and Zj given Z, i.e. ITVD(Xi;Xj | Z) >

ITVD(Zi;Zj | Z).

The first two hypotheses correspond to Assumption 4.1 and Assumption 4.2 respectively and the
other two hypotheses correspond to Assumption 4.5. More broadly, our results in this section provide
valuable insights into the correlations between different LLMs and their correlations compared
with human agents in the context of subjective labeling questions.

For each considered LLM (as detailed in Appendix G.1), we prompt it to independently generate
responses to each question in the dataset three times using the default temperature. These responses
are treated as samples of the cheap signals Zi, Zj , and Z. Furthermore, we randomly select two
human responses in the original dataset as samples of Xi and Xj , respectively. Using these samples
across all tasks, we estimate the conditioned joint distributions and then compute the conditional
mutual information. We report the results for ITVD(Zi;Xj | Z) in Figure 2, while results for
ITVD(Zi;Zj | Z) are deferred to Appendix G.3.

Hypotheses 1 and 2 generally do not hold. In Figure 2, we observe that when Zi and Z are sampled
from different models, the mutual information between Zi and Xj is often significantly higher than
that expected from the random reporting (red bar). Even when Zi and Z are independently sampled by
the same model, conditioning on Z reduces but does not eliminate this correlation. This indicates that
even independently generated responses from the same LLM can remain dependent after conditioning
on another independent sample, contradicting Hypothesis 1. As presented in Appendix G.3, this
pattern continues to hold for ITVD(Zi;Zj | Z), rejecting hypothesis 2.

Hypothesis 3 and 4 generally hold when conditioning on the “right” model. Encouragingly,
the conditioned correlation between an LLM and a human agent is consistently weaker than that
between two human agents when Zi and Z come from the same model. For example, in Figure 2a,
the unconditional mutual information between GPT-4-generated labels and human labels exceeds that
of two expert labels. However, after conditioning on GPT-4 responses, ITVD(Xi;Xj | Z) becomes
significantly higher than ITVD(Zi;Xj | Z). This pattern is consistent across all tested datasets,
providing strong support for hypothesis 3. Results for Hypothesis 4 are deferred to the appendix.
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(a) Preference Alignment (b) Hatefulness

(c) Toxicity (d) Offensiveness

Figure 2: The TVD mutual information between Xi and Xj (for “Human”, “Normal worker”,
and “expert”) or Zi and Xj (for remaining bars) conditioned on Z, i.e. ITVD(Xi;Xj | Z) or
ITVD(Zi;Xj | Z). LLM names on the x-axis denote the models used to sample Z while each bar in
the same group represents the model used to sample Zi. We use “Random Agents” as a reference,
who randomly selects an answer to each question according to the prior.

Our empirical results suggest that as of the time of this study and based on the subjective labeling
tasks we tested, human agents exhibit distinct correlation patterns that no LLM replicates.

5.3 Detecting Low-effort Agents

In this subsection, we focus on identifying low-effort agents with lazy-reporting strategies and
comparing various methods based on their area under the ROC curve (AUC).

5.3.1 Simulating Noisy Crowds

Real-world crowdsourcing datasets do not include labels identifying whether an agent is exerting low
effort or working diligently. To enable evaluation, we simulate low-effort agents and treat the original
dataset labels as representing “full-effort” responses. Specifically, we replace a randomly selected
fraction of agents in the original dataset with simulated low-effort agents adopting lazy-reporting
strategies. To reflect the noisy nature of real-world crowdsourcing data, we simulate three types of
low-effort agents, each corresponding to a common lazy-reporting strategy observed in practice Yang
et al. [2019], Becker et al. [2021]:

1. An αllm fraction are LLM-reliant agents, who report the LLM-generated labels on all
assigned questions.

2. An αr fraction are random agents, who generate labels by independently sampling from
the marginal distribution over labels for each assigned question.

3. An αb fraction are biased agents, who report the dataset’s majority label on 90% of questions
and choose uniformly at random on the rest.

Figure 3a shows the distribution of conditioned CA scores, where both the LLM-reliant agents’
responses and the principal’s signals are independently sampled from separate GPT-4 outputs. As
shown, human workers achieve higher scores than any type of low-effort agent on average. However,
some workers score below the average low-effort agent. One possible explanation is that a subset of
workers in the dataset may also have exerted low effort. Due to these factors, no detection method
can achieve perfect accuracy.
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(a) Score distribution (b) AUC

Figure 3: (a) Distribution of the conditioned CA scores with (αllm, αr, αb) = (0.1, 0.05, 0.05). (b)
AUC scores of various methods as the fraction of LLM-reliant agents increases. In both panels,
GPT-4 generates samples for Zi, Zj , and Z using the preference alignment dataset.

5.3.2 Baseline Measurements

We introduce the key ideas of the following four baselines and defer the details to Appendix G.2.

1. We consider the Output Agreement (OA) mechanism that directly counts the frequency of
agreements between two agents’ responses.

2. We use the Correlated Agreement (CA) mechanism as a baseline, which is introduced in
Appendix B. The expected CA score is the unconditional mutual information ITVD(X̂i; X̂j).

3. Another common method to estimate the reliability of the noisy agents is the Expectation-
Maximization (EM) algorithm under the DS model [Dawid and Skene, 1979]. The algo-
rithm iteratively updates a confusion matrix that captures the noise level of each agent. After
convergence, we use the trace of each agent’s confusion matrix as a reliability score.

4. Lastly, we consider the Conditioned Agreement (OAZ) which counts the frequency of
agreements only when the agreement is different from the principal’s sample on that question.

We note that there are many more heuristic methods to estimate the reliability of crowdsourcing
agents Yin et al. [2008], Embretson and Reise [2013], Piech et al. [2013]. Many of these methods are
variants of the EM algorithm under a different context-dependent model. We nonetheless only use
the EM algorithm with the DS model to represent this line of methods because they all ignore the
principal’s information Z and thus are unlikely to perform well with LLM-corrupted datasets.

5.3.3 Results

Given a dataset D and samples of the cheap signal Z, we use our method as well as the baselines to
score each agent. We use the AUC score to measure the ability of each discussed metric to distinguish
the simulated low-effort agents from the original human agents. In particular, let I+ be the set of
human agents and I− be the set of simulated low-effort agents. We compute the AUC score for each
method as follows:

AUC =
1

|I+| · |I−|
∑
i∈I+

∑
j∈I−

(1[Si > Sj ] + 0.5 · 1[Si = Sj ]) .

Figure 3b presents a comparison of different methods. For each value of αllm ranging from 0
to 0.2, we randomly sample αr and αb uniformly from [0, 0.2] and report the average and error
bars over 50 such trials. Our result suggests that classic methods, such as the EM algorithm and
the CA mechanism, perform well when the number of LLM-reliant agents is low. However, their
AUCs degrade significantly as the fraction of LLM-reliant agents increases. On the other hand, the
performance of OAZ , which scores agents based on the similarity between their reports and Z, tends
to have large variance and performs poorly when there are few LLM-reliant agents. In contrast, our
proposed conditioned CA mechanism has the most robust performance for the mixed crowds and has
the lowest variance.

Table 1 summarizes the results from Figure 3b, reporting the average AUC score and the bottom 10%
quantile for each method on each dataset, where the average is w.r.t. every tested combination of
(αllm, αr, αb). A high average AUC reflects strong overall performance, while a high 10% quantile
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indicates robustness to the worst-case scenarios. The results support our earlier claim that our method
consistently demonstrates the highest robustness across all tested settings.

Table 1: Average AUC (and bottom 10% quantiles) across datasets and methods with GPT-4-reliant
agents.

Dataset OA CA OAZ EM CAZ (ours)
Hatefulness 0.66 (0.45) 0.84 (0.75) 0.75 (0.64) 0.81 (0.70) 0.85 (0.81)
Offensiveness 0.80 (0.68) 0.92 (0.88) 0.92 (0.85) 0.89 (0.82) 0.94 (0.91)
Toxicity 0.60 (0.40) 0.89 (0.83) 0.89 (0.82) 0.85 (0.79) 0.91 (0.87)
Preference Alignment 0.65 (0.40) 0.70 (0.43) 0.70 (0.45) 0.68 (0.41) 0.85 (0.77)

We note that our experiments do not claim that our method outperforms all baselines in every scenario.
Traditional methods like EM often perform better when the crowd consists entirely of random or
biased agents. However, our method demonstrates the most robust performance across all settings
due to its theoretical guarantees. This is particularly useful as, in practice, the designer usually has
little clue about the composition of the crowds. In contrast, the baselines exhibit cases where the
AUC drops below 0.5, meaning the algorithm completely misclassifies good workers as low-effort
agents.

Additional results in the appendix. First, Appendix G.4.1 presents analogous figures and tables
for additional datasets and LLMs, further supporting the claims made in the main body. Second, we
investigate how many questions the principal needs to sample for effective detection of low-effort
agents (Appendix G.4.2). The results suggest that sampling LLM labels on 50% of the questions
is typically sufficient to outperform the CA baseline. In cases where human and AI labels are well
separated, sampling just 20% can suffice. Third, when the principal is uncertain about which LLMs
the agents use, we propose a method that computes the CA score conditioned on each candidate
LLM’s outputs and uses the minimum score across them as the final score (Appendix G.4.3). Finally,
in Appendix F and Appendix G.5, we present a heuristic extension of our method to open-ended
textual responses. This serves as a preliminary step toward generalizing our approach beyond labeling
tasks, with further refinement and large-scale validation left for future work.

6 Conclusion

This work addresses the challenge of LLM contamination in crowdsourcing by developing a theoret-
ically grounded quality measure for annotation tasks. Leveraging an extension of peer prediction,
our method evaluates worker responses beyond what LLMs can generate, ensuring reliable human
contributions. We establish theoretical guarantees under different low-effort strategies and validate
our approach empirically on real-world datasets. Our results demonstrate that the proposed method
effectively detects low-effort agents while maintaining robustness across various conditions. Future
work can focus on refining our method to better differentiate between harmful LLM usage and
productive human-AI collaboration. This includes optimizing scoring mechanisms to recognize when
LLMs are used as assistive tools rather than substitutes for human effort and developing adaptive
detection techniques that adjust based on task characteristics and worker behavior.

Broader Impact

On the positive side, our work can improve the robustness and fairness of data collection pipelines
used in training AI systems, thereby enhancing the reliability of downstream decision-making or
other usage of AI. However, there is a potential risk that insights into reporting strategies or detection
weaknesses could be misused to evade quality control. We believe this risk is mitigated by focusing
on defensive mechanisms and open discussion of vulnerabilities to promote transparency and better
system design. Furthermore, like many crowdsourcing algorithms for label-quality control, our
method operates without access to ground truth. Consequently, a low score does not always indicate
a low-effort worker, while it may also reflect a diligent agent holding a minority opinion. Therefore,
while such verification-free algorithms are highly scalable, they should be used with a human-in-
the-loop, allowing the principal to carefully review low-scoring agents and prevent potential ethical
concerns.

10



Acknowledgment

This work was partly carried out at the DIMACS Center at Rutgers University.

References
Arpit Agarwal, Debmalya Mandal, David C Parkes, and Nisarg Shah. Peer prediction with heteroge-

neous users. In Proceedings of the 2017 ACM Conference on Economics and Computation, pages
81–98. ACM, June 2017.

Zahra Ashktorab, Michael Desmond, Josh Andres, Michael Muller, Narendra Nath Joshi, Michelle
Brachman, Aabhas Sharma, Kristina Brimijoin, Qian Pan, Christine T Wolf, et al. Ai-assisted
human labeling: Batching for efficiency without overreliance. Proceedings of the ACM on Human-
Computer Interaction, 5(CSCW1):1–27, 2021.

Julian Ashwin, Aditya Chhabra, and Vijayendra Rao. Using large language models for qualitative
analysis can introduce serious bias. arXiv preprint arXiv:2309.17147, 2023.

Joshua Becker, Douglas Guilbeault, and Ned Smith. The crowd classification problem: Social
dynamics of binary choice accuracy, 2021. URL https://arxiv.org/abs/2104.11300.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. Man is
to computer programmer as woman is to homemaker? debiasing word embeddings. Advances in
neural information processing systems, 29, 2016.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Noah Burrell and Grant Schoenebeck. Measurement integrity in peer prediction: A peer assessment
case study. arXiv preprint arXiv:2108.05521, 2021.

Jan Cegin, Jakub Simko, and Peter Brusilovsky. Chatgpt to replace crowdsourcing of paraphrases
for intent classification: Higher diversity and comparable model robustness. arXiv preprint
arXiv:2305.12947, 2023.

Anirban Dasgupta and Arpita Ghosh. Crowdsourced judgement elicitation with endogenous profi-
ciency. In Proceedings of the 22nd international conference on World Wide Web, pages 319–330.
ACM, 2013.

Alexander Philip Dawid and Allan M Skene. Maximum likelihood estimation of observer error-rates
using the em algorithm. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28
(1):20–28, 1979.

Maria del Rio-Chanona, Nadzeya Laurentsyeva, and Johannes Wachs. Are large language mod-
els a threat to digital public goods? evidence from activity on stack overflow. arXiv preprint
arXiv:2307.07367, 2023.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Susan E Embretson and Steven P Reise. Item response theory. Psychology Press, 2013.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander M Rush. Gltr: Statistical detection and
visualization of generated text. arXiv preprint arXiv:1906.04043, 2019.
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by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
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to reproduce that algorithm.
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Justification: We provide the code for our experiments in the supplementary material.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see Section 5.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please see our figures in Section 5.
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• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Our paper does not include extensive GPU training. All experiments are
lightweight and can be efficiently run on local machines, such as a standard MacBook.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We believe there is no violation of the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please see Section 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not release any models or datasets with high risk of misuse.
The study involves simulated crowdsourcing settings and analysis of LLM-assisted low-
effort behavior using synthetic or existing benchmark data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and LLMs used in this paper are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper releases the code used for running the experiments, which is
provided alongside the submission to ensure reproducibility. No new datasets or models are
introduced.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not collect data from human subjects. All experiments are
based on existing and public crowdsourcing datasets.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not collect data from human subjects. All experiments are
based on existing and public crowdsourcing datasets.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations

We acknowledge several limitations of our method. First, our method is primarily designed for
crowdsourcing datasets comprising subjective questions or tasks where human experts are considered
the gold standard. If LLMs significantly surpass human performance, the correlations between human
responses may no longer reflect the ground truth Y . This violates the assumption that, conditioned on
Y , agents’ high-effort signals are independent. In such cases, applying our method could mistakenly
reward incorrect correlations.

Second, as discussed in our experiment section, our method does not outperform all baselines in
every scenario. In particular, when LLM responses are diverse, e.g. when each agent relies on a
different model or only a few agents use LLM assistance, heuristic methods such as the EM algorithm
work well. This is because diverse or sparse low-effort agents are less correlated with the majority
of the crowd and can be easily flagged as outliers using the classic methods. Despite this, our
method demonstrates the most robust performance across a wide range of settings. Future work could
incorporate the principal’s sampled LLM signals into heuristic methods such as EM to improve their
performance and enhance detection under LLM contamination.

Third, our experiments evaluate only five language models, as some models, such as LLaMA and
Gemini, refuse to respond to toxicity-related prompts. While this is sufficient to demonstrate the
method’s effectiveness, additional evaluations across more diverse models and task types would
provide a more comprehensive assessment.

B Preliminary

What do we know about the problem? Our work builds on advancements in information elicitation,
particularly peer prediction. First introduced by Miller et al. [2005], peer prediction mechanisms aim
to incentivize truthful reporting without requiring ground truth verification. The core idea is to reward
agents based on how well their responses predict those of others. The original mechanism relied on
the principal’s knowledge of the correlation between agents’ signals (the information they observe).
Later, Dasgupta and Ghosh [2013] extended this idea, removing the need for such knowledge by
assuming agents answer multiple i.i.d. binary questions. Subsequent works have expanded this
framework to non-binary (but finite) signals [Shnayder et al., 2016, Kong and Schoenebeck, 2019b],
infinite signals [Schoenebeck and Yu, 2020], truthful guarantees with fewer questions [Kong, 2020b],
heterogeneous agents [Agarwal et al., 2017], adversarial agents [Schoenebeck et al., 2021], and more
general reporting strategies [Zhang and Schoenebeck, 2023b].

Under the assumption that there are no cheap signals, the peer prediction literature suggests that
estimating the mutual information between Xi and Xj is an information monotone metric Kong
and Schoenebeck [2019a]. There are various ways to estimate the mutual information using agents’
responses to multiple questions Kong [2020a], Schoenebeck and Yu [2020] and many information
monotone metrics that can be explained using mutual information Dasgupta and Ghosh [2013],
Shnayder et al. [2016]. In this section, we discuss a simple yet intuitive mechanism called the
correlated agreement (CA) mechanism [Shnayder et al., 2016].

The CA mechanism rewards agents when they “agree” on the same question and penalizes them when
they “agree” on distinct questions. Instead of directly checking agreement, the mechanism redefines
agreement based on the correlation between signals. A pair of signals σ, σ′ ∈ Σ is correlated agreed
if Pr(Xi = σ,Xj = σ′)− Pr(Xi = σ) Pr(Xj = σ′) > 0, meaning that σ and σ′ are more likely to
appear on the same question rather than on distinct questions. In particular, the mechanism utilizes
the delta matrix ∆σ,σ′ = Pr(Xi = σ,Xj = σ′)− Pr(Xi = σ) Pr(Xj = σ′) to design the scoring
function T∆ = sign(∆) where sign(x) = 1 if x > 0 and 0 otherwise.

In practice, the mechanism can be implemented in two ways depending on the information available
to the principal. First, if T∆ is known, the mechanism can be directly implemented, as shown in
Algorithm 1. This case happens if the information structure is simple, e.g. when questions have
binary answers, T∆ is likely to be a 2× 2 identical matrix. Second, if T∆ is unknown, the mechanism
can first estimate the joint distribution, denoted as P̃r(X̂i, X̂j) using the report matrix X̂ . Then,
an estimate of T∆ can be computed using the estimated Delta matrix ∆̃σ,σ′ = P̃r(X̂i = σ, X̂j =

σ′)− P̃r(X̂i = σ)P̃r(X̂j = σ′). Next, Algorithm 1 can be applied.
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We emphasize that penalizing agreements on distinct questions is crucial for the CA mechanism to
maintain information monotonicity. Without such penalization, over-reporting the majority signal
could result in a high score. This form of manipulation is particularly problematic when the dataset
is biased. For instance, in a task to label messages as toxic or not, if only 5% of the data points are
toxic, consistently reporting “not toxic” could yield a higher score than truthfully reporting the actual
signal.

Therefore, the score computed by the CA mechanism can be interpreted in the following way. Let the
marginal distribution of agent i’s reports be Pr(X̂i). Imagine an agent k who reports randomly for
each question according to Pr(X̂i). Then, the CA score for agent i can be understood as the average
number of questions on which agent i agrees with another randomly selected agent j more than agent
k agrees with j.

Algorithm 1: The Correlated Agreement Mechanism [Shnayder et al., 2016]

Input: The crowdsourced dataset X̂ , the (estimated) scoring function T∆̃
Output: A score vector s
for agent i ∈ [n] do

Let Mi be the set of questions answered by agent i
Initialize x← 0
for question q ∈Mi do

Randomly select a peer j who answered question q

x← x+ T∆̃(X̂i,q, X̂j,q) Randomly select a question q′ ̸= q answered by agent j
x← x− T∆̃(X̂i,q, X̂j,q′)

si ← x/|Mi|
return s

C Details of the Conditioned Correlated Agreement Mechanism

After learning the scoring function, the conditioned CA mechanism scores agents according to
Algorithm 2. At a high level, the mechanism will iteratively fix a signal k ∈ Σ and look at the
questions on which Zq = k. Let MZ(k) be the set of questions on which Z = k. Then, an agent i
will receive a higher score if she agrees with another agent j on the same question more often than
on two distinct questions conditioning that the questions are drawn from MZ(k). This measures the
additional correlation between two independent agents conditioned on Z.

Algorithm 2: The conditioned CA mechanism

Input: The crowdsourced dataset X̂ , the samples of cheap signal Z, the (estimated) scoring
function T∆̃

Estimate the empirical marginal distribution of Z, i.e. P̃ (Z = σ) for σ ∈ Σ.
for agent i ∈ [n] do

Let Mi be the set of questions answered by agent i;
Initialize si = 0;
for k ∈ Σ do

If Mi ∩MZ(k) = ∅, continue;
Initialize x = 0;
for question q ∈Mi ∩MZ(k) do

Randomly select a peer j who answers q;
x += T∆̃(X̂i,q, X̂j,q, k);
Randomly select a question q′ ∈Mj ∩MZ(k);
x −= T∆̃(X̂i,q, X̂j,q′ , k)

si += x · P̃ (Z = k)/|Mi ∩MZ(k)|

return s = (s1, . . . , sn)

23



D Proofs

D.1 Sufficiency of the Assumptions

Proof of Theorem 4.3. Intuitively, Assumption 4.1 and Assumption 4.2 imply that conditioned on Z,
Zi is almost independent of Xi, Xj , and Zj . Therefore, any manipulation that makes X̂i depend on
Zi will not increase the expected score. To prove this, we first write down the expected score when
agent i and j play strategy θi and θj respectively.

Si(θi, θj)

=
∑
z∈Σ

Pr(Z = z)
∑

xi,xj ,zi,zj∈Σ

Pr(Xi = xi, Xj = xj , Zi = zi, Zj = zj | z) T∆(θi(xi, zi), θj(xj , zj), z)︸ ︷︷ ︸
the expected score of the bonus question

−
∑
z∈Σ

Pr(Z = z)
∑

xi,xj ,zi,zj∈Σ

Pr(Xi = xi, Zi = zi | z) Pr(Xj = xj , Zj = zj | z) T∆(θi(xi, zi), θj(xj , zj), z)︸ ︷︷ ︸
the expected score of the penalty question

.

For comparison, we next write down the expected score when both agents report truthfully.

Si(τ, τ) =
∑
z∈Σ

Pr(Z = z)
∑

xi,xj∈Σ

Pr(Xi = xi, Xj = xj | z) T∆(xi, xj , z)︸ ︷︷ ︸
the expected score of the bonus question

−
∑
z∈Σ

Pr(Z = z)
∑

xi,xj∈Σ

Pr(Xi = xi | z) Pr(Xj = xj | z) T∆(xi, xj , z)︸ ︷︷ ︸
the expected score of the penalty question

=
∑
z∈Σ

Pr(Z = z)
∑

xi,xj∈Σ

(Pr(xi, xj | z)− Pr(xi | z) Pr(xj | z)) T∆(xi, xj , z)

=
∑
z∈Σ

Pr(Z = z)
∑

xi,xj∈Σ

|Pr(xi, xj | z)− Pr(xi | z) Pr(xj | z)|

=ITVD(Xi;Xj | Z)

We want to show that Si(θi, θj) ≤ Si(τ, τ) up to an error. As shown above, the expected score can
be decomposed into the expected score of the bonus question and the expected score of the penalty
question. Next, we provide an upper bound on the bonus score and a lower bound on the penalty
score.

Lower bound the penalty score. We first provide a lower bound for Pr(Xi, Zi | Z), which is
summarized in the following lemma.

Lemma D.1. Under Assumption 4.1, Pr(Xi, Zi | Z) ≥ Pr(Zi | Z) Pr(Xi | Z)− ϵi
∑

y∈Σ Pr(Xi |
Y = y, Z).

Then, we provide a lower bound of the penalty score while fixing a Z = z.∑
xi,xj ,zi,zj∈Σ

Pr(xi, zi | z) Pr(xj , zj | z) T∆(θi(xi, zi), θj(xj , zj), z)

≥
∑

xi,xj ,zi,zj∈Σ

Pr(zi | z) Pr(xi | z)− ϵi
∑
y∈Σ

Pr(xi | y, z)

 Pr(xj , zj | z) T∆(θi(xi, zi), θj(xj , zj), z).

(By Lemma D.1)

By reordering the summations,

=
∑

xi,xj ,zi,zj∈Σ

Pr(zi | z) Pr(xi | z) Pr(xj , zj | z) T∆(θi(xi, zi), θj(xj , zj), z)

− ϵi
∑

y,zi∈Σ

∑
xj ,zj∈Σ

Pr(xj , zj | z)
∑
xi∈Σ

Pr(xi | y, z)T∆(θi(xi, zi), θj(xj , zj), z).
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We focus on the second term. First note that T∆ ≤ 1. Therefore, the second term is lower bounded by
−ϵi

∑
y,zi∈Σ

∑
xj ,zj∈Σ Pr(xj , zj | z)

∑
xi∈Σ Pr(xi | y, z). Marginalizing over xj , zj and xi and

observing that y, zi ∈ Σ, the quality is lower-bounded by ϵi|Σ|2. This means the original quantity is
lower-bounded by

≥
∑

xi,xj ,zi,zj∈Σ

Pr(zi | z) Pr(xi | z) Pr(xj , zj | z) T∆(θi(xi, zi), θj(xj , zj), z)− ϵi|Σ|2.

Next, we apply the same derivation for j.

=
∑

xi,xj ,zi,zj∈Σ

Pr(zi | z) Pr(xi | z)

Pr(zj | z) Pr(xj | z)− ϵj
∑
y∈Σ

Pr(xj | y, z)

 (1)

· T∆(θi(xi, zi), θj(xj , zj), z)− ϵi|Σ|2 (By Lemma D.1)

≥
∑

xi,xj ,zi,zj∈Σ

Pr(zi | z) Pr(xi | z) Pr(zj | z) Pr(xj | z) T∆(θi(xi, zi), θj(xj , zj), z)− (ϵi + ϵj)|Σ|2.

(2)

Upper bound the bonus score. We first present a lemma that bounds the difference between
Pr(Zi, Zj | Y,Z) and Pr(Zi | Z) Pr(Zj | Z).

Lemma D.2. Under Assumption 4.1 and Assumption 4.2,
|Pr(Zi, Zj | Y,Z)− Pr(Zi | Z) Pr(Zj | Z)| ≤ ϵ+

ϵi+ϵj
Pr(Y |Z) .

With this lemma, we further provide an upper bound of the expected score on the bonus question.
Fixing Z = z,∑

xi,xj ,zi,zj∈Σ

Pr(xi, xj , zi, zj | z) T∆(θi(xi, zi), θj(xj , zj), z)

=
∑

xi,xj ,zi,zj∈Σ

∑
y∈Σ

Pr(y | z) Pr(xi, xj , zi, zj | y, z) T∆(θi(xi, zi), θj(xj , zj), z)

(By the law of total probability)

=
∑

xi,xj ,zi,zj∈Σ

∑
y∈Σ

Pr(y | z) Pr(xi, xj | y, z) Pr(zi, zj | y, z) T∆(θi(xi, zi), θj(xj , zj), z)

(X and Z are independent conditioned on Y .)

≤
∑

xi,xj ,zi,zj∈Σ

∑
y∈Σ

Pr(y | z) Pr(xi, xj | y, z)
(
Pr(zi | z) Pr(zj | z) + ϵ+

ϵi + ϵj
Pr(y|z)

)
T∆(θi(xi, zi), θj(xj , zj), z).

(By Lemma D.2)

We can further write this into three terms.

=
∑

xi,xj ,zi,zj∈Σ

∑
y∈Σ

Pr(y | z) Pr(xi, xj | y, z) Pr(zi | z) Pr(zj | z) T∆(θi(xi, zi), θj(xj , zj), z)

(3)

+ ϵ
∑

xi,xj ,zi,zj∈Σ

∑
y∈Σ

Pr(y | z) Pr(xi, xj | y, z) T∆(θi(xi, zi), θj(xj , zj), z) (4)

+ (ϵi + ϵj)
∑

xi,xj ,zi,zj∈Σ

∑
y∈Σ

Pr(xi, xj | y, z) T∆(θi(xi, zi), θj(xj , zj), z). (5)

First note that

Equation (3) =
∑

xi,xj ,zi,zj∈Σ

Pr(zi | z) Pr(zj | z) T∆(θi(xi, zi), θj(xj , zj), z)
∑
y∈Σ

Pr(xi, xj , y | z)

=
∑

xi,xj ,zi,zj∈Σ

Pr(zi | z) Pr(zj | z) T∆(θi(xi, zi), θj(xj , zj), z) Pr(xi, xj | z)
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Next, we upper bound the second and the third term respectively. By reordering the summations,

Equation (4) = ϵ
∑

xi,xj ,zi,zj∈Σ

T∆(θi(xi, zi), θj(xj , zj), z)
∑
y∈Σ

Pr(xi, xj , y | z)

= ϵ
∑

xi,xj ,zi,zj∈Σ

T∆(θi(xi, zi), θj(xj , zj), z) Pr(xi, xj | z)

≤ ϵ
∑

xi,xj ,zi,zj∈Σ

Pr(xi, xj | z) (T∆ ≤ 1)

≤ ϵ|Σ|2. (
∑

xi,xj∈Σ Pr(xi, xj | z) = 1)

Equation (5) = (ϵi + ϵj)
∑
y∈Σ

∑
zi,zj∈Σ

∑
xi,xj∈Σ

Pr(xi, xj | y, z)T∆(θi(xi, zi), θj(xj , zj), z)

≤ (ϵi + ϵj)
∑
y∈Σ

∑
zi,zj∈Σ

∑
xi,xj∈Σ

Pr(xi, xj | y, z) (T∆ ≤ 1)

≤ (ϵi + ϵj)|Σ|3. (
∑

xi,xj∈Σ Pr(xi, xj | y, z) = 1)

Combining everything,∑
xi,xj ,zi,zj∈Σ

Pr(xi, xj , zi, zj | z) T∆(θi(xi, zi), θj(xj , zj), z)

≤
∑

xi,xj ,zi,zj∈Σ

Pr(zi | z) Pr(zj | z) Pr(xi, xj | z) T∆(θi(xi, zi), θj(xj , zj), z) + ϵ|Σ|2 + (ϵi + ϵj)|Σ|3.

(6)

Finally, combining Equation (2) and Equation (6),

Si(θi, θj)

≤
∑
z∈Σ

Pr(Z = z)
∑

zi,zj∈Σ

Pr(zi | z) Pr(zj | z)
∑

xi,xj∈Σ

(Pr(xi, xj | z)− Pr(xi | z) Pr(xj | z))

· T∆(θi(xi, zi), θj(xj , zj), z) + (ϵ+ ϵi + ϵj)|Σ|2 + (ϵi + ϵj)|Σ|3 (7)

For simplicity, let ϵ̂ = (ϵ+ ϵi + ϵj)|Σ|2 + (ϵi + ϵj)|Σ|3.

=
∑
z∈Σ

Pr(Z = z)
∑

zi,zj∈Σ

Pr(zi | z) Pr(zj | z)
∑

xi,xj∈Σ

∆xi,xj ,z T∆(θi(xi, zi), θj(xj , zj), z) + ϵ̂

≤
∑
z∈Σ

Pr(Z = z)
∑

zi,zj∈Σ

Pr(zi | z) Pr(zj | z)
∑

xi,xj∈Σ

∆xi,xj ,z T∆(xi, xj , z) + ϵ̂

(By the design of T∆)

=
∑
z∈Σ

Pr(Z = z)
∑

xi,xj∈Σ

∆xi,xj ,z T∆(xi, xj , z) + ϵ̂

=Si(τ, τ) + ϵ̂.

Lastly, we show that if agent i plays a lazy-reporting strategy νi, the expected score is strictly smaller
than truth-telling. Note that because a lazy-reporting strategy is a convex combination between
truth-telling τ and a no-effort strategy µi, it suffices to show that the expected score of any no-effort
strategy is strictly smaller than truth-telling. Because µi(Xi, Zi) is independent of Xi, we can reoder
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the summations in Equation (7) in the following way. Let µ = µi(Xi, Zi).

Si(µi, θj)

≤
∑
z∈Σ

Pr(Z = z)
∑

zi,zj∈Σ

Pr(zi | z) Pr(zj | z)
∑
xj∈Σ

T∆(µ, θj(xj , zj), z)∑
xi∈Σ

(Pr(xi, xj | z)− Pr(xi | z) Pr(xj | z)) + ϵ̂ (by Equation (7))

=
∑
z∈Σ

Pr(Z = z)
∑

zi,zj∈Σ

Pr(zi | z) Pr(zj | z)
∑
xj∈Σ

T∆(µ, θj(xj , zj), z) (Pr(xj | z)− Pr(xj | z)) + ϵ̂

=ϵ̂.

Note that the expected score under truth-telling is exactly ITVD(Xi;Xj | Z). Therefore, whenever
ITVD(Xi;Xj | Z) > ϵ̂, we have Si(τ, τ) > Si(µi, θj) for any no-effort strategy µi and any strategy
θj . This completes the proof.

Proof of Lemma D.1.

Pr(Xi, Zi | Z) =
∑
y∈Σ

Pr(Y = y | Z) Pr(Xi, Zi | Y = y, Z) (By the law of total probability)

=
∑
y∈Σ

Pr(Y = y | Z) Pr(Xi | Y = y, Z) Pr(Zi | Y = y, Z)

(Xi and Zi are independent conditioned on Y .)

≥
∑
y∈Σ

Pr(Y = y | Z) Pr(Xi | Y = y, Z)
Pr(Zi | Z) Pr(Y = y | Z)− ϵi

Pr(Y = y | Z)

(By Assumption 4.1)

= Pr(Zi | Z)
∑
y∈Σ

Pr(Y = y | Z) Pr(Xi | Y = y, Z)− ϵi
∑
y∈Σ

Pr(Xi | Y = y, Z)

= Pr(Zi | Z) Pr(Xi | Z)− ϵi
∑
y∈Σ

Pr(Xi | Y = y, Z).

Proof of Lemma D.2.

|Pr(Zi, Zj | Y,Z)− Pr(Zi | Z) Pr(Zj | Z)|
= |Pr(Zi, Zj | Y,Z)− Pr(Zi | Y,Z) Pr(Zj | Y,Z) + Pr(Zi | Y,Z) Pr(Zj | Y, Z)− Pr(Zi | Z) Pr(Zj | Z)|
≤ |Pr(Zi, Zj | Y,Z)− Pr(Zi | Y,Z) Pr(Zj | Y,Z)|+ |Pr(Zi | Y, Z) Pr(Zj | Y, Z)− Pr(Zi | Z) Pr(Zj | Z)|

(Triangle inequality)
≤ϵ+ |Pr(Zi | Y, Z) Pr(Zj | Y, Z)− Pr(Zi | Z) Pr(Zj | Z)| . (Assumption 4.2)

Therefore, we only have to bound the second quantity.

|Pr(Zi | Y, Z) Pr(Zj | Y, Z)− Pr(Zi | Z) Pr(Zj | Z)|
= |Pr(Zi | Y, Z)(Pr(Zj | Y, Z)− Pr(Zj | Z)) + Pr(Zj | Z)(Pr(Zi | Y,Z)− Pr(Zi | Z))|
≤ |Pr(Zi | Y, Z)(Pr(Zj | Y, Z)− Pr(Zj | Z))|+ |Pr(Zj | Z)(Pr(Zi | Y,Z)− Pr(Zi | Z))|

(Triangle inequality)
≤ |Pr(Zj | Y, Z)− Pr(Zj | Z)|+ |Pr(Zi | Y,Z)− Pr(Zi | Z)|

=
1

Pr(Y | Z)
|Pr(Zj , Y | Z)− Pr(Y | Z) Pr(Zj | Z)|+ 1

Pr(Y | Z)
|Pr(Zi, Y | Z)− Pr(Y | Z) Pr(Zi | Z)|

≤ ϵ1 + ϵ2
Pr(Y | Z)

. (By Assumption 4.1)

Combining everything, we complete the proof.
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D.2 Necessity of the Assumptions

Proof of Proposition 4.4. Intuitively, if Zi and Zj are correlated in a different way from Xi and Xj ,
then it makes Zi and Zj no longer “cheap” signals. In this case, a strategy that combines Zi and Xi

will improve the expected score.

Suppose Σ = {0, 1} contains two signals. Consider the following joint distribution for
Pr((Xi, Zi), (Xj , Zj)|Y = y, Z = z) where row 1 to 4 corresponds to (Xi, Zi) =
(0, 0), (0, 1), (1, 0), (1, 1) respectively and the columns stand for (Xj , Zj). For simplicity, let’s
suppose the following joint distribution is identical for any y and z.

Pr((Xi, Zi), (Xj , Zj) | y, z) =

2d 0 0 0
0 0 0 0
0 0 1

2 − 2d 1
2 − 2d

0 d 0 d

 for any y, z ∈ {0, 1}.

Note that the example is valid when 0 < d ≤ 1
4 . Using this joint distribution, we can further write

down the joint distribution between other pairs of variables.

Pr(Xi, Xj | y, z) =
(
2d 0
d 1− 3d

)
Pr(Zi, Zj | y, z) =

(
1
2

1
2 − 2d

0 2d

)
for any y, z ∈ {0, 1}.

Furthermore, the product of the marginal distributions are

Pr(Xi | y, z) Pr(Xj | y, z) =
(

6d2 2d (1− 3d)
3d (1− 2d) (1− 2d) (1− 3d)

)
Pr(Zi | y, z) Pr(Zj | y, z) =

(
1
2 (1− 2d) 1

2 (1− 2d)
d d

)
for any y, z ∈ {0, 1}.

We can further write down the difference between the joint distribution and the product of the marginal
distributions.

Pr(Xi, Xj | y, z)− Pr(Xi | y, z) Pr(Xj | y, z) =
(

2d(1− 3d) −2d(1− 3d)
−2d(1− 3d) 2d(1− 3d)

)
Pr(Zi, Zj | y, z)− Pr(Zi | y, z) Pr(Zj | y, z) =

(
d −d
−d d

)
Note that in this example, |Pr(Zi, Zj | y, z) − Pr(Zi | y, z) Pr(Zj | y, z)| = d for any Zi, Zj ∈
{0, 1}, satisfying the condition in the proposition. Furthermore, for any k ∈ {0, 1}, the scoring
function T∆(k, h, l) = 1 if and only if h = l and 0 otherwise. Now, we compute the expected score
when both agents honestly report the high-effort signal.

Si(Xi, Xj | Z) =
∑

z∈{0,1}

Pr(Z = z)

∑
xi,xj∈{0,1}

(Pr(Xi = xi, Xj = xj | z)− Pr(Xi = xi | z) Pr(Xj = xj | z)) T∆(xi, xj , z)

=
∑

xi,xj∈{0,1}

|Pr(xi, xj | z)− Pr(xi | z) Pr(xj | z)|

= 8d(1− 3d).

We show that this score is strictly smaller than the expected score when agents report 0 if and only if
Xi = Zi = 0 (and Xj = Zj = 0) and report 1 otherwise. Let θ be the strategy such that θ(k, l|z) = 0
if and only if k = l = 0 for any z. We can write down the joint distribution and the product of
marginal distributions for X̂i and X̂j .

Pr(X̂i, X̂j | y, z) =
(
2d 0
0 1− 2d

)
Pr(X̂i | y, z) Pr(X̂j | y, z) =

(
4d2 2d(1− 2d)

2d(1− 2d) (1− 2d)2

)
for any y, z ∈ {0, 1}.
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The difference between the above two matrices is thus

Pr(X̂i, X̂j | y, z)−Pr(X̂i | y, z) Pr(X̂j | y, z) =
(

2d(1− 2d) −2d(1− 2d)
−2d(1− 2d) 2d(1− 2d)

)
for any y, z ∈ {0, 1}.

This means that the expected score under the strategy profile (θ, θ) is

Si(X̂i, X̂j | Z) =
∑

z∈{0,1}

Pr(Z = z)

∑
xi,xj∈{0,1}

(Pr((X̂i = xi, X̂j = xj | z)− Pr(X̂i = xi | z) Pr(X̂j = xj | z)) T∆(xi, xj , z)

=
∑

xi,xj∈{0,1}

∣∣∣Pr(X̂i = xi, X̂j = xj | z)− Pr(X̂i = xi | z) Pr(X̂j = xj | z)
∣∣∣

= 8d(1− 2d)

= Si(Xi, Xj | Z) + 8d2.

D.3 Information Monotonicity under Lazy-reporting Strategies

Proof of Proposition 4.6. A lazy-reporting strategy is a convex combination of truth-telling and a
no-effort strategy. Therefore, it suffices to show that the expected score of truth-telling is strictly
higher than that of any no-effort strategy.

A no-effort strategy is essentially a mixture of two types of strategy. First, µi(Xi, Zi) is independent
of both Xi and Zi. In this case, we have shown in the proof of Theorem 4.3 that the expected score is
0, strictly less than the expected score of truth-telling, which is ITVD(Xi;Xj | Z).

Second, µi(Xi, Zi) depends only on Zi; let µi(Xi, Zi) = Ẑi. Conditioned on Z, the Markov chain
Zi → Ẑi holds. Now, fix agent j’s lazy-reporting strategy and let her report be X̂j . By the data
processing inequality Shannon [1948], we have:

ITVD(Ẑi; X̂j | Z) ≤ ITVD(Zi; X̂j | Z).

Next, suppose agent i reporting Zi, which is the score-maximizing lazy-reporting strategy regardless
of agent j’s strategy. For any lazy-reporting strategy such that X̂j = νj(Xj , Zj) that agent j plays,
applying the data processing inequality to agent j’s report yields:

ITVD(Zi; X̂j | Z) ≤ max (ITVD(Zi;Zj | Z), ITVD(Zi;Xj | Z)) .

Therefore, Assumption 4.5 is sufficient for information monotonicity under lazy-reporting strategies.

E Learning the Scoring Function

In Section 4.1, we assumed that the underlying scoring function T∆ is known. For complex signal
structures, especially when the signal space is large, we have to learn the scoring function from the
data. This introduces a concern: if a significant fraction of agents rely on LLMs, the learned scoring
function T∆̃ might be manipulated in a way that benefits the LLM-generated reports. We mitigate
this concern using the following proposition. Let ST

i (θi, θj) be the expected score computed under
the scoring function T when agents’ strategies are θi and θj respectively.
Proposition E.1. Suppose Assumption 4.1 and Assumption 4.2 hold with no error such that ϵ = ϵi = 0
for any i ∈ [n]. Then, for any scoring function T ∈ {0, 1}|Σ|×|Σ| and any strategy profile (θi, θj),
ST
i (θi, θj) ≤ ST∆

i (τ, τ), where τ denote the truth-telling strategy.

Intuitively, the proposition holds because when T∆ is known and agents are truth-telling, the expected
score is ITVD(Xi;Xj | Z). However, if T∆ is mislearned, the expected score is upper bounded by
ITVD(X̂i; X̂j | Z). Since our assumptions ensure that Zi and Zj are independent given Z, the data
processing inequality guarantees that ITVD(X̂i; X̂j | Z) < ITVD(Xi;Xj | Z).
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Proposition E.1 implies that the expected score of the conditioned CA mechanism is maximized if
every agent exerts full effort and reports Xi, while any strategy that manipulates the true scoring
function will only (weakly) decrease the expected score.3

Proof of Proposition E.1. Note that when agent i and j play strategy θi and θj respectively and the
scoring function is T ,

ST
i (θi, θj)

=
∑
z∈Σ

Pr(Z = z)
∑

xi,xj ,zi,zj∈Σ

(Pr(xi, xj , zi, zj | z)− Pr(xi, zi | z) Pr(xj , zj | z)) T (θi(xi, zi), θj(xj , zj), z)

Because Assumption 4.2 and Assumption 4.1 hold with no error, by Lemma D.2 and Lemma D.1,
it is easy to show that Pr(xi, xj , zi, zj | z) = Pr(xi, xj | z) Pr(zi | z) Pr(zj | z) and Pr(xi, zi |
z) = Pr(xi | z) Pr(zi | z).

=
∑
z∈Σ

Pr(Z = z)
∑

zi,zj∈Σ

Pr(zi | z) Pr(zj | z)∑
xi,xj∈Σ

(Pr(xi, xj | z)− Pr(xi | z) Pr(xj | z)) T (θi(xi, zi), θj(xj , zj), z)

≤
∑
z∈Σ

Pr(Z = z)
∑

zi,zj∈Σ

Pr(zi | z) Pr(zj | z)
∑

xi,xj∈Σ

|Pr(xi, xj | z)− Pr(xi | z) Pr(xj | z)|

(Because T (k, h, l) is either 0 or 1.)

=
∑
z∈Σ

Pr(Z = z)
∑

xi,xj∈Σ

|Pr(xi, xj | z)− Pr(xi | z) Pr(xj | z)| (Marginalize zi, zj)

=ST∆
i (τ, τ)

F A Heuristic Generalization to Complex Signals

We have focused on scenarios where the signal space is small, such as answering multi-choice
questions like sentiment labeling, preference elicitation, or grading. However, many real-world
crowdsourcing tasks involve open-ended questions that require workers to provide more complex
responses, such as image or video descriptions, idea generation, or feedback and review collection.
These tasks introduce unique challenges for applying our method, including 1) defining meaningful
representation (textual) responses, and 2) computing the information between two responses condi-
tioned on the principal’s sample Z. In this section, we outline how to address these challenges and
extend our method to accommodate tasks with complex, open-ended responses. We will illustrate
our idea using peer review as an example, while we note that our method can be generalized to other
similar settings.

Representing responses. Suppose two agents review the same paper and each has a review after
reading the paper, which is denoted as Xi and Xj respectively. Instead of working hard to obtain a
high-quality review, each agent can use an LLM to generate a fake review, denoted as Zi and Zj . The
first challenge is how to measure the level of agreement between two reviews. The idea is to represent
each review with an embedding vector and compute the similarity between a pair of embedding
vectors. Depending on the information of interest, different embedding methods can be applied. For
example, classic NLP embedding methods such as Word2Vec Mikolov [2013], TF-IDF Manning
[2009], BERT and its variants Devlin [2018], Sanh [2019], and GPT-3 Brown et al. [2020] can be
used to represent the language-level information within the responses.

Existing embedding methods may struggle when the focus is on content-level information, such as
the judgments in peer reviews. For example, at the language level, an LLM-generated review may be
similar to a human-written review that is rewritten for polishing by an LLM, while the information
within their judgments can be very different. To address this, we consider an alternative, interpretable

3Here we assume that the principal can learn the correct T∆ if everyone reports their full-effort signal.
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approach for representing complex responses. The key idea is to prompt an LLM to score a response
based on a list of pre-determined characteristics.

For instance, we can prompt an LLM to classify whether a review adopts a compromising, critical, or
neutral stance on specific aspects of a paper, such as writing quality, completeness of related work,
novelty of the research idea, or the quality of datasets. Using this method, each textual review X can
be represented as a vector ϕ(X) of length K, where each entry ϕ(X)k encodes the attitude of the
review toward the K-th aspect. The similarity between two reviews Xi and Xj can then be quantified
using the cosine similarity between their representations ϕ(Xi) and ϕ(Xj).

The same idea can be generalized beyond peer review. Suppose the principal has a pre-defined set of
questions about the responses, denoted as Q where |Q| = K. Each question requires a (normalized)
score between −1 and 1, ensuring that the inner product between vectors can serve as a meaningful
similarity measure. Given a response Xi, the principal can prompt an LLM to iteratively get an
answer to each question q ∈ Q. This process converts each response Xi into a vector ϕ(Xi) of length
K, and each entry is a score between −1 and 1. Similar ideas have been applied to identify similar
data points Zeng et al. [2024], analyze peer review Liang et al. [2024], and select features Jeong et al.
[2024].

Computing the conditioned similarity. The key idea of the conditioned CA mechanism is to give
an agent i a higher score for having responses that correlate with another agent j’s responses beyond
what both share with Z. To measure how ϕ(Xi) and ϕ(Xj) correlate conditioned on ϕ(Z), a direct
application—treating each vector component as a random variable—quickly becomes infeasible due
to the exponential growth of the signal space in the vector dimension K. Therefore, we adopt a
heuristic: we compute the similarity between ϕ(Xi) and ϕ(Xj) after removing their shared direction
with ϕ(Z). Specifically:

1. Project each vector onto the hyperplane orthogonal to ϕ(Z).
Let uz = ϕ(Z)

∥ϕ(Z)∥ be the unit vector in the direction of ϕ(Z). Then,

ϕ(Xi)
′ = ϕ(Xi)− (ϕ(Xi) · uz)uz, ϕ(Xj)

′ = ϕ(Xj)− (ϕ(Xj) · uz)uz.

2. Compute the cosine similarity between ϕ(Xi)
′ and ϕ(Xj)

′ to score agent i.

By projecting the embedding vectors onto the orthogonal complement of ϕ(Z), we remove the
information that already exists in Z. This projection approach is also used in NLP for “debiasing”
word embeddings by eliminating similarity along a “biased direction” Bolukbasi et al. [2016].

Finally, we note that we do not assume the principal’s questions in Q to be i.i.d. Thus, the theoretical
guarantees in Section 4.1 do not directly apply to this heuristic generalization; we instead rely on
empirical evaluation to assess performance.

G Experiments (Continue)

G.1 Large Language Models

In this work, we select five well-known LLMs to generate labels or annotations for all used datasets,
including GPT-3.5-turbo, GPT-4, Gemma-2-2b-it4, Phi-3.5-mini-Instruct 5, and Mistral-7B-Instruct-
v0.36. The corresponding prompt templates are provided in Appendix H. Note that we choose only
five models because other commonly used LLMs such as LLaMA and Gemini refuse to answer
toxicity-related questions.

G.2 Details of the Baseline Methods

Output Agreement (OA) Perhaps the most straightforward idea to score an agent is to count the
frequency of agreements between her responses and another agents’ responses. Specifically, while
scoring agent i, we iteratively pair her with a different agent j and let Mi,j denote the set of questions

4https://huggingface.co/google/gemma-2-2b-it
5https://huggingface.co/microsoft/Phi-3.5-mini-instruct
6https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
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answered by both agents. Then, the score of agent i is the average of the empirical probability
of agreement, i.e. 1

n

∑
j∈[n]\{i}

∑
q∈Mi,j

1[X̂i,q=X̂j,q]
|Mi,j | where X̂ is the crowdsourced dataset with

rows representing agents and columns representing questions.7 A score of 1 thus indicates perfect
agreement while a score of 0 indicates no agreement at all.

Correlated Agreement (CA) We use the CA mechanism Shnayder et al. [2016] as a baseline which
does not incorporate the principal’s information Z. Details of the mechanism have been presented in
Algorithm 1.

Expectation-Maximization (EM) The EM algorithm is a well-known approach to estimating the
reliabilities of noisy agents and better recovering the ground truth considering the reliabilities of
agents [Dawid and Skene, 1979]. Each agent i is assumed to make mistakes according to a confusion
matrix Γi where Γi

h,l denotes the probability that agent i reports h when the ground truth answer is l.
The EM algorithm first initializes a prior of the ground truth for each question and a confusion matrix
for each agent. Then, it iteratively goes through an E-step and an M-step. In the E-step, the algorithm
computes the posterior of the ground truth of each question given the prior and the confusion matrix.
In the M-step, the confusion matrix of each agent is updated using the posterior computed in the
E-step. The above two steps are iterated until the likelihood of D converges. Finally, we score
the reliability of agent i as

∑
h∈Σ Γi

h,hP̃ (h) where P̃ (h) is the empirical marginal distribution of
observing h in the dataset.

Conditioned Agreement (OAZ) The first three measures do not utilize the principal’s infor-
mation about the cheap signal, denoted as Z. Note that in our experiments, Z is the vector
of labels generated by a particular LLM. The conditioned agreement metric scores a agent if
she can provide agreements to another agent in addition to Z. Similar to the agreement metric,
the score of agent i is the average of the empirical probability of agreement conditioned on Z,
i.e. 1

n

∑
j∈[n]\{i}

∑
q∈Mi,j

1[X̂i,q=X̂j,q&X̂i,q ̸=Zq ]
|Mi,j | . Intuitively, if agent i uses an LLM whose gener-

ated labels are similar to Z, then X̂i,q ̸= Zq will happen with a small probability, meaning that the
conditioned agreement score will be small.

G.3 Assumption Verifications (Continue)

Table 2, Table 3, Table 4 and Table 5 present the mutual information ITVD(Zi;Zj | Z) on four
datasets. Z and Zi are sampled by the same LLM indicated on the rows and Zj is sampled by the
LLM indicated on the columns. The first observation is that all values displayed in black exceed
0.05, which represents the mutual information of the random reporting baseline. This implies that
ITVD(Zi;Zj | Z) > ϵ holds consistently, rejecting hypothesis 2.

Regarding hypothesis 4, we observe that the average correlations between two LLMs are generally
weaker than those between two human agents, provided Zi and Z are independently generated by the
same model. This trend is evident in the tables, where almost all bracketed values are positive, with
one exception.8

G.4 Detecting Low-effort Agents (Continue)

G.4.1 Additional Figures and Tables

In Figure 4, we present additional figures on the toxicity dataset, analogous to Figure 3b, for other
LLMs. Analogous results to Table 1 for other datasets are summarized in Table 6, Table 7, Table 8,
and Table 9. These results support our main claim that, although our method is occasionally slightly
outperformed by certain baselines, it consistently demonstrates the most robust performance across
all tested settings.

7Let 0
0
= 0.

8The exception occurs in the preference alignment dataset, where samples of Zi, Zj , and Z all generated by
GPT-4.
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Table 2: Conditional TVD Mutual Information Between Two LLMs on the Preference Alignment
Data

GPT-3.5 GPT-4 Gemma Mistral Phi

GPT-3.5 0.2255 (0.0412) 0.1973 (0.0694) 0.0865 (0.1802) 0.1224 (0.1443) 0.1311 (0.1355)

GPT-4 0.0715 (0.1537) 0.2559 (-0.0307) 0.0571 (0.1682) 0.0552 (0.1701) 0.0723 (0.1530)

Gemma 0.1013 (0.1819) 0.1767 (0.1066) 0.2453 (0.0379) 0.0655 (0.2177) 0.1174 (0.1659)

Mistral 0.0920 (0.1938) 0.1132 (0.1726) 0.0620 (0.2238) 0.2350 (0.0508) 0.0964 (0.1894)

Phi 0.0874 (0.1969) 0.1300 (0.1542) 0.0855 (0.1988) 0.0929 (0.1914) 0.2479 (0.0364)

Each entry represents ITVD(Zi;Zj | Z) (Difference: ITVD(Xi;Xj | Z)− ITVD(Zi;Zj | Z)), where
Zi and Zj are generated by the models in the row and column respectively, and Z uses the
same model as Zi.

Table 3: Conditional TVD Mutual Information Between Two LLMs on the Hatefulness Labeling
Data

GPT-3.5 GPT-4 Gemma Mistral Phi

GPT-3.5 0.0317 (0.1605) 0.0362 (0.1560) 0.0385 (0.1537) 0.0426 (0.1496) 0.0353 (0.1570)

GPT-4 0.0077 (0.1575) 0.0286 (0.1366) 0.0229 (0.1424) 0.0216 (0.1437) 0.0253 (0.1400)

Gemma 0.0075 (0.1588) 0.0183 (0.1481) 0.0758 (0.0905) 0.0464 (0.1199) 0.0543 (0.1121)

Mistral 0.0040 (0.1600) 0.0097 (0.1542) 0.0341 (0.1299) 0.0408 (0.1231) 0.0350 (0.1290)

Phi 0.0088 (0.1658) 0.0115 (0.1631) 0.0618 (0.1128) 0.0526 (0.1220) 0.0803 (0.0943)

G.4.2 Detection Performance vs. Number of Samples

We further examine how many questions the principal needs to sample to effectively detect low-effort
agents. In Figure 5, we report the AUC of the conditioned CA mechanism with the fraction of LLM-
reliant agents fixed at 0.15, while the fractions of random and biased agents are independently sampled
from [0, 0.2]. We vary the sampling rate from 20% to 100%. The results vary across the datasets and
the LLMs that agents use. Except for the hatefulness labeling dataset with GPT-3.5-reliant agents,
sampling 50% of the questions is sufficient to outperform the baseline CA mechanism.

G.4.3 Conditioning on samples of multiple LLMs

In practice, agents may employ a variety of LLMs for low-effort response generation, and the principal
lacks prior knowledge of which models they are using. To address this challenge, we propose an
iterative conditioning approach, systematically removing the influence of responses generated by
each LLM available to the principal. The idea is to iteratively compute the CA score conditioned on
each of the LLM samples the principal has, and then take the minimum as the final score. Intuitively,
human agents will perform consistently well when conditioning out any of the LLMs’ information.
However, LLM-reliant agents will perform poorly in at least one of the iterations and thus leading to
a lower final score.

In Figure 6, we replicate Figure 3b for the setting where the LLM-reliant agents randomly pick two
LLMs with half-half probability while the principal iteratively conditions out his samples for these
two LLMs’ answers. Our method exhibits the most robust performance across all datasets, echoing
the previous conclusion.

G.5 Complex Signals

We further test the idea illustrated in Appendix F that generalizes our method to high-dimensional
settings.
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(a) GPT-4 (b) GPT-3.5-turbo (c) Gemma-2-2b-it

(d) Mistral-7B-Instruct-v0.3 (e) Phi-3.5-mini-Instruct

Figure 4: The area under the ROC curve (AUC) for various methods while varying the fraction of
LLM-reliant agents. These are the analogous figures for Figure 3b for the remaining LLMs on the
toxicity labeling dataset.

(a) Preference (b) Hatefulness

(c) Offensiveness (d) Toxicity

Figure 5: The area under the ROC curve (AUC) for various methods while varying the fraction of
questions the principal can sample.
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Table 4: Conditional TVD Mutual Information Between Two LLMs on the Offensiveness Labeling
Data

GPT-3.5 GPT-4 Gemma Mistral Phi

GPT-3.5 0.1267 (0.0809) 0.0926 (0.1149) 0.0450 (0.1625) 0.0785 (0.1290) 0.0802 (0.1273)

GPT-4 0.0419 (0.1092) 0.0920 (0.0590) 0.0520 (0.0990) 0.0867 (0.0644) 0.0794 (0.0716)

Gemma 0.0302 (0.2336) 0.0602 (0.2036) 0.1152 (0.1486) 0.0597 (0.2040) 0.0676 (0.1962)

Mistral 0.0390 (0.1407) 0.0573 (0.1225) 0.0295 (0.1502) 0.0836 (0.0961) 0.0516 (0.1281)

Phi 0.0320 (0.1604) 0.0597 (0.1327) 0.0334 (0.1591) 0.0604 (0.1321) 0.0651 (0.1273)

Table 5: Conditional TVD Mutual Information Between Two LLMs on the Toxicity Labeling Data

GPT-3.5 GPT-4 Gemma Mistral Phi

GPT-3.5 0.1611 (0.0063) 0.1328 (0.0347) 0.1199 (0.0476) 0.1419 (0.0255) 0.1340 (0.0334)

GPT-4 0.0587 (0.1399) 0.1035 (0.0951) 0.0755 (0.1231) 0.0673 (0.1312) 0.0652 (0.1334)

Gemma 0.0721 (0.1650) 0.0869 (0.1502) 0.1329 (0.1042) 0.0880 (0.1491) 0.1043 (0.1328)

Mistral 0.0602 (0.1413) 0.0622 (0.1394) 0.0454 (0.1561) 0.0934 (0.1081) 0.0642 (0.1373)

Phi 0.0416 (0.1756) 0.0517 (0.1655) 0.0382 (0.1790) 0.0472 (0.1701) 0.0666 (0.1507)

In this experiment, we randomly sample 500 papers from the ICLR 2024 OpenReview data and
select three human reviews per paper as human responses X . For each of the same batch of papers,
we further use each of the five LLMs to generate three AI reviews using three similar-meaning yet
different prompts (Appendix H). We randomly pick one of the generated reviews as the principal’s
sample Z, and the other two generated reviews will be used to simulate the responses of LLM-reliant
agents.

We prompt GPT-4 to process each human review and LLM-generated review into a 19-dimension
vectors with the prompt shown in Appendix H. We further simulate a review embedding tensor with a
size of n×m× 19, where there are n = 188 reviewers and m = 500 papers in total. Each reviewer
randomly reviews k ∈ {5, 8} papers. An αllm fraction of reviewers are LLM-reliant agents whose
review vectors are replaced with a particular type of LLM-generated reviews. An αp fraction of
reviewers are prior-reporting agents, where the score in each entry of the review vector is randomly
sampled according to the marginal distribution in the dataset. An αr fraction of reviewers are random
agents, where the score in each entry of the review vector is sampled uniformly at random. In our
experiments, we independently sample each of αllm, αp, and αr uniformly from the interval [0, 0.1]
and take average over 100 trials. While constructing the review embedding tensor, we guarantee

(a) Gemma & GPT-3.5 (b) Gemma & GPT-4 (c) GPT-3.5 & GPT-4

Figure 6: Area under the ROC curve (AUC) for various methods as the fraction of LLM-reliant
agents increases. In each case, LLM-reliant agents randomly choose between two LLMs to generate
responses, and the score is defined as the minimum of the two conditioned CA scores, each conditioned
on samples from one LLM.
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Table 6: Average AUC (and bottom 10% quantiles) across datasets and methods with GPT-3.5-reliant
agents.

Dataset OA CA OAZ EM CAZ (ours)
Hatefulness 0.61 (0.40) 0.90 (0.84) 0.90 (0.85) 0.86 (0.77) 0.89 (0.86)
Offensiveness 0.80 (0.69) 0.76 (0.58) 0.48 (0.27) 0.76 (0.57) 0.83 (0.77)
Toxicity 0.75 (0.62) 0.72 (0.51) 0.47 (0.24) 0.71 (0.50) 0.78 (0.71)
Preference Alignment 0.88 (0.67) 0.86 (0.69) 0.88 (0.76) 0.96 (0.91) 0.91 (0.83)

Table 7: Average AUC (and bottom 10% quantiles) across datasets and methods with Mistral-reliant
agents.

Dataset OA CA OAZ EM CAZ (ours)
Hatefulness 0.82 (0.75) 0.72 (0.51) 0.62 (0.48) 0.76 (0.54) 0.84 (0.78)
Offensiveness 0.71 (0.54) 0.79 (0.62) 0.63 (0.47) 0.75 (0.57) 0.89 (0.84)
Toxicity 0.65 (0.50) 0.75 (0.56) 0.58 (0.39) 0.70 (0.49) 0.84 (0.79)
Preference Alignment 0.86 (0.66) 0.89 (0.75) 0.94 (0.87) 0.94 (0.87) 0.93 (0.88)

that each paper has approximate 3 reviews so that the variance of the number of reviewers per paper
is controlled. Again, we consider five types of LLMs and for each type of LLM-reliant agent, the
principal’s sample Z is an independent generation of the same LLM under a different prompt.

We consider three methods to score the reviewers.

• Cosine Similarity: Scores each reviewer based on the average cosine similarity between
their review vector and the review vectors of other reviewers for the same paper.

• Projected Cosine Similarity: Applies the method described in Appendix F, where each
review vector is projected onto the subspace orthogonal to the principal reviewer’s sampled
embedding before computing similarity.

• Negative Similarity to Z: Scores each reviewer by taking the negative average cosine
similarity between their review vector and the principal reviewer’s sampled vector Z.

We present the results in Figure 7. It is clear that conditioning out the principal’s sampled LLM
reviews is more effective than computing the cosine similarity directly. Furthermore, naively removing
reviews that are similar to Z has a large variance, whose performance greatly depends on the existence
of random agents and prior-reporting agents.

We further note that there is a big room for improvement. First, from a methodology perspective, the
19-dimensional embedding is heuristically chosen and is not optimized for distinguishing human-AI
reviews. Second, from the data perspective, human reviews are naturally very noisy. Our method can
be potentially applied to other crowdsourcing tasks where human responses are more consistent. We
view these as future directions.

H Prompts Templates

We adopt our prompt templates based on recent studies [Pang et al., 2024, Liu et al., 2024, Pang et al.,
2025]. The specific templates used for the two dataset settings are presented in Table H and Table H,
respectively.
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Table 8: Average AUC (and bottom 10% quantiles) across datasets and methods with Gemma-reliant
agents.

Dataset OA CA OAZ EM CAZ (ours)
Hatefulness 0.85 (0.79) 0.71 (0.51) 0.60 (0.42) 0.77 (0.56) 0.85 (0.80)
Offensiveness 0.75 (0.58) 0.78 (0.59) 0.61 (0.43) 0.76 (0.53) 0.90 (0.84)
Toxicity 0.70 (0.58) 0.75 (0.59) 0.56 (0.36) 0.72 (0.52) 0.85 (0.79)
Preference Alignment 0.80 (0.58) 0.87 (0.73) 0.76 (0.62) 0.92 (0.85) 0.92 (0.86)

Table 9: Average AUC (and bottom 10% quantiles) across datasets and methods with Phi-reliant
agents.

Dataset OA CA OAZ EM CAZ (ours)
Hatefulness 0.87 (0.81) 0.67 (0.44) 0.66 (0.47) 0.77 (0.56) 0.85 (0.79)
Offensiveness 0.76 (0.64) 0.76 (0.59) 0.58 (0.35) 0.75 (0.53) 0.88 (0.83)
Toxicity 0.73 (0.62) 0.74 (0.54) 0.54 (0.35) 0.71 (0.48) 0.83 (0.77)
Preference Alignment 0.85 (0.68) 0.82 (0.63) 0.82 (0.63) 0.97 (0.94) 0.93 (0.88)

Prompt Template for Toxicity Labeling

System Prompt: As a helpful system judgment assistant, your task is to answer the following
questions for the given comment. You should label a comment as hateful if it expresses hatred
towards a targeted group or is intended to be derogatory, to humiliate, or to insult the members
of the group. You should label a comment as offensive if it contains hurtful, derogatory, or
obscene comments. You should label a comment as toxic if it is a rude, disrespectful, or
unreasonable comment that is likely to make readers want to leave a discussion.

Question 1: Do you think this comment is hateful? —Yes or No.

Question 2: Do you think this comment is offensive? —Yes or No.

Question 3: Do you think this comment is toxic? —Yes or No.

Comment: [Comment]

User Prompt: Now, please evaluate the following comment and return the final answers in
JSON format:
{
"question 1": {"hateful": <yes/no>},
"question 2": {"offensive": <yes/no>},
"question 3": {"toxic": <yes/no>}
}

(a) k = 5 reviews per reviewer (b) k = 8 reviews per reviewer

Figure 7: A comparison of the area under the ROC curve (AUC) of various methods in the peer
review dataset.
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Prompt Template for Preference Alignment

System Prompt:
Please act as an impartial judge and evaluate the quality of the responses provided by two
AI assistants to the user question displayed below. You should choose the assistant that
follows the user’s instructions and answers the user’s question better. Your evaluation should
consider factors such as the helpfulness, harmlessness, truthfulness, and level of detail
of their responses. Begin your evaluation by comparing the two responses and provide a
short explanation. Avoid any position biases and ensure that the order in which the responses
were presented does not influence your decision. Do not allow the length of the responses to
influence your evaluation. Do not favor certain names of the assistants. Be as objective as
possible.

After providing your explanation, output your final verdict by strictly following a 5-point
Likert scale:

• A is clearly better
• A is slightly better
• Tie
• B is slightly better
• B is clearly better

Question: [Question]
Response A: [Response A]
Response B: [Response B]

User Prompt:
Now, please evaluate the responses and return the final verdict in JSON format:
{

"final verdict": <A-is-clearly-better / A-is-slightly-better, Tie,
B-is-slightly-better / B-is-clearly-better>,
"short explanation": <your short explanation within one sentence>

}
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Prompt Template for Paper Review 19-Dimensional Judgment Embedding Generation

System Prompt:
You will be given a review of a computer science paper. Such a review is typically composed
of a summary of the corresponding paper, reasons to accept, reasons to reject, and questions
for the authors. Upon receiving the review, your task is to generate an embedding of the
review in a 19-dimensional space according to the following instructions:

1. Identify and ignore the summary and the questions section of the review (if any).
2. Separate the review into advantages and disadvantages.
3. Further decompose the advantages and disadvantages into independent judgments.
4. You will be given 19 judgment categories. For each category:

• If a positive-toned judgment falls into the category, assign a score of 1.
• If a negative-toned judgment falls into the category, assign a score of -1.
• If no judgment is related to the category, assign a score of 0.

5. Return the scores for all 19 categories as a dictionary. Do not include any additional
explanation.

The judgment categories are:

Clarity and Presentation Related Work Theory Soundness
Experiment Design Significance of the Problem Novelty of Method
Practicality of Method Comparison to Previous Studies Implications of the Research
Reproducibility Ethical Aspects Relevance to Conference
Experiment Execution Scope and Generalizability Utility and Applicability
Defense Effectiveness Real-world Applicability Algorithm Efficiency
Data Generation and Augmentation

User Prompt:
Now, please evaluate the paper review and return the scores for each category in the following
JSON format:
{

"Clarity and Presentation": <-1/0/1>,
"Related Work": <-1/0/1>,
"Theory Soundness": <-1/0/1>,
"Experiment Design": <-1/0/1>,
"Significance of the Problem": <-1/0/1>,
"Novelty of Method": <-1/0/1>,
"Practicality of Method": <-1/0/1>,
"Comparison to Previous Studies": <-1/0/1>,
"Implications of the Research": <-1/0/1>,
"Reproducibility": <-1/0/1>,
"Ethical Aspects": <-1/0/1>,
"Relevance to Conference": <-1/0/1>,
"Experiment Execution": <-1/0/1>,
"Scope and Generalizability": <-1/0/1>,
"Utility and Applicability": <-1/0/1>,
"Defense Effectiveness": <-1/0/1>,
"Real-world Applicability": <-1/0/1>,
"Data Generation and Augmentation": <-1/0/1>,
"Algorithm Efficiency": <-1/0/1>

}
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