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Abstract—Deep learning-based trajectory prediction models
for autonomous driving often struggle with generalization to out-
of-distribution (OOD) scenarios, sometimes performing worse
than simple rule-based models. To address this limitation, we
propose a novel framework, Adaptive Prediction Ensemble
(APE), which integrates deep learning and rule-based prediction
experts. A learned routing function, trained concurrently with
the deep learning model, dynamically selects the most reliable
prediction based on the input scenario. Our experiments on
large-scale datasets, including Waymo Open Motion Dataset
(WOMD) and Argoverse, demonstrate improvement in zero-
shot generalization across datasets. We show that our method
outperforms individual prediction models and other variants,
particularly in long-horizon prediction and scenarios with a high
proportion of OOD data. This work highlights the potential of
hybrid approaches for robust and generalizable motion prediction
in autonomous driving.

I. INTRODUCTION

Trajectory prediction is critical for safe and reliable au-
tonomous vehicle systems. Existing prediction algorithms [35,
19, 18, 27] have achieved high accuracy on real-world scenar-
ios, such as real traffic datasets. However, most of these algo-
rithms only work best for in-distribution scenarios. Intuitively,
traffic scenarios in different cities of the same country should
not possess drastic differences, and human driving skills
including their prediction and judgment, are not significantly
affected. This is unfortunately not the case for deep learning-
based prediction algorithms [37, 15]. If they are applied to
out-of-distribution (OOD) scenes in a zero-shot manner, such
as predicting vehicle trajectories from a different dataset than
the training dataset, the performance will drop dramatically
even though the input representation and format are the same.
In some cases, a deep learning-based prediction algorithm is
not even as good as a simple constant velocity model, as shown
in Fig. 1. This is unfortunately a largely under-explored topic.
One natural way is to combine the prediction from different
sources, which resembles the mixture of experts. As far as we
know, we are the first to explore concrete methods to improve
OOD generalization to different datasets than training.

Mixture of Experts (MoEs) [32] has gained popularity, espe-
cially after the great success of Large Language Models. Many
prior work showed MoEs can reach faster inference [33, 34]
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Fig. 1: Illustration of the motivation of improving prediction
algorithm by Adaptive Prediction Ensemble. (a) An example
scenario where vanilla rule-based prediction algorithm out-
performs deep NN prediction algorithm (MTR [35]). (b) A
comparison of the error (minADE) between deep NN and rule-
based prediction. The rule-based method outperforms deep NN
in a considerable amount of scenarios, which are the ones
below the red line.

compared to dense models with the same number of parame-
ters, and can also be pre-trained faster [10]. While they focused
on MoEs’ advantage over a comparable dense model in size,
we are more interested in investigating the generalization
ability improvements upon a single expert model. We generally
find that deep learning prediction models tend to overfit their
training dataset, making zero-shot performance unacceptable.
Incorporating a fleet of deep learning prediction experts or
adopting similar size large models would not solve the prob-
lem, since increasing model capacity would not mitigate the
overfitting problem if not worse. Therefore, we propose to
employ a rule-based prediction expert as an anomaly-handling
strategy for deep learning prediction experts, in light of the
insight that rule-based prediction could be more reliable in
long-tail cases of deep learning prediction experts.

There are other existing methods for domain generalization
that usually handle the problem by data manipulation [42],
representation learning [26, 20], or specially designed learning
strategy [40, 6, 41] or inference workflow [4]. If one aims



to improve the generalization upon an existing prediction
model with prior methods, it is usually inevitable to make
modifications and re-train the original prediction model. In
comparison, the proposed method in this paper is a straightfor-
ward yet powerful approach to generalization improvement by
establishing a routing function and incorporating a rule-based
baseline prediction model. The routing function is trained
concurrently with the prediction model and decides on whether
to switch to the rule-based model when the learning-based
prediction model is unreliable.

The main contributions of this paper are as follows:
• We identify the problem of generalization when zero-

shot evaluating state-of-the-art (SOTA) prediction models
between different benchmark datasets. The performance
(e.g., minADE and minFDE) of SOTA models drops
drastically. For these cases, it is even possible that basic
rule-based prediction algorithms outperform sophisticated
deep learning-based prediction models.

• We propose a novel inference framework, Adaptive Pre-
diction Ensemble (APE), where the learning-based pre-
diction model will fall back to a rule-based model accord-
ing to their reliability. Their reliability is estimated by a
routing function trained concurrently with the learning-
based prediction model.

• We evaluate the proposed training pipeline and infer-
ence framework on benchmark datasets including Waymo
Open Motion Dataset (WOMD) [7] and Argoverse
dataset [3], which shows that the proposed method sig-
nificantly improves prediction performance in zero-shot
evaluations compared to individual prediction models.

II. PROBLEM FORMULATION

In this paper, we focus on zero-shot learning and evaluate
the motion prediction neural network models on samples that
were not observed during training in the autonomous driving
domain. Specifically, we denote x1:T

i = {xt
i|t ∈ {1, . . . , T}}

as a single agent trajectory in the i-th scene, represented by
a series of features xt

i from timestep 1 to T . The agents
are constantly interacting with the environment for which the
context information can be represented by c1:Ti = {cti|t ∈
(1, T )}. The context information includes map polylines and
surrounding agent polylines, which are represented by a series
of vectors containing coordinates, direction, etc. The i-th scene
is denoted by si = {(xt

i, c
t
i)|t ∈ (1, T )}. The task of the

prediction model is to predict future trajectory distribution
p(xTh+1:Tf

i |x1:Th
i , c1:Th

i ) for an ego agent given its history
features (states) x1:Th

i and context information c1:Th
i in the i−th

scene, where Th is the history horizon and Tf is the lookahead
horizon and T = Th + Tf.

We are interested in inspecting and improving the gener-
alization ability upon deep learning-based prediction model,
which is trained on one dataset DT = {si|i ∈ (1,MT )} with
MT scenes, and evaluated on another dataset DE = {si|i ∈
(1,ME)} with ME scenes. Note that in this paper, the training
and the evaluation datasets are defined differently than the
normal convention of training and validation. They may or

may not be generated from the same underlying distribution.
We evaluate the trained models in a completely new dataset,
e.g., training on WOMD and testing on Argoverse.

III. ADAPTIVE PREDICTION ENSEMBLE

In this section, we present our approach, Adaptive Pre-
diction Ensemble, to improving the test-time performance of
motion prediction algorithms in zero-shot generalization tasks.
It consists of two stages: 1) during the training stage, a deep
learning-based prediction model and a routing function are
trained concurrently; and 2) during the testing stage, a rule-
based prediction model is incorporated, and the final prediction
output is adaptively selected out of both deep learning-based
and rule-based prediction candidates by the routing function
according to their quality.

A. Deep Learning Prediction Expert

We propose to adopt high-capacity neural networks with
a powerful scene encoding module and a motion forecasting
decoder module as the backbone for all deep learning models
in this paper, leveraging their superior scene context encoding
and understanding ability.

The deep learning prediction expert takes in a vectorized
representation, including both history trajectories of the ve-
hicles in the scene and road map polylines, as the input
representation [11], where all the vector inputs are centered
around the ego agent. The input should be processed by
a PointNet-like [30] encoder before being consumed by a
scene encoder. The scene encoder understands most of the
context information and generates embeddings for downstream
prediction tasks. The extracted scene features are fed into
a decoder module with multiple layers. This module pro-
gressively refines the understanding of the scene dynamics
and ultimately generates predictions for the future trajectories
of surrounding vehicles, potentially including multi-modal
predictions. The predictions are obtained through specialized
prediction heads attached to the decoder layers. The training
process optimizes the network to maximize the likelihood of
the predicted trajectories matching the actual ground truth data.
This is achieved by formulating the motion prediction task as
a Gaussian Mixture prediction and employing a negative log-
likelihood loss function Lpred.

Generally speaking, our proposed framework does not have
any strict requirement on specific deep learning prediction
models as individual predictor experts, rather we could ap-
ply any high-performance models as long as they have the
aforementioned properties.

B. Rule-Based Prediction Expert

Rule-based prediction experts can work as a powerful
backup plan for the deep learning prediction expert. Deep
learning prediction experts suffer from long-tail problems,
which in contrast are not such a challenge for rule-based
prediction experts. Among numerous rule-based prediction
algorithms, we discover that a constant velocity model can be
sufficient to showcase the improvements upon a single deep
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Fig. 2: The model structure of the learned routing function and the deep learning-based prediction algorithm, which share
the same backbone of scene encoder, and are trained concurrently. In this way, the routing function shares the same level of
powerful scene understanding ability with the motion prediction algorithm, while trained concurrently on all footprint prediction
outputs increases its exposure to diverse anomalous trajectory predictions and hence more capability on differentiating prediction
quality.

learning prediction model on the zero-shot test. Specifically,
we adopt a closed-form prediction model to extrapolate the
ego agent’s trajectory with a constant velocity,

xt+1
i = f(xt

i) = [xt
i + vti,x, y

t
i + vti,y, v

t
i,x, v

t
i,y, δ

t
i ]
⊤, (1)

where (xt
i, y

t
i) is the position coordinate, (vti,x, v

t
i,y) is the

velocity, δti is the heading angle of the ego agent at time t
in the i-th scene. We note that although the prediction of a
constant velocity model is always a straight line, it could be
sufficient if the prediction frequency is high enough because
the prediction errors will be small in the short term.

C. Learned Routing Function
With a group of experts available, a learned routing function

is needed. Its goal is to compare the proposed candidate
predictions generated by the experts and select the most
reliable one as the output. Thus, the generalization and zero-
shot performance of the whole prediction module now relies
on the ability to recognize and handle out-of-distribution
scenarios of the learned routing function. Because the task is
to pick the best prediction among a set of existing predicted
trajectories, we relax the original requirement on the zero-shot
performance of the generative model to a zero-shot perfor-
mance requirement on a discriminative model, i.e., the learned
routing function. In addition to the decrease in the difficulty
of the generalization task, the learned routing function also
has access to more data modes, and its self-supervised training
style enables further improvements in its generalization ability.

We propose to adopt the same scene context encoder
architecture of the deep learning prediction expert and add

a routing decoder head on top of the encoder. A detailed
structure illustration is shown in Fig. 2. Both the high model
capacity and the superior scene context encoding ability can
be inherited, while the difficulty of generalization is reduced
for the learned routing function. The routing function model is
trained concurrently with the deep learning prediction experts
by the loss function

Lθ = −E(s,x̂)∼D

[
log(σ(Rθ(s

1:Th , x̂Th+1:T
chosen )

−Rθ(s
1:Th , x̂Th+1:T

rejected )))
]
,

(2)

where Rθ(·, x̂Th+1:T
chosen ) and Rθ(·, x̂Th+1:T

rejected ) are the scores gen-
erated by the routing function for the chosen prediction can-
didate and the rejected prediction candidate, respectively, and
σ(·) is a ReLU layer. x̂Th+1:T is the prediction candidate gen-
erated by the individual prediction expert. This loss function
is adopted from RL with human feedback (RLHF) [28], which
encourages large gaps between the scores of the two samples
in the pair. Empirically, we find this loss function results in a
more stable training process than other loss functions such as
cross-entropy loss.

While training the learning-based prediction model, we
collect all its multi-modal prediction outputs. These outputs
and the predictions of the rule-based experts for the same
agent in the same scene are paired and both compared against
the ground truth trajectory in terms of some metric, e.g., the
average displacement error. Therefore, we can have a ground
truth of which predicted trajectory is better between the two.
These pairs and labels are stored in a new data buffer than



Algorithm 1: Training and Inference Workflow

1 Initialize: A motion prediction neural network Qϕ, a
routing function network Rθ, a rule-based prediction
model f , a training dataset D containing vehicle
trajectories for prediction tasks, a data buffer Drf for
routing function training;

2 // Training
3 for epoch n in range(0, N ) do
4 for sample s in D do
5 Rule-based prediction: x̂r = f(s1:Th);
6 Learning-based prediction: x̂l = Qϕ(s

1:Th);
7 Update ϕ: ϕi ← ϕi−1 + ϵϕ∇ϕLpred;
8 Rank the predictions x̂r, x̂l by ADE;
9 Update θ by Eqn. 2 according to the ranking

(s, x̂chosen, x̂rejected): θj ← θj−1 + ϵθ∇θLθ;
10 end
11 end
12 // Inference
13 for sample s1:Th in test dataset Dtest do
14 Rule-based prediction: x̂r = f(s1:Th);
15 Learning-based prediction: x̂l = Qϕ(s

1:Th);
16 Output prediction

x̂ = argmax(x̂r, x̂l, key = Rθ(s
1:Th , ·));

17 end

the original training dataset and are used to train the learned
routing function. As the training of the transformer prediction
model goes on, its prediction output goes from sub-optimal
to more reasonable than the rule-based expert predictions.
Thus, the learned routing function can have access to both
cases where transformer is worse or better than the rule-based
prediction, and hence we can avoid the issue of mode collapse.

D. Practical Implementation

We summarize our complete algorithm in Algorithm 1.
During the training phase, we train a deep learning prediction
model as one of the experts. As it is being trained, we
collect and compare its outputs with predictions from the rule-
based expert against the ground truth, and use the labeled
pairs of predictions to train a routing function with the same
transformer encoder structure and an additional routing head.
In the test phase, the environment states are input to both deep
learning and rule-based prediction models, which both make
proposals. The learned routing function consumes them and
selects the better one as the final prediction result.

IV. EXPERIMENTS

A. Experiment Setting

1) Deep Learning Prediction Expert: We adopt the state-of-
the-art prediction architecture MotionTransformer (MTR) [35]
as the backbone of the deep learning prediction expert. It
ingests a vectorized representation, including both history
trajectories of the vehicles in the scene and road map poly-
lines, as the input representation [11], where all the vector

inputs are centered around the ego agent. The inputs are first
preprocessed by a PointNet-like [30] polyline encoder and
then fed into the transformer scene context encoder. The scene
encoder enforces local attention which emphasizes the focus
on local context information by adopting k−nearest neighbor
to find k closest polylines to the polyline of interest. The scene
context encoded by the local scene encoder is then enhanced
by a dense future prediction, containing future interaction
information. A static intention and dynamic searching query
pair is generated and input to the scene decoder, along with the
enhanced scene context encoding and a query content feature.
A prediction head is applied to each decoder layer to generate
future trajectories, which are represented by a Gaussian Mix-
ture Model to capture multimodal agent behaviors. Please refer
to [35] for more model details. To demonstrate our proposed
APE is model agnostic, we also perform experiments based on
Wayformer [27], which is another leading motion prediction
model based on transformer.

2) Rule-Based Prediction Expert: As described in
Sec. III-B, we apply a constant velocity model as the rule-
based expert. It is also possible to adopt other complicated
rule-based models to incorporate more information such as
lane and traffic rules. However, this choice is to demonstrate
that even a basic complement to a deep learning model can
improve the generalization ability of the whole algorithm.

3) Learned Routing Function: Similar to the deep learning
prediction expert, the routing function also adopts MTR as
the backbone for its scene understanding ability. It is trained
concurrently with the deep learning prediction expert together
with the output of the rule-based prediction expert, such that
it is exposed to diverse trajectory predictions and hence learns
the ability to recognize their quality.

4) Prediction Tasks: We focus on zero-shot generalization
of the prediction models across different datasets. Specifically,
we choose to use Waymo Open Motion Dataset (WOMD)
and Argoverse as the two datasets in our experiments. The
framework is trained on one dataset and is zero-shot tested on
another dataset without finetuning.

We describe baselines, evaluation metrics, and implemen-
tation details in Appendix V-A, V-B, and V-C due to space
limit.

B. Prediction Generalization Performance

The full evaluation of the prediction generalization per-
formance involves a bi-directional zero-shot generalization
evaluation. For one direction, we train prediction algorithms on
WOMD, and zero-shot test them on Argoverse. The opposite
direction of generalizing from Argoverse to WOMD is also
evaluated for completeness. Since Argoverse only contains
agent type Vehicle, we only enable predictions on vehicles
in WOMD as well for fairness.

We show the performance of APE along with various
baselines and variants in Table I, and visualizations of pre-
dicted trajectories of both experts in different scenarios in
Fig. 3. According to Table I, the proposed Adaptive Prediction
Ensemble with a mixture of experts outperforms all baselines



TABLE I: The cross-dataset generalization performance on Waymo Open Motion Dataset and Argoverse.

Method Validation/Test Train mAP ↑ minADE ↓ minFDE ↓ Miss Rate ↓

MTR (in-dist) Argoverse Argoverse 0.5135 0.4113 0.8369 0.0567
MTR Argoverse WOMD 0.1290 6.8544 12.8778 0.6558
Wayformer Argoverse WOMD 0.1275 6.8813 12.9071 0.6648
Const-Vel Argoverse - 0.1347 3.2680 8.0422 0.5747
APE (MTR-bs) Argoverse WOMD 0.1319 4.1853 9.9773 0.5912
APE (MTR) Argoverse WOMD 0.1378 3.0461 7.1423 0.5399
APE (Wayformer) Argoverse WOMD 0.1362 3.1013 7.1968 0.5417

MTR (in-dist) WOMD WOMD 0.4477 0.7546 1.5267 0.1529
MTR WOMD Argoverse 0.0525 5.0328 9.7935 0.7382
Wayformer WOMD Argoverse 0.0541 5.0266 9.7419 0.7343
Const-Vel WOMD - 0.0292 6.5713 16.6447 0.8985
APE (MTR-bs) WOMD Argoverse 0.0310 6.1452 14.9673 0.8515
APE (MTR) WOMD Argoverse 0.0741 4.4099 8.3795 0.6701
APE (Wayformer) WOMD Argoverse 0.0735 4.4135 8.3706 0.6859

(a) (b)

(c) (d)

mtr score: 10.45
const vel score: -13.52

mtr score: 9.97
const vel score: -3.34

mtr score: -7.18
const vel score: 11.51

mtr score (top): -14.74
const vel score (bottom): 8.52
mtr score (top): 9.81
const vel score (bottom): 1.13

Fig. 3: The trajectory prediction visualization curated by the
learning-based routing function. (a)(b) Cases where MTR
generalizes better than the constant velocity model. (c)(d)
Cases where the constant velocity model generalizes better
than MTR.

and variants in our bi-directional generalization evaluation. We
attribute the performance improvements to the capability of
the routing function and the contribution from different expert
prediction methods. The routing function learns good predic-
tion selection skills even though the test scenarios are out-
of-distribution for individual prediction algorithms because it
gets exposed to more diverse input (i.e., trajectory prediction
candidates) during its concurrent training with other individual
predictors. The difficulty level of its generalization is mitigated
by the exposure to a diverse data distribution. Therefore, as
a coordinator, the learned routing function can stitch a more
powerful predictor out of individual experts.

It is also interesting to note that the constant velocity model
performs better on Argoverse with a minADE of 3.2680m
than WOMD with a minADE of 6.5713m. This indicates that

WOMD contains more complicated prediction tasks than those
in Argoverse, possibly with more turns and fewer go-straight
scenarios. This statement can also be shown from a smaller mi-
nADE on Argoverse for MTR (in-dist) than WOMD. However,
no matter which direction of generalization is performed, the
proposed method always outperforms an individual prediction
algorithm, thanks to the concurrent training of the routing
function and diverse prediction candidates from individual
predictors.

When generalizing from Argoverse to WOMD, the constant
velocity model outperforms MTR in terms of minADE. This
shows that it is possible for a rule-based predictor to perform
better than a deep learning-based predictor, and hence it is
necessary to design strategies to improve the generalization
ability of a learning-based predictor, with the proposed APE
as one possible solution. We observe the same trend for
Wayformer and its APE version. This confirms that APE
is model agnostic, which provides generalization benefits to
different deep learning based prediction models.

However, there is still potential for improvements compared
to the in-distribution performance. The reason is that the
learned routing function does not modify individual prediction
candidates but chooses one as the final prediction output.
Therefore, the upper bound of performance is constrained by
the best prediction candidate in a particular scene. To further
improve the performance, the bottleneck lies in the individual
prediction experts, and we defer to future works to discover
more capable individual models that generalize well.

C. Yet Another Routing Function

In this section, we aim to evaluate another type of routing
function and compare it with the proposed learning-based
one that is trained concurrently with the individual predictors.
The prediction selection can also be executed by a routing
function based on uncertainty estimation. We choose to use
the most widely used method, bootstrapping model output
variance, as the uncertainty estimation method in the routing
function variant. Concretely, we use the variance of three MTR
prediction outputs as the epistemic uncertainty estimation of
the learning-based prediction model, where the three MTR
models are randomly initialized and trained on the same



training dataset. If the uncertainty estimation surpasses a
threshold, then the predictor will discard MTR predictions and
choose the constant velocity prediction as the final output, and
vice versa.

From Table I, we can see that the performance of APE
(MTR-bs) is in between the constant velocity model and
MTR. The prediction performance of APE (MTR-bs) is an
interpolation of the two individual predictors. This indicates
that the bootstrapping-based uncertainty estimation is noisy
and hence inaccurate in this case. In comparison, a learning-
based routing function trained concurrently with individual
prediction algorithms is more stable and performs better.

D. In-D and OOD Interpolation Data Mixture

In this section, we perform an ablation study on the effect of
different ratios of in-distribution (in-D) and out-of-distribution
(OOD) test data mixture on the performance improving scale.
We adopt the metric, performance gain, defined in Eqn. (3) to
measure the performance improving scale. The in-distribution
test data come from the original validation dataset from the
same source of the training dataset when MTR is being trained.
The out-of-distribution comes from a new and different dataset
than the training dataset. Specifically, we choose to use
WOMD as the training dataset and Argoverse as the test
dataset. Therefore, WOMD is considered as in-distribution,
and Argoverse out-of-distribution. In the experiment, we mix
different ratios of in-D and OOD data into the test dataset.

The experiment results are shown in Fig. 4(a). As we can
see, the performance gain increases when the ratio of OOD
data increases in the test dataset. When the OOD ratio reaches
100%, the performance gain reflects the results in Table I.
The monotonic increase of performance gain aligns with the
expectation: The advantage of the routing function should not
be obvious when in-D data is the majority. In this case, a
good portion of MTR predictions should be the better choice
over the constant velocity model prediction. As the OOD
ratio goes up, more and more constant velocity predictions
become competent, and therefore, the benefits of leveraging
a routing function become more visible. It is also worth
noting that when all data is in distribution, the performance
gain is slightly below zero. This is not surprising because a
good generalization ability typically comes with a sacrifice
of in-distribution accuracy. The routing function is not 100%
accurate in selecting a better prediction candidate out of the
individual predictors, but as the performance of individual
predictors decreases with the OOD ratio increase, the routing
function becomes capable of picking the correct one.

E. Prediction Horizon vs. Improving Scale

In this section, we conduct an ablation study on the effect
of prediction horizon on the performance improving scale by
Eqn. (3) compared to a nominal MTR. As a default setting, we
choose to use the common 80 time steps (8 sec) as the horizon
of the prediction task. However, it should not be surprising that
a shorter horizon can close the gap between deep learning-
based and rule-based prediction algorithms, no matter which

Fig. 4: The performance gain percentage vs. (a) OOD data
percentage in the test dataset; and (b) Prediction horizon. The
performance gain is monotonically increasing in both cases,
indicating that our method has more advantage over individual
predictors when OOD data is common in the test dataset and
the task horizon is long.

one is better, because it is intuitive that within a short time
window, the trajectory of the traffic agent resembles a constant
velocity trajectory.

The experiment results are shown in Fig. 4(b). As we
can see from the figure, the performance gain at one time
step is only 4.1%, while it is 57.3% at 80 time steps. The
performance gain monotonically increases as the prediction
horizon increases from 1 to 80, indicating that APE has
more advantage over a single deep learning-based predic-
tion algorithm in longer horizon tasks. This aligns with our
expectation that a shorter horizon of trajectories resembles
constant velocity trajectories, and both deep learning-based
and rule-based prediction methods can fit well. As the horizon
becomes longer, the advantage of leveraging a routing function
becomes more remarkable since it can correctly pick out the
better prediction candidate from the two increasingly different
prediction candidates.

Another observation on Fig. 4 is that the increase of
performance gain from 1 to 80 time steps tends to slow down
when the horizon becomes longer. This shows that the gap
between deep learning-based and rule-based prediction does
not increase indefinitely as the horizon increases.

V. CONCLUSIONS AND DISCUSSIONS

In this work, we tackled the critical challenge of gener-
alizing motion prediction algorithms for autonomous driving
across different datasets. The proposed Adaptive Prediction
Ensemble framework, incorporating a deep learning expert,
a rule-based expert, and a learned routing function, offers a
promising base-model agnostic solution to improve zero-shot
performance. Our experiments demonstrate that by effectively
leveraging the strengths of both deep learning and rule-
based models, we can achieve substantial gains in prediction
accuracy and robustness, especially in challenging out-of-
distribution scenarios and long-horizon predictions. While our
approach shows promising results, there are several avenues
for future explorations. Investigating more sophisticated rule-
based models and incorporating additional expert predictors
could further enhance the system’s performance. Additionally,
exploring different uncertainty estimation techniques for the
routing function could lead to more refined decision making.
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APPENDIX

A. Baselines

We mainly perform training and evaluation stage isolation
and combination to evaluate the proposed training framework.
Specifically, we compare APE to the following baselines:

• MTR & Wayformer: MTR/Wayformer trained on one
dataset (WOMD or Argoverse) and zero-shot tested on
another. We follow the Wayformer implementation in
UniTraj [9], as the original code is not public released.

• MTR (in-dist): MTR trained and tested on the same
dataset, which serves as the performance upper bound.

• Constant Velocity Prediction (Const-Vel): The baseline
rule-based prediction method, which shows the lower
bound baseline performance.

• APE (MTR-bs): uses an alternate routing function based
on the variance of an ensemble of MTR models. Refer
to section IV-C for more details.

B. Evalution Metrics

We follow the convention in motion prediction and adopt
the commonly used metrics for evaluation.

• minADE / minFDE: This metric computes the average or
at the last time step of the l2−displacement between the
ground truth trajectory and the closest prediction among
six trajectory predictions [35]. We also use this metric to
rank the prediction generated by different experts when
training the learned routing function.

• Miss Rate: A miss is defined as the condition wherein
none of the M predicted object trajectories lie within the
specified lateral and longitudinal tolerances of the ground
truth trajectory at a designated time T .

• mAP: This metric is computed on top of Miss Rate, as
the interpolated precision values in [8]. It offers a holistic
assessment of the motion prediction performance.

We also propose Performance Gain Percentage to quantify
the improvement upon baseline methods, which is defined as

Perf Gain = 100%− Metric(Proposed Method)
Metric(Baseline Method)

, (3)

and will be applied to ablation study in Sec. IV-E and IV-D.

C. Implementation Details

The feature input projection layer is set to be a 3−layer
MLP with a hidden dimension of 256. We stack 6 transformer
layers for the scene encoding layer. The embedding feature
dimension of these layers is set to be 256. The motion
prediction decoder and output projection head follow the
implementation of MTR [35]. The routing function are 3
dense layers with an embedding feature dimension of 256 with
multiple projection heads for context information, which are
updated with the scene encoder frozen, after each time the
motion prediction decoder is updated. The models are trained
by AdamW optimizer on 4 GPUs (Nvidia RTX 6000) for 30
epochs with a batch size of 60 and a learning rate of 1e−4,
which is decayed every 2 epochs by a factor of 0.5.

D. Related Work

1) Improving Out-of-Distribution Motion Prediction: Mo-
tion prediction algorithms for autonomous driving have been
successful on many datasets, and have been integrated into
the autonomy stack [12, 24, 22, 21, 17]. However, OOD
performance is known to drop for machine learning algorithms
in general [36, 1], and transformer architectures in specific
[5, 43], warranting the need for fine-tuning OOD [14, 16].
This is problematic since deployed models are expected to
work everywhere, and it is not rare that prediction failure
causes erroneous downstream motion planning for autonomous
vehicles [13]. Therefore, it is desired to detect such prediction
failure in an efficient yet reliable manner [38, 29]. There have
been many efforts to leverage uncertainty estimation to decide
whether a prediction is reliable based on ensemble [23, 39].
However, ensemble-based uncertainty estimation is costly both
during training and inference and may introduce too much
variance, reducing the reliability of OOD detection as we
show in the ablation study in Sec. IV-C. Our method with
learning-based predictors and routing functions can increase
the exposure of the routing function to anomalous trajectory
prediction upon the normal training dataset, and therefore the
final prediction selected from various predictor experts can
have better performance on zero-shot generalization tasks.

2) Mixture-of-Experts: There are also mixture-of-experts
methods that collect a set of experts specializing in different
sub-tasks, which are likely to be included in the target do-
main [32]. These methods will then choose one suitable expert
to be activated during inference. In our setting, we do not
assume a pre-defined set of sub-tasks in the target domain, and
we also observed that deep learning-based predictors tend to
have unsatisfying performance on cross-dataset generalization.
Therefore, we follow the idea of MoEs but do not train
individual experts for specific sub-tasks. We include both deep
learning-based and rule-based experts that can perform general
motion prediction tasks. A routing function is trained concur-
rently with deep learning-based predictors, so it is exposed to
more diverse trajectory prediction candidates and hence the
difficulty of ranking anomalous predictions is mitigated.

3) Finetuning with Human Feedback: It is also a popular
trend to finetune models on the target domain to improve
generalization with guidance by experts trained from offline
human demonstration [25] or a ranking function trained with
human feedback [2, 31]. While these methods are appealing
and we could directly apply the ranking function as a routing
function in MoE, they are not viable in our setting as we aim
to deal with zero-shot generalization, and hence the algorithm
does not have access to the target domain or test data. We do
not have resources for human feedback on tens of millions
of trajectories either, so it is desired to leverage the routing
function trained in an automated pipeline, where we collect
all the trajectory predictions output by the individual deep
learning-based predictor since its training begins. The in-
creased exposure beyond individual training dataset boosts its
ranking ability, and thus improves the zero-shot performance.
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