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Abstract

Joint representation learning over multi-sourced
knowledge graphs (KGs) yields transferable and
expressive embeddings that improve downstream
tasks. Entity alignment (EA) is a critical step in
this process. Despite recent considerable research
progress in embedding-based EA, how it works
remains to be explored. In this paper, we pro-
vide a similarity flooding perspective to explain
existing translation-based and aggregation-based
EA models. We prove that the embedding learn-
ing process of these models actually seeks a fix-
point of pairwise similarities between entities. We
also provide experimental evidence to support our
theoretical analysis. We propose two simple but
effective methods inspired by the fixpoint compu-
tation in similarity flooding, and demonstrate their
effectiveness on benchmark datasets. Our work
bridges the gap between recent embedding-based
models and the conventional similarity flooding
algorithm. It would improve our understanding of
and increase our faith in embedding-based EA.

1. Introduction

A knowledge graph (KG) is a set of relational triplets. Each
triplet is in the form of (subject entity, relation, object entity),
denoted by (s, r, 0) for short. A relational triplet indicates a
relation between two entities, such as (ICML 2023, hosted
in, Hawaii). Different KGs are created by harvesting various
webs of data. They could cover complementary knowledge
from different sources and thus aid in resolving the incom-
pleteness issue of each single KG. In recent years, repre-
senting multi-sourced KGs in a unified embedding space,
as illustrated in Figure 1, has shown promising potential
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Figure 1. Illustration of representing two KGs in a unified space.

in promoting knowledge fusion and transfer (Trivedi et al.,
2018). It uses entity alignment (EA) between different KGs
to jump-start joint and transferable representation learning.
EA refers to the match of identical entities from different
KGs, such as “ICML” and “International Conference on Ma-
chine Learning”. The goal of multi-sourced KG embedding
is learning to distinguish between identical and dissimilar
entities in different KGs while capturing their respective
graph structures. By aligning the embeddings of identical
entities, an entity in one KG can indirectly capture the graph
structures of its counterpart in another KG, resulting in more
informative representations to benefit downstream tasks.

Therefore, as a fundamental task, embedding-based EA has
drawn increasing attention (Chen et al., 2017; Guo et al.,
2019; Sun et al., 2020b; Zhao et al., 2022; Zeng et al., 2021a;
Zhang et al., 2022; Guo et al., 2022). The key of embedding-
based EA lies in how to generate entity embeddings for
alignment learning. Existing techniques fall into two groups,
translation-based (Chen et al., 2017; Sun et al., 2017; 2019)
and aggregation-based models. A translation-based model
adopts TransE (Bordes et al., 2013) or its variants for em-
bedding learning. Given a triplet (s, r, 0), TransE interprets
a relation embedding as the translation vector from the sub-
ject entity embedding to the object entity. Another group
of EA models uses graph convolutional networks (GCN5s)
(Kipf & Welling, 2017) to generate an entity representation
by aggregating its neighbor embeddings.

Despite the considerable technical progress in embedding-
based EA, a critical question remains unanswered, i.e., what
makes entity embeddings similar in an EA model? This
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question may also cause some researchers to misunderstand
and distrust embedding-based EA techniques. Besides, the
connection between embedding-based EA models and tra-
ditional symbolic methods remains unexplored. Under the
circumstances, we seek to answer the question. We present
a similarity flooding (SF) perspective to understand and im-
prove embedding-based EA with both theoretical analysis
and experimental evidence. SF is a widely-used algorithm
for matching structured data (Melnik et al., 2002; 2001). We
show that the essence of recent embedding-based EA is also
a variant of SF, and learning embeddings is only a means.

Our main contributions are summarized as follows:

* We present the first theoretical analysis of embedding-
based EA techniques to understand how they work. We
provide a similarity flooding perspective to unify the
basic translation- and aggregation-based EA models.
We also build a close connection between embedding-
based and traditional symbolic-based EA via the uni-
fied perspective of fixpoint computation for entity sim-
ilarities. This work would improve our understanding
of and increase our faith in embedding-based models.

* We propose two simple but effective methods based on
our theoretical analysis to improve EA. The first is a
variant of similarity flooding that computes the fixpoint
of entity similarities using the entity compositions in-
duced from TransE or GCN. This method does not need
to learn KG embeddings. The second is inspired by the
fact that the similarity fixpoint indicates an embedding
fixpoint. It introduces a self-propagation connection
in neighborhood aggregation to let entity embeddings
have a chance of propagating back to themselves.

* We conduct experiments on DBP15K (Sun et al., 2017)
and OpenEA (Sun et al., 2020b) to validate the effec-
tiveness of our EA methods and provide experimental
evidence to support our theoretical conclusions. The
source code is available at our GitHub repository'.

2. Preliminaries

We first introduce the EA task, and then discuss the basic
translation-based and aggregation-based models. We would
like to know how to represent an entity in these models so
that we can learn more about what factors influence entity
similarities. Finally, we introduce the SF algorithm.

2.1. Problem Definition

Formally, let X and ) be the entity sets of the source and
target KGs, respectively. In the supervised setting, we are
given a set of seed entity alignment pairs A as training
data. For an aligned entity pair (z,y) € A, where z € X

1https ://github.com/nju-websoft/Unify-EA-SF

and y € ), the KG embeddings for EA are expected to
hold: x = argmin,, .y m(x’,y). Hereafter, we use bold-
face type to denote vector embeddings, e.g., x and y for the
embeddings of z and y, respectively. 7(x,y) is a distance
measure. In this paper, we consider the Euclidean distance,
ie., m(x,y) = ||x—yl|2, where || - ||2 denotes the Lo vector
norm. It indicates that, if = and y are aligned entities, y is
expected to be the nearest cross-KG neighbor of x in the
embedding space. To achieve this goal, given a small set of
seed alignment, A C {(x,y)|x = y}, as training data, the
general objective of alignment learning is to minimize the
embedding distance of entity pairs in .4 (Chen et al., 2017):

(Sin w(%,y). M
Although many models introduce various negative sampling
methods (Sun et al., 2018) to generate dissimilar entity pairs
and learn to separate the embeddings of dissimilar entities,
Eq. (1) is the most common and indispensable learning
objective, which is our focus in this paper.

2.2. TransE-based EA

The typical learning objective of TransE-based models is to
solve two optimization problems, i.e., translational embed-
ding learning and alignment learning, as shown in Eqgs. (1)
and (2), respectively.

min _[s+r—ol st |e|i=1VecXUY, (2

(s,r,0)ET

where T is the set of triplets and e denotes an entity. Con-
sidering that the two optimization problems have a trivial
optimal solution with all entities and relations having zero
vectors, most EA models normalize each entity embedding
to a unit vector. Therefore, we further introduce a Lagrange
term Ae Y.y (lle]]3 — 1), where ). is the Lagrange
multiplier. The combined optimization problem is

L©)= Y ls+r—oli+ > Ix-ylz+Ar Y (lelf-1). (3)
(s:m0)eT (wy)eA € XUY
where ® denotes the entity and relation embeddings. The
optimization problem then shifts to solving the following
equation: Ve 1, L£(©) = 0. Then, we can derive the repre-
sentations of relations and entities in the model.

Deriving relation representations. We first consider rela-
tion embeddings and take the relation r as an example. We
are interested in the gradients of the loss in Eq. (3) with re-
spectto 11 7 L(©) = Vr 24 . pye. IS +1 —0l[3, Where
T denotes the set of triplets involving r. Letting the above
derivative be zero, we can derive

1
r=-— Z (o —s). 4
|7;| (s,r,0)ETy

The equation aligns with the motivation of TransE that repre-
sents a relation as the translation vector between its subject
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and object entity embeddings. Given this equation, we can
use the final entity embeddings to represent a relation.

Deriving entity representations. An entity may appear
as the subject or object in a triplet. To simplify the for-
mulations without information loss, we introduce reverse
triplets following the convention in KG embedding mod-
els (Guo et al., 2019). For each triplet (s,7,0), we add
a new triplet (0,7~ !, s), where r—! denotes the reverse
relation of r. In this way, we only need to consider
the outgoing edges of an entity, i.e., the triplets with the
given entity as the subject. The original ingoing edges
are considered by including their reverse edges. We use
Te to denote the triplets with e as the subject. Specif-
ically, given entity e, we are interested in the gradients
of the loss in Eq. (3) with respect to embedding e, i.e.,
VeL(©) = Ve Xeroper. e+ 1 —of3 + Le.oea Ve
lle — &2+ A\ Ve (||e]|3 — 1), where 1 is an indicator func-
tion. By setting the gradients to be zero vectors, we obtain
€= s L(eroyer. (0 =) + I oecale — &). With
proper EA training strategies, e.g., parameter sharing (Sun
et al., 2020b), e and é would have the same embeddings,
i.e., e — & = 0. In addition, we can apply normalization to
e to ensure ||e|]| = 1, and then we can replace | 7. |+ A, with
|7c|. Thus, we obtain e = (173, . <7 (0 — ). Note
that, in this equation, we still need relation embeddings to
represent an entity. To get free of relation embeddings, we
can replace them with the composition of related subject
and object entity embeddings as shown in Eq. (4), and get

1 1 / /
e:|7_e‘ Z <0_|7—r| Z (o—s))‘ ®)

(e,r,0)€Te (s’,m,0")ETr

In this way, we represent an entity by the composition of its
related entities in the same KG.

2.3. GCN-based EA

In a CGN-based EA method, an entity is first repre-
sented by aggregating its neighbors. For brevity, we con-
sider a one-layer GCN layer (Kipf & Welling, 2017) with
mean-pooling as the aggregation function, i.e., G(x) =
Wlx)l Dowe N(z) x’. The entity representation in GCNs is:

1 /
=W, 2 < ©

e’ €N (e)

Then, given the output representations, we minimize the
embedding distance of identical entities in seed entity align-
ment for alignment learning, as shown in Eq. (1). Finally,
we use kNN search to find the counterpart for a given entity.

2.4. Similarity Flooding

Similarity flooding (Melnik et al., 2002) is an iterative
graph matching technique based on fixpoint computation.

Graph 1

Graph 2 Pairwise connectivity graph

Figure 2. Illustration of how to build the pairwise connectivity
graph given two graphs (redrawn based on (Melnik et al., 2002)).

It is a fundamental algorithm and widely used in a vari-
ety of graph matching contexts, such as ontology mapping
and database schema matching (Shvaiko & Euzenat, 2013).
Given two input graphs G; and G2 with the aim of finding
the mapping of identical nodes, the similarity flooding al-
gorithm first creates a pairwise connectivity graph (PCG),
which is an auxiliary data structure for similarity propa-
gation. As shown in Figure 2, in a PCG, a node is an
entity pair (x1,y1) with the similarity of o(z1,y;) (called
a mapping pair), where the two entities are from the two
graphs, respectively, i.e., x1 € G and y; € Ga. An edge
((z1,y1),71, (x2,y2)) of the PCG is induced from the two
graphs having (x1,71,22) € Gy and (y1,71,92) € Ga.
The relation r; would be further given a weight, called the
propagation coefficient, which ranges from 0 to 1 and can
be computed in different ways (Melnik et al., 2001). The di-
rected weighted edge ((x1,y1), 71, (22, y2)) indicates how
well the similarity of (x1,y;) propagates to its neighbor
(z2,y2). Then, the algorithm propagates the similarity of
each node (i.e., mapping pair) over the PCG using fixpoint
computation and finally outputs the node mappings. The
fixpoint formula for similarity flooding is

Q= normalize(QO—FQ-FQO(Qo +Q)), @)

where () is the node similarity matrix, and ¢ is the propa-
gation function. In conventional graph matching methods,
Qo can be computed by string matching. In our work, we
follow the supervised setting of embedding-based EA, and
use seed entity alignment to initialize €.

Remark 2.1. The pairwise connectivity graph construction
requires the alignment of edge labels in the two graphs.
Remark 2.2. The propagation coefficients of edges in the
pairwise connectivity graph are computed heuristically.

3. Connecting Embedding-based EA and SF

Given the derived entity representations from TransE or
GCN, we can compute entity similarities. Specifically,
given two entity sets, X = {x1,292,...,2,} and Y =
{y1,92,--.,Ym}, we denote the derived entity represen-
tations by {x1,Xs,...,X,} and {y1,y2,...,¥m}, respec-
tively. Their pairwise similarity matrix is

;ym) e R™™, (®)

Q= (x1;%2;..-3%n)  (Y13¥25 - -
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The similarity matrix determines entity alignment pairs.

3.1. Unifying TransE- and GCN-based EA

Theorem 3.1. The TransE-based EA model seeks a fixpoint
of pairwise entity similarities via embedding learning.

Proof. Eq. (5) shows that we can represent an entity with
a composition of other entities. Thus, we can represent an
entity (taking z; € X for example) as

X; = AiaX1+ AioXe + o+ AinXn = O AieXe, (9)
k=1

where \; ;, denotes the composition coefficient of entities
x; and x, which can be computed from Eq. (5). Then, the
similarity of entities z; € X and y; € ) can be calculated
using the inner product” as follows:

EREE RN TED NDFPINOIFE SRS ED DHIND DHFP NP FTYNE
(10)

We can see from the above equation how the similarity of
two entities affects their related neighbors. Let the matrix

A = (Nij)iZ] j=; consist of the lambda values for the
source KG, and A" = (X} ;);2)";_, for the target KG. Let

Q = (wij);2] j—; denote the pairwise entity similarities of
the two KGs. We can rewrite Eq. (10) as

AQA)T =Q, (1

where (A’) T is the transposed matrix of A’. This equation
shows that the entity embedding similarities learned by the
translation-based model have a fixpoint of (). [

Next, we can connect aggregation-based EA models and
similarity flooding in a similar way.

Theorem 3.2. The GCN-based EA model seeks a fixpoint
of pairwise entity similarities via embedding learning.

Proof. Please refer to the proof of Theorem 3.1. The differ-
ence lies in how to compute the lambda values. O

‘We show how to calculate lambda values below.

Lambda values for TransE. The lambda values for TransE
are computed by counting the number of related triples:

N = 1 (1B )l + Srer T (1Tl = 172, 01) ), (12)

where R(xz;,x;) denotes the set of relations that connect
entities ; and x;, and R is the set of all relations. T, ,
denotes the set of relation triplets with z; as the subject and
r as the relation. 7, is the set of relation triplets with r as
the relation. 71 is the reverse relation for 7.

The inner product of two normalized vectors is equal to their cosine similarity.

Lambda values for GCN. For GCN, we have

]l(a: ra;)ET
N = ———2— (13)
7 7—z )
where 1 is an indicator function that returns 1 if there is a
relation between x; and x;, and 0 otherwise.
Remark 3.3. Embedding learning is just a means and the
objective is to seek a fixpoint of pairwise entity similarities.

i

3.2. An Interpretation of Embedding-based EA

Given the fixpoint view of EA, we further discover a mathe-
matical interpretation of TransE- and GCN-based models.
We show that identical entities have isomorphic structures
in the entity compositions of embedding-based EA.
Theorem 3.4. The entity alignment pairs found by the
above embedding-based models yield a function f
{1,2,...,n} — {0,1,2,...,m}, such that Vi, j, f(i) >
; / o
OAFG) > 0= Xy pis) = Ai-

Proof. Let us consider aligning ) with itself. We have
AT, (AT =1, (14)

where I, is an identity matrix. Suppose that the alignment
found by the above embedding-based models is A, which
can be denoted by a 0-1 matrix 2 such that &; ; = 1 if
and only if (z;,z;) € A. Similar to most EA settings,

we assume that in A, each entity is aligned to at most one
entity in another KG. Notice that () approximately equals a
fixpoint of Eq. (7). Thus, we have

QTAQAN)T = Q7O =1, (15)
where I,,, is a diagonal matrix, where ij, ; = lif and only if
Yy; appears in one pair in A As N I,(A)" ~1,, we have
QOTAQ ~1,,A. Let f be a function defined as

. ja T, Yj) € A
fo =% o) .

When f(i) > 0and f(j) > 0, we have (QTAQ)f(i),f(j) =
)\,’7]', 1.€., /\,lf(i),f(j) ~ )\i,j~ L]

(16)

Based on Theorem 3.4, we find that for each KG, the entity
compositions derived from EA models generate a matrix
(e.g., A) that only depends on graph structures. It finds a
mapping function that makes the two KGs’ matrices the
same and this function determines the alignment results.
Although different KGs may have heterogeneous structures,
the entity compositions in embedding-based EA models
reconstruct a new structure (represented by A), in which
aligned entities have isomorphic subgraphs.

Remark 3.5. If we view these matrices as edge weights
between nodes in KGs, these embedding-based EA models
mathematically conduct graph matching.
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Algorithm 1 Similarity flooding via entity compositions

Input: KG1, KG>, seed entity alignment A, the maximum
number of iterations 7, a small threshold value € for algorithm
termination, an embedding model M.
while true do
Derive the entity compositions from M;
Compute lambda matrices A and A’ in the compositions;
Q¢ (07,3
fori,j € Ado
Qo i < L
end for
fort=1,2,...,T do
Q; < normalize (AQt_l(A/)T);
end for
if A(Q, Q:—1) < € then
break
end if
end while

4. Experimental Evidence

In this section, we propose two methods to improve EA: sim-
ilarity flooding via entity compositions and self-propagation
in GCNs. We evaluate them on benchmark datasets, provid-
ing experimental evidence to support our theorem.

4.1. Similarity Flooding via Entity Compositions

We have shown by Egs. (5) and (6) that the entity repre-
sentations derived from TransE- and GCN-based models
can be reformulated to be independent from relations. Our
theorems in Section 3 show that entity similarities are deter-
mined by other entity similarities, and entity embeddings
are unnecessary in this computation. Then, a natural ques-
tion arises: Is the embedding learning process a prerequisite
for achieving the fixpoint of entity similarities?

Given Eq. (11), we design a similarity flooding style algo-
rithm to propagate the entity similarities that are computed
based on the entity composition representations induced
from an embedding model. It is presented in Algorithm 1.
We first derive the entity compositions from the embedding
model. Then, we calculate the lambda values A and A’ in
the compositions. We initialize the similarity matrix €2 to
be a zero matrix and set the values that indicate seed EA
similarities to be 1. The similarity matrix is further updated
to achieve the fixpoint as shown in Eq. (11). After each
update, we normalize the values to range from —1 to 1. The
computation is performed in an iterative manner until it
converges or reaches the maximum number of iterations.

We hereby discuss the advantages of the algorithm. First,
it does not need relation alignment. It represents an entity
without using relations and does not need to build the PCG.
As different KGs usually have heterogeneous schemata, it
is difficult to obtain the accurate relation alignment. By
contrast, the conventional similarity flooding algorithm re-

lies on relation alignment to build the PCG. Second, our
algorithm does not need to compute propagation coefficients
for similarity flooding. The lambda values act as “propaga-
tion coefficients”, but they are calculated by counting the
number of related triplets without using heuristic methods.
Third, our algorithm does not need to learn embeddings, but
it needs an embedding model to derive the entity compo-
sitions. Our optimization objective is to directly achieve
the fixpoint of entity similarities. Embedding-based models
seek this goal by an indirect way of updating embeddings.

Our algorithm has the disadvantage of requiring matrix
manipulation. If the KG scale is large, it would consume a
lot of memory. We can solve this problem by using advanced
and parallel matrix manipulation implementations.

4.1.1. EVALUATION

We implement two variants of our algorithm, namely Trans-
Flood and GCNFlood, using TransE and GCN, respectively.

Baselines. We choose the translation-based model MTransE
and aggregation-based model GCN-Align as baselines.

e MTransE (Chen et al., 2017) is one of the earliest
studies that explore translational embeddings for EA.
It uses TransE (Bordes et al., 2013) to learn the entity
embeddings of two KGs meanwhile learning a linear
mapping to find identical entities.

* GCN-Align (Wang et al., 2018) is the first work that
considers GCNs for KG EA. It employs the vanilla
GCN (Kipf & Welling, 2017) to generate entity embed-
dings and uses the marginal ranking loss with uniform
negative sampling for alignment learning.

Datasets. We consider two datasets in our experiment. One
is the widely-used dataset DBP15K (Sun et al., 2017) It aims
to align the cross-lingual entities extracted from DBpedia
(Lehmann et al., 2015). It has three EA settings: ZH-EN
(Chinese-English), JA-EN (Japanese-English) and FR-EN
(French-English). The triples in these KGs are extracted
from the infobox data of multilingual Wikipedia. They have
similar rather than identical schemata because the data is not
mapped to a unified ontology. Each setting has 15, 000 pairs
of identical entities for alignment learning and test. We fol-
low the data splits of DBP15K and use 30% of entity align-
ment as training data. The other dataset is OpenEA (Sun
et al., 2020b) and we choose its 15K V1 versions of D-W
(DBpedia-Wikidata) and D-Y (DBpedia-YAGO), in each of
which the two KGs have different schemata. Each setting
also has 15,000 entity alignment pairs and we follow its
data splits and use 20% of entity alignment as training data.

Metrics. Following the conventions, we choose Hits@k
(k = 1,10) and mean reciprocal rank (MRR) as metrics to
assess EA performance. Hits@#k measures the proportion
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Table 1. EA results on DBP15K as well as OpenEA D-W and D-Y. The best scores in each group are marked in bold. The results of
MTransE are taken from (Sun et al., 2017). The results of GCN-Align are taken from its paper. “-” denotes their unreported metrics.

Models DBPI5K ZH-EN DBPI5K JA-EN DBPI5K FR-EN OpenEA D-W 15K OpenEA D-Y 15K
His@! His@l0 MRR Hits@l Hits@l0 MRR His@l His@l0 MRR Hits@l Hits@10 MRR His@l Hits@l0 MRR
MTransE 0308  0.614 - 0279 0575 - 0244 0556 - 0259 - 0354 0463 - 0559
TransFlood (ours) 0315 0707 0451 0372 0757 0505 0347 0752 0484 0294 0699 0427 0503 0880  0.641
GCN-Align 0413 0.744 - 0399 0745 - 0373 0745 - 0364 - 0461  0.465 - 0536
GCNFlood (ours) ~ 0.349 0761 0490 0376 0770 0512 0349 0761 0490 0358 0739 0486 0478 0754  0.583
. .. . . 300
of correctly-ahgne.d entities ranked in the t(?p k. MRR is the EMTransE O TransFlood
average of the reciprocal ranks. Higher Hits@k and MRR 2 )
e g = BGCN-Align ®GCNFlood
scores indicate better performance. g 200 1
wn
Main results. We present the results in Table 1. We can
100

observe that the proposed TransFlood achieves much better
performance than MTransE on all datasets. For example,
on FR-EN, the Hits@1 score of TransFlood is 0.347, out-
performing MTransE by 0.103. We find that, as a learning
model, MTransE is easy to overfit. Our model is also de-
rived from TransE but our iteration algorithm can enable our
model to get a more stable solution than the learning method.
For aggregation-based EA, our GCNFlood achieves compar-
ative Hits @1 results and better Hits @ 10 scores compared
to GCN-Align. Our GCNFlood only considers one-hop
neighbors to generate entity similarities (i.e., a one-layer
GCN), whose information is less than that in GCN-Align (a
two-layer GCN). However, its advantage lies in that it con-
verges directly to the fixpoint, while the embedding learning
method cannot guarantee this. Overall, TransFlood and GC-
NFlood that do not need learning can achieve comparable or
even better performance than embedding learning baselines.

Running time comparison. We compare the running time
of our algorithm variants against MTransE and GCN-Align
on ZH-EN. This experiment is conducted using a personal
workstation with an Intel Xeon E3 3.3GHz CPU, 128GB
memory and a NVIDIA GeForce GTX 1080Ti GPU. The re-
sults are shown in Figure 3. We observed similar results on
the other two datasets. MTransE uses the least time because
it is a shallow model that can be easily optimized. GCN-
Align takes the most time. We find that it converges very
slowly and takes many training epochs. Our TransFlood and
GCNFlood take very similar time, which is also less than
that of GCN-Align. In our algorithm, resolving Eq. (11)
costs the most in training time. Overall, our algorithm,
which does not need to learn embeddings, can achieve com-
parable or even better performance in both effectiveness and
efficiency than embedding learning models.

Results using text features. Our similarity flooding algo-
rithm can also use text features to improve performance. We
use multilingual word embeddings (Bojanowski et al., 2017)
to encode entity names for computing the similarity matrix,
which is further combined with € in our Algorithm 1. We

Figure 3. Total running time (in seconds) on ZH-EN.

conduct experiments on DBP15K and present the results in
Table 2. We choose RDGCN (Wu et al., 2019) as a baseline.
We can see that our TransFlood + Text and GCNFlood +
Text achieve slightly lower results than RDGCN. On FR-
EN, TransFlood + Text achieves comparable results with
RDGCN. Moreover, by using text features, both TransFlood
and GCNFlood get greatly improved. These results show
the generalization ability of our algorithm.

4.2. Self-propagation in Neighborhood Aggregation

Based on our theoretical analysis of embedding-based EA
and similarity flooding, we derive a new aggregation scheme
for EA: self-propagation and neighbor aggregation.

As previously stated, an embedding-based EA model aims
to establish a fixpoint of pairwise entity similarities by up-
dating entity embeddings throughout the training process.
Considering that entity similarities are computed using en-
tity embeddings, the output of GCNs also achieves a fixpoint.
We can rewrite neighborhood aggregation as

€= f(e7 Dzen. (Z))a

which means that the entity embeddings remain “unchanged”
after aggregation. For brevity, we use the function G() to
denote a GCN layer and consider a two-layer GCN. Given
input embedding €, in the fixpoint, we expect to hold

e’ =G(e) G(e?)

However, this equation has limitations. First, in this case, the
aggregation function degenerates into an identity mapping.
Second, it almost loses the neighborhood information. To
resolve the issues, inspired by (Klicpera et al., 2019), we
enable the GCN output to have a probability of backing to
the input. The aggregation function is rewritten as:

et = (1—a) G.en. (2) + af(e),

a7

1

= e = 0

=€ .

(18)

(19)
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Table 2. EA results using text features on DBP15K.

Models ZH-EN JA-EN FR-EN

Hits@l Hits@10 MRR Hits@l Hits@l0 MRR Hits@l Hits@10 MRR
RDGCN (Wu et al., 2019)  0.708 0.846 0.767 0.895 0.886 0.957
TransFlood 0.315 0.707 0451  0.372 0.757 0.505  0.347 0.752 0.484
GCNFlood 0.349 0.761 0.490  0.376 0.770 0512 0.349 0.761 0.490
TransFlood + Text 0.670 0.786 0.713  0.747 0.868 0.794  0.881 0.949 0.908
GCNFlood + Text 0.651 0.823 0.716  0.712 0.882 0.777  0.842 0.957 0.887

where « is a hyper-parameter indicating the probability of
backing to the input. Here, we use f() to denote a dense
layer. €° is randomly initialized as the input embedding of
entity e. The output of the GCN, i.e., e? for a two-layer
GCN, is used for alignment learning and search. Please
note that, although the conventional GCNs also consider
the entity itself in neighbor aggregation, the work (Klicpera
et al., 2019) shows that they would still lose the local focus
of the entity itself during layer-by-layer aggregation.

4.2.1. PROPERTIES OF SELF-PROPAGATION

Taking a deep learning perspective, we find that the proposed
self-propagation has several good properties.

Model complexity. The proposed self-propagation can
be easily combined with any aggregation function without
adding additional computational complexity. It only intro-
duces a dense layer for feature transformation. Considering
that the number of entity embedding parameters is much
larger than that of a dense layer, we argue that the parameter
complexity of self-propagation remains similar to that of
other aggregation functions.

Relation to PageRank-based GCNs. PageRank-based
GCNs introduce the possibility of resetting the neighbor-
hood aggregation to its initial state during training (Klicpera
et al., 2019; Roth & Liebig, 2022). These studies are rel-
evant to random walks with restarts on graphs where the
random walk has a probability of backing to the start node
after several steps. The idea is similar to ours. The differ-
ence is that we do not seek the representation of an entity
to return to itself after several times of neighborhood aggre-
gation. Instead, we seek to increase the local focus on the
entity representation itself within the iterative neighborhood
aggregation. Self-propagation is also helpful to resolve the
over-smoothing issue.

Relation to residual learning. The self-propagation can
be regarded as a special case of residual learning (He et al.,
2016) because it builds a skipping connection between two
GCN layers. Given the input x, let F'(x) be a represen-
tation function (e.g., the G() in our paper), and H(x) be
the expected output representation. Residual learning in-
dicates that directly optimizing F'(x) to fit H(x) is more

difficult than letting F'(x) fit the residual part H (x) —x. For
aggregation-based EA, we cannot let H(x) = x, in which
case the function F'() has no representation ability. There-
fore, we introduce the transformation function f(), and let
G(x) fit H(x) — f(x). A related work (Guo et al., 2019)
shows that the skipping connection would also improve the
optimization of KG embeddings.

4.2.2. EVALUATION

We present our experimental results on DBP15K and Ope-
nEA in terms of Hits@1, Hits@ 10 and MRR scores.

Implementation. The performance of an EA model relates
to not only the embedding learning model (e.g., TransE or
GCN) but also other modules, including the alignment learn-
ing loss, the negative sampling method, and even the tricks
in deep learning such as the parameter initialization method
and the loss optimizer. To study the real effectiveness of
self-propagation, we do not develop a new aggregation-
based model from scratch. Instead, we choose four repre-
sentative aggregation-based models: GCN-Align (see Sec-
tion 4.1.1), AliNet, Dual-AMN and RoadEA, and incorpo-
rate self-propagation into them to see performance changes.

» AliNet (Sun et al., 2020a) extends GCN-Align by in-
troducing distant neighbors in the aggregation function.
Its learning objective is to minimize the limit-based
loss with truncated negative sampling (Sun et al., 2018).
It concatenates the output of multiple layers as repre-
sentations for alignment learning and search.

¢ Dual-AMN (Mao et al., 2021) is the state-of-the-art
aggregation-based model according to our knowledge.
It designs several advanced implementations, including
the proxy matching attention, normalized hard sample
mining and loss normalization. It achieves prominent
performance in both effectiveness and efficiency.

e RoadEA (Sun et al., 2022) is a recent GCN-based
EA method that considers relations in neighborhood
aggregation. It combines relation embeddings and
their corresponding neighbor embeddings as relation-
neighbor representations and uses graph attention net-
works (Velickovic et al., 2017) to aggregate them.
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Table 3. EA results on DBP15K as well as OpenEA D-W and D-Y. The best scores in each group are marked in bold. The results of
baseline models are taken from their papers, respectively, and “-” denotes the unreported metric in the corresponding original paper. The
results of RoadEA on DBP15K and D-Y are produced using its code. Its results on D-W are taken from its paper.

DBPI15K ZH-EN DBPI5K JA-EN

DBPI15K FR-EN OpenEA D-W 15K OpenEA D-Y 15K

Models

Hits@l Hits@10 MRR Hits@l Hits@10 MRR Hits@l Hits@l0 MRR Hits@l Hits@l0 MRR Hits@l Hits@10 MRR
GCN-Align 0413 0.744 0.399  0.745 0373 0.745 0.364 - 0461 0465 - 0.536
GCN-Align + SPA (ours)  0.441  0.751 - 0446 0759 - 0414 0763 - 0378 0628 0464 0495  0.688  0.565
AliNet 0539  0.826 0628 0549 0831 0645 0552 0852 0.657 0440  0.672 0522 0559 0713 0617
AliNet + SPA (ours) 0575  0.829 0.664 0570 0821 0.658 0581  0.857 0.678 0451  0.668 0529 0563 0702  0.624
Dual-AMN 0731 0923 0799 0726 0927 0799 0756 0948 0827 0683 0893 0761 0767 0908 0823
Dual-AMN + SPA (ours) 0733 0925 0.804 0.735 0936 0807 0.767 0951 0835 0.695 0898 0771 0779 0912 0.832
RoadEA 0.570  0.848 0.667 0569 0857 0.669 0578 0875 0.680 0.495 - 0.584 0212 0296 0.244
RoadEA + SPA (ours) 0579 0849 0.673 0577 0858 0.676 0.593  0.876 0.690 0.502 0744 0587 0235 0309 0.261

. . . . GCN-Ali b) AliNet Dual-AMN
For each baseline model, we adopt its official code and in- @ 'en (b) AliNe (¢) Dua
corporate the proposed self-propagation into its aggregation G—O0—0—0
function. To be specific, in each of their layers, we add a self- 06 1
propagation connection between their input and output. We 04 1 o original
leave other modules, including the alignment learning loss, —o0—w/SPA
0.2

the negative sampling method, and the alignment search
strategy, unchanged. As a result, we get four GCN-based
model variants, namely “GCN-Align + SPA”, “AliNet +
SPA”, “Dual-AMN + SPA”, and “RoadEA + SPA”.

Settings. To ensure a fair comparison, the hyper-parameter
values in our experiment follow the default settings of the
corresponding baselines. The only exception is that the
embedding dimensions of the input and two GCN layers
in AliNet+SP are 384, 384 and 384, respectively, which
are different from the original settings of 500, 400 and 300
in AliNet. The reason that we keep these layers with the
same output dimension is that we can directly compare the
representations of an entity in different AliNet layers (see
Section 4.2.2). Note that AliNet concatenates the output of
all layers as the final entity representations for alignment
learning and search. In our model, the final embedding
dimension is 384 4- 384 4 384 = 1152, slightly smaller than
that of AliNet (500 + 400 + 300 = 1200). We find that
such a small dimension difference has no observed impact
on performance. In our models, o = 0.1 for all datasets.

Main results. Table 3 presents the EA results of baselines
and our model variants on DBP15K. We can see that our
model variants can bring stable improvement on DBP15K,
especially on Hits@1 and MRR, compared with the corre-
sponding baselines. For example, AliNet+SPA outperforms
AliNet by 0.036 on Hits@1. Even when compared to the
state-of-the-art model Dual-AMN, our Dual-AMN+SPA
still achieves higher performance, especially on JA-EN and
FR-EN, establishing a new state-of-the-art. As we have
discussed in Section 4.2.2, Dual-AMN has many advanced
designs to improve performance. Boosting its performance
to a higher level is much more difficult than that for GCN-
Align and AliNet. We find that RoadEA fails to achieve
promising results on D-Y. We think this is because DBpedia

1 2 3 4 1 2 3 4 1 2 3 4
# GCN layers

Figure 4. Hits@1 on ZH-EN w.r.t. the number of GCN layers.

and YAGO have an unbalanced number of relations, which
affects the relational attention mechanism in RoadEA. How-
ever, our self-propagation still improves it, showing good
robustness. To summarize, this comparison demonstrates
the effectiveness and generalization of the proposed self-
propagation for EA. We conduct additional experiments
in the following two subsections to further investigate the
reasons for the good performance of self-propagation.

Effectiveness of self-propagation against over-smoothing.
The over-smoothing issue of GCNs refers to the fact that the
output representations tend to be similar if too many layers
are used for neighborhood aggregation (Oono & Suzuki,
2020; Chen et al., 2020). It is obvious that such an issue
has a negative impact on embedding-based EA. The default
settings of GCN layer numbers in GCN-Align, AliNet and
Dual-AMN are all 2. To investigate the over-smoothing
issue in EA, we show in Figure 4 the Hits@1 results of these
baselines (in blue) and our model variants (in red) on ZH-EN
when their layer numbers are set as 1, 2, 3, 4, respectively.
Both GCN-Align and AliNet suffer from over-smoothing.
Their results decrease as the GCNs go deeper with more
than two layers. By adding the self-propagation connection,
their performance degradation is reduced. By contrast, Dual-
AMN shows good robustness against over-smoothing. Its
performance changes little when the layer number increases.
Dual-AMN+SPA also benefits from such robustness. Dual-
AMN uses the normalized hard sample mining method with
a large number of negative examples, enabling dissimilar
entities to have distinguishable representations.
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Layer output representation comparison. We further
compare the output representation distance of the last two
layers in AliNet and AliNet+SPA. Figure 5 shows the aver-
age Euclidean distance w.r.t. the first 80 training epochs on
ZH-EN. We can see that the output representation distance
of both AliNet and AliNet+SPA becomes smaller as the val-
idation performance increases. Furthermore, by adding the
proposed self-propagation connection, the layer output dis-
tance of AliNet+SPA is smaller than that of AliNet. These
results provide experimental evidence to support our design
of self-propagation to connect two GCN layers and increase
the local focus on the entity embedding itself.

5. Related Work

Our work is relevant to multi-sourced KG embedding learn-
ing and iteration-based node matching methods for graphs.

5.1. Multi-sourced KG Embeddings

Multi-sourced KG representation learning starts with the
research on embedding-based EA. An embedding-based EA
model learns and measures entity embeddings to compute
entity similarities. It usually has two learning objectives.
One is for embedding learning and the other is for alignment
learning. Translation-based EA models (Chen et al., 2017;
Zhu et al., 2017; Sun et al., 2017; 2019; Pei et al., 2019)
adopt TransE (Bordes et al., 2013) or its variants for embed-
ding learning. Aggregation-based EA models adopt GNNs
to generate entity embeddings, including the vanilla GCNs
(Wang et al., 2018), multi-hop GCNs (Sun et al., 2020a),
relational GCNs (Yu et al., 2020), graph attention networks
(Zhu et al., 2020; Mao et al., 2021; Sun et al., 2022), self-
supervised GCNs (Liu et al., 2022) and temporal GCNs (Xu
et al., 2022b). Our proposed self-propagation is a plug-in
for GNNs. It adds a direct connection between entity rep-
resentations and the aggregated neighbor representations.
In addition to the above two types of basic models for EA,
other studies consider using semi-supervised or active learn-
ing techniques to augment EA (Sun et al., 2018; Chen et al.,
2018; Li & Song, 2022; Berrendorf et al., 2021; Liu et al.,
2021; Zeng et al., 2021b) or introduce some text features
(e.g., entity names, attributes and descriptions) (Sun et al.,
2017; Trisedya et al., 2019; Wu et al., 2019) or temporal
information (Xu et al., 2021; 2022a) to enhance embedding
learning. These studies are not relevant to our work. In-
terested readers can refer to the survey (Zeng et al., 2021a;
Zhao et al., 2022; Zhang et al., 2022) for more details. How-
ever, our work can also benefit from side features.

5.2. Iteration-based Graph Matching

Computing node similarities in graphs is a long-standing
research topic in many areas, such as databases. Our work is
relevant to iteration-based similarity computation methods,

o 1.4 —0— AliNet+ SPA
g

8 —A— AliNet
:
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Figure 5. Output representation distance of the last two layers in
AliNet and AliNet+SPA on ZH-EN.

including similarity flooding (Melnik et al., 2002), SimRank
(Jeh & Widom, 2002) and NetAlignMP (Bayati et al., 2013).
Their key assumption is that “two nodes are similar if their
neighbors are similar”. They first compute the similarity of
some pairs of nodes. Then, they propagate these similarities
to other related node pairs using different heuristic rules
iteratively, until they achieve a fixpoint of node pairwise
similarities. Our work shows that the embedding-based EA
models follow the same key assumption as the conventional
iteration-based graph alignment methods. We build a con-
nection between the two types of methods, which would
help users acquire deep insights into them.

6. Conclusions and Future Work

In this paper, we present a similarity flooding perspective
to understand translation-based and aggregation-based EA
models. We prove that these models essentially seek a
fixpoint of entity pairwise similarities through embedding
learning. Based on this finding, we propose two methods,
i.e., similarity flooding via entity compositions and self
propagation, for improving EA. Experiments on benchmark
datasets demonstrate their effectiveness. Our work fills the
gap between recent embedding-based EA and the conven-
tional iteration-based graph matching.

We think there are two promising directions for future work.
The first is to develop neural-symbolic EA models that take
advantage of both the representation learning ability of neu-
ral models and the interpretability of conventional symbolic
methods. The second is, given EA, to learn more expressive
and transferable multi-sourced KG embeddings to improve
downstream knowledge-enhanced tasks. A KG-enhanced
task can be extended into a multi-sourced KG-enhanced
task. The latter can benefit from the knowledge transfer in
multi-sourced KGs and thus get further improvement.
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