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Abstract

Large Action Models (LAMs) for AI Agents001
offer incredible potential but face challenges002
due to the need for high-quality training data,003
especially for multi-steps tasks that involve004
planning, executing tool calls, and respond-005
ing to feedback. To address these issues, we006
present LAM SIMULATOR, a comprehensive007
framework designed for online exploration of008
agentic tasks with high-quality feedback. Our009
framework features a dynamic task query gen-010
erator, an extensive collection of tools, and an011
interactive environment where Large Language012
Model (LLM) Agents can call tools and re-013
ceive real-time feedback. This setup enables014
LLM Agents to explore and solve tasks inde-015
pendently and potentially come up with multi-016
ple approaches to tackle any given task. Gen-017
erated data are then used to create high-quality018
training datasets for LAMs.019

Our research shows that LAM SIMULATOR en-020
ables LLM Agents to autonomously solve tasks021
while automating the creation of high-quality022
training data. Models trained with these self-023
generated datasets demonstrated significant per-024
formance gains, showing up to a 49.3% im-025
provement over their own baselines. This was026
especially evident in experiments conducted027
with the ToolBench and CRMArena environ-028
ments. The process requires minimal human029
input during dataset creation, highlighting the030
LAM SIMULATOR’s efficiency and effective-031
ness in speeding up AI agents’ development.032

1 Introduction033

Large Action Models (LAMs) (Zhang et al., 2024b;034

Xu et al., 2024; Liu et al., 2024b) are an ad-035

vanced type of Large Language Model, specifi-036

cally optimized for tool usage, reasoning, and func-037

tion calling. Recent advancements have propelled038

their capabilities, making them integral to appli-039

cations such as AI agents and task automation.040

While strong closed-world commercial models like041

Claude-3 (Anthropic, 2024) and GPT-4 (Achiam 042

et al., 2023) can also perform complex agent tasks, 043

LAMs benefit from specialized training for en- 044

hanced performance in agent applications and offer 045

more open-source options and developments for 046

the community. As use cases grow, the demand for 047

more accurate models will continue to increase. 048

Current approaches for creating open-sourced 049

LAMs include prompt engineering, incorporating 050

additional contextual information into prompts, Su- 051

pervised Fine-Tuning (SFT), Reinforcement Learn- 052

ing from Human Feedback (RLHF) (Ouyang et al., 053

2022), among others. Most of these methods, how- 054

ever, rely heavily on manual data curation, a pro- 055

cess that is both time-consuming and expensive. 056

To address these challenges, utilizing LLM 057

Agents to explore environments autonomously has 058

emerged as a promising method to reduce the need 059

for human labeling and annotation in agent model 060

development. Recent studies, including those by 061

ToolTalk (Farn and Shin, 2023), WebArena (Zhou 062

et al., 2023), APIGen (Liu et al., 2024b), and 063

Learn-by-Interact (Su et al., 2025), have demon- 064

strated the ability to generate data for agent learn- 065

ing and evaluation through automated means. How- 066

ever, ToolTalk is limited to specific tasks that are 067

curated or filtered by humans; WebArena offers 068

a very limited action space within Web domain; 069

APIGen and Learn-by-Interact, while showing con- 070

siderable potential in generating agentic data, is 071

limited to the heavy usage of LLMs to assess data 072

quality, thus introduces a notable amount of uncer- 073

tainty, which is an important issue to consider. 074

Given these limitations, we introduce LAM SIM- 075

ULATOR, a comprehensive framework designed to 076

enhance data generation for agent learning through 077

exploration. As shown in Figure 1, LAM SIMULA- 078

TOR employs a template-filling strategy to dynami- 079

cally create queries. Users only need to develop a 080

series of query templates and description for query 081

parameters, along with logic to compute task an- 082
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swers using these parameters. A large language083

model (LLM) then creates these variables in real-084

time and populates the templates to form real user085

queries. These generated queries are then given to086

LLM Agents, which explore solutions using a pro-087

vided set of tools that might differ from those used088

to generate the ground-truth answers. As the agent089

tackles each task by making a series of function090

calls, LAM SIMULATOR provides immediate feed-091

back. This enables a smooth interaction between092

the agent and its environment, allowing agents to093

freely explore problem-solving and rectify their ac-094

tions through real-time feedback. Once the agent095

finishes its task, we apply thorough filtering to the096

generated trajectories, utilizing both the agent’s097

data and pre-computed ground-truth answers. This098

process facilitates the creation of diverse datasets099

suitable for LAM training.100

Our testing on well-known agentic benchmarks,101

including ToolBench (Qin et al., 2023) and CR-102

MArena (Huang et al., 2025), demonstrates the103

high quality of data produced using LAM SIMU-104

LATOR. When fine-tuning top-performing mod-105

els with data they generated themselves, we ob-106

served a pass rate increase of 4.1% for gpt-4o107

on ToolBench, and an 24.1% increase on CR-108

MArena. In addition, models with lower per-109

formance showed significant improvement, with110

mixtral-8x7b-inst achieving over a 19.3% in-111

crease on ToolBench, and gpt-4o-mini improv-112

ing by 49.3% on CRMArena. These results113

clearly demonstrate substantial performance en-114

hancements resulting from exploration through115

LAM SIMULATOR, underscoring the effectiveness116

of our framework across diverse environments.117

Our experiments demonstrate the remarkable ef-118

fectiveness of the LAM SIMULATOR in improving119

model performance and identifying and addressing120

model weaknesses in an automated manner.121

2 Related Work122

With the rapid evolution of Large Language123

Models (LLMs), there has been a significant in-124

crease in their application to tool-use and function-125

calling scenarios. Enhancing the capabilities of126

LLMs (Achiam et al., 2023; Anthropic, 2024;127

Dubey et al., 2024; Zhang et al., 2024b) with exter-128

nal tools allows them to go beyond the limitations129

of their static parametric knowledge and text-based130

input-output interfaces. This extension enables131

them to access real-time information, leverage ex-132

ternal reasoning systems, and perform meaningful 133

actions in dynamic environments. 134

Recently, open-sourced research has focused in- 135

creasingly on enhancing the efficiency of LLMs in 136

tool-use contexts (Qin et al., 2023; Chen et al., 137

2023; Liu et al., 2024a; Zhang et al., 2024a), 138

while also exploring various prompting and train- 139

ing strategies to improve their performance in agen- 140

tic tasks. Prominent prompting techniques like 141

Chain of Thought (CoT) (Wei et al., 2022), Reflec- 142

tion (Shinn et al., 2024), and ReACT (Yao et al., 143

2023) have garnered attention. While initial efforts 144

centered on In-Context Learning (ICL)—where 145

pre-trained LLMs were prompted with API specifi- 146

cations and tool-use examples—current approaches 147

are increasingly incorporating fine-tuning methods 148

to enhance model accuracy. 149

Moreover, popular agent environments such as 150

Webshop (Yao et al., 2022), AgentBench (Liu 151

et al., 2023), WebArena (Zhou et al., 2023), OS- 152

world (Xie et al., 2024), AgentBoard (Ma et al., 153

2024), BFCL (Yan et al., 2024), and τ -bench (Yao 154

et al., 2024) facilitate agent interactions and evalu- 155

ations within various scenarios such as web naviga- 156

tion, shopping, games, and computer environments. 157

Specifically, AgentBoard designs two multi-turn 158

environments for tool query and operations, but 159

they only contain 100 user queries in total and do 160

not include real-time feedback. τ -bench simulates 161

conversations between a user and a language agent, 162

providing API tools and policy guidelines, but it 163

only includes two domains: retail and airline. 164

The development of data generation pipelines 165

for agentic learning has also seen significant ad- 166

vancements in recent years. Notable contributions 167

include ToolBench (Qin et al., 2023), APIGen 168

(Liu et al., 2024b), and the more recent Learn-by- 169

Interact framework (Su et al., 2025). ToolBench 170

has established an extensive collection of tasks and 171

tools for agent learning, leveraging LLMs to gen- 172

erate these tasks. APIGen is a data generation 173

pipeline with features similar to ToolBench, but it 174

includes additional engines to verify generations 175

for improved quality control. Learn-by-Interact in- 176

novates by utilizing a backward construction mech- 177

anism to align LLM-generated trajectories with 178

instruction queries effectively. 179

Despite the reliance of the aforementioned works 180

on LLMs for assessing the quality of query and tra- 181

jectory pairs, our proposed framework, LAM SIM- 182

ULATOR, diverges by eliminating LLMs from the 183

quality assessment process. Instead, LAM SIMU- 184
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Figure 1: Overview of the LAM SIMULATOR. This figure illustrates the framework’s components and their interactions,
highlighting the simulator’s capabilities in generating tool-use data, executing functions, and evaluating results.

Framework Multi-turn
Open

Action
Automated
Data Gen

Program-
matic Evals

ToolBench (Qin et al., 2023) ✔ ✔ ✔ ✗

APIGen (Liu et al., 2024b) ✗ ✔ ✔ ✗

Learn-by-Interact (Su et al., 2025) ✔ ✔ ✔ ✗

LAM SIMULATOR (ours) ✔ ✔ ✔ ✔

Table 1: Comparison of Prior Frameworks and Our LAM SIMULATOR. Multi-turn assesses support for multi-turn settings,
Open Action assesses if agent’s actions space are predefined or open, Automated Data Gen assesses automated training data
generation capabilitiesm, and Programmatic Evals assesses if ALL evaluators in the framework are using a programmatic
approach without using LLMs.

LATOR employs a programmatic approach to eval-185

uating the quality of outputs from LLM Agents.186

This is achieved through dynamic task creation uti-187

lizing a template-filling strategy, thereby enhancing188

data quality without depending on LLMs as quality189

judges. Table 1 presents a comparison between our190

framework and other prominent systems developed191

for AI agent training.192

3 LAM SIMULATOR193

To enable LLM Agents to autonomously explore194

and enhance their problem-solving skills, we195

propose LAM SIMULATOR. We first construct196

query instances, each of which details the goals197

the LLM Agents should accomplish and the198

available tools (§3.2). Based on the given query199

instance, LLM Agents self-synthesize trajectories200

by iteratively interacting with the environment201

until the final state is reached (§3.3). Finally,202

the generated trajectories are filtered based on203

ground-truth answers, and subsequently used204

for training LLM Agents. Figure 1 shows an205

overview of our framework. We illustrate how each 206

component works in the following subsections. 207

3.1 Preliminaries 208

The task defined by each query instance can be 209

conceptualized as a Partially Observable Markov 210

Decision Process (POMDP), defined by the tuple 211

(U ,S,A,O, T ). Here, U denotes the user query 212

space, S represents the state space, A is the action 213

space, O refers to the observation space, T ∶ S × 214

A → S is the state transition function. 215

3.2 Query Instance Generation 216

Query instances form the starting point for trajec- 217

tory synthesis, comprising three elements: a user 218

query u ∈ U , a set of available tools F , and a 219

ground-truth answer y. The user query and tools 220

initiate agents’ iterative self-exploration, while the 221

ground-truth answer is used to verify the validity of 222

the resulting trajectory, as detailed in §3.3. Below, 223

we illustrate the details of each element. 224
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User Query Construction. User queries are225

natural-language questions that specify the objec-226

tives the agent must achieve. We begin constructing227

user queries by manually creating query templates228

with placeholders. It is sufficient to have one or229

multiple query templates for each objective, as the230

variation in language style can be later managed231

through the use of LLMs for paraphrasing. Once232

the query templates are in place, we utilize LLMs to233

sample values for these placeholders. The queries234

that result from filling in the placeholders are para-235

phrased and finalized as user queries.1 A detailed236

example for a Query Instance is covered in Ap-237

pendix A.1.238

Ground-truth Answer Computation. In devel-239

oping query templates, each template is linked240

to a sequence of tool usages aimed at deriving a241

ground-truth answer. This programmatic approach242

ensures the accurate production of answers. Here,243

the ground-truth-answer will later be used to com-244

pare with agent’s answer during trajectory filtering245

step. Nonetheless, the tools used within this se-246

quence are unlikely to align with those later made247

accessible to LLM Agents for exploration. This dis-248

crepancy is intentional, as we encourage agents to249

engage in exploratory problem-solving with differ-250

ent available tools, rather than merely replicating251

a predefined sequence of tool calls. Consequently,252

a successful strategy may either align with these253

hidden solution paths or comprise an alternative254

series of actions that achieve the same objective.255

Available Tools. The available tools for each user256

query are dependent on the benchmark dataset. We257

describe the details of tools in §4.258

3.3 Self-synthesized Trajectories259

Iterative Self-exploration. Given a user query260

u ∈ U , for each time step t at state st ∈ S, the261

agent selects an action at = (f, p) ∈ A by choos-262

ing an appropriate tool from the available set of263

tools f ∈ F and corresponding tool-call arguments264

p. This tool is used to interact with the environ-265

ment, resulting in an observation ot ∈ O after the266

function is executed. This process continues itera-267

tively until a final state is reached. The final state268

is achieved under one of two conditions: (1) the269

agent performs an action that returns a result to the270

user, such as the submit function in CRMArena271

1In this work, we employ gpt-4o to generate appropriate
placeholder values and paraphrase texts.

(Huang et al., 2025); or (2) the trajectory of actions 272

exceeds the predefined maximum number of steps. 273

To guarantee the proper execution of tool calls 274

and enable agents to learn from significant feed- 275

back from the environment, we introduced an ac- 276

tion handler. This handler checks the structure, 277

syntax, and validity of the tool call to ensure re- 278

sponses are in the correct required format, and also 279

to avoid hallucinations like fabricated tool names 280

or malformatted tool-call arguments. Second, it 281

retrieves the error message from the sandbox and 282

sends it back to the agent for correction, while also 283

maintaining a record of the error history for the 284

trajectory filtering stage. 285

Trajectory Filtering. Trajectory filtering guar- 286

antees that the resulting paths are both valid and 287

useful for training. We accomplish this by using 288

string matching to compare the final response y
′

289

of each trajectory with the actual answer y. Any 290

discrepancies (y ≠ y
′) result in exclusion from the 291

selected set. Furthermore, to ensure the quality of 292

our training dataset, we selectively include trajec- 293

tories that meet the following criteria: (1) the LLM 294

Agent completes the process without any errors, or 295

(2) if any errors occur during tool usage, they are 296

rectified in the subsequent action. For example, if 297

the agent incorrectly applies a parameter to a tool 298

at action at, we required that it is corrected in the 299

next action, at+1. 300

Programmatic Evaluation. Our framework in- 301

cludes the Action Handler for assessing actions 302

and Trajectory Filtering for monitoring trajectory 303

quality. This ensures the selection of trajectories 304

that demonstrate effective tool use and accuracy, 305

enhancing our confidence in the data quality. 306

Agent Training. After the filtering process, we 307

train our LLM Agents on these self-generated 308

trajectories. This approach offers two advantages 309

over using only the gold-standard trajectories from 310

§3.2. First, training on agent-explored trajectories, 311

which may include errors and corrections in sub- 312

sequent iterations, allows the model to explicitly 313

learn error recovery strategies. This is crucial for 314

real-world deployments where unexpected inputs 315

or tool states are common. Second, our approach 316

allows the model to encounter and adapt to a wider 317

range of scenarios, including potential interactions 318

with previously unseen tools or alternative, valid 319

solution paths. As empirically demonstrated in 320

§5, exposing the model to this broader range 321
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of interactions during training notably enhances322

its generalization abilities and its robustness in323

utilizing tools and completing agent-based tasks.324

3.4 Generalizability325

The proposed LAM SIMULATOR framework is eas-326

ily generalizable to a wide range of agentic en-327

vironments and tasks. To support a new set of328

tasks and environments, one only needs to design329

a set of query templates reflecting the specific task330

goals and establish the associated mappings from331

these templates to sequences of tool calls that yield332

the ground-truth answers. The capacity to rapidly333

adapt to novel tasks not only underscores the gen-334

eralizability of LAM SIMULATOR but also high-335

lights its potential as a universal tool for enhancing336

problem-solving capabilities of AI Agents.337

4 Applications338

LAM SIMULATOR is engineered to be seamlessly339

adaptable to a wide range of scenarios, showcasing340

its potential in advancing contemporary models.341

To demonstrate the effectiveness of LAM SIMULA-342

TOR, we supported its application to two prominent343

environments for agentic tasks: ToolBench (Qin344

et al., 2023) and CRMArena (Huang et al., 2025).345

ToolBench emphasizes generic tool-use capability,346

while CRMArena delves into complex and real-347

istic Customer Relationship Management (CRM)348

scenarios. Our goal is to exhibit LLM Agent’s self-349

improvement capability via explorative processes350

through LAM SIMULATOR.351

4.1 ToolBench352

4.1.1 Tools collection creation353

ToolBench’s Tools Collection: We leveraged Tool-354

Bench (Qin et al., 2023)’s extensive repository,355

which encompasses 16,464 REST APIs sourced356

from the RapidAPI Hub. Although this collection357

is notably extensive, we encountered numerous en-358

tries that were either non-functional or inadequately359

documented. To enhance the quality and reliabil-360

ity of our exploration, we conducted a thorough361

clean-up process as detailed in Appendix A.3. This362

refinement led us to a more manageable and useful363

collection comprising 3,420 effective tools.364

In-house designed tools: Given that the Tool-365

Bench’s tools collection necessitated the use of366

tools from various providers, availability issues367

could arise during exploration. To address these368

challenges and ensure stability in exploration, our369

team constructed a suite of 57 tools. These tools 370

encompass critical domains, such as Data, Sci- 371

ence, Entertainment, and Tool Usage. This strate- 372

gic approach aims to reduce reliance on external 373

providers, thereby enhancing the reliability and 374

consistency of tool availability during exploration. 375

4.1.2 Query Instances 376

We devised 30 high-level tasks based on instances 377

from the ToolBench training dataset, each address- 378

ing objectives such as retrieving movie details or 379

housing property searches. For these tasks, we 380

developed sequences of tool calls to generate so- 381

lutions utilizing our in-house tools, as detailed in 382

§4.1.1. This process yielded 400 unique query 383

instances, with each instance consists of a para- 384

phrased fill-in query with parameters produced by 385

LLMs, a pre-determined ground-truth answer, and 386

a set of tools for exploration. These tools include 387

either those used to compute the solutions or al- 388

ternative options, along with supplementary tools 389

intended to challenge the decision-making capabil- 390

ities of agents. 391

4.2 CRMArena 392

4.2.1 Tools collection creation 393

To facilitate exploration in solving the tasks in 394

§4.2.2, relevant tools necessary for the four sup- 395

ported tasks were extracted, representing 15 out 396

of the 25 tools available in CRMArena (Huang 397

et al., 2025). The remaining 10 tools were deliber- 398

ately left unmodified to rigorously test the system’s 399

adaptability in out-of-domain scenarios. 400

4.2.2 Query Instances 401

From the six finely crafted tasks derived from 402

their framework: New Case Routing (NCR), Han- 403

dle Time Understanding (HTU), Monthly Trend 404

Analysis (MTA), Best Region Identification (BRI), 405

Transfer Count Understanding (TCU), and Top Is- 406

sue Identification (TII), we selected the first four 407

tasks—NCR, HTU, MTA, and BRI—for explo- 408

ration, leaving TCU and TII for rigorous out-of- 409

domain testing. We follow the same procedure 410

indicated in §4.1.2 to generate 400 query instances, 411

all formatted consistently. 412

5 Experiments 413

With the integration of environments into LAM 414

SIMULATOR detailed in §4, we conducted exper- 415

iments to demonstrate our framework’s effective- 416

ness on ToolBench and CRMArena benchmarks. 417
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5.1 Experiment Setups418

5.1.1 Evaluation datasets and metrics419

ToolBench Evaluation. To comprehensively as-420

sess ToolBench’s performance, we employed three421

distinct test sets with 600 instances tailored to ex-422

amine different scenarios. The first test set, Unseen423

Instruction, or G1_inst, is designed to measure424

how well the model performs when presented with425

new instructions for potentially familiar tools. It is426

important to highlight that due to the small number427

of tasks and tools selected for exploratory purposes,428

as detailed in §4.1.2, the likelihood of encountering429

similar instructions or tools in this set is exceed-430

ingly low. The second test set, Unseen Tools, or431

G1_tool, evaluates the model’s ability to manage432

tools it has never encountered before. Finally, the433

Unseen Tools & Unseen Categories, or G1_cat,434

test set presents the most challenging scenario by435

testing the model on tasks from entirely new cate-436

gories, requiring the use of unfamiliar tools.437

CRMArena. In evaluating CRMArena, we uti-438

lized public test sets corresponding to the six tasks439

detailed in §4.2.2. Each task contains 130 entirely440

new instances to the exploration data. The NCR,441

HTU, MTA, and BRI tasks, while sharing similar442

scenarios or tools encountered during exploration,443

are distinguished by their novel use cases. In con-444

trast, the TCU and TII tasks are entirely distinct445

from any previously explored domain, ensuring446

these tests are entirely out-of-domain.447

5.1.2 Agent LLM448

ToolBench. In our study, we focused on the449

two leading models in the ToolBench benchmark:450

gpt-4o (Achiam et al., 2023) and xlam-8x7b451

(Zhang et al., 2024b). For a more comprehen-452

sive analysis, we also included their more compact453

counterparts, gpt-4o-mini and xlam-7b-r, in our454

exploration and fine-tuning processes. To assess a455

broader range of performance capabilities, we ad-456

ditionally experimented with the lower-performing457

model, mixtral-8x7b-inst (Jiang et al., 2024).458

CRMArena. In the CRMArena environment,459

which demands advanced planning and the com-460

plex use of tools, we chose the best-performing461

model, gpt-4o, along with its compact version,462

gpt-4o-mini, as our baseline LLM Agents for463

exploration and fine-tuning. Given these require-464

ments, we observed that lower-performing mod-465

els such as mixtral-8x7b-inst struggled to pro-466

duce effective trajectories. Thus, constrained by 467

time and resources, we opted not to experiment 468

with models failing to meet the environment’s high- 469

performance demands. 470

5.1.3 Training Datasets 471

We incorporated the Query Instances from Section 472

§4 for exploration. We let the Agent LLM to contin- 473

uously explore the given tasks with temperature 1.0, 474

and collected all trajectories that passed our evalu- 475

ators, until it reached 500 trajectories for training. 476

The filtered trajectories then directly being used to 477

finetune the same base model. 478

5.2 Main Results and Discussions 479

5.2.1 ToolBench 480

The evaluation of the ToolBench datasets, as pre- 481

sented in Table 2, demonstrates substantial per- 482

formance improvements in our fine-tuned models 483

relative to their baselines. The gpt-4o-ls model 484

shows a marked improvement, increasing its per- 485

formance from 47.4% to 51.5% compared to the 486

baseline gpt-4o. Similarly, the xlam-8x7b-ls 487

model exhibits a notable enhancement, rising from 488

43.5% to 49.8% over its baseline, xlam-8x7b-r. 489

Among compact models, gpt-4o-mini-ls and 490

xlam-7b-ls achieved performance gains of 4.5% 491

and 2.1%, respectively, when compared to their 492

baselines. These improvements are particularly 493

impressive because these models already rank 494

among the best in the benchmark. Notably, low- 495

performing models benefited even more from our 496

approach. The mixtral-8x7b-inst model, ini- 497

tially achieving an 11.7% pass rate, improved 498

significantly to 31.0% after fine-tuning to the 499

mixtral-8x7b-ls version. This demonstrates the 500

effectiveness of self-generated data in enhancing 501

model performance. 502

When analyzing the performance across dif- 503

ferent test sets, we observed substantial gains 504

in out-of-domain tasks. This is evident in the 505

improvements on the G1_cat (Unseen Tools in 506

Unseen Category) and G1_tool (Unseen Tool) 507

datasets. For instance, top-performing model 508

xlam-8x7b-ls gained 4% on G1_cat and 12.5% 509

on G1_tool compared to its baseline. Similarly, 510

the lower-performing mixtral-8x7b-ls model 511

recorded more than double gains on both G1_cat 512

and G1_tool over its baseline. These results high- 513

light the efficacy of our framework in producing 514

high-quality data for enhancing agentic learning. 515
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Model Name ALL G1_inst G1_cat G1_tool
gpt-4o-ls 0.515 0.465 0.555 0.525
gpt-4o 0.474 0.437 0.519 0.466
xlam-8x7b-ls 0.498 0.440 0.530 0.525
xlam-8x7b-r 0.435 0.415 0.490 0.400
gpt-4o-mini-ls 0.497 0.475 0.540 0.475
gpt-4o-mini 0.452 0.415 0.505 0.435
xlam-7b-ls 0.413 0.400 0.460 0.380
xlam-7b-r 0.392 0.355 0.425 0.395
mixtral-8x7b-ls 0.310 0.280 0.385 0.265
mixtral-8x7b-inst 0.117 0.085 0.160 0.105

Table 2: Pass Rate (%) on three distinct ToolBench test sets. "ALL" denotes the average performance across all test sets. Models
are categorized into baseline versions and their fine-tuned counterparts, with models trained using self-generated data through
LAM SIMULATOR highlighted in cyan.

Model Name ALL NCR HTU MTI BRI TCU TII
gpt-4o-ls 0.864 0.677 0.808 0.985 0.869 0.862 0.985
gpt-4o 0.623 0.600 0.477 0.277 0.592 0.815 0.977
gpt-4o-mini-ls 0.678 0.262 0.715 0.762 0.485 0.877 0.969
gpt-4o-mini 0.185 0.080 0.108 0.000 0.215 0.108 0.600

Table 3: Pass Rate (%) on six distinct CRMArena test sets. "ALL" denotes the average performance across all test sets. Models
are categorized into baseline versions and their fine-tuned counterparts, with models trained using self-generated data through
LAM SIMULATOR highlighted in cyan.

5.2.2 CRMArena516

For CRMArena test sets, which require ad-517

vanced problem-solving abilities in complex, re-518

alistic CRM environments, our fine-tuned model,519

gpt-4o-ls, demonstrates a marked improvement.520

It achieves an overall pass rate of 86.4%, repre-521

senting a significant increase of 24.1% over its522

baseline version, gpt-4o, which scores 62.3%.523

This enhancement is even more pronounced in524

the weaker model, where our framework enhances525

gpt-4o-mini’s performance nearly fourfold, ele-526

vating the accuracy from 18.5% to 67.8%. Such a527

transformation turns a previously inadequate model528

into one that is highly effective for these tasks.529

Crucially, these performance improvements530

extend beyond just in-domain tasks to also531

significantly impact out-of-domain tasks.532

gpt-4o-mini-ls shows notable gains, achieving533

a 76.9% increase on the TCU task and a 36.9%534

increase on the TII task. These outcomes illus-535

trate a substantial enhancement in the model’s536

understanding of CRM tools and associated tasks.537

5.3 Ablation Studies538

5.3.1 Tools usage errors reduction539

Besides discussing the effectiveness of LAM SIM-540

ULATOR in enhancing agents’ overall problem-541

solving capabilities, we also examined its utility542

in improving agents’ tool usage. Our study in-543

volved models xlam-8x7b-ls and xlam-7b-ls,544

compared against their baseline counterparts545

Model Name ALL Structure Toolname Arguments
xlam-8x7b-ls 16.67 25 1 24
xlam-8x7b-r 25.33 30 6 40
xlam-7b-ls 13.67 17 12 12
xlam-7b-r 35.00 42 8 55

Table 4: Number of errors (lower is better) for actions gen-
erated from 200 sampled states across ToolBench test sets,
comparing different models. Error types include structural
errors (Structure), hallucinated tool calls (Toolname), and in-
correct tool argument usage (Arguments). "ALL" indicates
overall average number of errors. Models fine-tuned via LAM
SIMULATOR are highlighted in cyan.

xlam-8x7b-r and xlam-7b-r. We randomly se- 546

lected 200 states, each with preceding steps gen- 547

erated by one of these four models, tasked with 548

solving tasks from the ToolBench test sets. Each 549

model’s subsequent actions were assessed for er- 550

rors using our Action Handler. 551

Our analysis focused on three layers of errors: 552

1) structural errors, where actions are unparseable; 553

2) toolname errors, where actions are parseable 554

but the tool names are hallucinated; and 3) argu- 555

ments errors, where both parsing and tool names 556

are correct, but arguments are misused. 557

The results in Table 4 illustrates that LAM SIMU- 558

LATOR substantially reduces errors, nearly halv- 559

ing them on average. For the compact model 560

xlam-7b-r, substantial reductions were observed 561

particularly in structural errors and incorrect tool 562

argument errors. Though there’s a slight increase 563

in tool hallucination, it can be attributed to the base- 564

line model primarily committing structural errors, 565
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resulting in previously obscured toolname errors566

being revealed. Even among top-performing mod-567

els, notable reductions in argument errors were568

observed. This suggests that LAM SIMULATOR ef-569

fectively enhances agents’ tool usage capabilities.570

5.3.2 Impact of Core Monitoring Components571

We conducted an ablation study to evaluate the572

impact of core monitoring components in our LAM573

SIMULATOR framework. Specifically, we sought574

to understand the contributions of Action handler,575

which monitors the LLM Agent’s ability to perform576

correct actions through tool usage, and Trajectory577

filtering, which examines the agent’s overall task-578

solving ability by comparing its trajectory against579

a ground-truth solution.580

We used the mixtral-8x7b-inst as our base-581

line LLM Agent. We utilized LAM SIMULATOR582

with the LLM Agent as it interacted with tasks583

from ToolBench, as specified in §4.1.2, similar to584

the primary experiment. However, we made a criti-585

cal modification by disabling the Action Handler586

when collecting training trajectories. That means,587

the Agent’s actions, particularly those involving588

tool calls, were not monitored. We then fine-tuned589

the baseline model with the self-generated data and590

evaluated on the three ToolBench test sets used in591

the main experiment, enabling us to analyze the592

impact of "Not monitor Action".593

Similarly, we started with the same baseline594

LLM Agent and pass through LAM SIMULATOR595

for generating data while disabling ground-truth596

comparison within Trajectory filtering. In this ap-597

proach, there was no quality control for trajecto-598

ries misaligned with the task requirements. Subse-599

quently, we fine-tuned the baseline model and per-600

formed evaluations on the same three ToolBench601

test sets. This allowed us to assess the impact of602

"Not monitor Trajectory".603

Our ablation study, depicted in Figure 2, un-604

derscores the essential role of both action-level605

and trajectory-level monitoring in our model’s per-606

formance. The removal of action-level monitor-607

ing ("Not monitor Action" in Figure 2) results in608

a significant decline in pass rates across all test609

sets. This suggests that without proper regula-610

tion of tool usage, errors accumulate, which the611

model is unable to rectify autonomously. Similarly,612

the absence of trajectory-level monitoring ("Not613

monitor trajectory") hinders the overall effective-614

ness of the model by failing to ensure alignment615

with task requirements. This shortcoming is par-616

Figure 2: Ablation study on monitoring components across
three ToolBench test sets. mixtral-8x7b-inst shows base-
line model performance. "Not monitor Action" indicates per-
formance when fine-tuning with a self-exploration dataset
via LAM SIMULATOR without action monitoring, while "Not
monitor Trajectory" shows results without trajectory monitor-
ing. mixtral-8x7b-ls demonstrates performance with both
action and trajectory monitoring enabled.

ticularly evident in the out-of-domain G1_cat set- 617

ting, where the pass rate drastically decreases from 618

38.5% to 19.0%. These findings underscores the 619

importance of monitoring the actions and outcomes 620

of LLM Agents in scenarios where we aim to apply 621

self-improvement to agentic models, thus, clearly 622

demonstrate the importance of incorporating all 623

monitoring components in our LAM SIMULATOR. 624

6 Conclusion 625

In this paper, we presented LAM SIMULATOR, a 626

comprehensive framework designed to advance the 627

development of Large Action Models (LAMs) by 628

enabling self-learning through online exploration 629

and automated feedback. Our system effectively 630

addresses the limitations of traditional supervised 631

learning and manual data curation, offering a scal- 632

able solution that enhances both agentic perfor- 633

mance and training efficiency. LAM SIMULATOR 634

provides real-time interactions, multi-turn task pro- 635

cessing, and high-quality feedback, contributing to 636

significant improvements in model training perfor- 637

mance across various benchmarks, such as Tool- 638

Bench and CRMArena, where models trained with 639

self-generated data via LAM SIMULATOR gained 640

a significant improvements and potentially outper- 641

formed other leading models. Our framework accel- 642

erates the learning and adaptation process of LAMs 643

with minimal human intervention, demonstrating 644

its potential as a pivotal tool for future research and 645

development in AI agents. 646
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7 Limitations647

LAM SIMULATOR still has some limitations, its cur-648

rent implementation focuses on predefined tasks649

and tools, which may limit its adaptability in more650

dynamic or unstructured environments. In future651

work, we aim to expand the framework’s general-652

ization capabilities by incorporating a wider range653

of tasks and tool integrations, as well as exploring654

methods for better handling ambiguous or incom-655

plete task specifications. Furthermore, we plan to656

investigate the scalability of the system in envi-657

ronments with more complex action spaces and658

interdependencies, pushing the boundaries of au-659

tonomous agent learning.660
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A Appendix787

A.1 Examples of Query Instance788

Query template Here, we are providing an ex-789

ample for query templates. As we can see from790

Figure 3, a query template contains natural text791

portions and placeholders to-be-filled.792

"query_template": "I've been looking up {
movie_detail} about the movie {movie_name}. Fun
fact: the set of {movie_name} was built inside
a massive warehouse to create a surreal

atmosphere!"

Figure 3: Example of Query Templates

Placeholders description We then provide exam-793

ple for query template’s placeholders’ descriptions794

(Figure 4).

"placeholders_metadata": {
"movie_name": {

"type": str,
"description": "The name of the movie to

search for.",
},
"movie_detail": {

"type": str,
"description": "The detail of the movie to

search for.",
}

}

Figure 4: Example of Placeholders description

795

Generated Placeholders Given the query tem-796

plate and its placeholders’ descriptions, we can use797

Large Language Models (LLMs) for generating dy-798

namic values for the placeholders. An example of799

a generated placeholder is shown in Figure 5.800

"placeholders": {
"movie_name": "The Dark Knight",
"movie_detail": "genres"

}

Figure 5: Example of generated Placeholders

Filled-in query With Query Template (3), and801

Generated Placeholders (5), we can fill in the value802

of the placeholder into the query template to create803

Filled-in query. An example is showned at 6.804

Answer computation We also give an example805

of how we can compute answer for the generated806

query 6. As illustrated in Figure 7, we pre-define a807

solution path for any task that can be formed with808

the query template. This solution path will then809

"filled_in_query": "I've been looking up genres
about the movie The Dark Knight. Fun fact: the
set of The Dark Knight was built inside a
massive warehouse to create a surreal
atmosphere!"

Figure 6: Example of Filled-in Query with Query tem-
plate 3 and generated Placeholders 5. Note that after
this, the query can be further paraphrased with LLM for
diversity purpose.

being used by any generated task with the query 810

template 3 for ground-truth answer computation. 811

"solution_paths": [
{

"tool_call": "
get_search_movie_for_movie_tools",

"arguments": {
"movie_name": null

}
},
{

"tool_call": "
get_movie_details_for_movie_tools",

"arguments": {
"id": null

}
}

]

Figure 7: Example of a solution path for the task 6.
The arguments would be searched among 1) placeholder
values and 2) objects generated during execution. In this
example, movie_name can be extracted directly from the
placeholder value (The Dark Night), from 5, while id is
a new field can be retrieved from the execution response
of get_search_movie.

Available tools We then provide an ex- 812

ample of a set of available tools provided 813

to LLM Agents for exploration. As we 814

can see from 8, the tools set does not in- 815

clude get_search_movie_for_movie_tools, 816

but instead include an alternative version 817

search_movie_for_imdb, which does the similar 818

objective with get_search_movie, but it is a 819

different tool with different way to use. In addition, 820

there are extra tools provided here to, where the 821

LLM Agent is expected to decide what is the right 822

tool to use at a given time step. 823

A.2 Example of LLM Agent system prompt 824

We also include an example of a system prompt 825

for LLM Agent that we derived from ToolBench’s 826

(Qin et al., 2023) and xLAM’s (Zhang et al., 827

2024b) system prompt, as shown in 10. 828
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"task_available_tools": [
"get_movie_details_for_movie_tools",
"search_movie_for_imdb",
"get_movie_production_companies_for_movie_tools",
"get_current_temp_for_weather_tools",
"Finish"

]

Figure 8: Example set of available tools to be provided for
LLM Agent for exploration. Note that this tools set does not in-
clude get_search_movie_for_movie_tools, but instead in-
clude an alternative version search_movie_for_imdb, which
does the similar objective with get_search_movie, but it is a
different tool with different way to use. In addition, there are
extra tools provided here to, where the LLM Agent is expected
to decide what is the right tool to use at a given time step.

Figure 9: Tools distribution for ToolBench environment.

A.3 Clean-up Toolbench tools829

We leveraged ToolLLM’s extensive work under830

Apache-2.0 license, which collated over 16,464831

REST APIs across 49 categories from RapidAPI832

Hub. Despite the breadth, the quality and docu-833

mentation of these tools were inconsistent due to834

their mass collection approach, leading to many835

non-functional or poorly documented entries. To836

rectify this, critical elements such as tool names,837

parameters, execution code, and related metadata838

were extracted. Large language models (LLMs)839

played a crucial role in refining the tool descrip-840

tions and docstrings to ensure clarity and coher-841

ence. This process involved integrating necessary842

Python code components, conducting validations843

for code executability, and leveraging LLMs to844

assess quality. Moreover, rule-based techniques845

and LLM prompting were used to eliminate du-846

plicate or similar tools, enhancing the collection’s847

integrity. In Figure 9, we display the distribution of848

our tools collection for ToolBench after cleaning849

up and rewriting documentations. 850

Note that for now, we are only utilizing a small 851

subset of this collection for exploration. In the 852

future, we are going to scale up to try to use all of 853

the processed tools. 854

B Licenses 855

Here, we discussed about the licenses of the arti- 856

facts we used in our work. 857

For tools (code logic), we used tools from 858

ToolBench and CRMArena. ToolBench is under 859

Apache-2.0 License, and CRMArena is under Cre- 860

ative Commons Attribution 4.0 License (CC BY). 861

For evaluation datasets, we also used the datasets 862

from ToolBench and CRMArena, in which licenses 863

are mentioned above. 864

For models we used for exploration (data gen- 865

eration), finetuning, and evaluating, we used 866

gpt-4o, gpt-4o-mini, xlam-8x7b-r, xlam-7b-r, 867

mixtral-8x7b-inst. Here: 868

• gpt-4o and gpt-4o-mini (Achiam et al., 869

2023) is under MIT License. 870

• xlam-8x7b-r and xlam-7b-r (Zhang et al., 871

2024b) is under Apache 2.0 License. 872

• mixtral-8x7b-inst (Jiang et al., 2024) is 873

under Apache 2.0 License. 874

. 875

All of the licenses above enable us to perform 876

research experiments. 877

C Experimental Detail 878

Our data generation and trainings of 879

mixtral-8x7b-inst (56B parameters), 880

xlam-8x7b-r (56B parameters), and xlam-7b-r 881

(7B parameters) are performed with 4*H100s 882

machines. Each of the exploration iteration to 883

generate data is limited to 8 hours, and corre- 884

sponding training time is limited by 4 hours. The 885

hyperparameters of training all instances are at 886

5e − 6 for 3 epochs. 887

For the data generations and trainings on gpt-4o 888

and gpt-4o-mini, we used OpenAI’s endpoint 889

with the same time limit. For trainings, we used 890

default hyperparameters and number of epochs sug- 891

gested by OpenAI, which is at between 1 and 2 for 892

LR multiplier and for 3 epochs. 893

For evaluations, we configured the generative 894

temperature to be 0.0. This allows us to have deter- 895

ministic results for the presented ones in Section 896

5. 897
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[BEGIN OF TASK INSTRUCTION]
You are an expert in agentic task. You will be given a task, and you can use many tools sequentially to

solve the task. At each time step, you will call exactly 1 tool, and based on the environment feedback,
you will be able to decide your next step. Keep repeating this action until you gather enough

information to solve the task. By that time, call the special function "Finish" given to use to return
the final answer in the exact format.

Remember:
1. MOST IMPORTANT, in your response of the "Finish" step, you MUST strictly follow the response format of

what to be written inside "final_answer".
2. The state change is irreversible, you can 't go back to one of the former state.
3. All the thought is short, at most in 5 sentences.
4. Your action must be calling one of the given tools (functions).
5. Your action input must be in json format, where action inputs must be realistic and from the user. Never

generate any action input by yourself or copy the input description. Do not add unrelated parameters if
not needed. Do not add optional parameters when it is not required or when these information is not

needed.
6. You can do more then one trys, so if your plan is to continusly try some conditions, you can do one of

the conditions per try.

Task description:
You should use functions to help handle the real time user querys. Remember:
1. ALWAYS call "Finish" function at the end of the task. And the final answer should contain enough

information to show to the user.
[END OF TASK INSTRUCTION]

Figure 10: Example of system prompt for LLM Agent

D Others898

When constructing this paper, we used gpt-4o899

(Achiam et al., 2023) for several paraphrasing.900
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