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ABSTRACT
Offline reinforcement learning (RL) suffers from the distribution

shift between the offline dataset and the online environment. In

multi-agent RL (MARL), this distribution shift may arise from the

nonstationary opponents in the online testing who display distinct

behaviors from those recorded in the offline dataset. Hence, the key

to the broader deployment of offline MARL is the online adaptation

to nonstationary opponents. Recent advances in foundation models,

e.g., large language models, have demonstrated the generalization

ability of the transformer, an emerging neural network architec-

ture, in sequence modeling, of which offline RL is a special case.

One naturally wonders whether offline-trained transformer-based RL
policies adapt to nonstationary opponents online. We propose a novel

auto-regressive training to equip transformer agents with online

adaptability based on the idea of self-augmented pre-conditioning.

The transformer agent first learns offline to predict the opponent’s

action based on past observations. When deployed online, such

a fictitious opponent play, referred to as the belief, is fed back to

the transformer, together with other environmental feedback, to

generate future actions conditional on the belief. Motivated by

self-confirming equilibrium in game theory, the training loss con-

sists of belief consistency loss, requiring the beliefs to match the

opponent’s actual actions and best response loss, mandating the

agent to behave optimally under the belief. We evaluate the online

adaptability of the proposed self-confirming transformer (SCT) in

a structured environment, iterated prisoner’s dilemma games, to

demonstrate SCT’s belief consistency and equilibrium behaviors as

well as more involved multi-particle environments to showcase its

superior performance against nonstationary opponents over prior

transformers and offline MARL baselines.
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1 INTRODUCTION
Offline reinforcement learning (RL) has recently emerged as a

promising alternative to online RL [22], which extracts policies

purely from the previously collected dataset without any interac-

tion with the environment. As such, offline RL avoids online explo-

rations required by online RL algorithms, which can be expensive

(e.g., end-to-end robotic control [21]), dangerous (e.g., self-driving

[26]), and sometimes infeasible (e.g., healthcare [59]).

Yet, a fundamental challenge of offline RL is the distribution shift

between the offline training dataset and the online testing environ-

ment [22]. In plain words, the offline RL agent needs to properly
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Figure 1: Self-augmented belief conditioning in the self-confirming trans-
former (SCT). SCT first generates a belief on the opponent’s action 𝑎𝑡−𝑖 (the
green block), which is a fictitious token unobserved from the environment.
Based on this belief, the transformer generates the action.

handle unseen state-action pairs in the dataset during testing [3].

When extending this offline RL to multi-agent RL (MARL) settings,

the distribution shift may be caused by exogenous agents who are

beyond the preview of the trained MARL policy. We refer to these

exogenous agents as the opponents. When opponents display a

behavior pattern different from those included in the offline dataset,

the ego agents are unprepared for these unseen state-action pairs

resulting from opponents’ unexpected moves. We refer to such an

opponent as nonstationary, as it employs a different and possibly

time-varying policy in testing, as opposed to the stationary policy

used to collect offline data. As shown in one motivating example

in Figure 3, blindly applying offline MARL policy gives degrading

performance when playing with a nonstationary opponent.

While the study of developing autonomous agents capable of

reasoning and adapting to unknown opponent policies, referred to

as opponent modeling (OM), is a long-standing and pivotal research

topic in multi-agent systems and artificial intelligence [2], this

works explores the transformer architecture [52] to tackle opponent

modeling and offline policy extraction combined as an integrated

sequence modeling problem. The question we ask is

whether the offline transformer policy can adapt to the nonstationary
opponent online by modeling its behavior auto-regressively?

This work answers this question affirmatively by introducing

the self-confirming transformer (SCT) that learns to predict the

opponent’s move from the partial observation, which is then fed

to the transformer itself to generate the ego agent’s action, as

depicted in Figure 1. The SCT is inspired by the self-confirming

equilibrium (SCE) [9], a weaker variant of the seminal Nash equi-

librium (NE) [37], which does not assume every agent’s compliance

with NE policy. In contrast, SCE rests on subjective rationality, fo-

cusing on consistency between one’s observations and subjective

beliefs on the opponent’s future move, which leads to the term



“self-confirming” (see Definition 4.1). From a sequence modeling

perspective, the sheer difference between our SCT and previous

transformers lies in that SCT creates a fictitious belief token as

part of the input sequence, serving as the pre-conditioning for ac-

tion generation, while prior works only use environment feedback

(e.g., observations and rewards) to generate control actions. The

additional belief generation in SCT, bearing a similar spirit to OM,

prevents overfitting the offline data and helps the agent to adapt

its action online. A summary of our contributions is as follows.

• We propose a novel auto-regressive self-confirming training,

enabling the transformer to infer and adapt to the opponent’s

nonstationary policy without modifying its architecture.

• We conduct extensive experiments in benchmark MARL

environments to demonstrate SCT’s greater adaptability over

offline MARL baselines and recent transformer models.

• We analyze SCT’s equilibrium behavior in a structured it-

erated prisoner’s dilemma, empirically certifying its self-

confirming plays as instructed by self-confirming training.

2 RELATEDWORKS
Offline Reinforcement Learning. Offline RL methods extract

policies from pre-collected datasets without interacting with the en-

vironment. These methods can be categorized into constraint-based

and sequential model-based approaches [36]. In constraint-based

methods, off-policy algorithms treat offline datasets as a replay

buffer to learn a policy with promising performance. However, the

experiences in offline datasets and interactions with online environ-

ments have different distributions, i.e., there is a distribution shift,
causing overestimation in policy and value-based methods. To ad-

dress this issue, recent progress utilizes the conservatism idea [22]

that compels the policy [10] or value function estimation [11, 20]

to the data manifold to control the extrapolation error.

Transformer in RL. In addition to the constraint-based approach

above, sequential model-based methods, which treat the offline

policy training process as a sequence modeling problem, have also

emerged as a powerful tool. Sequence modeling, motivated by the

analysis of sequential data such as texts and time series, is concerned

with learning the correlation among sequential data and forecasting

or generating future data points, which has been the core research

topic in natural language processing [50], speech recognition [7],

and time-series prediction [23, 24]. Since RL trajectories also display

temporal correlations, sequence modeling methods aim to predict

future states, actions, and rewards using past observations.

Due to transformers’ encouraging success in sequence modeling

[52], recent efforts have been exploring the application of transform-

ers in offline RL. One example of such is the decision transformer

(DT) and its variants [4, 12]. DT learns the distribution of trajecto-

ries and predicts actions conditional on target rewards and previous

observations. Instead of directly predicting the optimal actions, the

trajectory transformer and its variants [18, 54] use the transformer

to roll out future trajectories and search for optimal policies. As

for multi-agent RL, the current multi-agent transformer research

mainly employs the transformer architecture for representation

learning [14, 31] under long horizons and partial observations, i.e.,

the transformer, learning the hidden representation of historical

observations, becomes part of a bigger RL machinery for policy

optimization [36, 56]. In contrast, our proposed transformer sub-

scribes to DT and addresses the action generation conditional on

the additional fictitious belief tokens. Another remark is that while

those prior works on multi-agent transformers concentrate on co-

operative tasks, a central transformer policy controls all agents; our

approach alludes to independent learning [5, 30] where each agent

handles the nonstationary opponents in noncooperative settings.

OpponentModeling.Ourwork is also closely related to transformer-

based opponent modeling. The intuition is that modeling the op-

ponent’s behavior is also a sequence modeling problem, where the

transformer learns to reconstruct opponent policies using offline

data. Some early works utilize encode-decoder architecture (which

is used by the transformer as well) to extract the temporal correla-

tion between states and opponent actions [14, 46]. Most relevant

to our work are [19, 53], where authors employ the transformer

architecture to model the opponent’s policy and forecast its actions

for policy updates. These works treat the transformer as a purely

predictive model for opponent action forecasting and call for addi-

tional mechanisms for policy learning. In contrast, our proposed

SCT combines opponent action forecasting with policy generation

using the vanilla decision transformer model [4]. We aim to investi-

gate whether belief conditioning creates greater online adaptability

when generating actions auto-regressively.

3 PRELIMINARY
Multi-Agent Reinforcement Learning. Consider learning in

a multi-agent decision process described by a partially observ-

able Markov game (POMG). A POMG with 𝑁 agents indexed by

𝑖 ∈ {1, 2, . . . , 𝑁 } := [𝑁 ] includes a global state spaceS, each agent’s
action space A𝑖 , and a set of observations O𝑖 for each individual.

The typical elements of these spaces are denoted by the corre-

sponding uncapitalized letters. The time step is denoted by 𝑡 ∈ N+,
appearing as the superscript in the sequel. Unaware of the global

state 𝑠𝑡 , each agent receives a local observation 𝑜𝑡
𝑖
∈ O𝑖 and chooses

an action 𝑎𝑡
𝑖
. Denote by the bold symbol 𝒐𝑡 = {𝑜𝑡

1
, 𝑜𝑡

2
, . . . , 𝑜𝑡

𝑁
} the

joint observation. Then, with the joint actions of all agents, de-

noted by the bold symbol 𝒂𝑡 = (𝑎𝑡
1
, 𝑎𝑡

2
, . . . , 𝑎𝑡

𝑁
), the environment

transits to the next state 𝑠𝑡+1 according to the transition kernel

P : S × ∏
𝑖∈[𝑁 ] A𝑖 → Δ(S), and the decision-making process

repeat. We assume all involved sets in this work are Borel sets (ei-

ther discrete or continuous), and Δ(·) denotes the Borel probability
measure, e.g., P(𝑠𝑡+1 |𝑠𝑡 , 𝒂𝑡 ) give the distribution of the next state.

Agents’ performance is evaluated through the reward function

𝑟𝑖 : S × ∏
𝑖∈[𝑁 ] A𝑖 → R, and each agent aims to maximize its

own discounted return

∑𝑇
𝑡=1 𝛾

𝑡−1𝑟𝑡
𝑖
, where 𝑟𝑡

𝑖
= 𝑟𝑖 (𝑠𝑡 , 𝒂𝑡 ), and 𝑇

denotes the horizon length. We consider the conventional decen-

tralized information structure [30], consisting of local feedback:

I𝑡
𝑖

= {𝑜𝑡
𝑖
, 𝑎𝑡−1

𝑖
, 𝑟𝑡−1
𝑖

} in a non-cooperative multi-agent environ-

ment, including competitive and mixed cooperative-competitive

scenarios [34], where agents may have distinct reward signals, i.e.,

𝑟𝑖 ≠ 𝑟 𝑗 for some 𝑖, 𝑗 ∈ [𝑁 ]. Each agent aims to find a policy 𝜋𝑖 ∈ Π𝑖

that maps the past information to some action at each time step:

𝑎𝑡
𝑖
∼ 𝜋𝑖 (·|I1:𝑡

𝑖
) to maximize the discounted return, where 𝜋𝑖 is

assumed to be a stochastic policy yielding a distribution on A𝑖 . We

use 𝜋𝑖 and its neural network parameterization 𝜃𝑖 interchangeably



to refer to the agent’s policy. In general, agents’ information struc-

tures are different, leading to the challenge of independent learning

under asymmetric information and recursive reasoning [15, 25].

This work explores the use of the transformer in sequence modeling

to address independent learning under asymmetric observability.

Transformer Architecture. Generally, a transformer consists of

an encoder, an attention module, and a decoder, which can use

either the encoder, the decoder, or both, depending on the appli-

cations. Decoder-only models are useful for generating sequence

and forecasting tasks [48]. Encoder-only models are suitable for

sequence understanding tasks [6]. We consider decoder-only archi-

tecture since the key of our SCT is to predict opponent actions. We

now briefly review the attention module in the transformer model.

The raw inputs of the transformer (which we will call tokens)

are initially embedded in vectors of dimension 𝑑𝑚𝑜𝑑𝑒𝑙 . Each input

embedding generates a query, key, and value vector of dimensions

𝑑𝑘 , 𝑑𝑘 , and 𝑑𝑣 . Vectors of the same type are stacked column-wise

to produce three matrices 𝑄 ∈ R𝑙×𝑑𝑘 , 𝐾 ∈ R𝑙×𝑑𝑘 , and 𝑉 ∈ R𝑙×𝑑𝑣 ,
with 𝑙 the maximum context length (i.e., the length of the input

sequence, defined as a hyperparameter). The attention score is then

calculated with the formula

Attention(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾⊺/

√︁
𝑑𝑘

)
𝑉 .

The matrix 𝑄𝐾⊺
is divided by

√︁
𝑑𝑘 to prevent the vanishing gra-

dient problem when applying the softmax row-wise [52]. After

the softmax computation, the upper off-diagonal triangle part of

the resulting matrix softmax(𝑄𝐾⊺/
√︁
𝑑𝑘 ) is masked with 0s. This

causal mask prevents future tokens from influencing the prediction

of the current target and is the defining feature of a causal trans-

former, which is applied in our experiments since the opponent

action prediction can only leverage historical observations.

Offline MARL as Sequence Modeling. We take the multi-agent

decision transformer (MADT) in [36] as an example to illustrate

the sequence modeling. Consider a trajectory 𝜏 from the offline

dataset given by 𝜏 = {𝒐1, 𝒂1, 𝒐2, 𝒂2, . . . , 𝒐𝑇 , 𝒂𝑇 }. MADT, parame-

terized by a decoder-only transformer model 𝑞𝜃 , generates (pre-

dicts) sequential actions at each time step auto-regressively. Let

𝜏𝑡 = {𝒐1, 𝒂1, . . . , 𝒐𝑡 , 𝒂𝑡 } be the truncated trajectory up to time 𝑡 with

previous action predictions. Then, MADT’s sequential generation

proceeds as follows: 𝒂𝑡 = argmax𝒂 𝑞𝜃 (𝒂 |𝜏𝑡−1, 𝒐𝑡 ). The learning

objective of MADT is to minimize the distribution discrepancy

between the generation 𝑞𝜃 and the offline data distribution 𝑞
off
.

Toward this end, one can consider the cross entropy (CE) loss to

train MADT in discrete cases. Given predictions {𝒂𝑡 }, the CE loss is

defined as L𝐶𝐸 (𝜃 ) = 1/𝑇 ∑𝑇
𝑡=1 𝑞off (𝒂𝑡 ) log𝑞𝜃 (𝒂𝑡 |𝜏𝑡−1, 𝒐𝑡 ). While

for continuous control tasks, the mean-squared error ∥𝒂𝑡 − 𝒂𝑡 ∥2
leads to decent transformer policies as observed in [4].

Note that RL is a sequential decision-making process where the

current actions influence future states and rewards. To equip the

agent with forward-looking ability, DT slightly modifies the tra-

jectory representation and adds the reward-to-go (return) 𝑅𝑡
𝑖
=∑𝑇

𝑘=𝑡
𝑟𝑘
𝑖
. The resulting trajectory is 𝜏 = {�̂�1, 𝒐1, 𝒂1, . . . , �̂�𝑡 , 𝒐𝑡 , 𝒂𝑡 },

where the bold symbol �̂�1
denotes the agents’ joint rewards, re-

ferred to as the return conditioning [4]. In plain words, such a return

conditioning gives the transformer a sense of what to expect and

directs its action generation to ensure that the cumulative rewards

well approximate the return conditioning �̂�1
. Such a practice is

referred to as hindsight information matching (HIM), a popular

technique in off-policy optimization [12].

4 SELF-CONFIRMING TRANSFORMER
Motivating Example.We consider the predator-prey task (a.k.a

simple-tag) included in the multi-agent particle environment

(MPE) [34], one of the benchmark environments in MARL. As

shown in Figure 2a, the environment includes a prey who moves

faster and aims to evade the three predators. The predators are

slower and try to hit the prey while avoiding obstacles.

(a) simple-tag: the three slow-
moving predators aim to catch the
fast-moving prey while avoiding the
obstacles.

(b) simple-world: a variant of
simple-tag with two added food
particles. The prey is rewarded when
hitting the food.

Figure 2: The predator-prey tasks in multi-agent particle environment.

Figure 3: The normalized scores (the higher, the better) of playing MADT
and MATD3 policy against the nonstationary opponent in simple-tag (left)
and simple-world (right). The opponent employs a blend of MATD3 and the
random policy, with the blending rate 𝑝 shown on the x-axis. The green dashed
line indicates the benchmark performance of the testing task.

The predators observe the relative positions and velocities of

the prey, while the prey can only observe the relative positions of

the other agents. All agents’ actions are two-dimensional velocity

vectors. Each time any one of the three predators collides with

the prey, the former gets rewarded while the latter is penalized.

The predator-prey is a mixed cooperative-competitive task, where

the predators cooperate with each other to encircle the prey so

that the rewards get tripled, while the game between the prey and

predators is zero-sum like. Another environment we consider is

simple-world shown in Figure 2b, a more complicated variant of

simple-tag as it includes two food particles that prey is rewarded

for being close to. More details are deferred to Section 5.

We here briefly touch upon the training and the testing proce-

dure, while the detailed experiment setup is included in Section 5.

We use MATD3 [1], one of the state-of-the-art MARL algorithms,

to train the four agents (three predators and one prey) and collect

expert-level trajectory data after MATD3 training stabilizes as the

offline dataset. MADT is trained using offline trajectories of the



three predators. The prey employs the following baseline policies

during the testing: 1) 𝜋𝑀 , the same MATD3 policy used to collect

the data; 2) 𝜋𝑅 , the random policy; 3) 𝜋𝐵 , a blend of the random and

the MATD3 policy. The random policy takes a uniform distribution

over the action set regardless of the observation input. The blend-

ing policy works like a bang-bang controller: at each time step, the

prey flips a coin first; if heads up, then it chooses 𝜋𝑀 , otherwise

𝜋𝑅 . This blend can be written as 𝜋𝐵 = 𝑝 ×𝜋𝑀 + (1−𝑝) ×𝜋𝑅 , where
the parameter 𝑝 is the mean value of the binomial distribution,

capturing the opponent’s nonstationarity.

The purpose of this example is to examine the MADT’s online

adaptability when facing a nonstationary opponent in testing. Since

the opponent utilizes a policy distinct from that in training, the

resulting trajectory deviates from the offline data. This adaptability

concernswhether theMADT adjusts its action generation according

to the changing trajectory distribution. The evaluation metric is

the normalized score, a customary metric indicating the discounted

returns [8]. Figure 3 reports the testing results, from which one

can see that the MADT’s performance gradually degrades as the

opponent deviates from 𝜋𝑀 .

Yet, one interesting phenomenonwe observe is that the transformer-

based policy does exhibit online adaptability compared with the

pre-trained MARL policy, though to a limited extent. We equip the

three predators with the MATD3 policies that are used in the data

collection and let them play with the three baseline prey policies

mentioned above. We denote the predators’ MATD3 policies by

𝜋𝑀
𝑝𝑟𝑒𝑑

. Note that 𝜋𝑀
𝑝𝑟𝑒𝑑

includes three MATD3 policies and one for

each predator. Figure 3 summarizes the testing results, from which

one can see that 𝜋𝑀
𝑝𝑟𝑒𝑑

gives even lower scores than the MADT

does (orange bars). We believe this adaptability originates from

the generalization ability of the transformer architecture, which is

also observed in large language models [48, 57] and robotic trans-

formers [49]. This motivating example prompts one to ask whether

offline-trained transformers can adapt to unseen opponents online.

Self-Confirming Belief Conditioning. Reflecting on the return

conditioning in MADT (see Section 3), one realizes that such condi-

tioning does not provide the agent direct contextual information

regarding the opponent since the rewards 𝑟𝑡
𝑖
, which affects subse-

quent 𝑅𝑡
𝑖
, are jointly determined by all agents’ actions. Using the

language of HIM [12], the return conditioning fails to provide fine-

grained information statistics regarding nonstationary opponents.

Taking inspiration from game-theoretic research on adaptive

learning agents [29] and the self-confirming equilibrium [9], we

propose to introduce an additional conditioning that represents the

agent’s subjective belief over the opponent’s unobservable action.

To articulate the intuition, we first digress from the transformer

and briefly review the notion of self-confirming equilibrium (SCE).

SCE was born from dissatisfaction with Nash equilibrium (NE) [37]

since learning agents often display suboptimal and non-equilibrium

behaviors [9, 44, 45]. As a relaxation to NE, SCE forgoes the col-
lective rationality that requires every agent’s compliance with the

NE policy. Instead, SCE embodies subjective rationality, where the
agent maximizes its rewards with respect to the beliefs over the

opponent’s policy, and the belief is consistent with observations.

Mathematically, denote byI1:𝑡
𝑖

the past observations up to time 𝑡 .

Similar to the agent’s policy 𝜋𝑖 (·|I1:𝑡
𝑖

) ∈ Δ(A𝑖 ), the agent’s belief is

a distribution over the opponent’s action set: 𝜇𝑖 (·|I1:𝑡
𝑖

) ∈ Δ(A−𝑖 ).
The definition of SCE in Markov games, adapted from its original

version in extensive-form games [9], is as below.

Definition 4.1 (Self-Confirming Equilibrium). A strategy profile

(𝜋𝑖 , 𝜋−𝑖 ) is a self-confirming equilibrium of the partially observable

Markov game if, for each agent, there exists a belief 𝜇𝑖 such that

𝜋𝑖 ∈ argmax

𝜋𝑖 ∈Π𝑖

E𝜋𝑖 ,𝜇𝑖 ,P

[
𝑇∑︁
𝑡=1

𝛾𝑡−1𝑟𝑖 (𝑠𝑡 , 𝑎𝑡𝑖 , 𝑎
𝑡
−𝑖 )

]
, (1)

where the belief 𝜇𝑖 is consistent with the opponent’s equilibrium

policy 𝜋−𝑖 with respect to all realizable information feedback in

total variation, i.e., for all I1:𝑡
𝑖

, I1:𝑡
−𝑖 , P𝜋𝑖 ,𝜋−𝑖 [I1:𝑡

𝑖
,I1:𝑡

−𝑖 ] > 0, 𝑡 =

1, . . . ,𝑇 ,

sup

𝐴⊂A−𝑖

����𝜇𝑖 (𝐴|I1:𝑡
𝑖 ) − 𝜋−𝑖 (𝐴|I1:𝑡

−𝑖 )
���� = 0. (2)

Some remarks are in order. First, NE is a special case of SCE if the

belief consistency in (2) is imposed on every information structure

[9], i.e., 𝜇𝑖 = 𝜋−𝑖 . Unlike NE, SCE does not mandate every agent to

follow the optimal policy. It is likely that the opponent may employ

arbitrary policies; as long as the ego agent can correctly identify

these behavior patterns and best responds to the consistent belief,

it still arrives at SCE. Second, the current practice of collecting

offline datasets typically begins with centralized training of bench-

mark MARL algorithms, such as MADDPG [34] and MATD3 [1], to

learn optimal policies for each agent. When the training stabilizes,

recording the sample trajectories in the replay buffer produces the

desired dataset, referred to as the expert-level dataset. Essentially,

the optimal policies with benchmark performance generate the

recorded trajectories, with which one trains the transformer in the

auto-regressive manner presented in Section 3. Consequently, the

transformer extracts the trajectory distribution under the NE policy

and generates actions accordingly online, which could easily break

down if the opponent does not follow the equilibrium policy
1
.

Even though our proposed transformer follows the standard

decoder-only transformer architecture and typical offline training

dataset that records equilibrium trajectory distribution, we aim

to make the transformer agent mindful of the opponent’s non-

stationary behavior through an extra sequence modeling on the

opponent’s action, which bears the same spirit of the belief gen-

eration in SCE and opponent modeling (OM). What distinguishes

ours from existing works on transformer-based OM is that we train

the transformer in a self-confirming way so that the policy 𝜋𝑖 and

belief 𝜇𝑖 are integrated into a single transformer, whereas prior

works utilize transformers to represent 𝜇𝑖 and rely on additional

policy search methods to configure 𝜋𝑖 [19, 46].

Self-Confirming Loss. Recall that the transformer model for agent

𝑖 is denoted by 𝑞𝜃𝑖 , which generates actions auto-regressively using

past local trajectory. Let 𝜏𝑡
𝑖
= {𝑅1

𝑖
, 𝑜1

𝑖
, 𝑎1

𝑖
, . . . , 𝑅𝑡

𝑖
, 𝑜𝑡

𝑖
, 𝑎𝑡

𝑖
} be agent 𝑖

local trajectory (which only keeps individual information feedback

1
Even though, except for a few value-based algorithms [13, 16, 28] with certified equi-

librium convergence, most policy-gradient-based algorithms prove to be convergent to

stationary points or approximate equilibrium [27, 33, 42, 43, 61], the key observation

is that the resulting benchmark RL policies produce a fixed trajectory distribution cor-

responding to the stationary point in the offline dataset. Besides, the adapted SCE does

not consider subgame perfectness under partial observability [32, 40] for simplicity.



from the trajectory 𝜏), and the action generation in vanilla DT is

given by 𝑎𝑡
𝑖
= argmax𝑎∈A𝑖

𝑞𝜃𝑖 (𝑎 |𝜏𝑡−1𝑖
, 𝑜𝑡

𝑖
).

Inspired by Definition 4.1, we first let the transformer predict

the opponent’s action [see (3a)], based on which the transformer

generates the agent’s action in responding to the belief [see (3b)].

𝑎𝑡−𝑖 = argmax

𝑎−𝑖 ∈A−𝑖
𝑞𝜃𝑖 (𝑎−𝑖 |𝜏

𝑡−1, 𝑜𝑡𝑖 ), (3a)

𝑎𝑡𝑖 = argmax

𝑎𝑖 ∈A𝑖

𝑞𝜃𝑖 (𝑎𝑖 |𝜏
𝑡−1, 𝑜𝑡𝑖 , 𝑎

𝑡
−𝑖 ). (3b)

Note that the opponent action 𝑎𝑡−𝑖 is unobservable to the ego agent
during the implementation, and hence, the prediction 𝑎𝑡−𝑖 is a ficti-
tious token represents the agent’s subjective inference extracted

from the past observations. Such a token directs the transformer’s

future action generation, which we call belief conditioning. Com-

pared with return conditioning, belief conditioning explicitly pro-

vides the information statistics of the opponent’s actions. Of par-

ticular note is that such conditioning is created in a bootstrapping

manner without intervention; that is, the transformer plays dual

roles of both belief 𝜇𝑖 in (2) and policy 𝜋𝑖 in (1).

After presenting its online implementation, we now shift the

focus to offline training. To facilitate the discussion, we denote by

𝜋𝑖 and 𝜋−𝑖 (dropping the information feedback for simplicity) the

policies used to collect the offline training data and assume 𝜋𝑖 is

the best response to 𝜋−𝑖 : 𝜋𝑖 ∈ argmax𝜋 E𝜋,𝜋−𝑖 [
∑𝑇
𝑡=1 𝛾

𝑡−1𝑟𝑡
𝑖
]. From

Definition 4.1, one can see that the transformer needs to ensure that

1) the belief generation is consistent with the opponent’s actual

action [see (2)] and 2) the action generation is the best response

to the belief [see (1)]. We propose the following cross-entropy

loss: LSCL (𝜃𝑖 ) = L
belief

(𝜃𝑖 ) + L
policy

(𝜃𝑖 ), referred to as the self-

confirming loss (SCL), to meet the two requirements simultaneously.

L
belief

(𝜃𝑖 ) = 1/𝑇
𝑇∑︁
𝑡=1

𝜋−𝑖 (𝑎𝑡−𝑖 )𝑞𝜃𝑖 (𝑎
𝑡
−𝑖 |𝜏

𝑡−1
𝑖 , 𝑜𝑡𝑖 ) . (4a)

L
policy

(𝜃𝑖 ) = 1/𝑇
𝑇∑︁
𝑡=1

𝜋𝑖 (𝑎𝑡𝑖 )𝑞𝜃𝑖 (𝑎
𝑡
𝑖 |𝜏

𝑡−1
𝑖 , 𝑜𝑡𝑖 , 𝑎

𝑡
−𝑖 ). (4b)

Minimizing the belief consistency loss in (4a) is equivalent to mini-

mizing the total variation distance between the SCT’s belief gener-

ation and the opponent’s actual policy since Pinsker’s inequality

tells that the square root of cross entropy upper bounds the total

variation [47]. Ideally, the policy loss should correspond to the max-

imization problem in (1). Yet, since we assume the offline policy

𝜋𝑖 is the best response, we can simply let the transformer imitate

such policy by minimizing the cross entropy. The benefit is straight-

forward: two loss functions are cross entropy and fit the widely

adopted auto-regressive training paradigm.

Some remarks regarding the training practice are in order. First,

if access to the offline policies 𝜋𝑖 , 𝜋−𝑖 is not available, one can

replace them with sample averages as in [4, 12]. Second, if the

action is continuous, one can consider the mean-square loss [4]:

L𝑆𝐶𝐿 (𝜃𝑖 ) = ∥𝑎𝑡−𝑖 − 𝑎
𝑡
−𝑖 ∥

2 + ∥𝑎𝑡
𝑖
− 𝑎𝑡

𝑖
∥2, where 𝑎𝑡

𝑖
and 𝑎𝑡−𝑖 denote

the actions in the offline dataset, while 𝑎𝑡
𝑖
and 𝑎𝑡−𝑖 are transformer’s

generated outputs. Third, the self-confirming loss does not include

a weighing parameter to balance the two parts since the two are

equally important. Finally, we remark that since the interdepen-

dency between the belief conditioning and the action generation,

the SCL is actually a composite function, and its exact gradient

computation ∇LSCL (𝜃𝑖 ) is sophisticated. Encouraged by the re-

cent success of first-order gradient approximation in stochastic

composite optimization [27, 38], we ignore the interdependency

and compute the first-order gradient as if the belief and action

generation were independent.

5 EXPERIMENTS
This section seeks to empirically answer the question we raised

at the beginning: can SCT adapt to nonstationary opponents on-

line? Relatedly, one may wonder whether the offline-trained belief

generation produces consistent beliefs online. If so, to what extent,

does SCT’s success depend on the belief (ablation)?

Environments. Following the benchmarking testbed in the liter-

ature, e.g., [41, 51], we consider simple-tag and simple-world
discussed in the motivating example. We begin with simple-tag
and present the setup of the partial observation, action, and reward

of each agent. The partial observation of the prey contains its own

velocity and position, and its relative positions to obstacles and

other agents. The action variable of the prey is a two-dimensional

vector, each entry of which ranges from -1 to 1. As the prey aims to

escape from predators, it gets a positive reward proportional (the

factor is 0.1) to the sum of its distance from each predator, while it

is penalized for being caught by any of the predators (-10 reward).

The partial observation of one predator consists of its own ve-

locity and position, its relative positions to the obstacles and other

agents, and the prey’s velocity. The predator’s action space is the

same as the prey’s. The predator is rewarded +10 after hitting the

prey, otherwise penalized by the relative distance to the prey. The

obstacles are introduced to complicate the environment. Observ-

able to all agents, obstacles are stationary once initialized within

an episode. We set one prey, three predators, and two obstacles in

this environment. Consequently, the observation space of prey is

14-dimensional: 2 for its velocity, 2 for its position, 4 for the relative

position to obstacles, and 6 for other relative positions to agents.

Similarly, the observation space of predators is 16-dimensional, and

the additional two entries correspond to the prey’s velocity.

simple-world is a more challenging task, where there are addi-

tional food particles that the prey is rewarded for being close to. the

prey is rewarded +2 points for every time it hits a food particle. The

environment includes only one obstacle. For the two environments,

the episode length is 𝑇 = 25. Yet, when training the transformer

models, the context length is 20, i.e., the past 20 steps are used to cal-

culate the loss. Table 1 summarizes the hyperparameters involved

in the training of SCT and baseline methods.

Offline Datasets. The offline trajectories representing random,

medium, and expert levels of play are divided into three datasets,

where each dataset consists of 1 million transitions. The random

dataset is obtained from unrolling episodes of a randomly initialized

policy. The medium dataset is obtained by stopping the training

phase of MATD3 once it reaches a medium level of play and then un-

rolling the episodes. The expert-level dataset is given by collecting

transitions from the MATD3 once it is fully trained.

Baselines.We conduct a comparative study between SCT and exist-

ing works based on imitation learning, offline MARL, and sequence

modeling. Specifically, we consider the following baselines.



Table 1: A summary of training hyperparameters.

Hyperparameter Value

Self-Confirming Transformer
Maximum context Length 20

Batch Size 64

Hidden Dimensions 128

# of Layers 3

# of Attention Heads 1

Activation function ReLU

# Steps per epoch 10000

# Epochs

1 for Medium and Expert

10 for Random

Learning Rate 1e-4

Weight Decay 1e-4

Behavior Cloning
Maximum Context Length 20

Batch Size 64

Hidden Dimensions 128

# of Layers 3

Dropout 0.1

# Steps per Epoch 10000

# Epochs 15

Learning Rate 1e-4

Weight Decay 1e-4

1) Behavior Cloning (BC). Behavior Cloning is an imitation learn-

ing algorithm [17] where the three predators’ behavior recorded

in the dataset is replicated. The implementation consists of a Mul-

tilayer Perceptron with ReLu activation and dropout. The input

consists of the three predator’s observation histories concatenated

and flattened. We utilize mean squared error loss during training,

with the dataset’s actions as ground truth. The hyperparameters

are summarized in Table 1.

2) Multi-Agent Batch-Constrained Q-Learning (MA-BCQ).
Batch-constrained Q-learning [11] imposes constraints on the ac-

tion space to compel the agent to align more closely with on-policy

behavior regarding a subset of the provided data. We implement

MA-BCQ (MA-BCQ) based on the BCQ implementation provided

by [58]. Considering the fact that BCQ employs two Q networks for

a single agent, MA-BCQ includes six Q networks, as each predator

needs two critics. The QMixer network in MA-BCQ takes in six

Q values and outputs one Q value to evaluate the joint actions of

predators. We follow the hyperparameter setup in [11].

3) Offline MARL with Actor Rectification (OMAR). Assuming

an actor-critic architecture, OMAR uses zeroth-order information

to rectify the critic so as to update the actor conservatively. In

addition to BCQ and OMAR, there exist many other competitive

baselines, such as CQL [20] and ICQ [58]. However, it is reported

in [41] that OMAR outperforms CQL and ICQ in simple-tag and

simple-world. We follow the official implementation of OMAR

offered by the authors [41].

4) Transformer Models. Finally, we consider transformer-based

models for the ablation studies, which include theMADT discussed

in the motivating example. To investigate the role of belief condi-

tioning, we consider a middle point betweenMADT and SCT, which

we call belief-regularizedMADT (RMADT). Similar to SCT, RMADT

also generates a belief using past observations, yet such a belief is

not fed back to the transformer for action generation. It only ap-

pears in the belief loss as a regularizer to adjust the auto-regressive

training. Figure 4 visualizes the RMADT and SCT operation. In

SCT’s multi-agent implementation, the transformer (attention mod-

ule) first generates the hidden states
ℎ
𝑜1

𝑡 ,
ℎ
𝑜2

𝑡 ,
ℎ
𝑜3

𝑡
of the three

(a) RMADT operation.

(b) SCT operation.
Figure 4: A comparison between RMADT and SCT operation. The belief
generation in RMADT does not direct the action generation. Even though the
two share the same loss function, RMADT only aims to accurately predict the
opponent’s action, and the resulting action is not self-confirming.

predators’ partial observations, which are then concatenated (Cat)

and passed through a linear layer (LL) to predict the opponent’s

action (the green block), which becomes part of the input stream. In

contrast, RMADTmerely generates the prey’s action prediction and

aims to close the gap between the belief and the actual opponent’s

action. Yet, the belief is not used for action generation.

Opponent in Testing. To evaluate the adaptability of the predators,
the prey is controlled by five distinct policies for each task. These

opponent policies include 1) the MATD3 policy, the one used to

collect the training data, 2) MADDPG policy, an actor-critic policy

trained for each environment, 3) Random policy: a heuristic-based

policy designed to randomly sample feasible actions, 4) Still policy:
a simple policy that freezes the prey at the initialized location, 5)

Blend policy, the blending policy introduced in the motivating

example with 50% blending rate.

Quantitative Results. First, to complete the story in the motivat-

ing example, we add SCT’s normalized scores to the bar plots in

Figure 3, leading to Figure 5. The figure suggests that SCT adapts

better to nonstationary opponents in testing than MADT.

We also report in Table 2 the mean and standard deviation of

normalized scores (see [60, Sec. 5]) based on 100 runs using different

random seeds in simple-tag and simple-world. We observe that

SCT consistently outperforms both MA-BCQ and OMAR across all

experiments, except for the random dataset case where MA-BCQ

leads extensively. Furthermore, SCT’s performance is on par with

or superior to the BC approach. Notably, SCT exhibits greater adapt-

ability compared to its basic counterpart, as indicated by higher



Figure 5: The normalized scores of SCT in simple-tag and simple-world
environments. SCToutperformsMADTwhen facing nonstationary opponents.

Table 2: The normalized scores of SCT and baseline algorithms trained under
the expert, medium, and random datasets in simple-tag and simple-world.
SCT exhibits greater online adaptability than those baselines.

Simple-Tag MATD3 MADDPG Still Random Blend

E
x
p
e
r
t

OMAR 103.19 ± 8.29 9.05 ± 1.62 38.80 ± 7.54 24.13 ± 4.08 58.02 ± 4.95

BC 121.11 ± 7.81 11.22 ± 3.24 44.57 ± 6.8 35.7 ± 4.95 73.65 ± 5.04

MA-BCQ 113.92 ± 8.16 10.52 ± 1.52 31.67 ± 6.83 31.26 ± 5.25 67.39 ± 5.97

MADT 123.32 ± 8.04 8.16 ± 1.57 44.10 ± 7.9 32.83 ± 5.48 76.90 ± 5.23

RMADT 122.94 ± 4.50 7.53 ± 1.80 32.52 ± 2.74 38.28 ± 4.29 70.04 ± 20.87

SCT 126.20 ± 7.48 11.94 ± 1.79 54.87 ± 7.54 38.98 ± 4.97 92.87 ± 5.92

M
e
d
i
u
m

OMAR 72.61 ± 6.69 10.78 ± 1.21 42.49 ± 6.67 24.68 ± 3.73 44.14 ± 4.78

BC 77.49 ± 6.93 11.60 ± 2.72 43.20 ± 6.39 31.41 ± 4.11 54.05 ± 4.35

MA-BCQ 56.08 ± 6.05 10.36 ± 1.39 33.75 ± 6.27 25.65 ± 3.98 49.51 ± 4.6

MADT 73.96 ± 5.76 11.98 ± 1.60 37.81 ± 5.96 27.58 ± 4.05 50.47 ± 4.42

RMADT 74.67 ± 3.5 8.90 ± 1.31 29.21 ± 1.93 30.53 ± 2.2 44.15 ± 2.10

SCT 79.33 ± 5.80 12.22 ± 1.55 52.87 ± 6.02 34.78 ± 3.52 61.54 ± 5.05

R
a
n
d
o
m

OMAR 6.71 ± 3.03 −1.48 ± 0.43 1.53 ± 2.06 1.50 ± 1.11 3.53 ± 1.51

BC −0.31 ± 1.13 −3.27 ± 0.94 −1.48 ± 0.86 −1.48 ± 1.09 0.03 ± 1.08

MA-BCQ 32.86 ± 5.73 3.79 ± 1.16 28.1 ± 6.94 6.18 ± 2.94 12.9 ± 3.16
MADT 9.94 ± 2.56 −0.23 ± 0.63 4.31 ± 2.01 3.07 ± 1.49 4.97 ± 1.65

RMADT 8.76 ± 1.36 −2.43 ± 0.20 3.44 ± 1.23 0.71 ± 4.25 4.93 ± 0.88

SCT 24.75 ± 2.73 −0.03 ± 0.78 6.36 ± 1.73 5.03 ± 1.51 6.37 ± 1.57

Simple-World MATD3 MADDPG Still Random Blend

E
x
p
e
r
t

OMAR 114.26 ± 3.52 −4.29 ± 8.33 34.52 ± 3.76 23.58 ± 2.21 48.33 ± 2.82

BC 111.08 ± 3.12 −9.05 ± 6.10 37.73 ± 3.68 25.31 ± 2.16 53.14 ± 2.52

MA-BCQ 106.59 ± 3.38 −2.75 ± 6.79 45.33 ± 2.96 21.62 ± 1.63 51.07 ± 2.81

MADT 105.83 ± 3.18 −2.85 ± 6.76 31.69 ± 3.33 23.34 ± 21.3 48.61 ± 2.66

RMADT 110.44 ± 3.42 −1.54 ± 7.70 41.76 ± 3.98 23.69 ± 2.13 75.90 ± 3.58

SCT 115.20 ± 3.38 −1.32 ± 7.15 53.31 ± 3.39 28.28 ± 2.29 92.87 ± 5.92

M
e
d
i
u
m

OMAR 73.81 ± 4.46 −0.84 ± 7.23 58.67 ± 3.73 31.37 ± 1.73 42.23 ± 2.55

BC 86.23 ± 2.39 −5.48 ± 10.47 41.11 ± 3.38 29.84 ± 2.06 43.45 ± 2.32

MA-BCQ 76.99 ± 3.31 −3.00 ± 9.88 36.02 ± 3.71 30.12 ± 1.99 40.92 ± 2.38

MADT 81.70 ± 2.84 0.54 ± 6.51 28.92 ± 2.82 26.07 ± 1.95 43.32 ± 2.22

RMADT 86.87 ± 2.93 0.96 ± 8.11 30.25 ± 3.79 28.52 ± 2.13 55.78 ± 2.92

SCT 87.13 ± 2.97 1.30 ± 5.51 33.41 ± 3.02 31.87 ± 1.96 57.87 ± 2.66

R
a
n
d
o
m

OMAR 8.37 ± 1.16 −5.51 ± 0.87 4.54 ± 1.01 5.41 ± 0.77 6.39 ± 0.85

BC −0.62 ± 0.62 −13.41 ± 5.28 −0.75 ± 0.58 0.06 ± 0.69 0.15 ± 0.68

MA-BCQ 6.52 ± 1.42 −3.11 ± 7.98 6.59 ± 1.38 3.40 ± 0.81 4.01 ± 0.85

MADT 5.28 ± 1.10 −7.21 ± 5.87 1.27 ± 0.96 4.85 ± 0.89 4.28 ± 0.80

RMADT 8.36 ± 1.27 −7.54 ± 5.96 2.93 ± 1.01 4.61 ± 0.82 8.12 ± 0.93
SCT 8.95 ± 1.42 −4.47 ± 5.80 4.93 ± 0.81 6.09 ± 0.91 6.37 ± 1.57

mean rewards in most experiments (orange entries in Table 2). We

also observe that most of the outliers (colored in red) in Table 2

pertain to MA-BCQ pre-trained over the random dataset, for which

we speculate that the batch constraint better controls the extrapo-

lation error than OMAR. Since this work focuses on transformer

models, we leave the speculation for future investigation.

Ablation. We compare SCT with MADT and RMADT to see to

what extent the belief generation contributes to the SCT’s success.

Recall that MADT is trained to generate predators’ actions using the

offline trajectories without any beliefs about the prey. Even though

RMADT also generates the belief and uses the same loss function

as SCT, i.e., L(𝜃𝑖 ) = ∥𝑎𝑡𝑝𝑟𝑒𝑦 − 𝑎𝑡𝑝𝑟𝑒𝑦 ∥2 + ∥𝑎𝑡
𝑝𝑟𝑒𝑑

− 𝑎𝑡
𝑝𝑟𝑒𝑑

∥2. How-
ever, the belief 𝑎𝑡𝑝𝑟𝑒𝑦 and the action 𝑎𝑡

𝑝𝑟𝑒𝑑
simultaneously based

on past observations, whereas SCT first generates the conjecture

that later serves as the input to the action generation, see Figure 4

for visualization of SCT and RMADT. We record the opponent’s

action prediction accuracy of SCT and RMADT in simple-tag and

Table 3: A comparison of the prediction accuracy of SCT and RMADT in
simple-tag and simple-world.

simple-tag MATD3 MADDPG Still Random Blend

E
x
p SCT 1.000 0.690 0.978 0.310 0.803

RMADT 1.000 0.611 0.910 0.293 0.690

M
e
d SCT 1.000 0.665 0.996 0.300 0.888

RMADT 1.000 0.644 0.988 0.324 0.872

R
a
n
d

SCT 1.000 0.823 1.000 0.301 0.865

RMADT 1.000 0.843 1.000 0.300 0.630

simple-world MATD3 MADDPG Still Random Blend

E
x
p SCT 1.000 0.082 1.000 0.285 0.713

RMADT 1.000 0.088 1.000 0.282 0.661

M
e
d SCT 1.000 0.102 1.000 0.293 0.650

RMADT 1.000 0.088 1.000 0.229 0.577

R
a
n
d

SCT 1.000 0.092 1.000 0.285 0.707

RMADT 1.000 0.054 1.000 0.287 0.627

simple-world. The accuracy metric is defined as follows.

Accuracy =
#steps with accurate predictions

#total steps

.

We consider an opponent’s action prediction 𝑎𝑡−𝑖 accurate if its

relative error falls within an 𝜖-neighborhood of the ground truth:

𝑎𝑡−𝑖 ∈ {𝑎 : ∥𝑎 − 𝑎𝑡−𝑖 ∥/∥𝑎
𝑡
−𝑖 ∥ < 𝜖}. The prediction accuracy of an

episode indicates the number of steps at which the prediction is

accurate. We set the radius to be 𝜖 = 10%. As shown in Table 3, SCT

and RMADT return comparable results, suggesting that the two

acquire similar forecasting abilities. Hence, the superiority of SCT,

as indicated in Table 2, shows that belief conditioning in SCT plays

a bigger part than regularization in RMADT.

Self-Confirming Play in Iterated Prisoner’s Dilemma. We

further apply the proposed SCT to the iterated prisoner’s dilemma

(IPD) [35]. Compared with more sophisticated MARL environments

above, IPD presents a repeated matrix game environment, enabling

a close inspection of the equilibrium behaviors of the proposed SCT.

The primary question we ask is: does SCT play the SCE? Similar to

our previous discussions, we need to investigate 1) whether the SCT

can form accurate beliefs on the opponent’s play and 2) whether the

SCT can optimize its own action sequence based on its beliefs. More

importantly, the SCE in IPD admits a simple strategy representation,

which is referred to win-stay-lose-shift (WSLS) [39] or pavlov [55],

to be introduced later with the game matrix. We aim to inspect if

SCT’s action generation coincides with SCE.

Iterated Prisoner’s Dilemma. We begin by introducing the pris-

oner’s dilemma game. Suppose two criminals (the row and column

players) are arrested and imprisoned, each of whom can cooperate

(denoted by C) for mutual benefit (a lesser charge for both, denoted

by 𝑅) or betray their partner (“defect”, denoted by D) for individual

freedom (denoted by 𝑇 ) while leaving the other with the charge

(denoted by 𝑆). If they both choose to defect, then the two face the

same charge (denoted by 𝑃 ). Table 4 presents the payoffs of players

under different action profiles. A customary setup requires that

𝑇 > 𝑅 > 𝑃 > 𝑆 and T + S < 2R, and the classical chosen values are

presented in the table [35]. In IPD, two players play the matrix game

in Table 4 repeatedly with full observations of the other’s past plays.

The iterated plays enable players to adjust their strategies to the



Table 4: The payoff matrix of the prisoner dilemma.
Player II

(C)ooperate (D)efect

Player I

(C)ooperate R=3, R=3 S=0, T=5

(D)efect T=5, S=0 P=1, P=1

opponent’s behavior pattern. One of the self-confirming equilibria

in IPD is given by the pavlov strategy: cooperates on the first move

and then, starting from the second round, cooperates if and only if

both players opt for the same action in the previous move.

Offline Dataset. We curate a training dataset by collecting action

sequences under diverse strategies provided in [35]. The selected

strategies include all_d, all_c, tit_for_tat, spiteful, soft_majo,
hard_majo, per_ccd, per_ddc, mistrust, per_cd, tf2t, hard_tft,
slow_tft, gradual, prober, and mem2. The detailed descriptions

of these strategies are in [35, Sec. 3.3]. Each strategy participates

in a round-robin tournament against all other strategies, including

itself. Each game consisted of 100 rounds, and the results were

recorded in the final dataset. SCT is trained on this data to predict

the opponent’s action and use this prediction to generate its own.

The loss function follows (4).

Evaluation. We test SCT’s adaptability to different opponents’

strategies by playing the transformer against each strategy recorded

in the training dataset. We compare the normalized cumulative pay-

offs and prediction accuracy (the higher, the better) and present the

results in Table 5. Note that when generating beliefs and actions,

we configure the transformer to pick the one with the maximum

likelihood, and hence, there is no stochasticity in testing (unlike

the previous experiments). The final cumulative reward was 4840

(unnormalized for ranking purposes), placing SCT as the best strat-

egy overall (refer to [35] for the complete ranking). Moreover, we

measure its prediction accuracy against each opponent and obtain

a mean accuracy of 97.82%.

In addition, we inspect SCT’s adaptation ability to unseen strate-

gies by testing the transformer against a new family of strate-

gies. We consider a class of finite-memory-based strategies de-

fined in [35], denoted by memory(𝑋,𝑌 ), which determines the

future actions using the ego agent’s last 𝑋 plays and opponent’s 𝑌

plays. Following the definition in [35], memory(𝑋,𝑌 ) begins with
the max(𝑋,𝑌 ) first moves, and the agent observes the max(𝑋,𝑌 )
rounds of prisoner dilemma game. Then, based on its last 𝑋 actions

and its opponent’s last 𝑌 actions, the agent determines the future

plays using a deterministic mapping from {C,D}𝑋+𝑌
to {C,D}. We

pick ten best-performing memory(1, 2) and memory(2, 1) strate-
gies in the tournament ranking [35, Sec. 5.10] and refer to these

strategies, in order, as mem𝑠 , for 1 ≤ 𝑠 ≤ 10.

We report the reward and belief accuracy in Table 6 when test-

ing SCT against these unseen memory-based strategies. The total

reward is 2752, with a mean accuracy of 90.9% when predicting

these strategies. This places the SCT as the best strategy in the

tournament with the unseen strategies, surpassing the second by a

margin of 200.

SCT Equilibrium Behavior. We now discuss some interesting

behavior patterns displayed by SCT when testing against three

representative strategies: all_d (always defect), all_c (always coop-
erate), and the SCE strategy pavlov. The first observation is that

Table 5: Normalized rewards and prediction accuracy of SCT against training
strategies.

all_d tit_for_tat spiteful soft_majo hard_majo per_ddc per_ccd mistrust

reward 87.93 110.25 142.34 107.59 144.81 118.60 116.57 143.36

accuracy 0.99 0.99 0.99 0.99 0.98 0.96 0.98 0.98

all_c per_cd pavlov tf2t hard_tft slow_tft gradual prober mem2

122.40 128.44 107.82 103.47 129.90 109.23 114.66 153.66 134.71

0.99 0.94 0.99 0.99 0.99 0.99 0.99 0.90 0.99

Table 6: Normalized rewards and prediction accuracy of SCT against unseen
strategies.

mem1 mem2 mem3 mem4 mem5 mem6 mem7 mem8 mem9 mem10

reward 101.65 106.96 236.87 135.07 135.07 135.88 175.60 175.60 130.31 437.77

accuracy 0.96 0.96 0.96 0.96 0.56 0.84 0.96 0.95 0.95 0.99

Table 7: SCT v.s. Pavlov. After first a few rounds of cooperation, SCT starts
to exploit Pavlov. Yet, Pavlov will penalize such exploitation, forcing SCT to
cooperate and leading to NE plays.

pavlov · · · C C C D C C · · ·
SCT · · · C C D D C C · · ·

when playing against all_d, after the misbelief in the first step,

SCT quickly realizes the opponent’s all_d strategy (i.e., 0.99 accu-

racy) and plays all_d as well, reaching a NE equilibrium (𝐷, 𝐷)
in IPD (which is also a SCE). When playing against pavlov, SCT
first chooses to cooperate for a few rounds. Since pavlov also opts

for cooperation in these rounds, SCT starts to play defection to

exploit the opponent for one round, misbelieving the unconditional

cooperation from the opponent. Yet, such exploitation is penal-

ized by the pavlov opponent, who also switches to defection one

round later. Learning its lesson, SCT falls back to cooperation there-

after. Finally, the players reach another NE (SCE) (𝐶,𝐶), receiving
higher rewards than in the first scenario. Another interesting ob-

servation is that when facing all_c opponent, SCT starts to exploit

the opponent by playing defection. Yet, it also plays cooperation

occasionally, for which we speculate that SCT memorizes some

periodic plays in the offline dataset. In summary, belief conditioning

and self-confirming loss equip the vanilla transformer with greater

adaptability to sophisticated opponents.

6 CONCLUSION
Inspired by the self-confirming equilibrium (SCE), this work has

developed a novel auto-regressive training paradigm for decision

transformers in offline MARL tasks. The key operation of the pro-

posed self-confirming transformer (SCT) is belief conditioning: the

transformer first generates a fictitious token representing its in-

ference about the opponent’s action, which is then fed back to

itself to generate its own action. The SCE-motivated loss consists

of belief consistency loss and best response loss, mandating that

the agent behave optimally under the correct belief. Experimental

results in multi-particle environments demonstrate SCT’s superior

performance against nonstationary opponents unseen in the train-

ing. Moreover, when deployed in the iterated prisoner’s dilemma,

SCT indeed displays equilibrium behaviors as instructed by the

self-confirming loss.

One of the most pressing future works is to investigate the in-

terplay between return and belief conditioning. Our experiments

employ the grid search to find the optimal return conditioning for

all transformer models. Since the two conditionings are essentially

the HIM technique [12], it would be helpful if the transformer could

also self-adapt return conditioning, together with belief.
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