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ABSTRACT

Traditional Support Vector Machine (SVM) classification is carried out by find-
ing the max-margin classifier for the training data that divides the margin space
into two equal sub-spaces. This study demonstrates limitations of performing
Support Vector Classification in non-Euclidean spaces by establishing that the un-
derlying principle of max-margin classification and Karush Kuhn Tucker (KKT)
boundary conditions are valid only in the Euclidean vector spaces, while in non-
Euclidean spaces the principle of maximum margin is a function of intra-class
data covariance. The study establishes a methodology to perform Support Vector
Classification in Non-Euclidean Spaces by incorporating data covariance into the
optimization problem using the transformation matrix obtained from Cholesky
Decomposition of respective class covariance matrices, and shows that the re-
sulting classifier obtained separates the margin space in ratio of respective class
population covariance. The study proposes an algorithm to iteratively estimate the
population covariance-adjusted SVM classifier in non-Euclidean space from sam-
ple covariance matrices of the training data. The effectiveness of this SVM clas-
sification approach is demonstrated by applying the classifier on multiple datasets
and comparing the performance with traditional SVM kernels and whitening algo-
rithms. The Cholesky-SVM model shows marked improvement in the accuracy,
precision, F1 scores and ROC performance compared to linear and other kernel
SVMs.

1 INTRODUCTION

Support Vector Machines (SVM), derived from Vapnik’s statistical learning theory( Vapnik (2013))
is a powerful kernel-based machine learning tool that is suitable for both classification and regression
tasks, and hence is widely used in diverse fields ranging from pattern recognition( Byun & Lee
(2002)) to text classification( Isa et al. (2008)), image classification( Mustafa et al. (2017)) and
forecasting in finance( Ince (2000)). Unlike other classification algorithms that focus on empirical
risk minimization, SVM focuses on structural risk minimization( Burges (1998)),( Scholkopf et al.
(1999)). It achieves this by identifying a separating linear hyperplane with maximum margin from
the margin-edge hyperplanes that bound the two data classes in the N-dimensional space, N being the
number of features. The parameters of the margin-edge hyperplanes and the decision boundary are
estimated by constructing an optimization problem and solving it using quadratic programming. If
the data are not linearly separable, kernel tricks are applied where the kernels transform the data from
input space to a higher-dimensional feature space where they can be linearly separable( Schölkopf
& Smola (2002)).

The equation of the linear SVM hyperplanes for both the decision boundary and margin hyper-
planes, and the margin calculations, are derived from the Euclidean distance formula. However,P.C.
Mahalanobis( Mahalanobis (2018)) while proposing Mahalanobis distance showed that in the input
space (also called the statistical space in this study) where the data points are present, the distance
between two data points is to be measured by statistical distance (accounting for data covariance)
and not the Euclidean distance. Hence, traditional SVM, which is built on foundations of Euclidean
distance, should not be valid in the input space as it is Non-Euclidean. Secondly, the concept of
Max-Margin Classification considers the decision boundary to be equidistant from either margin
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hyperplane. SVM optimization problem uses KKT boundary conditions, where only the support
vectors at the margin boundaries play a role in deciding the decision boundary. The role of the other
data points, as well as information about the data class distributions and inherent variance-covariance
structure of the data plays a minimal role( Zafeiriou et al. (2007)). However, a separating hyperplane
should divide the margin space in ratio of the data dispersion of each class- a higher margin should
be provided for the data class having higher dispersion (higher variance) and lower margins for the
data class having lower dispersion (lower variance) as it is more cohesive and compact. The entire
dataset(through variance) should influence the calculation of decision boundary. Hence, adjustments
need to be made for class distribution variance while calculating and maximizing the margins in the
optimization problem.

Several studies have acknowledged the aforementioned issue and have recommended various ap-
proaches to incorporate variance into the SVM optimization problem. ( Tsang et al. (2006)) in-
corporated covariance information in one-class SVMs by using the Mahalanobis distance instead
of Euclidean distance to calculate the margin. ( Peng & Xu (2012)) incorporated the Mahalanobis
distance into the twin support vector machine (TSVM) to determine two optimization problems to
determine the two non-parallel separate hyperplanes. ( Ke et al. (2018)) presented a Mahalanobis
distance-based biased least squares support vector machine (MD-BLSSVM) to classify PU data.
( Huang et al. (2004)) proposed the maxi-min margin machine that incorporates class distribution
information into decision boundary optimization problem using statistical distance. ( Wang et al.
(2007)) proposed weighted Mahalanobis distance Kernels for SVMs that incorporates covariance
information into existing kernels. ( Zafeiriou et al. (2007)) proposed the minimum class variance
SVMs (MCVSVMs) by optimizing Fisher’s Discriminant Analysis where a within-class scatter ma-
trix is incorporated into optimization problem to account for the data variance. However, analysis
of the optimization problems formulated in those studies revealed gaps in application of appropriate
vector spaces and dimensional inconsistencies. In this study we have tried to rectify those gaps by
proposing Covariance-Adjusted Support Vector Machine (CSVM)-building upon the concepts that
(1) statistical space is different from the Euclidean space, (2) SVM is valid in Euclidean space only
as it is derived using Euclidean distance, and (3) Mahalanobis distance is essentially a transformation
of the data from the statistical space to the Euclidean space ( Sahoo & Maiti (2025)). Using these
concepts, we first transform data from Non-Euclidean statistical space to Euclidean space by per-
forming Cholesky Decomposition of intra-class covariance matrix for each data class, and using the
lower triangular matrix as transformation matrix. Then we formulate the SVM optimization problem
in the Euclidean space, and reverse-transform it to the original input space. Here, the Cholesky de-
composed lower-triangular matrix of the covariance matrix transforms the data from statistical space
to Euclidean space, thus mirroring the kernel trick. While using whitening algorithms (Cholesky De-
composition or Eigen Decomposition) to transform data to Euclidean space and performing SVM is
standard practice these days, we have tried two new things: First, in this study we have examined
the effects of whitening on SVM optimization problem formulation in Non-Euclidean Space. By
doing reverse whitening and transforming SVM optimization problem in Non-Euclidean space, we
see that (1) an N-class support-vector classification problem results in N decision boundaries in the
input space; (2) equivalence between statistical space and the Euclidean space implies that the deci-
sion boundary should split the margin between the margin boundaries in the input space in ratio of
respective data class covariances; (3) KKT Boundary conditions are not valid while attempting SVM
in a Non-Euclidean Space. Second, we address the limitations of calculating population covariance
matrix in absence of test data label information by proposing the SM Algorithm- that iteratively
calculates the population covariance matrix and performs Covariance-adjusted SVM (CSVM) from
training data information. Finally, effectiveness of CSVM is demonstrated by applying on 5 stan-
dard datasets and comparing the results with traditional linear and other kernel SVMs, as well as
with other prevalent whitening methods. CSVM shows better classification table metrics and higher
AUC values in ROC curves compared to other models.

The remainder of this paper is organized as follows: Section 2 presents a mathematical derivation
of the vector space transformation from statistical to Euclidean using Cholesky decomposition and
formulates the optimization problem of the SVM classifier after adjusting for data covariance in
the Euclidean space. Section 3 gives the SM Algorithm to iterately calculate population covariance
from training data sample covariance. Comparison with other studies done in literature and other
whitening approaches is done in section 4. Section 5 gives the results of application of CSVM and
other SVM approaches on 5 datasets and performance is compared using precision, recall, accuracy,
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F1 scores and ROC curves. Finally, sections 6 concludes with a summary of the contributions,
limitations and future scope of work.

2 VECTOR SPACE TRANSFORMATION TO EUCLIDEAN SPACE FOR SVM

For a probability distribution of a population, distance between a point and the mean in statisti-
cal/input space given by the Mahalanobis distance written as:

(X−µ)TΣ−1(X−µ) =
[
Ψ−1(X − µ)

]T [
Ψ−1(X − µ)

]
=

[
Ψ−1X −Ψ−1µ

]T [
Ψ−1X −Ψ−1µ

]
(1)

where Σ is the population covariance matrix and Σ = ΨΨT is the Cholesky decomposition of Σ
resulting in the lower triangular matrix Ψ. While the LHS in (1) represents the distance between
raw data in statistical/input space, its equivalence in the RHS is the formula for Euclidean distance
between the data points that are transformed to a new vector space using transformation matrix Ψ−1,
and represented by the inner product

[
Ψ−1(X − µ)

]T [
Ψ−1(X − µ)

]
. The new vector space has

following properties:

• The space has an inner product, hence it is an inner product space.
• The inner product represents the distance between the points.
• If µ = 0, the inner product represents the norm.

All these are properties of Euclidean space. Hence the new vector space is the Euclidean Space with
the transformed data is given by

XEuclidean = Ψ−1X Input (2)

and the original statistical/input space is a non-Euclidean space.

Mahalanobis transformation uses the covariance matrix of the underlying probability distribution,
which is derived from the population/sample. In SVM of binary classification, the dataset belongs
to two classes given by y = 1 or y = −1. As these are two distinct labels with distinct features and
parameters, they can be considered as two distinct populations, which correspond to two distinct
distributions. These distributions have their unique covariance structure, hence will be characterized
by their distinct covariance matrices Σy=1 and Σy=−1 respectively. Accordingly, the data transfor-
mation is distinct for each label, given by

XEuclidean
y=1 = Ψ−1

y=1X
Input
y=1 and XEuclidean

y=−1 = Ψ−1
y=−1X

Input
y=−1 (3)

In SVM, the objective is to find a linear hyperplane that separates the data with maximum margin
from the data points of either class. The equation of the hyperplane and the magnitude of the margin
are derived from the Euclidean distance formula and principles of the Cartesian coordinate system.
Since these operations are valid in the Euclidean space only, the following lemma is proposed:

Lemma 2.1. Principles of support vector classification (KKT boundary conditions and max-
margin classification) are valid only when the data is transformed from the input/statistical space
to the Euclidean space using Ψ−1, which is inverse of the lower triangular matrix obtained by
Cholesky Decomposition of the population covariance matrix. The SVM optimization problem,
loss function and constraints are formulated in the transformed Euclidean space.

Performing linear SVM the Euclidean space results in the equation of the maximum margin classifier
(Considering hard margin SVM, ξi = 0):

θTXEuclidean + θ0 = 0 (4)

With the margin value
1√
θT θ

(5)

So the optimization problem becomes:

min
1

2
θT θ (6)
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Subject to yi(θ
TXEuclidean + θ0) ≥ 1 (7)

Formulating Euclidean space-Non Euclidean input space equivalence, the classifier given in (4) for
data labelled y = 1 becomes (Considering hard margin SVM, ξi = 0)

θTΨ−1
y=1X

Input
y=1 + θ0 = 0 or

(
(Ψ−1

y=1)
T θ

)T
X Input

y=1 + θ0 = 0 (8)

What the margin of the linear classifier hyperplane given in (8) in the input space? If hypothetically,
we apply the rules of Cartesian coordinate geometry and try to calculate the margin from the margin
boundary to the classifier, the margin is, the margin value for y = 1 is

1√(
(ψ−1

y=1)
T θ

)T (
(ψ−1

y=1)
T θ

) =
1√

θT (ψT
y=1ψy=1)−1θ

=
1√

θT (Σy=1)−1θ
(9)

Since ΣT = Σ as Σ is a symmetric matrix.

Hence, the margin maximization problem in the input space for y = 1 becomes

Minimize
1

2
θT (Σy=1)

−1θ (10)

Satisfying the constraint θTΨ−1
y=1X

Input
y=1 + θ0 ≥ 1 (11)

Similarly, for y = −1 the optimization problem in the input space becomes

Minimize
1

2
θT (Σy=−1)

−1θ (12)

Satisfying the constraint θTΨ−1
y=−1X

Input
y=−1 + θ0 ≤ −1 (13)

There are two sets of optimization problems to be solved. This gives rise to the following lemma:

Lemma 2.2. For a two-class problem, the application of SVM in the input space domain gener-
ates not one, but two unique optimization problem formulations resulting in two unique linear
classifiers—each input space having its own linear classifier. In an N-class problem, there will be
N data class distributions and N input spaces; hence, there will be N linear classifiers.

Calculating margin for y = 1 using equation (9) and similarly calculating margin for y = −1 and
comparing them results in

Marginy=1

Marginy=−1

=

√
θT (Σy=−1)−1θ√
θT (Σy=1)−1θ

(14)

The following lemma is proposed:

Lemma 2.3. In the input space, margin for each data class is a function of respective population
covariance matrix, given by 1/Σ−1 . Hence the assumptions of KKT boundary conditions are not
valid in the input space as each data point (other than support vectors) contributes to Σ−1.

Hence unlike the original support vector machine algorithm, in a Non-Euclidean space the margin
of the classifier is dependent on the intra-class data covariance (variance is essentially covariance of
a random variable with itself).

3 ALGORITHM FOR SVM CLASSIFICATION FROM SAMPLE COVARIANCE
INFORMATION

CSVM vector transformation requires knowing the population covariance matrix Σ, which is not
possible as the test data labels are unknown. Here we propose an algorithm here to perform
Covariance-Adjusted SVM classification using the sample covariance matrices Sy=1 and Sy=−1

that can be calculated from training data (We call it the SM Algorithm). We have established that
if we do SVM in the Euclidean space, the corresponding linear classifier in the input space divides
the margin as a function of 1/Σ−1 as given in equation (9), and it can give an indicative location
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of the test data w.r.t the classifier and its labels. Hence in this algorithm we iteratively perform the
following steps: (1) Calculate the covariance matrices for the available labelled data (starting with
training data) to obtain Sy=1 and Sy=−1; (2) Find the SVC linear classifier that divides the margin

in the ratio
√

θT (Σy=−1)
−1θ

θT (Σy=1)
−1θ

, and identify the test data on either side of the modified classifier to get

the new labelled datasets. The steps are repeated till convergence is attained.

Below are the steps for SM algorithm:

1. Initialization phase:
(a) Name original training data labelled 1 and −1 as Train1 and Train−1 respectively.
(b) Calculate covariance matrices for Train1 and Train−1 i.e. Sy=1 and Sy=−1 respec-

tively.
2. Iteration phase:

(a) Perform Cholesky Decomposition of covariance matrices to obtain Cy=1 and Cy=−1,
where

Sy=1 = Cy=1C
T
y=1 and Sy=−1 = Cy=−1C

T
y=−1.

(b) Calculate C−1
y=1 Train1 and C−1

y=−1 Train−1 to transform Train1 and Train−1 data from
input space to Euclidean space.

(c) Perform support vector classification on Train1 and Train−1 data in the Euclidean
space and calculate the parameter vector θEuclidean.

(d) Perform linear SVM on the original Train1 and Train−1 data (identified in initializa-
tion phase) in the input space and calculate the equation of the linear classifier

θTInputx+ θ0 = 0.

(e) Adjust θ0 to θ′0 and modify the classifier calculated in step (d) so that the modified
classifier

θTInputx+ θ′0 = 0

divides the margin in the input space in ratio√
θTEuclidean(Sy=−1)−1θEuclidean

θTEuclidean(Sy=1)−1θEuclidean
.

(f) Label test datapoints as +1 and −1 based on whether

θTInputXTest + θ′0 ≥ 0 or ≤ 0.

(g) Add the test datapoints to Train1 and Train−1 based on their labels identified in step
(f) to obtain updated Train1 and Train−1 data.

(h) Re-calculate covariance matrices for new Train1 and Train−1 to get new Sy=1 and
Sy=−1 respectively.

(i) Repeat steps (a) to (h) until convergence.
3. Convergence criteria:

(a) Check if the test data assignments have stopped changing have stopped moving (i.e.,
the changes in test data labels are below a certain threshold).

(b) If test data has converged, terminate the algorithm.
End Algorithm

4 COMPARISON OF CSVM WITH EXISTING WORK AND WHITENING
ALGORITHMS

The CSVM model and algorithm proposed essentially transforms the data into Euclidean
space by decorrelating and standardizing the data and then performs support vector classi-
fication in that space. This process is akin to data whitening. Data whitening has become a
standard data pre-processing technique with many whitening algorithms being widely used
e.g. PCA Whitening, ZCA Whitening etc. Apart from studying effects of whitening on
Non-Euclidean SVM, other novelties of this study are:
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• While data whitening leads to superior performance of support vector machines in
many cases, the literature is divided on the reasons for this. In this study we provide
a vector space explanation of why whitening works: whitening transforms the data
from non-Euclidean space/input space to Euclidean space, and it is in Euclidean
space that the equations for various ML models like support vector machines, KNN,
K-Means clustering are based.

• PCA/ZCA whitening algorithms perform whitening of the entire training data and then
apply them on the test data. However, in many cases the data corresponding to various
labels belongs to different populations and can have stark differences in their features.
Hence whitening of the data needs to be carried out separately class-wise, as is done
in this study.

• Instead of applying training data whitening transformation on test data, SM algorithm
iteratively iteratively tries to identify labels of test data and thus calculate the popula-
tion covariance matrix, leading to better performance vis-a-vis PCA and ZCA Whiten-
ing.

• By starting from first principles and focusing on Mahalanobis Distance as a vector
space transformation, we formulate the optimization problem in CSVM keeping it
both vector space and dimensionally consistent, and thus address the limitations of
previous studies done in variance adjusted SVM.

5 RESULTS AND DISCUSSION

For experimental verification of covariance-adjusted SVM (CSVM) as well as the effec-
tiveness of SM algorithm, the CSVM model was applied on five popular datasets- Breast
Cancer Wisconsin Dataset, OSHA Dataset, Diabetes Dataset, Red Wine Dataset and Pulsar
Dataset. These datasets are binary class and the objective of selecting the 5 datasets was to
check for generalizability of the model in various domains- healthcare, astronomy, quality,
and safety/text mining. First the dataset was split into training and validation data in the
ratio 80:20. Then CSVM model was applied on the data and the classification table giving
the accuracy, precision, recall and F1 scores and Receiver Operating Characteristic (ROC)
curves giving the Area Under Curve (AUC) were obtained. In addition, the effectiveness
of CSVM model is compared with other widely used support vector classification models
by applying various support vector kernels - linear, RBF, Sigmoid and Polynomial- on the
datasets and obtaining the classification tables and ROC curves. The accuracy, precision,
recall, F1 scores and AUC values were compared.

In addition, owing to similarity with whitening algorithms, we compared CSVM with PCA
and ZCA whitening cum SVM approach- PCA and ZCA whitening were carried out on
the 5 datasets and then linear SVM was used and classification table and ROC curves were
obtained. The accuracy, precision, recall, F1 scores and AUC values were then compared
for our model, PCA whitening-linear SVC and ZCA whitening-linear SVC.

The accuracy, precision, recall and F1 scores of the SVM kernels and whitening models
over the 5 datasets is given in Table 1, 2, 3 and 4 respectively. It can be seen that our
model CSVM-Cholesky Decomposition attains highest accuracy, recall and F1 scores
for 4 datasets-Breast Cancer, Pulsar, Red wine and Diabetes and in the OSHA dataset it
has the second highest precision and performs better than linear SVM. CSVM-Cholesky
Decomposition attains highest precision for 3 datasets- Breast cancer, diabetes and red
wine, and in the OSHA dataset performs better than linear SVM while in Pulsar dataset,
linear SVM performs better.

Finally, the performance comparison of the SVM kernels and PCA/ZCA whitening meth-
ods is compared by drawing the ROC curves and measuring the Area Under Curve (AUC)
values. It can be seen that for Breast Cancer, Pulsar and Red Wine datasets, our CSVM-
Cholesky transformation model is having the highest AUC values. For OSHA data, CSVM
AUC is joint highest with RBF Kernel and CSVM is joint highest with linear, PCA and
ZCA values.

6
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Table 1: Comparison of accuracy of SVM kernels and whitening models over 5 datasets

Method Breast Cancer OSHA Diabetes Red Wine Pulsar
CSVM–Cholesky 0.974 0.752 0.786 0.744 0.981
SVM–Linear 0.956 0.741 0.760 0.731 0.979
SVM–RBF 0.947 0.760 0.760 0.650 0.973
SVM–Sigmoid 0.465 0.671 0.656 0.422 0.925
SVM–Poly 0.947 0.747 0.760 0.637 0.971
SVM Linear–PCA 0.947 0.741 0.760 0.728 0.979
SVM Linear–ZCA 0.939 0.741 0.760 0.738 0.979

Table 2: Comparison of precision of SVM kernels and whitening models over 5 datasets

Method Breast Cancer OSHA Diabetes Red Wine Pulsar
CSVM–Cholesky 0.974 0.747 0.775 0.744 0.954
SVM–Linear 0.96 0.742 0.738 0.733 0.962
SVM–RBF 0.961 0.766 0.743 0.674 0.954
SVM–Sigmoid 0.380 0.655 0.633 0.417 0.770
SVM–Poly 0.961 0.758 0.775 0.696 0.939
SVM Linear–PCA 0.948 0.742 0.738 0.731 0.962
SVM Linear–ZCA 0.937 0.742 0.738 0.739 0.962

Table 3: Comparison of recall of SVM kernels and whitening models over 5 datasets

Method Breast Cancer OSHA Diabetes Red Wine Pulsar
CSVM–Cholesky 0.970 0.721 0.744 0.748 0.925
SVM–Linear 0.946 0.704 0.736 0.736 0.906
SVM–RBF 0.930 0.723 0.716 0.617 0.876
SVM–Sigmoid 0.401 0.653 0.639 0.416 0.762
SVM–Poly 0.930 0.705 0.688 0.596 0.876
SVM Linear–PCA 0.939 0.704 0.736 0.734 0.906
SVM Linear–ZCA 0.932 0.704 0.736 0.742 0.906

Table 4: Comparison of F1 Scores of SVM kernels and whitening models over 5 datasets

Method Breast Cancer OSHA Diabetes Red Wine Pulsar
CSVM–Cholesky 0.972 0.728 0.754 0.743 0.939
SVM–Linear 0.953 0.711 0.737 0.731 0.932
SVM–RBF 0.942 0.731 0.725 0.601 0.910
SVM–Sigmoid 0.385 0.654 0.635 0.416 0.766
SVM–Poly 0.942 0.712 0.699 0.560 0.904
SVM Linear–PCA 0.943 0.711 0.737 0.728 0.932
SVM Linear–ZCA 0.934 0.711 0.737 0.737 0.932
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(a) Breast Cancer data. (b) Pulsar data.

Figure 1: ROC Curves and AUC values for SVM kernels and whitening models for Breast Cancer
and Pulsar data.

(a) Red Wine data. (b) OSHA data.

Figure 2: ROC Curves and AUC values for SVM kernels and whitening models for Red Wine and
OSHA data.

Figure 3: ROC Curves and AUC values for SVM kernels and whitening models for Diabetes data.
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6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

It can be seen that the CSVM model is a powerful tool that gives better results compared
to traditional SVM kernels. The purpose of experimenting and comparing with traditional
SVM approaches over 5 datasets was to validate the findings of lemma 2.1, 2.2 and 2.3.
Hence in this study we demonstrate that (1) SVM optimization problem formulation and
solutions are valid in the Euclidean space, and formulating and solving them in the input
space carries risk of misclassification; (2) A binary class problem requires one classifier
in the Euclidean space but two classifiers in the Non-Euclidean space, while an N class
problem has one classifier in Euclidean Space but N classifiers in the Non-Euclidean in-
put space; (3) The distance of the classifiers from their respective margin boundaries is a
function of their intra-class covariances.
Despite the performance of Cholesky transformation-CSVM, it suffers from certain draw-
backs. First, it requires the knowledge of the population covariance structure of the data
distribution. In absence of information about population covariance, the transformation
of data to Euclidean space becomes difficult. While SM algorithm has been proposed to
address this limitation, it is a heuristic algorithm and though it gives the best classifica-
tion performance, perfect classification is yet to be achieved. Secondly, the computational
complexity of Cholesky kernel is higher than traditional linear SVM as extra steps of calcu-
lating covariance matrices and Cholesky decomposition are involved. Hence it leads to the
following dilemma: is the increase in classification performance worth the computational
complexity?
Considering the limitations, future work will involve finetuning the SM algorithm so that
we can reduce the computational complexity.
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