
Point-Cloud Completion with Pretrained
Text-to-image Diffusion Models

Yoni Kasten1 Ohad Rahamim2 Gal Chechik1,2

1NVIDIA Research 2Bar-Ilan University

Abstract

Point-cloud data collected in real-world applications are often incomplete, be-
cause objects are being observed from specific viewpoints, which only capture
one perspective. Data can also be incomplete due to occlusion and low-resolution
sampling. Existing approaches to completion rely on training models with datasets
of predefined objects to guide the completion of point clouds. Unfortunately, these
approaches fail to generalize when tested on objects or real-world setups that
are poorly represented in their training set. Here, we leverage recent advances
in text-guided 3D shape generation, showing how to use image priors for gen-
erating 3D objects. We describe an approach called SDS-Complete that uses a
pre-trained text-to-image diffusion model and leverages the text semantics of a
given incomplete point cloud of an object, to obtain a complete surface representa-
tion. SDS-Complete can complete a variety of objects using test-time optimization
without expensive collection of 3D data. We evaluate SDS-Complete on a col-
lection of incomplete scanned objects, captured by real-world depth sensors and
LiDAR scanners. We find that it effectively reconstructs objects that are absent
from common datasets, reducing Chamfer loss by about 50% on average compared
with current methods. Project page: https://sds-complete.github.io/

SDS
Complete

+ “A Chair”
+ “A teapot”

SDS
CompletePartial

point-
cloud

Partial
point-
cloud

Figure 1: We present SDS-Complete: A test-time optimization method for completing point clouds
captured by depth sensors, leveraging pre-trained text-to-image diffusion model. The inputs to our
method are an incomplete point cloud (blue) along with a textual description of the object. The output
is a complete surface (gray) that is consistent with the input points (blue). The method works well on
a variety of objects captured by real-world point-cloud sensors.

1 Introduction

Modeling 3D objects and scenes is becoming a central part of machine perception. Most 3D data is
collected using sensors that capture the 3D structure of various objects, like LIDAR or depth scanners.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://sds-complete.github.io/

When used in the real world, various factors may cause scanners to capture incomplete or partially
sampled 3D objects. First and foremost, objects are often captured from specific camera viewpoints,
collecting points from only "one side" of an object (Figure 1). Reconstruction may also suffer from
self-occlusions and low sensor resolution. To fully understand the three-dimensional world, one must
deal with partial data and missing parts.

Current approaches for completing partial point clouds [58, 50, 30, 38, 53, 56, 49] operate as follows.
They first gather extensive training datasets of complete 3D objects (e.g., [9]); then, they extract
partial point clouds from the 3D objects as training data; finally, they train deep models to predict
completed objects using their known ground-truth geometry. These methods are commonly evaluated
on test partitions derived from their training data and consistently show high accuracy. However,
they tend to generalize poorly to real data, due to several reasons. First, the training data primarily
consists of Computer-Aided Designed (CAD) models, which differ from real-world objects [1].
Second, points are sampled in an artificial way, which does not accurately simulate real-world capture
processes. Finally, the training data is mostly aligned [51], which can pose challenges when dealing
with real-world data that is typically not perfectly aligned with the training data. The performance of
these models deteriorates even further for objects and shapes that were not observed during training
(label shift). This is a severe problem because the diversity of shapes in existing datasets of 3D objects
is very limited. Recent work [56] attempted to address this limitation by expanding the range of
object categories. However, the quality of completed objects is significantly decreased when applied
to real-world data, as we illustrate below. The poor generalization of these methods to real data
limits their practical use in real-world situations that demand 3D perception, such as indoor-scene
reconstruction and autonomous driving.

Here, we address the challenge of completing 3D objects in the wild from real-world partial point
clouds. This is achieved by leveraging priors about object shapes that are encoded in pretrained
text-to-image diffusion models. Our key idea is that since text-to-image diffusion models were trained
on a vast number of diverse objects, they contain a strong prior about the shape and texture of objects,
and that prior can be used for completing object missing parts. For example, given a partial point
cloud, knowing that it corresponds to a chair can guide the completion process, because objects from
this class are expected to exhibit some types of symmetries and parts that are captured in 2D images.

A similar intuition has been used for generating 3D objects “from scratch" (DreamFusion) [39].
DreamFusion uses the SDS loss, which measures agreement between 2D model prior and renderings
of the 3D shape. Unfortunately, naively applying the SDS loss to our problem of point cloud
completion fails. This is because, as we show below, it does not combine well the hard constraints
implied by the points collected from the sensor with the prior embedded in the diffusion model.

To address these challenges, we introduce SDS-Complete: a method to complete a given partial
point cloud using several considerations. First, we use a Signed Distance Function (SDF) surface
representation [37, 18, 5, 55], and constrain the zero level set of the SDF to go through the input
points. Second, we use information about areas with no collected points, to rule out object parts
in these areas. Third, we use a prior about camera position and orientation and a curriculum of
out-painting when sampling camera positions. Finally, we use the SDS loss [39] to incorporate prior
guided by the class of an object on the rendered images.

We demonstrate that SDS-Complete generates completions for various objects with different shape
types from two real-world datasets: the Redwood dataset [12], which contains various incomplete
real-world depth camera partial scans, and the KITTI dataset [8], which contains object LiDAR
scans from driving scenarios. In both cases, SDS-Complete outperforms the current state-of-the-art
methods.

In summary, this paper makes the following contributions: (1) A formulation of point cloud com-
pletion as a test-time optimization problem, avoiding the cost of collecting large datasets of 3D
geometries and training models. (2) A new approach to PC completion, which combines an empirical
point-cloud, with image priors using an SDF surface representation. (3) A practical and unified
approach to completing and preserving real-world captured 3D content from various depth sensors,
(LiDAR or depth camera) all while incorporating prior knowledge of camera poses through a well-
structured camera curriculum. (4) We demonstrate state-of-the-art completion results for diverse
in-the-wild objects, captured by real-world sensors.

2

2 Related work

Surface Completion from Point Clouds. Over the last years approaches based on deep-networks
[58, 50, 30, 38] have demonstrated remarkable capabilities in reconstructing objects from incomplete
or partial inputs. Early attempts with neural networks [13, 14, 19, 46] used voxel grid representations
of 3D geometries due to their straightforward processing with off-the-shelf 3D convolutional layers.
While voxels proved to be useful, they suffer from a space complexity issue, as their representation
grows cubically. Consequently, these methods can only generate shapes with limited resolution.
In contrast, point cloud representations [15, 2] have been leveraged to model higher-resolution
geometries using neural networks. Several methods [52, 57] use such techniques for predicting the
completed point cloud given a partial input point cloud. However, to obtain a surface representation,
a surface reconstruction technique [24] needs to be applied as a post-processing step, which can
introduce additional errors. Recently, an alternative approach has emerged where the output surface
is represented using neural representations [30, 37]. The advantage of these representations lies in
their ability to represent the surface continuously without any discretization. [30, 38] trained deep
neural networks and latent conditioned implicit neural representations on a dataset of predefined
object classes [9], to perform point cloud completion.

While most deep methods for surface completion train a different model per object class, very recent
methods have focused on training multi-class models, allowing for better generalization [53, 56].
PoinTr [56] uses a transformer encoder-decoder architecture for translating a given input point cloud
into a set of point proxies. These point proxies are then converted into completed point clouds using
FoldingNet [54]. ShapeFormer [53] directly reconstructs surfaces from incomplete point clouds using
a transformer. Recently, [3] combined point cloud and image inputs for completing the object shape.
They further use the input image for applying weakly-supervised loss on the rendered output.

Other recent works [11, 27, 34] show progress in the task of shape completion given a partial surface,
where [34] uses a transformer and autoregressive modeling, and [11, 27] employ diffusion processes
that allow controlling the completion with text. However, these methods require a surface as input
and cannot handle incomplete point clouds. Furthermore, their applicability is limited to the domain
they are trained on.

In contrast to the above-mentioned methods, our method performs point cloud completion as a
test-time optimization process using pre-trained available diffusion models, does not rely on any
collection of 3D shapes for training, and works on much broader domains.

3D models from text using 2D supervision. Several approaches used large vision-and-language
models like CLIP [40] to analyze and synthesize 3D objects. Text2Mesh [32], CLIP-Mesh [25] and
DreamFields [23] present approaches for editing meshes, generating 3D models, and synthesizing
NeRFs [33] respectively, based on input text prompts. The methods employ differentiable renderers
to generate images while maximizing their similarity with the input text in CLIP space.

More directly relevant to the current paper are methods that build on diffusion models. Text-guided
image diffusion models [43, 44, 6, 16] generate images based on text prompts, enabling control over
the generated visual content. These 2D models can then be used to guide 3D object generation, an
approach first presented by DreamFusion [39] and then further improved [28]. Latent-NeRF [31]
enables DreamFusion to run with higher-resolution images by optimizing NeRF with diffusion model
features instead of RGB colors. TEXTure [42] and Text2Tex [10] use depth-aware text-to-image
diffusion models to synthesize textures for meshes. Other recent works predict shapes directly from
2D images [41, 48, 29]. In contrast, our method uses the input text for completing partial point clouds,
rather than editing or synthesizing 3D content.

3 Method

3.1 Problem Setup

We address the problem of completing a surface given incomplete point cloud measurements, captured
by a real point cloud sensor. In contrast to previous works for object completion [56, 53] that first
trained one feed-forward model on a large dataset of 3D shapes, we operate in a test-time-optimization,
and solve each object separately from scratch without using any 3D dataset for pre-training.

3

Incomplete
Point cloud P

Text prompt
y

𝐼𝑚!

“A sofa” Stable
Diffusion

Text-compatibility
ℒSDS (𝑦, 𝐼𝑚!)

𝐼𝑚"
𝐼𝑚#𝐼𝑚$

Neural Surface (Signed Distance Function)
Represented using 𝑓% , 𝑐&. Optimize 𝜃, 𝜑

𝑓"

Sensor-compatibility
Points loss ℒ# 𝑃, 𝑓"

Absence Loss ℒ$ 𝑃, 𝑓"

Distance Loss ℒ% 𝑃, 𝑓"

Inputs Representation Losses

𝑃

y

View selector
Radiance 1ield
rendering

Figure 2: SDS-Complete optimizes two neural functions: A signed distance function fθ representing
the surface and a volumetric coloring function cφ. Together, (cφ, fθ) define a radiance field, which
is used to render novel image views Im0, . . . Imn. The SDS loss is applied to the renderings to
encourage them to be compatible with the input text y. Three sensor-compatibility losses verify that
the reconstructed surface is compatible with the sensor observations in various aspects.

Inputs and components of our system. The overall scheme for our method is depicted in Fig. 2.
Two inputs are expected, (Fig. 2 left): a set of 3D input points P = {p1,p2, . . . ,pN} measured
relative to the sensor’s location, and a text description embedding y of the incomplete object. As in
previous methods [53, 56], we assume that the point cloud is segmented out from the original scan,
namely, that all the points in P belong to a single object.

Our task is to find the 3D surface (Fig. 2 center) of the complete object that is consistent with both
the input points P and the text prompt y. For any given point cloud, our method optimizes for the
complete object surface represented by a neural signed distance function fθ : R3 → R, and a neural
color function cφ : R3 → R3, where θ and φ represent the learned parameters of the neural functions.
As shown in [55], these two functions form a neural radiance field [33] and can be optimized using the
rendered images of the 3D volumetric functions. More background details are given in the appendix.

3.2 Overview of the Optimization Process

Our main goal is to reconstruct a surface that is consistent with the partial input point cloud P ,
typically capturing only “one side" of the object. Clearly, constraining the surface to be consistent
with the observed input point cloud is not sufficient for determining the surface on the "other side" of
the object, and some prior knowledge should be used. Traditionally, such prior knowledge is learned
by training a model over a large dataset of 3D shapes [53, 56]. Here, we instead use a pre-trained
text-to-image diffusion model, applying an SDS loss [39] to rendered images of the object (Fig. 2
bottom). To ensure that we correctly reconstruct all sides of an input object, we use two types of
compatibility losses: (1) Sensor-compatibility losses (Fig. 2 top-right). (2) Text-compatibility loss
(Fig. 2 bottom-right). These losses are described below in more detail in Sec.3.3.

Applying and combining these compatibility losses is far from trivial and we now discuss several
critical issues when using them. First, unlike DreamFusion [39], where each object is generated
“from scratch", the pose of a generated object in our setup is determined by the input points P . As a
result, camera positions must be sampled in a way that is compatible with the image prior, namely,
that they render the object in natural poses.

4

Second, we find that simply rendering the object from the "other side" (unobserved side) and applying
the SDS loss tends to generate content that is compatible with the input text but not with the input
point cloud. To address this, we define a “curriculum" of sampling camera poses. We start from the
known original viewpoint of the sensor that captured the points and gradually increase the range of
views that we sample from around the original view (details in the appendix). With this sampling
protocol, generated completions are continuously kept compatible with both the description text and
the point cloud generated so far, until the entire object is completed successfully. As shown in our
ablation study, this camera sampling protocol is key for producing high-quality object completions.

We next describe in more detail the compatibility losses and the camera-sampling process.

3.3 Training Losses

Sensor-compatibility losses. The sensor compatibility losses are used for constraining the output
surface to be compatible with the input point cloud P . The surface is defined as the zero-level set of
our optimized neural SDF fθ. Therefore, for constraining the surface to go through the point cloud,
we encourage the function to be zero at these points.

Lp =
1

N

N∑
i=1

|fθ (pi) |. (1)

We note that the points in P are produced by a subset of sensor rays. Sensor rays that do not produce
any points in P define constraints on the boundary of the object. We use this to define an additional
sensor-compatibility loss Lm. For each sensor ray i, we denote its opacity by Mi ∈ {0, 1} where
Mi = 1 if the ray produces a point in P and Mi = 0 otherwise. We further denote its rendered
opacity by M̃i ∈ [0, 1]. The absence loss for the mask M is defined by:

Lm =
1

K

K∑
i=1

|Mi − M̃i| (2)

where K is the number of sensor rays.

Lp constrains the location of the surface, but it does not constrain the sign of the values around the
surface which indicates on which side the interior of the object is located. For that, we use the fact
that each point in P is measured relative to the sensor location. We denote the distance of each point
from the sensor by Di and the rendered distance of the ray that produced this point by D̃i. Our
distance loss is defined by:

Ld =
1

N

N∑
i=1

∥∥∥Di − D̃i

∥∥∥2 , (3)

Text-compatibility loss. We use a pre-trained text-to-image diffusion model, Φ, to provide a
semantic prior for predicting the unobserved parts, such that any rendered image of the object would
be compatible with the input text embedding y. To this end, we render random object views using
our radiance field and apply the SDS loss with the input text embedding y to optimize fθ and cφ
(Fig. 2, bottom-right). More details about the SDS loss are given in the appendix.

Regularization losses. To constrain fθ to form a valid SDF, we apply the Eikonal loss regularization
introduced in [18]:

Leikonal =
1

|Peik|
∑

p∈Peik

| ∥∇fθ (pi)∥ − 1| , (4)

where Peik contains both P and uniformly sampled points from the region of interest.

Finally, we use the known world plane to further prevent the surface from drifting below the ground:

Lplane =
∑

p∈Puniform

max (−fθ(p), 0) , (5)

where Puniform is a set of uniformly sampled 3D points below the plane in the region of interest.

5

Figure 3: Qualitative results for the Redwood dataset. A qualitative comparison between our
method and state-of-the-art methods. SDS-Complete produces more accurate completions.

Our total loss is:

Ltotal = δmLm + δdLd + δpLp + δeikonalLeikonal + δplaneLplane + LSDS, (6)

where δm, δd, δp, δeikonal and δplane are the coefficients that define the weights of the different loss
terms relative to the SDS loss and were selected by hyperparameters search. The same constant
coefficients were used in all of our experiments. See appendix, for more implementation details.

3.4 Handling Camera Positions

As discussed above, the protocol for sampling camera views has a large impact on the quality of
final completions. Let C0 = (R0, t0) be the original camera-to-world pose of the sensor. To prevent
rendering flipped or unrealistically rotated images of the object, we define the azimuth and elevation
deviation from C0 relative to the world plane. Specifically, let nl ∈ S2 be the normal to the world
plane l, we define the azimuth rotation update to be Razimuth = R(nl, γazimuth), where R(n, γ) is
the Rodrigues’ rotation formula for a rotation around the unit vector n, with γ degrees. Similarly,
let a0 be the normalized principal axis direction of C0, we define the elevation rotation update by
Relevation = R(nl × a0, γelevation). Assuming that the origin is located at the center of the object, an
updated camera, Cupdate, for γazimuth and γelevation degrees, is given by:

Cupdate = (RazimuthRelevationR0, RazimuthRelevationt0). (7)

During training, we start by applying the SDS loss to rendered images from C0 pose, and then we
gradually increase the sampling range of the deviation angles until the entire object is covered. More
implementation details are given in the appendix.

4 Experiments

Datasets. When considering evaluation, our primary goal is to evaluate our SDS-Complete and
baseline method in real-world scenarios. This is in contrast to evaluating test splits from the synthetic
datasets that were used for training the baseline methods. To achieve relevant evaluation datasets, we
based the evaluation on partial real-world point clouds obtained from depth images and LiDAR scans.

For depth images, we used the Redwood dataset [12] that contains a diverse set of objects. We used
depth images from 14 representative objects with ground truth 360◦ reconstructions which enable
quantitative evaluation. We further tested our model on the KITTI LiDAR dataset [7, 17], which
contains incomplete point clouds of objects in real-world scenes captured by LiDAR sensors. Both,
our method and the baselines, require a segmented point cloud as inputs. Therefore as a preprocessing,
we segmented out and centralized the main object from each scene (see more technical details in the

6

Object Shape PoinTr cGAN Sinv SDS-Complete
Former Full Simple

Old chair 23.2 34.1 33.2 36.7 19.3 18.9
Outside chair 25.9 29.6 42.8 28.7 22.6 22.4
One lag table 39.7 21.6 99.4 24.9 20.3 18.1
Executive chair 33.6 43.9 208 20.6 23.7 22.0

Average 30.6 32.3 95.8 27.7 21.5 20.4

Table 1: Chamfer loss (lower
is better) for chair and table
categories from the Redwood
dataset. All baselines were
trained on chairs and tables.

Object Shape PoinTr SDS-Complete
Former Full Simple

Trash can 136.4 137 36.4 43.1
Plant in a vase 60.8 41 29.5 27.4
Vespa 79.4 70.3 57.6 35.7
Tricycle 65.2 60.4 39 41.3
Couch 43.9 87.4 36.5 50.1
Office trash 68.8 49.7 20.5 18.7
Plant in a vase 2 31.3 37.6 28.1 26.3
Park trash can 130 119.9 33.8 26.4
Bench 29 32.6 55.4 98
Sofa 106.6 129.3 40.6 43.2

Average 75.1 76.5 37.8 41.0

Table 2: Chamfer loss (lower is better) for
general objects from the Redwood dataset.
Most of the object categories are new for
all methods and were not observed during
training.

appendix). For each input object, the world’s ground plane, l ∈ P3 that our method uses for camera
sampling (Sec. 3.4) is extracted from each scene automatically by robust fitting. We also use the
same world plane for the baseline methods as part of the point cloud to dataset alignment procedure
that they require (see appendix for details).

Baselines: We compare our method to state-of-the-art point-cloud completion approaches: PoinTr
[56], ShapeFormer [53], cGAN [50] and Sinv [58]. PoinTr and ShapeFormer trained one model on
multiple classes; cGAN and Sinv trained per-class models for chairs and tables classes.

4.1 Results on the Redwood dataset

As our quality metric, we measure the Chamfer distances in millimeters to quantify the dissimilarity
between the generated completions and their corresponding ground-truth shapes. Results are presented
in Tables 1 and 2. Table 1 compares all methods on objects from two categories, tables and chairs;
Table 2 compares our method to PoinTr [56] and ShapeFormer [53], on the remaining Redwood
objects. Both tables demonstrate that SDS-Complete obtains state-of-the-art results on the task of
point cloud completion from real point clouds.

In addition to the full variant discussed above, we also show results with a simplified model we name
"SDS-Complete Simple". This simplified variant omits the RGB network cϕ, and uses gray-shaded
rendering images of the optimized geometry for the SDS-loss. It is more efficient but has a higher
average error. We further show qualitative results for general objects in Fig. 3. Qualitative results for
chairs and tables are presented in the appendix.

Completion with various text descriptions. Our approach operates by combining a partial input
point cloud with a text description that guides the model when completing missing parts of the object.

We tested the effect of changing the text prompt while keeping the same input point cloud. Figure 4
shows results for completing Redwood’s scan "08754"(Teapot) of a partially captured teapot (Fig. 1).
Completing the point cloud with other text descriptions demonstrates how the text controls the shape.

7

Input points “A teapot” “A coffee pot” "A cup"“A watering can” “A pitcher”

Figure 4: The effect of text prompt. Completion of the same input, with different text descriptions.
Results obtained with our method for the partial point cloud of scan "08754". While the handle and
the top part of the object are constrained by the input point cloud, the model completes the other side
of the object according to the input text.

(a) Input
points

(b) “An object” (c) “A thing” (d) “A plant” (e) "A plant in a
large vase"

Figure 5: Generic vs specific text prompts: qualitative results. Results are shown for reconstructing
scan "06127" (Plant in a vase) from the Redwood dataset. (a) The input point cloud. (b, c) Completion
using two generic texts. Completion quality is poor. (d) Completion using the object class name. (e)
Completion using a detailed textual description.

Generic vs specific Text Prompts. To evaluate the contribution of selecting an appropriate text
prompt per object, we repeated reconstruction experiments of the 14 objects that we evaluate in
Tables 1 and 2, but varied the text prompts. Specifically, we used three levels of description specificity.
First, for a fully generic prompt (class agnostic), we tested two alternatives: "An object", and "A
thing". Second, we used the class name as the prompt ("A <class name>"). Finally, we used a more
detailed description. The full-text prompts are given in the supplementary.

Table 3 shows the Chamfer distances between our reconstruction and the ground truth for all prompts.
Using generic text yields inferior reconstructions. Adding specific details did not provide a significant
improvement over using the class name. A qualitative comparison is shown in Fig. 5.

Ablation study. To evaluate the contribution of each component of our method we present quali-
tative and quantitative ablation studies in Fig. 6. As can be seen, without the SDS loss, our model
has no understanding of object characteristics like the fact that the chair has four legs and a straight
back-side. Without the SDF representation, it is not possible to apply the point cloud constraints
directly on the surface which results in an inferior ability to follow the partial input. Finally, it can be
seen that our camera sampling “curriculum" that is described in Sec. 3.4, improves the completion
compared to a random camera sampling ("Naïve camera sampling") by preserving the consistency
of the generated content with the existing sensor measurements and by verifying that the diffusion
model does not see any “unnatural” pose of the object.

4.2 Results on the KITTI Dataset

We compare our method to ShapeFormer [53] and PoinTr [56] on a subset of 15 real object scans
from the Semantic KITTI Dataset [8] which consists of 5 cars, 5 motorcycles, and 5 trucks. We
present qualitative comparisons in Fig. 7. Notably, our method shows better completion results,
particularly with motorcycle objects which are less frequent in the Shapenet dataset.

User Study. We conducted a user study to evaluate the various methods on the KITTI dataset.
Specifically, we gathered a group of 11 participants to rank the quality of each completed surface
and its faithfulness to the input partial point cloud. For each object, the participants were given three
anonymous shapes produced by the three methods: SDS-Complete, ShapeFormer [53], and PoinTr

8

Text Prompt "An object" "A thing" "A <class name>" Full text

Chamfer 52.0 52.7 33.8 33.1
Table 3: Generic vs specific text prompts: Chamfer distances (lower is better). Columns 1 and
2: two generic configurations where a global text is used for all objects. Column 3: Only the class
name is used e.g. both "executive chair" and "outside chair" are reconstructed with the text "A chair".
Column 4: The results of our method with the full text prompts (provided in the supplementary).

Input points Naïve camera
sampling

No SDS
loss

No SDF
representation

Full method

Quantitative (Avg. Chamfer) ↓ 42.3 46.9 75.0 33.1

Figure 6: Ablation study. We demonstrate the contribution of each part of our method. Naïve camera
sampling: running without our camera handling that is described in Sec. 3.4. No SDS loss: using all
losses but the SDS loss. No SDF representation: running with a density function as in [33]. Below,
we quantitatively compare the average Chamfer distance over the evaluated 14 Redwood scans. We
show extended ablations in the appendix.

[56]. While the outputs of SDS-Complete and ShapeFormer are surfaces, PoinTr only outputs a point
cloud. Therefore, we applied Screened Poisson Surface Reconstruction [24] to each output of PoinTr
to base the user study comparisons on surface representations. The participants were instructed
to choose the best shape, while the order of the methods was shuffled for each object. The best
completion method for each input case is selected by the majority vote. The results of the user study
are presented in Table 4, showing that our method got the highest number of wins (14 out of 15).

Quantitative evaluation on KITTY. For a quantitative metric, we followed PCN [57] and calcu-
lated the Minimal Matching Distance (MMD). MMD is the Chamfer Distance (CD) between the
output surface and the surface from ShapeNet that is closest to the input point cloud in terms of CD.
We calculated this metric on the surfaces that were evaluated in our user study from two categories:
car and motorcycle. These are the only categories that have associated Shapenet subsets which is a
necessary condition for calculating the MMD metric. The mean MMD over the motorcycle and car
shapes are presented in Table 4, showing that our approach improves over the baselines.

We further computed the CLIP R-Precision metric [39] on all of our evaluated KITTI categories:
“car”, ”truck” and ”motorcycle”. This metric checks the accuracy of classifying a rendered image
by choosing the class that maximizes the cosine similarity score between the image and the text: “a
rendering of a <class name >” among all classes. We evaluated the output geometries of the different
methods, each rendered from 360 degrees with azimuth gaps of 2 degrees (180 images for each
surface). We report the mean accuracy in Tab. 4. Here again, our approach is substantially better.

4.3 Limitations

As in previous work ([53]), for extracting point clouds from depth images, we need the internal
parameters of the depth camera. Our test time optimization method is slow compared to the feedfor-

Shape PoinTr SDS-Complete
Former (ours)

User-study wins [%]↑ 7.0 0.0 93
Average MMD ↓ 0.036 0.052 0.027
CLIP R-Precision ↑ 0.61 0.43 0.76

Table 4: Quantitative results on
KITTI. User-study wins refer to
the percentage of cases in which a
method was selected by raters as the
best method. Our method outper-
forms the baseline methods in all 3
metrics.

9

Figure 7: Qualitative completion results on the KITTI dataset.

Figure 8: Shorter Training. The Chamfer error when running our method for fewer epochs. For
reference, we also include the (inference time) numbers of the baselines. Left: our convergence on
the table and chair categories. Right: our convergence when considering all 14 Redwood models.

ward baseline methods that were pre-trained on large datasets of 3D shapes. The major factor for
the running time is the SDS-loss which needs many sampling views. The number of training epochs
can be shortened by reducing the number of iterations. In Tab. 8 we show the effect of reducing our
runtime. As we show, our method outperforms the baselines in terms of average accuracy after 5% of
the training time and keeps improving when more training time is given. In the appendix, we show
failure cases of our method and list additional implementation details.

5 Conclusions

We presented SDS-Complete, a novel test time optimization approach for 3D completion using a
text-to-2D pre-trained model. For handling point cloud inputs, we incorporated an SDF representation
and constrained the surface to lie on the input points. We successfully applied the SDS loss on images
rendered from novel views and completed the missing part of the object by aligning the images
with an input textual description. By handling the camera sampling carefully we maintained the
consistency of the completed part with the input captured part. This enabled us to produce superior
results even on previously unconsidered objects for completion. Future work includes improving
running times by combining recent NeRF techniques (e.g. [35]), and supporting scene completion
from incomplete point clouds of multiple objects.

10

6 Acknowledgments

We thank Lior Yariv, Dolev Ofri, Or Perel and Haggai Maron for their insightful comments. We thank
Lior Bracha and Chen Tessler for helping with the user study. This work was funded by a grant to GC
from the Israel Science Foundation (ISF 737/2018), and by an equipment grant to GC and Bar-Ilan
University from the Israel Science Foundation (ISF 2332/18). OR is supported by a PhD fellowship
from Bar-Ilan data science institute (BIU DSI).

References
[1] I. Achituve, H. Maron, and G. Chechik. Self-supervised learning for domain adaptation on point clouds. In

Proceedings of the IEEE/CVF winter conference on applications of computer vision, pages 123–133, 2021.

[2] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas. Learning representations and generative models
for 3d point clouds. In International conference on machine learning, pages 40–49. PMLR, 2018.

[3] E. Aiello, D. Valsesia, and E. Magli. Cross-modal learning for image-guided point cloud shape completion.
Advances in Neural Information Processing Systems, 35:37349–37362, 2022.

[4] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-d point sets. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-9:698–700, 1987.

[5] M. Atzmon and Y. Lipman. Sal: Sign agnostic learning of shapes from raw data. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2020.

[6] Y. Balaji, S. Nah, X. Huang, A. Vahdat, J. Song, Q. Zhang, K. Kreis, M. Aittala, T. Aila, S. Laine,
B. Catanzaro, T. Karras, and M.-Y. Liu. ediff-i: Text-to-image diffusion models with ensemble of expert
denoisers. arXiv preprint arXiv:2211.01324, 2022.

[7] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, J. Gall, and C. Stachniss. Towards 3D LiDAR-
based semantic scene understanding of 3D point cloud sequences: The SemanticKITTI Dataset. The
International Journal on Robotics Research, 40(8-9):959–967, 2021.

[8] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall. Semantickitti: A
dataset for semantic scene understanding of lidar sequences. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 9297–9307, 2019.

[9] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song,
H. Su, et al. Shapenet: An information-rich 3d model repository. arXiv preprint arXiv:1512.03012, 2015.

[10] D. Z. Chen, Y. Siddiqui, H.-Y. Lee, S. Tulyakov, and M. Nießner. Text2tex: Text-driven texture synthesis
via diffusion models. arXiv preprint arXiv:2303.11396, 2023.

[11] Y.-C. Cheng, H.-Y. Lee, S. Tulyakov, A. G. Schwing, and L.-Y. Gui. Sdfusion: Multimodal 3d shape
completion, reconstruction, and generation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4456–4465, 2023.

[12] S. Choi, Q.-Y. Zhou, S. Miller, and V. Koltun. A large dataset of object scans. arXiv preprint
arXiv:1602.02481, 2016.

[13] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3d-r2n2: A unified approach for single and multi-
view 3d object reconstruction. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part VIII 14, pages 628–644. Springer, 2016.

[14] A. Dai, C. Ruizhongtai Qi, and M. Nießner. Shape completion using 3d-encoder-predictor cnns and shape
synthesis. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
5868–5877, 2017.

[15] H. Fan, H. Su, and L. J. Guibas. A point set generation network for 3d object reconstruction from a single
image. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 605–613,
2017.

[16] R. Gal, Y. Alaluf, Y. Atzmon, O. Patashnik, A. H. Bermano, G. Chechik, and D. Cohen-Or. An image is
worth one word: Personalizing text-to-image generation using textual inversion, 2022.

[17] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for Autonomous Driving? The KITTI Vision Benchmark
Suite. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 3354–3361,
2012.

11

[18] A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman. Implicit geometric regularization for learning
shapes. In International Conference on Machine Learning, pages 3789–3799. PMLR, 2020.

[19] C. Häne, S. Tulsiani, and J. Malik. Hierarchical surface prediction for 3d object reconstruction. In 2017
International Conference on 3D Vision (3DV), pages 412–420. IEEE, 2017.

[20] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cambridge university press,
2003.

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[22] D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415, 2016.

[23] A. Jain, B. Mildenhall, J. T. Barron, P. Abbeel, and B. Poole. Zero-shot text-guided object generation with
dream fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 867–876, 2022.

[24] M. Kazhdan and H. Hoppe. Screened poisson surface reconstruction. ACM Transactions on Graphics
(ToG), 32(3):1–13, 2013.

[25] N. M. Khalid, T. Xie, E. Belilovsky, and T. Popa. CLIP-mesh: Generating textured meshes from text using
pretrained image-text models. In SIGGRAPH Asia 2022 Conference Papers. ACM, nov 2022.

[26] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[27] M. Li, Y. Duan, J. Zhou, and J. Lu. Diffusion-sdf: Text-to-shape via voxelized diffusion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12642–12651, 2023.

[28] C.-H. Lin, J. Gao, L. Tang, T. Takikawa, X. Zeng, X. Huang, K. Kreis, S. Fidler, M.-Y. Liu, and T.-Y.
Lin. Magic3d: High-resolution text-to-3d content creation. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2023.

[29] L. Melas-Kyriazi, I. Laina, C. Rupprecht, and A. Vedaldi. Realfusion: 360deg reconstruction of any
object from a single image. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8446–8455, 2023.

[30] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. Occupancy networks: Learning
3d reconstruction in function space. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 4460–4470, 2019.

[31] G. Metzer, E. Richardson, O. Patashnik, R. Giryes, and D. Cohen-Or. Latent-nerf for shape-guided
generation of 3d shapes and textures. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12663–12673, 2023.

[32] O. Michel, R. Bar-On, R. Liu, S. Benaim, and R. Hanocka. Text2mesh: Text-driven neural stylization for
meshes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
13492–13502, 2022.

[33] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf: Representing
scenes as neural radiance fields for view synthesis. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pages 405–421. Springer, 2020.

[34] P. Mittal, Y.-C. Cheng, M. Singh, and S. Tulsiani. Autosdf: Shape priors for 3d completion, reconstruction
and generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 306–315, 2022.

[35] T. Müller, A. Evans, C. Schied, and A. Keller. Instant neural graphics primitives with a multiresolution
hash encoding. ACM Trans. Graph., 41(4):102:1–102:15, July 2022.

[36] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In International
Conference on Machine Learning, pages 8162–8171. PMLR, 2021.

[37] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. Deepsdf: Learning continuous signed
distance functions for shape representation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

12

[38] S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and A. Geiger. Convolutional occupancy networks. In
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part III 16, pages 523–540. Springer, 2020.

[39] B. Poole, A. Jain, J. T. Barron, and B. Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv
preprint arXiv:2209.14988, 2022.

[40] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, et al. Learning transferable visual models from natural language supervision. In International
conference on machine learning, pages 8748–8763. PMLR, 2021.

[41] A. Raj, S. Kaza, B. Poole, M. Niemeyer, N. Ruiz, B. Mildenhall, S. Zada, K. Aberman, M. Rubinstein,
J. Barron, et al. Dreambooth3d: Subject-driven text-to-3d generation. arXiv preprint arXiv:2303.13508,
2023.

[42] E. Richardson, G. Metzer, Y. Alaluf, R. Giryes, and D. Cohen-Or. Texture: Text-guided texturing of 3d
shapes. arXiv preprint arXiv:2302.01721, 2023.

[43] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with
latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022.

[44] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gontijo Lopes,
B. Karagol Ayan, T. Salimans, J. Ho, D. J. Fleet, and M. Norouzi. Photorealistic text-to-image diffusion
models with deep language understanding. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages 36479–36494.
Curran Associates, Inc., 2022.

[45] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502,
2020.

[46] D. Stutz and A. Geiger. Learning 3d shape completion under weak supervision. International Journal of
Computer Vision, 128(5):1162–1181, oct 2018.

[47] J. Tang. Stable-dreamfusion: Text-to-3d with stable-diffusion, 2022. https://github.com/ashawkey/stable-
dreamfusion.

[48] J. Tang, T. Wang, B. Zhang, T. Zhang, R. Yi, L. Ma, and D. Chen. Make-it-3d: High-fidelity 3d creation
from a single image with diffusion prior. arXiv preprint arXiv:2303.14184, 2023.

[49] F. Williams, Z. Gojcic, S. Khamis, D. Zorin, J. Bruna, S. Fidler, and O. Litany. Neural fields as learnable
kernels for 3d reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 18500–18510, June 2022.

[50] R. Wu, X. Chen, Y. Zhuang, and B. Chen. Multimodal shape completion via conditional generative
adversarial networks. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part IV 16, pages 281–296. Springer, 2020.

[51] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3d shapenets: A deep representation for
volumetric shapes. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1912–1920, 2015.

[52] P. Xiang, X. Wen, Y.-S. Liu, Y.-P. Cao, P. Wan, W. Zheng, and Z. Han. Snowflakenet: Point cloud
completion by snowflake point deconvolution with skip-transformer. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 5499–5509, 2021.

[53] X. Yan, L. Lin, N. J. Mitra, D. Lischinski, D. Cohen-Or, and H. Huang. Shapeformer: Transformer-based
shape completion via sparse representation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6239–6249, 2022.

[54] Y. Yang, C. Feng, Y. Shen, and D. Tian. Foldingnet: Interpretable unsupervised learning on 3d point clouds.
arXiv preprint arXiv:1712.07262, 2(3):5, 2017.

[55] L. Yariv, J. Gu, Y. Kasten, and Y. Lipman. Volume rendering of neural implicit surfaces. Advances in
Neural Information Processing Systems, 34:4805–4815, 2021.

[56] X. Yu, Y. Rao, Z. Wang, Z. Liu, J. Lu, and J. Zhou. Pointr: Diverse point cloud completion with geometry-
aware transformers. In Proceedings of the IEEE/CVF international conference on computer vision, pages
12498–12507, 2021.

13

[57] W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert. Pcn: Point completion network. In 2018 international
conference on 3D vision (3DV), pages 728–737. IEEE, 2018.

[58] J. Zhang, X. Chen, Z. Cai, L. Pan, H. Zhao, S. Yi, C. K. Yeo, B. Dai, and C. C. Loy. Unsupervised 3d
shape completion through gan inversion. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1768–1777, 2021.

14

A Implementation Details

Running Time We run our method for 2000 epochs, where each epoch uses 100 iterations. That
takes about 1950 and 1380 minutes for Redwood and KITTI scans respectively. The optimization
time for our simplified model takes about 1256 and 924 minutes for Redwood and KITTI scans
respectively. All times are measured when running our method on NVIDIA RTX A6000. We note
that many scans need much fewer iterations for converging (see Fig. 8), but to complete the fine
details, e.g. the chair’s legs, many iterations are needed.

Network Architecture For our optimized coloring function cφ, we use 4 linear layers with 96
channels, where the two intermediate ones are incorporated in ResNet [21] blocks, as implemented
by [47], with SiLU activations [22]. For the SDF network fθ, we use 4 linear layers with 96 channels
and ReLU activations. fθ is initialized to a sphere [5] with radius lengths of 0.5 and 0.9 for Redwood
and KITTI scans respectively. For both, cφ and fθ we use Positional Encoding with 6 levels [33].
For extracting density from fθ (Equations (12) and (13)) we use α = 100, β = 10−3.

SDS-loss Implementation Details We base our code on the implementation of [47]. During
training, for each iteration, we randomly sample a background color, to prevent the model from
"changing" the geometry by just coloring it with the background color. For Redwood cases, we render
80× 80 images for the SDS-loss using the sampled camera and the known internal parameters of the
sensor. For KITTI, at initialization time we first project the object’s LiDAR points to a 2D spherical
projection [8], with height and width of 64 and 1024 pixels respectively. We use the projected 2D
mask to select the 2D bounding box area of 64 pixels height, where the width is determined by the
min and max horizontal coordinates of the object ±5 pixels. The LiDAR rays that define this selected
bounding box are used to render the object during training, where a novel camera pose is defined by
rotating these rays around the object’s centroid. As a text-to-image diffusion model we use Stable
Diffusion v2 [43].

Training Details We optimize the networks using the Adam optimizer [26] with a learning rate
10−4. The coefficients for our loss for all the experiments are δm = 105, δd = 105, δp = 105,
δeikonal = 104, δplane = 105. At each iteration we sample 1000 uniform points for Lplane and
Leikonal. For Lm,Ld, at each iteration, we randomly sample 2000 pixels for Redwood cases, whereas
for KITTI, we render the entire bounding box.

Camera Sampling As described in Sec.3.4, during training, we start by applying the SDS loss
on the rendered image from C0 pose, and then we gradually increase the sampling range of the
deviation angles until the entire object is covered. In more detail, we gradually increase the sampling
range of the azimuth angles: γazimuth ∼ U(−ν, ν), starting from ν = 0 to ν = 180. Specifically,
we set ν = 30, 45, 60, 90, 180 at epochs 20, 50, 80, 100, 120 respectively. γelevation is set to 0 for 20
epochs and then uniformly sampled according to: γelevation ∼ U(−ξ0, 0) for Redwood scans, where
ξ0 is the elevation of C0 from the plane l in degrees. For KITTI scans (after epoch 20) we use
γelevation ∼ U(−ξ0, ξ0) since the original viewpoint is usually low, and we also scale the distance
from the source to the object uniformly by ∼ U(1, 2) after epoch 20. As in [39], we augment the
input text according to the viewing direction, with a text that describes the viewpoint orientation.
Specifically, as in [47] we use "*, front view", "*, side view", "*, back view", "*, overhead view"
and "*, bottom view", where * denotes the input text. Unlike [39], the orientation of the object is
determined by the input points. Therefore, we use an extra input from the user of γ0azimuth , which
explains the original viewpoint, e.g. γ0azimuth = 90 if the object is viewed from the side. Then, during
training, we use γ0azimuth and γazimuth to calculate the azimuth with respect to the object, and γelevation to
compute the elevation with respect to the plane l. These orientations are used to augment the text with
the corresponding view direction description. In our simplified version ("SDS-Complete Simple") we
omit the text augmentation and hence we do not need this extra input from the user of γ0azimuth .

Object Centralization Given the input points we centralize them at the origin. This is done in
general by subtracting their center of mass. When the object’s largest dimension is aligned with the
viewing axis, the center of mass is usually biased toward the camera. To handle this, we extract an
oriented 3D bounding box for the input points and measure the ratio between the largest distance to
the smallest distance from the center of mass to any bounding box point. If this ratio is above 1.7 we

15

use the bounding box center as our centroid instead of using the center of mass. In the KITTI dataset,
which mostly includes non-isotropic objects, we always use the bounding box center as our centroid.
We then scale the points such that the largest point norm is 0.5.

Baseline Runnings For running the baseline methods, we tried to locate the input points as much
as possible according to the method’s expectations to prevent them from failing. This includes using
our knowledge about the world plane l and the object orientation with respect to the camera γ0azimuth .
For ShapeFormer, each time we took the best shape out of the 5 that it outputs.

Data Processing For the Redwood dataset, we segmented out the foreground object manually. For
the evaluation only, as a preprocessing, we manually aligned the GT scan with the partial point cloud
and applied ICP for refinement [4]. Each KITTI scan that we used, is the aggregation of 5 timestamps.
The segmentation map for KITTI is given by [8]. For both, KITTI and Redwood datasets and for
each scan, the plane l is segmented out from the original point cloud using RANSAC [20].

B Preliminaries

B.1 Volume Rendering

Neural Radiance Field A neural radiance field [33] is a pair of two functions: σ : R3 → R+ and
c : (R3,S2) → R3, each represented by a Multilayer Perceptron (MLP). The function σ maps a 3D
point x ∈ R3 into a density value, and the function c maps a 3D point x and a view direction v ∈ S2
into an RGB color. A neural radiance field can represent the geometric and appearance properties of
a 3D object and is used as a differentiable renderer of 2D images from the 3D scene. Let I be an
image with a camera center t ∈ R3, the pixel coordinate u = (u, v)T ∈ R2 is backprojected into a
3D ray ru, starting at t and going through the pixel u with a direction v ∈ S2. Let µ1, µ2, . . . , µNr

be sample distances from t on the ray ru, then the densities and colors of the radiance field are alpha
composited from the camera center through the ray. The RGB image color I(u, v) is calculated by:

I(u, v) =

Nr∑
i=1

wic(t+ µiv,v) (8)

where wi = αi

∏
j<i(1− αj) is the color contribution of the ith segment to the rendered pixel, and

αi = 1− exp (−σ(t+ µiv)(µi+1 − µi)) is the opacity of segment i. Eq. (8) is differentiable with
respect to the learned parameters of c and σ and therefore, is used to train the neural radiance field.
Let Ī be the ground truth image, then the MSE loss is used to train the neural radiance field:

LMSE =
1

n

n∑
i=1

∥∥I(ui)− Ī(ui)
∥∥2 (9)

where n is the number of pixels in the batch.

Volume Rendering of Neural Implicit Surfaces While the neural radiance field shows impressive
performances in synthesizing novel views, extracting object geometries from a trained radiance field
is not trivial. Defining the surface by simply thresholding the density σ results in noisy and inaccurate
geometry. We adopt the solution proposed by [55]. Let Ω ⊂ R3 be the space occupied by the object,
and M denotes the boundary of the surface. Then the SDF f : R3 → R is defined by

f(x) = (−1)1Ω(x) min
y∈M

∥x− y∥ (10)

where 1Ω(x) =

{
1 x ∈ Ω

0 otherwise
. Given f , the surface M is defined by its zero level set, i.e.

M = {x ∈ R3 : f(x) = 0} (11)

A signed distance function can be utilized for defining a neural radiance field density. Let x ∈ R3

and f : R3 → R be a 3D point and an SDF respectively, the density σ(x) is defined by:

σ(x) = αΨβ(−f(x)) (12)

16

where Ψβ(s) is the Cumulative Distribution Function (CDF) of the Laplace distribution with zero
mean and β scale:

Ψβ(s) =


1
2exp

(
s
β

)
s ≤ 0

1− 1
2exp

(
− s

β

)
s > 0

(13)

and α and β are parameters that can be learned during training (in our case, we set them to be
constant). It is then possible to train a neural radiance field, defined by the SDF f and the neural
color function c, using the loss function defined by Eq. (9).

B.2 Score Distillation Sampling (SDS)

Diffusion Models A diffusion model [36, 45, 43] generates image samples from a Gaussian
noise image, by inverting the process of gradually adding noise to an image. This process is
defined as follows: at time t = 1, . . . , T , a Gaussian noise ϵ ∼ N (0, I) is added to the image:
It =

√
ᾱtI +

√
1− ᾱtϵ, where ᾱt =

∏t
i=1 αi, αt = 1− βt and βt ∈ (0, 1) defines the amount of

added noise. A denoising neural network ϵ̂ = Φ(It; t) is trained to predict the added noise ϵ̂ given
the noisy image It and the noise level t. The diffusion models are trained on large image collections
C for minimizing the loss

LD = E
I∈C

[∥∥Φ(√ᾱtI +
√
1− ᾱtϵ; t)− ϵ

∥∥2] (14)

Given a pretrained Φ, an image sample is generated by sampling a Gaussian noise image IT ∼ N (0, I)
and gradually denoising it using Φ.

Diffusion models can be extended to be conditioned on additional inputs. Text-to-image diffusion
models [43] condition Φ on a textual prompt embedding input y, and train Φ(It; t, y). Therefore,
they can generate images given text and random Gaussian noise.

DreamFusion[39] uses a pretrained, and fixed, text condition diffusion model Φ(It; t, y) and uses it
to train a NeRF model from scratch, given a textural description embedding y0. In each iteration, a
camera view is sampled and used to render an image I0 from the NeRF model. I0 is differentiable
with respect to the learned parameters of the NeRF model (θNeRF), and used as an input to Φ(I0; t, y).
The Score Distillation Sampling (SDS) loss is then applied:

∇θNeRFLSDS(I0) = Et,ϵ

[
(w(t)Φ(

√
ᾱtI0 +

√
1− ᾱtϵ; t, y0)− ϵ)∇θNeRFI0

]
(15)

Note that ∇θNeRFLSDS is the gradient with respect to θNeRF of Eq. (14), where the Jacobian of Φ is
omitted for stability and efficiency. Intuitively, if I0 looks like a natural image, and is compatible
with y0, then the pretrained diffusion model predicts the added noise successfully, resulting in low
values for LD. By updating the NeRF’s weights according to Eq. (15), LD is reduced, and as a result,
the rendered images become more compatible with y0.

C Limitations Examples

(a) (b) (c) (d)

Figure 9: Failure cases of our method. (a),(b) Input points and surface completion respectively, for
Redwood scan "05492" (standing sign). (c),(d) Input points and surface completion respectively for
Redwood scan "01373" (picnic table).

17

Input points +
Output surface

Input Points Rendered
Image (low-res)

Figure 10: Intermittent patterns in the legs of the chair. The supervision signal for the legs,
coming from the thin lines of input points (left) is not enough for reconstructing the chair’s legs
correctly (middle). The SDS loss sees valid rendered images in this case and therefore does not fix it
(right).

Failure Cases Fig. 9 shows failure examples. In general, our method does not reconstruct well thin
surfaces. We hypothesize that the initialization of the SDF to sphere [5], prevents the model from
minimizing the occluded part at early training stages. Then, the SDS loss usually tries to paint this
redundant content according to the text prompt, instead of removing it. Different initializations to the
SDF, or other regularizations, need to be explored and left as future work.

Intermittent patterns Fig. 10 demonstrates a case where the thin structure of the input points is
too weak to constrain the surface of the outside chair. Unfortunately, the SDS loss does not help
in making the surface thicker since the rendering of the thin surface looks valid. This is due to
our rendering process that uses VOLSDF which defines a smooth mapping from surface to density
(Equation (12)), and since the entire leg has SDF values that are close to 0, the legs get densities that
produce valid low-resolution renderings.

D Additional Results
Reconstruction with incorrect prompts. We further check the sensitivity of our method to wrong
text prompts. Specifically, we used the text: "A table" for a chair, and the text "A chair" for a table.
The visualizations are presented in Fig. 11.

Supplementary Redwood Results Qualitative results for table and chairs categories from the
Redwood dataset are presented in Fig. 14. Additional qualitative comparisons for other objects from
the Redwood dataset are presented in Fig.12. We can see that our method completes the shapes better
than the baselines.

We applied our method to additional Redwood cases of various object types with no available ground
truth. Qualitative results, including RGB renderings, are shown in Fig. 13.

Video Results We attach to the supplementary folder, 360o video visualizations of our reconstructed
objects for both, KITTI and Redwood datasets.

Extended Ablation We show an extended ablation study in Tab. 5 that shows a quantitative
evaluation of the importance of the depth and mask losses. We further show separate numbers for the
table and chair categories and the rest of the categories.

Reduced input points We tested our "Full" method on the Redwood dataset with 50% and 10%
of the original input points, on the evaluation set from the Redwood dataset. The locations of the
removed points were selected randomly. We found that there is no significant difference in the results
(up to 1.5 mm difference in terms of average Chamfer distance) when excluding the "Bench" case.
For the "Bench" case there is no significant difference when using 50% of the points, but when using
10% of the points we see that the Chamfer distance increases from 55.4 to 149. These results indicate
that in general, our method is robust to the number of input points.

18

“A chair” “A one leg
square table”

“A table” ”An outside
chair”

“A table”

Input points

”An old chair”

Incorrect text Correct text

Figure 11: The effect of incorrect textual
descriptions. Each row corresponds to a
different object. Left: The partial scans
that are given as input to our model. Mid-
dle: Completion performed using incor-
rect text descriptions. Right: the com-
pletion results of our method with our
final text prompts. In the first two rows,
the completion is inferior when given the
wrong text. In the bottom row, even with
an incorrect text ("A table") the model
still completes the chair correctly. This
is because the input provides strong con-
straints. To make the shape more similar
to a table, the method still needs to recon-
struct the missing leg.

Figure 12: Additional qualitative comparisons on the Redwood dataset.

19

Naïve camera sampling No SDS No SDF No Depth No Mask Full

Redwood T & C 36.6 44.0 59.9 28.0 58.0 21.5
Redwood general 44.6 48.1 81.0 45.1 99.1 37.8
Redwood all 42.3 46.9 75.0 40.2 87.4 33.1

Table 5: An ablation study for demonstrating the contribution of each part of our method. Naïve
camera sampling: running without our camera handling that is described in Sec. 3.4. No SDS loss:
using all losses but the SDS loss. No SDF representation: running with a density function as in
[34]. No Depth: using all losses but the Depth loss. No Mask: using all losses but the Mask loss.
The 3 rows present the average numbers for the table and chair categories (Redwood T & C), for all
categories except table and chairs (Redwood general), and for the complete evaluation set (Redwood
All).

Figure 13: Qualitative outputs of our method, when applied on Redwood cases with no available
360o GT scans for quantitative comparison. The figure is arranged as 2 columns of different objects,
where for each object we show (from left to right): the input point cloud, the completed surface, the
completed surface together with the input points, and image rendering of our optimized coloring
function c.

20

Input GT Ours ShapeFormer Sinv cGAN PoinTr__

Figure 14: Qualitative results for the table and chair categories from the Redwood dataset. Red
represents methods that output point clouds.

21

	Introduction
	Related work
	Method
	Problem Setup
	Overview of the Optimization Process
	Training Losses
	Handling Camera Positions

	Experiments
	Results on the Redwood dataset
	Results on the KITTI Dataset
	Limitations

	Conclusions
	Acknowledgments
	Implementation Details
	Preliminaries
	Volume Rendering
	Score Distillation Sampling (SDS)

	Limitations Examples
	Additional Results

