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Abstract
There exist complex patterns behind the decision-
making processes of different individuals across
different environments. For instance, in a social
recommender system, various user behaviors are
driven by highly entangled latent factors from
two environments, i.e., consuming environment
where users consume items and social environ-
ment where users connect with each other. Un-
covering the disentanglement of these latent fac-
tors for users can benefit in enhanced explain-
ability and controllability for recommendation.
However, in literature there has been no work on
social recommendation capable of disentangling
user representations across consuming and social
environments. To solve this problem, we study co-
disentangled representation learning across differ-
ent environments via proposing the curriculum co-
disentangled representation learning (CurCoDis)
model to disentangle the hidden factors for users
across both consuming and social environments.
To co-disentangle joint representations for user-
item consumption and user-user social graph si-
multaneously, we partition the social graph into
equal-size sub-graphs with minimum number of
edges being cut, and design a curriculum weigh-
ing strategy for subgraph training through mea-
suring the complexity of subgraphs via Descartes’
rule of signs. We further develop the prototype-
routing optimization mechanism, which achieves
co-disentanglement of user representations across
consuming and social environments. Extensive
experiments for social recommendation demon-
strate that our proposed CurCoDis model can sig-
nificantly outperform state-of-the-art methods on
several real-world datasets.
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1. Introduction
Human behaviors may demonstrate complex and diverse
patterns in different environments. Taking social recom-
mender systems as an example (Fan et al., 2019; Wang et al.,
2019; Wu et al., 2019), there exist a consuming environ-
ment where users consume items and a social environment
where user form social connections with each other. The
decision-making processes of each individual across these
environments follow complex patterns, driven by highly
entangled hidden factors that govern the formations of con-
suming interactions with items, social connections among
users, and their mutual influences. Disentangling and un-
covering these entangled latent factors for users when learn-
ing representations for social recommendation can bring
more explainability and controllability in the representa-
tions, thereby boosting the model performance.

However, learning disentangled representation across con-
suming and social environment simultaneously for so-
cial recommendation remains largely unexplored in liter-
ature. On the one hand, existing social recommendation
approaches learn representations in various manners with-
out disentangling the latent factors across different environ-
ments. As a result, these works learn representations in an
entangled way, failing to discover the latent explanatory fac-
tors hidden in the observed data. On the other hand, existing
works on disentangled representation learning for recom-
mendation do not consider the influence from social environ-
ment, ignoring the complex relations between consuming
interactions and social connections of different individuals.
This being the case, the existing literature fails to uncover
the mixed explanatory latent factors across consuming envi-
ronment and social environment.

In this work, we study the problem of co-disentangled repre-
sentation learning across multiple environments, particularly
for social recommendation with consuming environment
and social environment. Nevertheless, learning disentangled
representations for users across consuming and social envi-
ronments is fundamentally different from existing settings
within a single consuming environment, and thus poses two
challenges. First, in addition to the user-item consump-
tion which captures user consuming interactions with items,
social recommendation normally employs a massive user-
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user graph to model the social connections among users,
requiring us to learn joint disentangled representations for
users across both the consuming environment and social
environment efficiently. Second, people may demonstrate
complex and diverse behavioral patterns in consuming and
social environments, which makes it challenging to learn
adequate disentangled representations capable of captur-
ing consuming interactions as well as social connections
simultaneously.

To tackle the challenges, in this paper we propose the
Curriculum Co-Disentangled representation learning (Cur-
CoDis) model to disentangle and uncover the hidden ex-
planatory factors for users across consuming and social
environments. To solve the first challenge, we present the
curriculum subgraph training strategy which helps to co-
disentangle the joint representations for user-item consump-
tion and user-user social graph. In concrete, we first par-
tition the social graph into several equal-size sub-graphs
with minimum number of edges being cut by resorting to
the Kernighan-Lin algorithm. To further boost the repre-
sentation learning procedure, we then design a curriculum
subgraph weighing algorithm based on measuring the com-
plexity of graphs through Descartes’ rule of signs, such
that the subgraphs can be better utilized from a dynamic
easy-to-hard order. To solve the second challenge, we de-
velop a prototype-routing optimization mechanism which
achieves co-disentanglement by jointly optimizing the proto-
type learning process in consuming environment and social
dynamic routing process in social environment. In particu-
lar, the prototype-routing optimization mechanism identifies
explanatory latent factors reflecting user preferences in the
consuming environment through a prototype-based concept
assigning process with information-theoretic regularization,
which initializes the iterative routing process of appropriate
neighbor selection in the social environment whose results
will in turn be utilized to reconstruct the user-item interac-
tions in the consuming environment.

We theoretically analyze the convergence properties of the
prototype-routing optimization mechanism and prove its
connection with probabilistic inference under a Gaussian
Mixture initialization. Extensive experiments on various
real-world datasets demonstrate that our proposed CurCoDis
model is able to achieve significant performance gains, up
to 18.7%, against state-of-the-art approaches.

The main contributions are summarized as follows:

• We study the problem of co-disentangled representa-
tion learning with application to social recommenda-
tion to uncover the hidden explanatory factors across
consuming and social environments.

• We propose the curriculum subgraph training strat-
egy and prototype-routing optimization mechanism to
achieve the co-disentanglement of user representations

in an end-to-end manner.
• We theoretically analyze the convergence properties of

social dynamic routing optimization mechanism and
experimentally show the advantages of co-disentangled
representation learning across different environments.

2. Related Work

Disentangled Representation Learning Disentangled rep-
resentation learning (Wang et al., 2022a), which aims to
produce robust, controllable, and explainable representa-
tions, has become one of the core problems in machine
learning. Variational methods are widely applied for dis-
entangled representation over images and texts (Kingma &
Welling, 2013; Higgins et al., 2017; Kim & Mnih, 2018; He
et al., 2017; Jain et al., 2018), followed by further improve-
ment through weakly supervised models (Locatello et al.,
2019; Kingma et al., 2014; Feng et al., 2018), as well as the
recent combination with the diffusion model (Chen et al.,
2023). Moreover, with the popularity of graph neural net-
works (GNN), (Ma et al., 2019a; Li et al., 2021; 2022) apply
the idea of disentanglement in training graph convolutional
networks. They later learn disentangled representations for
users in recommendation (Ma et al., 2019b; 2020; Wang
et al., 2022b; Zhang et al., 2023) and handle both textual and
visual data for multimodal recommendation (Wang et al.,
2021a), which however are only able to handle data from
the consuming environment.

Curriculum Learning Curriculum learning (CL) (Bengio
et al., 2009; Wang et al., 2021b) is a strategy of training from
ease, imitating the procedure of human learning with curric-
ula. The simplest algorithm is named Baby Step (Spitkovsky
et al., 2010), which determines the difficulty and input order
of data. Later the Self-Paced method (Kumar et al., 2010) is
proposed to select data samples automatically according to
the training loss. Besides, there are Transfer Teacher (Haco-
hen & Weinshall, 2019; Weinshall et al., 2018), Reinforce-
ment Learning Teacher (Graves et al., 2017; Zhao et al.,
2020), and other automatic CL frameworks based on the
specific data, model and task (Castells et al., 2020; Sinha
et al., 2020), as well as the combination with disentangled
recommendation (Chen et al., 2021), combinational opti-
mization (Zhang et al., 2022), neural architecture (Zhou
et al., 2022) and video grounding (Lan et al., 2023). The key
parts of CL are a difficulty measurer to judge the difficulty
of data samples and a training scheduler to decide the input
sequence or weights of data subsets.

Social Recommendation In addition to consuming environ-
ment, social recommendation assumes that users are addi-
tionally connected within a social environment, resulting in
their preferences being determined jointly across consuming
and social environments. This motivates research works on
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social recommendation (Ma et al., 2009; Jamali & Ester,
2010; Ma et al., 2011; Yang et al., 2011; Ye et al., 2012;
Yang et al., 2016; Purushotham et al., 2012; Qian et al.,
2014; Zhao et al., 2014; 2016; Wang et al., 2016; 2017a;b;
Wu et al., 2018; Gonzalez Camacho & Alves-Souza, 2018;
Cui et al., 2018; Chen et al., 2018; Zhang et al., 2018).
However, existing literature ignores disentangling the latent
factors across consuming and social environments.

3. Curriculum Co-disentangled
Representation Learning

We first give a brief introduction on the problem defini-
tion, followed by details on the two core components of
CurCoDis: i) curriculum subgraph training strategy and ii)
prototype-routing optimization mechanism.

3.1. Problem Definition

Given a user behavior datasetD across consuming and social
environments, which consists of the consuming interactions
between N users and M items, as well as social connections
among these N users. The consuming interaction between
user u and item i is denoted by xu,i ∈ {0, 1}, where xu,i = 1

indicates that user u consumes item i, whereas xu,i = 0

means u has not consumed i yet. We denote xu = {xu,i :

xu,i = 1} as the set of items consumed by user u. The social
connections between user u and v can be modeled with a
graph structure G = (V,E) which contains a set of nodes
V and a set of edges E. (u, v) ∈ G, or (u, v) ∈ E indicates
the existence of an edge between node (i.e., user) u and v,
where user u ∈ V is associated with a feature zu. We denote
Θ as the set of trainable parameters for the proposed model.
Our goal is to learn representations {zu}Nu=1 for the N users,
such that {zu}Nu=1 can achieve co-disentanglement across
both consuming and social environments.

3.2. Curriculum Subgraph Training

During the learning process of zu, calculating social propa-
gations from G is computationally expensive for large social
graphs. This requires us to discover a solution capable of
handling consuming interactions and social connections in
a memory-friendly manner. We begin with the most natural
way, i.e., partitioning the social graph into sub-graphs.

Subgraph Partition Partition through randomly sampling
nodes from the whole graph to form several disjoint sub-
graphs seems to be an adequate solution. However, this
method may induce a large number of edges that connect dif-
ferent subgraphs to be cut and removed during the partition-
ing process, losing necessary information from the social
environment. Therefore, we assign dynamic weights to the
edges and adopt the Kernighan–Lin algorithm (Kernighan
& Lin, 1970) to equally and stochastically partition the edge

set E of the social graph G, such that every subgraph will be
of equal size with minimum sum of weights of edges being
cut and removed. Specifically, the weights of edges which
has been cut will be gradually increased, making it more
favorable to be chosen in future training. So ideally every
edge in the social graph will be sufficiently learned.

For each user u in the subgraphs, if the number of her con-
nections, |Nu| is larger than the preset threshold T , then
we randomly select T out of the |Nu| connections for con-
sideration when calculating her representation zu. During
training, we fit each batch with one subgraph so that every
social connection carried in the subgraphs will be explored
in each training epoch.

Curriculum Weighing for Subgraph Training The par-
tition of social graph naturally raises a new question, i.e.,
what is the importance of different subgraphs for the model
to achieve the best performance? We propose the curriculum
subgraph training strategy, a solution based on curriculum
learning (Bengio et al., 2009; Wang et al., 2021b), through
measuring the complexities of subgraphs given the intuition
that graph complexity may strongly correlate with the dif-
ficulty of graph analysis. The assumption from curriculum
learning is that easier subgraphs may be more important
for the model during early training stage, and those more
difficult subgraphs will gradually become important when
the model gets well-trained on the easy subgraphs.

Although there have been quite a few approaches to measure
the complexities of graphs (Rabinovich & Forschungsge-
biet, 2008), most of them involve complicated computations
such as tree-width. Our proposed measurement employs
an effective approach which measures the difficulty of a
graph through utilizing the degrees of each node to form
polynomials. We first define:

PG = akx
k + · · ·+ a2x

2 + a1x+ a0, P ∗
G = α− PG, (1)

where k = maxdeg(u) denotes the maximum node degree,
ak represents the number of nodes with degree k, and α is
the parameter used to adjust the zeros of the polynomials.
More specific, according to Descartes’s Rule of Signs, P ∗

G

has a unique, positive zero δ if α satisfies the following
conditions:

P ∗
G(0) = α− a0 > 0, P ∗

G(1) = α−
k∑

i=0

ai < 0, (2)

which constrains δ ∈ (0, 1). Given the validated relevance
between δ and the edge density |E|

|V |2−|V | of G (Dehmer et al.,
2019), there exists a positive correlation between δ and the
true complexity of G. Based on this conclusion, we define
the difficulty of graph G as D(G) = δ, i.e., larger δ indicates
higher level of complexity in G, thus increasing its difficulty.

With the partitioned subgraphs and their difficulties, the
proposed curriculum subgraph training strategy is capable
of discovering the dynamic importance of different sub-
graphs in different training epochs, which enables the model
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Algorithm 1 Curriculum Subgraph Weighing
1: Input: CurriculumEpoch, λ;

Subgraphs SG = {SG1, SG2, · · · , SGg};
Subgraph difficulties ∆ = {δSG1 , δSG2 , · · · , δSGg};

2: Output: Subgraph weightsW;

3: function CURRICULUMSCHEDULER(epoch)
4: return min

{
1, λ+ (1−λ)∗epoch

CurriculumEpoch

}
5: W ← {wSG1 , wSG2 , · · · , wSGg}

▷ wSGj is the importance weight for subgraph SGj .
6: Λ← CURRICULUMSCHEDULER(epoch)
7: for SGj ∈ SG do
8: if δSGj ≤ Λ then
9: wSGj ← 1

10: else
11: wSGj ← 1− δSGj

to focus more on easier subgraphs during early training
stages and then gradually learn from those more difficult
subgraphs. Algorithm 1 shows the details of our curricu-
lum subgraph weighing algorithm. During each of the
first CurriculumEpoch epochs, we dynamically calculate
the importance weight wSGj of each subgraph SGj based
on its difficulty δSGj , and gradually increase the impor-
tance weight for more difficult subgraphs as the number
of epochs increase. When the number of epochs exceeds
CurriculumEpoch, all the subgraphs will have equal im-
portance weights.

3.3. Co-disentangled Representation Learning

In this section, we in detail discuss the prototype-routing op-
timization mechanism capable of learning co-disentangled
representations. Figure 1 shows the overall framework.

3.3.1. PROTOTYPE LEARNING AND ENCODING IN
CONSUMING ENVIRONMENT

In consuming environment, we have user consuming in-
teractions xu for each user u belonging to a subgraph
SGj after the subgraph partition and curriculum sub-
graph weighing. We achieve disentanglement through
learning a factorized representation of user u, i.e., zu =

[z
(1)
u ; z

(2)
u ; · · · ; z(k)u ; · · · ; z(K)

u ] ∈ Rd·K , assuming that there
are K prototypes indicating K different concepts. In Fig-
ure 1, Prototype with Features represents the feature center
or anchor of all items belonging to this prototype. The
kth component z(k)u ∈ Rd is expected to capture user pref-
erence over the kth concept. We design one-hot proto-
type assignment C = {ci}Mi=1 for all the items, where
ci = [ci,1; ci,2; · · · ; ci,K ]. If item i belongs to concept k,
then ci,k = 1 and ci,k′ = 0 for any k′ ̸= k. For example,
Figure 1 illustrates that item 3, 4 and 8 belong to the blue
prototype. We learn user representations {zu}Nu=1 and pro-
totypes C jointly in an unsupervised manner.

For a user u, we assume that her consuming interactions with
items xu can be generated from the following distribution:

pΘ(xu) = EpΘ(C)

[∫
pΘ (xu | zu,C) pΘ(zu) dzu

]
,

pΘ (xu | zu,C) =
∏

xu,i∈xu

pΘ(xu,i | zu,C),

pΘ(xu,i | zu,C) = Z−1
u ·

K∑
k=1

ci,k · g(i)Θ (z(k)u ),

Zu =

M∑
i=1

K∑
k=1

ci,k · M(i)
Θ (z(k)u ), pΘ(zu) = pΘ(zu | C), (3)

where gΘ : Rd → R+ is a shallow neural network that
estimates how much a user with given preference is inter-
ested in item i, and M(i)

Θ (z
(k)
u ) : Rd → R1 is a nonlinear

mapping function predicting the preference of user u over
item i in terms of concept k. To optimize Θ, we follow the
VAE literature (Kingma & Welling, 2013; Rezende et al.,
2014) and maximize a lower bound of

∑
u ln pΘ(xu) based

on the following property.
Property 1. ln pΘ(xu) is bounded as follows:

ln pΘ(xu) ≥EpΘ(C)

[
EqΘ(zu|xu,C)

[
ln pΘ(xu | zu,C)

]
−DKL

(
qΘ(zu | xu,C)∥pΘ(zu)

)]
. (4)

See the Appendix for the proof.

Property 1 introduces a variational distribution qΘ(zu |
xu,C), as well as two expectations, EpΘ(C)[·] and
EqΘ(zu|xu,C)[·], which are intractable. Therefore, Gumbel-
Softmax (Jang et al., 2017; Maddison et al., 2017) and
Gaussian re-parameterization (Kingma & Welling, 2013)
are employed during the training process, upon which
qΘ(zu | xu,C) will be an approximation of the intractable
posterior distribution pΘ(zu | xu,C).

We further strengthen the disentanglement in zu through
promoting statistical independence among its dimensions,

qΘ(z
(k)
u | C) ≈

d∏
j=1

qΘ(z
(k)
u,j | C),

qΘ(zu | C) =

∫
qΘ(zu | xu,C)pdata(xu) dxu. (5)

Property 2 shows that the Kullback–Leibler (KL) divergence
term in Property 1 can encourage the desired independence.

Property 2. A reformulation of KL term in Eq. (4):

Epdata(xu) [DKL(qΘ(zu | xu,C)∥pΘ(zu))]
=Iq(xu; zu) +DKL(qΘ(zu | C)∥pΘ(zu)). (6)

See the Appendix for the proof.

On the one hand, requiring Iq(xu; zu) in Eq. (6), the mu-
tual information between xu and zu under qΘ(zu | xu,C) ·
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Figure 1. The overall framework of prototype-routing optimization mechanism.

pdata(xu), can be regarded as applying the information bot-
tleneck theory (Tishby et al., 2000; Alemi et al., 2015) to
forces zu maintaining the most important information as
much as possible. On the other hand, given a prior satisfy-
ing pΘ(zu) =

∏d′

j=1 pΘ(zu,j), it will be possible to encourage
independence among the dimensions of zu through empha-
sizing DKL in Eq. (6). Thus we follow the common practice
as β-VAE (Higgins et al., 2017) to penalize Eq. (6) by a
factor of β ≫ 1, resulting in the following objective:

EpΘ(C)

[
EqΘ(zu|xu,C)

[
ln pΘ(xu | zu,C)

]
−β ·DKL

(
qΘ(zu | xu,C)∥pΘ(zu)

)]
. (7)

3.3.2. SOCIAL DYNAMIC ROUTING IN SOCIAL
ENVIRONMENT

In the social environment, we will have a set of subgraphs
SG = {SG1, SG2, . . . , SGg} after the curriculum subgraph
partition process. The social subgraph SGj = (SVj , SEj)

captures the social interactions between user u ∈ SVj and
v ∈ SVj , each of which is associated with a representation,
i.e., zu and zv respectively.

In the literature (Shuman et al., 2013), the most popular
strategy for calculating node representations within a graph
structure is to aggregate information from their neighbor-
hoods. Following this common practice, we next elaborate
our social dynamic routing process which co-disentangles
user representations within social environment by enrich-
ing and enforcing the disentangled representations from
consuming environment. The key element of our routing
process relies on a nonlinear function ϕ(·) that outputs the

representation of a user u based on her and her neighbors’
representations, i.e., zu = ϕ (zu, {zv : (u, v) ∈ SVj}), where
ϕ(·) can also be applied to more general frameworks such as
layers in a graph neural network (GNN). From Property 1,
we have the mode of qΘ(zu | xu,C), i.e., a variational dis-
tribution for an approximation to the posterior, as the repre-
sentation of user u from the consuming environment, which
serves as the initialization of zu for ϕ(·). The nonlinear
function ϕ(·) is expected to output an updated disentangled
representation ru = [r

(1)
u ; r

(2)
u ; · · · ; r(k)u ; · · · ; r(K)

u ] ∈ Rd·K ,
composing of K independent components indicating the K

different concepts from the consuming environment. The
core problem is identifying the subset of neighbors that con-
nect to user u under concept k so that we can characterize
the aspect of user u regarding concept k more accurately.

It is natural for ϕ(·) to contain K channels which extract
different concept features from user n ∈ {u} ∪ {v : (u, v) ∈
SVj}, by projecting the input representation zn into differ-
ent subspaces sn,k = σ(W⊺

kzn + bk)
/∥∥σ(W⊤

k zn + bk)
∥∥
2
,

where Wk ∈ Rd·K×d and bk ∈ Rd are the parameters of
channel k, and σ(·) is a nonlinear activation function. L2

normalization is employed to ensure numerical stability and
prevent the neighbors with heavily rich features from distort-
ing the routing process. Given that zn is initially generated
from a Gaussian Mixture based model, sn,k is expected to
approximately characterize the aspect of user n which are
relevant with concept k.

However, the common practice of aggregating informa-
tion from neighborhood in literature (Shuman et al., 2013)
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indicates a valid solution to capture the aspect of user u

under concept k more comprehensively. As such, we ag-
gregate information from the neighborhood through con-
structing a routing center ru,k based on both su,k and
{sv,k : (u, v) ∈ SEj}. To construct ru,k capable of charac-
terizing user u’s aspect related to concept k, it is necessary
to dynamically infer a subset of neighbors who are actually
connected to user u due to concept k.

Let lv,k ≥ 0,
∑K

1 lv,k = 1 be the likelihood that concept k is
the underlying reason of connection between user u and its
neighbor v, then lv,k is also the probability of utilizing neigh-
bor v to construct ru,k. Our social dynamic routing process
will infer lv,k and construct su,k via iteratively searching for
the largest routing center in each subspace under the con-
straint that each neighbor v approximately belongs to only

one routing center: lv,k(t) =
exp

(
η·sv,k

⊺ru,k(t−1)
)

∑K
k′=1

exp
(
η·sv,k′⊺ru,k′ (t−1)

)
and ru,k(t) =

su,k+
∑

v:(u,v)∈SEj
lv,k(t) sv,k

1+
∑

v:(u,v)∈SEj
lv,k(t)

, where t =

1, · · · , T . The output disentangled representation ru from
social environment can therefore be obtained through r

(k)
u =

ru,k(T ) for k = 1, 2, · · · ,K. During training, the chan-
nels will remain changing because different subsets of the
neighborhood will be routed for dynamically aggregating
neighbor information in different iterations.

With the Gaussian Mixture initialization from PROTOTYPE
LEARNING, we derive the theorem on convergence:
Theorem 1. The SOCIALDYNAMICROUTING procedure is
equivalent to an expectation-maximization (EM) algorithm for
the mixture model. In particular, it converges to a point
estimate of {r}Kk=1 that maximizes the marginal likelihood
l
(
{sv,k : (u, v) ∈ E, 1 ≤ k ≤ K} ; {r}Kk=1

)
.

See the Appendix for the proof.

3.3.3. DECODING AND RECONSTRUCTION

Given that our prototype-routing optimization mechanism
encourages the k concepts to be aligned between zu and ru.
The co-disentangled representation across consuming and
social environments for user u can then be formulated as
zu = ρ · zu + ru, which is inspired by the residual block (He
et al., 2016) where ru can be treated as a disentangled rout-
ing of zu in social environment and ρ is a parameter control-
ling the attention over consuming environment.

The decoding process predicts which of the M candi-
dates are most possibly consumed by user u, given her co-
disentangled representation zu = [z

(1)
u ; z

(2)
u ; . . . ; z

(K)
u ] across

consuming and social environments as well as the learned
prototype assignment C = {ci}Mi=1,

pu,i = pΘ(xu,i | zu,C)

=

K∑
k=1

ci,k · exp
( z

(k)⊺

u hi

τ · ||z(k)u ||2 · ||hi||2

)
, (8)

where hi is a learnable latent representation for item i

used to derive ci. Therefore, another training objective is
to optimize the model’s reconstruction capability through
minimizing the cross entropy loss between ground-truth
user behaviors xu and the reconstructed ones x∗

u. Putting
Eq. (7), wSGj from Algorithm 1 and the cross entropy loss
together, we have the following overall training objective:

Lu =
(
− β ·Du

KL +
∑

i:xu,i=1

ln pu,i
)
wSGj . (9)

Algorithm 2 shows the detailed implementations of the
whole algorithm, covering curriculum subgraph training
in Sec. 3.2 and prototype-routing optimization in Sec. 3.3.

Algorithm 2 Curriculum Co-disentangled (CurCoDis) Model

1: Input: G = (V,E), xu = {xu,i : xu,i = 1} for u ∈ V ;
2: Parameters (Θ): hi ∈ Rd, ti ∈ Rd, ci ∈ RK , i ∈ [1,M ];

mk ∈ Rd,Wk ∈ Rd·K×d,bk ∈ Rd, k ∈ [1,K];
zu ∈ Rd·K , u ∈ [1, N ]; fnn : Rd →R2d;

3: function PROTOTYPELEARNING({hi}Mi=1, {mk}Kk=1, τ )
4: for i = 1, 2, · · · ,M do
5: oi,k ← hT

i mk/(τ · ||hi||2 · ||mk||2), k ∈ [1,K].
6: ci ∼GUMBEL-SOFTMAX([oi,1; oi,2; · · · ; oi,K ]).
7: return {ci}Mi=1

8: function ENCODING(xu, {ci}Mi=1, {ti}Mi=1)
9: for k = 1, 2, · · · ,K do

10: (ak,bk)← fnn

(∑
i:xu,i=1 ci,k·ti√∑

i:xu,i=1 c2
i,k

)
.

11: µ(k) ← ak/||ak||2, σ(k) ← σ0 · exp(− 1
2
bk).

12: µu ← [µ(1); · · · ;µ(K)], σu ← [σ(1); · · · ;σ(K)].
13: zu = µu + ϵ ◦ σu, ϵ ∼ N (0, I).

▷ ◦ stands for element-wise multiplication.
14: return zu, D

u
KL(N (µu, diag(σu))||N (0,σ0 · I))

15: function SOCIALDYNAMICROUTING(zu, EG, η)
16: for n ∈ {u} ∪ {v : (u, v) ∈ SE} do
17: for k = 1, 2, · · · ,K do
18: sn,k ← σ(W⊺

kzn + bk).
19: sn,k ← sn,k/||sn,k||2.
20: ru,k ← su,k,∀k = 1, 2, · · · ,K.
21: for t = 1, 2, · · · , T do
22: for v ∈ {v : (u, v) ∈ SE} do
23: lv,k ← η · s⊺v,kru,k,∀k = 1, 2, · · · ,K.
24: [lv,1; · · · ; lv,K ]←SOFTMAX([lv,1; · · · ; lv,K ]).
25: for k = 1, 2, · · · ,K do
26: ru,k ← su,k +

∑
v:(u,v)∈SE lv,ksv,k.

27: ru,k ← ru,k
/(

1 +
∑

v:(u,v)∈SE lv,k
)
.

28: ru ← [ru,1; · · · ; ru,K ].
29: return ru
30: function MULTISOCIALROUTING(zu, EG, η, L)
31: ru ← zu.
32: for l = 1, 2, · · · , L do
33: ru ←SOCIALDYNAMICROUTING(ru, EG, η).
34: ru ←DROPOUT(RELU(ru)).
35: return ru
36: function DECODING(zu, {ci}Mi=1, {hi}Mi=1, τ )

37: pu,i ←
∑K

k=1 ci,k · exp
(

z
(k)⊺
u hi

τ ·||z(k)
u ||2·||hi||2

)
.

38: [pu,1; · · · ; pu,M ]←SOFTMAX(ln pu,1; · · · ; ln pu,M ).
39: return {pu,i}Mi=1
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BEGIN MAIN FUNCTION:
40: Initialize {zn}Nn=1, CurriculumEpoch, TotalEpoch, λ,

β, τ, η, ρ, L, epoch← 0.
41: repeat
42: SG = {SG1, SG2, · · · , SGg} ← KERNIGHAN–LIN

ALGORITHM(G), where SGj = (SVj , SEj) is a subgraph.
43: ∆← {δSG1 , δSG2 , . . . , δSGg} based on Eq.(1) and (2).
44: SG ← Sort SG in ascending order based on ∆.
45: W = {wSG1 , wSG2 , . . . , wSGg} ← CURRICULUM

SUBGRAPH WEIGHING(CurriculumEpoch, λ,SG,∆).
46: for SGj = (SVj , SEj) ∈ SG do
47: {ci}Mi=1 ←PROTOTYPELEARNING({hi}M

i=1, {mk}K
k=1, τ).

48: for u ∈ SVj do
49: zu, D

u
KL ←ENCODING(xu, {ci}Mi=1, {ti}Mi=1).

50: ru ←MULTISOCIALROUTING(zu, SEj , η, L).
51: zu ← ρ · zu + ru.
52: {pu,i}Mi=1 ←DECODING(zu, {ci}Mi=1, {hi}Mi=1, τ ).
53: L =

∑
u

(
− β ·Du

KL +
∑

i:xu,i=1 ln pu,i
)
wSGj .

54: Θ← argmaxΘL by∇ΘL.
55: epoch← epoch+ 1.
56: until epoch equals to TotalEpoch

4. Experiments
We empirically evaluate the performances of the proposed
CurCoDis model over four real-world datasets and conduct
several experiments to prove its effectiveness.

4.1. Experimental Setup

Datasets We conduct experiments on four real-world
datasets: i) Lastfm (Cantador et al., 2011) with 1892 users,
17, 632 music artists and 12, 717 connections; ii) Yelp (Yin
et al., 2019) with 34, 504 users, 22, 611 check-ins and
500, 505 connections; iii) Amazon Instrument (McAuley
et al., 2015) with 4219 consumers, 3933 products and 44, 001

connections; iv) Epinion (Massa & Avesani, 2007) with
40, 163 users, 139, 738 items and 381, 216 connections. We
set xu,i = 1 when user u consumes item i.

Baselines We compare our CurCoDis model with the fol-
lowing baselines: 1) Diffnet (Wu et al., 2019), a social rec-
ommendation model based on graph convolutional network
(GCN); 2) LightGCN (He et al., 2020), a model employing
neighborhood aggregation in GCN for recommendation; 3)
MHCN (Yu et al., 2021b), a multi-channel hypergraph con-
volutional network that enhances social recommendation by
leveraging high-order user relations via hypergraph convo-
lution; 4) SEPT (Yu et al., 2021a), a socially-aware self-
supervised learning framework that integrates tri-training; 5)
DISGCN (Li et al., 2022), a model using the disentangled
layer to strengthen social recommendation.

Hyper-parameters The number of subgraphs to be parti-
tioned is set to 4, 64, 8, 128 for Lastfm, Yelp, Amazon and
Epinion respectively, given that their sizes are of different

Dataset Method Metric

NDCG@100 Recall@20 Recall@50

Lastfm

Diffnet 0.26318 0.22919 0.34557
LightGCN 0.28691 0.24333 0.36899

MHCN 0.32702 0.29121 0.41715
SEPT 0.32216 0.28305 0.41141

DISGCN 0.28555 0.28092 0.41243
CurCoDis 0.30714 0.30172 0.43236

Yelp

Diffnet 0.08594 0.08638 0.15670
LightGCN 0.09857 0.09656 0.17686

MHCN 0.11114 0.11384 0.19489
SEPT 0.10695 0.10995 0.19243

DISGCN 0.10329 0.11803 0.20128
CurCoDis 0.11191 0.12846 0.21820

Amazon

Diffnet 0.04745 0.06325 0.10538
LightGCN 0.07470 0.09335 0.14926

MHCN 0.07237 0.08289 0.14603
SEPT 0.04336 0.06047 0.10792

DISGCN 0.07046 0.09964 0.16245
CurCoDis 0.08047 0.11665 0.19126

Epinion

Diffnet 0.04334 0.04709 0.08448
LightGCN 0.05532 0.06199 0.10698

MHCN 0.06070 0.06612 0.11309
SEPT 0.06557 0.07502 0.12615

DISGCN 0.05680 0.06760 0.11839
CurCoDis 0.07431 0.08908 0.14578

Table 1. Comparisons between our proposed CurCoDis model and
baselines on all four datasets, bold font denotes the winner. The
full table with deviations will be presented in Appendix.
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Figure 2. (Left) Proportion of edge lost. (Right) Ablation study.

scales. We set d to 200, fixing λ in curriculum weighing to
0.1 and CurriculumEpoch to 0.75 · TotalEpoch. Then we
tune other hyper-parameters using ASHA (Li et al., 2018)
implemented by Ray Tune (Liaw et al., 2018). Specifi-
cally, we run ray tune with 500 samples under each setting,
with the hyper-parameters search space specified as fol-
lows: the learning rate follows LOG-UNIFORM[10−4, 10−1],
dropout rate ∈ {0.05, 0.10 · · · 0.95}, β, τ, η ∼RANDOM(0, 1),
L ∈ {1, 2, 3, 4, 5}, ρ ∈ {0.5, 1, 2, 4}.

4.2. Experimental Results

Recommendation Accuracy Table 1 reports the perfor-
mance comparisons for six models over four datasets in
terms of three evaluation metrics. We observe that the pro-
posed CurCoDis model is able to significantly outperform
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Metric
ρ = 1 ρ = 2

vanilla CurCoDis vanilla CurCoDis

NDCG@100 0.30341 0.30230 0.30271 0.30055
Recall@20 0.29750 0.29889 0.30151 0.29865
Recall@50 0.42085 0.42435 0.42108 0.42443

Table 2. Comparisons between CurCoDis and vanilla on Lastfm.
The vanilla model is trained using the whole social graph. The full
table with more values of ρ is presented in Appendix.

all baselines, particularly up to 13.3%, 18.7%, 15.6% perfor-
mance boost over the large-scale Epinion dataset in terms of
NDCG@100, Recall@20 and Recall@50 respectively. This
demonstrates the benefits of curriculum subgraph weighing
design allowing to learn in an easy-to-hard human-like man-
ner and the co-disentangled representation learning capable
of discovering disentangled intentions for each individual
across consuming and social environments.

Curriculum Subgraph Training with Partition Figure 2
(Left) shows the benefits from adopting Kernighan-Lin (KL)
algorithm during subgraph partitioning against the vanilla
random algorithm. It is obvious that the number of edges
lost with KL algorithm during the partition process is far less
than those lost with vanilla algorithm, e.g., roughly 4X less
on Lastfm and 19X less on Amazon. This indicates that our
employment of Kernighan-Lin algorithm can dramatically
prevent information loss in the social environment.

We compare the model performances of training over our
partitioned subgraphs and those of training over the whole
social graph on the relatively small dataset Lastfm in Table 2.
From the results, we observe that the two models perform
almost the same under all settings, which illustrates the
benefits of training over subgraphs obtained through our
proposed partition strategy when the social environment
contains large-scale social graphs that can not be fed into
the memory as a whole.

We further conduct ablation studies on the effects of differ-
ent components in curriculum subgraph training strategy.
Figure 2 (Right) shows the performances of vanilla without
curriculum (red), vanilla with curriculum (blue), KL with-
out curriculum (purple), KL with curriculum, i.e., CurCoDis
(grey) on Amazon. The results validate the efficacy of both
Kernighan-Lin partition and curriculum subgraph weigh-
ing strategy in improving the model performances. Similar
results hold on other three datasets (more in Appendix).

Consuming Environment v.s. Social Environment We
explore the role of parameter ρ within co-disentangled repre-
sentation learning. Figure 3 shows the model performances
with different values of ρ on the four datasets. Particularly
for Lastfm, the model generally performs best with ρ = 2,
i.e., the importance ratio between consuming and social
environments reaches 2, being gradually worse when ρ be-

Metric
ρ = 0.5 ρ = 2

vanilla CurCoDis vanilla CurCoDis

NDCG@100 0.25863 0.30230 0.25534 0.30055
Recall@20 0.25074 0.29889 0.24840 0.29865
Recall@50 0.36875 0.42435 0.37040 0.42443

Table 3. Comparisons between CurCoDis and vanilla on Lastfm.
The vanilla model substitutes our proposed social dynamic routing
process with traditional graph convolutional network (GCN). The
full table with more values of ρ is presented in Appendix.

comes either larger or smaller, indicating the importance of
appropriate balancing between different environments.

Disentanglement We additionally measure the degree
of the disentanglement achieved based on the indepen-
dence level of the dimensions within zu. We quantify
the independence level IL(k)

u of each z
(k)
u as IL(k)

u =

1 − 2
d(d−1)

∑
1≤i,j≤d |cori,j |, where cori,j is the correlation

between ith and jth dimension of z
(k)
u . Figure 4 shows

the degree of disentanglement (via mean independence
level 1

N
1
K

∑N
u=1

∑K
k=1 IL

(k)
u ) and the corresponding perfor-

mances with different training epochs on the four datasets.
Particularly for the Amazon dataset, we set (k, d) = (3, 10)

and record every 25 epochs for 225 epochs in total. We ob-
serve that the proposed CurCoDis model gradually reaches
a high degree of disentanglement in the training process
and the model performances generally have a positive rel-
evance with the degree of disentanglement, demonstrating
the benefits brought by disentanglement.

To further investigate the role of disentanglement within
user representation zu, we additionally conduct an ablation
study in which we substitute the proposed social dynamic
routing process with classic graph convolutional network
(GCN) (Kipf & Welling, 2016). We alter the balance be-
tween consuming and social environments, i.e., we change
the value of ρ, and fix all other hyper-parameters. The
average results on Lastfm dataset are reported in Table 3.
The performances corresponding to a non-disentangled user
representation drop significantly under all the experimental
settings, indicating that the disentanglement within zu has a
great impact on the prediction accuracy.

Moreover, we visualize the high-dimensional user and item
representations learned by CurCoDis on Amazon through
t-SNE (Van der Maaten & Hinton, 2008).We treat the k

components of each representation as k separate points, i)
coloring items based on their ground-truth categories and
ii) coloring users with category k if they have the largest∑

i:xu,i>0 ci,k for user u, where ci,k is predicted by Cur-
CoDis rather than the ground-truth label. The results are
depicted in Figure 5 where the plots from left to right in
each subfigure present the visualization at epoch 10, 110 and
210 respectively, demonstrating the capability of CurCoDis
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Figure 3. Model performances with different values of ρ for Lastfm, Yelp, Amazon and Epinion.
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Figure 4. Degree of disentanglement within zu and its correlation with the performance for Lastfm, Yelp, Amazon and Epinion.

(a) Items colored based on the ground-truth categories.

(b) Users colored based on the predicted categories.

Figure 5. t-SNE visualizations of representations in Amazon.

in gradually reaching disentanglement upon training.

Explainability We further investigate the explainability of
the learned co-disentangled representations. Given a dis-
entangled representation, we gradually alter the values of
dimensions representing certain concepts, and retrieve the
closest items in the representation space. Figure 6 identifies
two concepts with semantic meaning for Amazon, i.e., SIZE
and COLOR, and list the closest items when changing the
values of the corresponding dimensions. These results show
the ability of CurCoDis to learn explainable representations
and provide fine-grained controls over particular concepts
of the candidate items for explainable recommendation.

(a) SIZE of Microphones & Accessories: tiny−→large.

(b) COLOR of Amplifiers & Effects: dark−→light.

Figure 6. List of items with different values of a particular concept.

5. Conclusion
We study curriculum co-disentangled representation learn-
ing across different environments for the first time. We
believe this work may serve as one step towards conscious
aware environment learning, assuming that the human con-
sciousness can be represented in a disentangled manner.
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A. Proofs
Property 1. ln pΘ(xu) is bounded as follows:

ln pΘ(xu) ≥EpΘ(C)

[
EqΘ(zu|xu,C)

[
ln pΘ(xu | zu,C)

]
−DKL

(
qΘ(zu | xu,C)∥pΘ(zu)

)]
. (4)

The proof is as follows.

Proof. Given the following equation,

qΘ(zu,C | xu) = qΘ(zu | xu,C)pΘ(C),

then we have the following inequality,

ln pΘ(xu)

=EqΘ(zu,C|xu)

[
ln pΘ(xu)

]
=EqΘ(zu,C|xu)

[
ln

pΘ(xu, zu,C)

pΘ(zu,C | xu)

]
=EqΘ(zu,C|xu)

[
ln

qΘ(zu,C | xu)

pΘ(zu,C | xu)

]
+ EqΘ(zu,C|xu)

[
ln

pΘ(xu, zu,C)

qΘ(zu,C | xu)

]
=EqΘ(zu,C|xu)

[
ln

qΘ(zu,C | xu)

pΘ(zu,C | xu)

]
+ EqΘ(zu,C|xu)

[
ln pΘ(xu | zu,C)

]
+ EqΘ(zu,C|xu)

[
ln

pΘ(zu,C)

qΘ(zu,C | xu)

]
=DKL

(
qΘ(zu,C | xu)∥pΘ(zu,C | xu)

)
+ EqΘ(zu,C|xu)

[
ln pΘ(xu | zu,C)

]
−DKL

(
qΘ(zu,C | xu)∥pΘ(zu,C)

)
≥EqΘ(zu,C|xu)

[
ln pΘ(xu | zu,C)

]
−DKL

(
qΘ(zu,C | xu)∥pΘ(zu,C)

)
=EpΘ(C)

[
EqΘ(zu|xu,C)

[
ln pΘ(xu | zu,C)

]
−DKL

(
qΘ(zu | xu,C)∥pΘ(zu)

)]
.

Note that in the last line above, we have used

DKL

(
qΘ(zu,C | xu)∥pΘ(zu,C)

)
= DKL

(
qΘ(zu | xu,C)pθ(C)∥pΘ(zu)pθ(C)

)
= EpΘ(C)

[
DKL

(
qΘ(zu | xu,C)∥pΘ(zu)

)]
,

which completes the proof.

Property 2. A reformulation of KL term in Eq. (4):

Epdata(xu) [DKL(qΘ(zu | xu,C)∥pΘ(zu))]
=Iq(xu; zu) +DKL(qΘ(zu | C)∥pΘ(zu)). (6)

The proof is as follows.
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Proof.

Epdata(xu)

[
DKL

(
qΘ(zu | xu,C)∥pΘ(zu)

)]
=Epdata(xu)

[
EqΘ(zu|xu,C)

[
ln

qΘ(zu | xu,C)

pΘ(zu)

]]
=Epdata(xu)

[
EqΘ(zu|xu,C)

[
ln

qΘ(zu | xu,C)

qΘ(zu | C)

qΘ(zu | C)

pΘ(zu)

]]
=Epdata(xu)

[
EqΘ(zu|xu,C)

[
ln

qΘ(zu | xu,C)

qΘ(zu | C)
+ ln

qΘ(zu | C)

pΘ(zu)

]]
=Epdata(xu)

[
DKL

(
qΘ(zu | xu,C)∥qΘ(zu | C)

)]
+ EqΘ(zu|xu,C)pdata(xu)

[
ln

qΘ(zu | C)

pΘ(zu)

]
=Iq(xu; zu) + EqΘ(zu|C)

[
ln

qΘ(zu | C)

pΘ(zu)

]
=Iq(xu; zu) +DKL

(
qΘ(zu | C)∥pΘ(zu)

)
.

Note that pdata(xu | C) = pdata(xu), and the mutual information Iq(xu; zu) is under the joint distribution

qΘ(zu,xu | C)

=qΘ(zu | xu,C)pdata(xu | C)

=qΘ(zu | xu,C)pdata(xu),

which completes the proof.

With the Gaussian Mixture initialization from PROTOTYPE LEARNING, we derive the following theorem on convergence
properties:

Theorem 1. The SOCIALDYNAMICROUTING procedure is equivalent to an expectation-maximization (EM) algorithm
for the mixture model. In particular, it converges to a point estimate of {r}Kk=1 that maximizes the marginal likelihood
l
(
{sv,k : (u, v) ∈ E, 1 ≤ k ≤ K} ; {r}Kk=1

)
.

The proof is as follows.

Proof. Let
θ = {rk}Kk=1, A = {av : (u, v) ∈ E},

and
S = {sv,k : (u, v) ∈ E, 1 ≤ k ≤ K)}.

Factor av is the unknown factor of why neighbor v and user u are connected. To derive an EM algorithm that maximizes
l(A; θ) =

∑
A l(A,S; θ), we introduce here an additional auxiliary distribution q(A) over A.

Let

L(θ, q) =
∑
A

q(A) ln
l(A,S; θ)

q(A)
,

and

DKL (q∥lθ) =
∑
A

q(A) ln
q(A)

l(A | S; θ)
.

We can then verify the following:
ln l(S; θ) = L(θ, q) +DKL (q∥lθ) ,

where the second term here is the Kullback-Leibler (KL) divergence from l(A | S; θ) towards the auxiliary distribution
q(A). The KL divergence is non-negative. As a result, L(θ, q) is a lower bound of ln l(S; θ).
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The E-step of the EM algorithm is to find q(A) that tightens the lower bound. This can be achieved by setting q(A) to
l(A | S; θ), since the KL divergence will become zero. Given that

l(A | S; θ) =
∏
v

l(av | S; θ),

and

l(av = k | S; θ)
∝l(av = k, S; θ)

∝ exp(η · sv,k⊤rk),

the optimal q(A) that tightens the lower bound can be written in the following:

q(av = k) ∝ exp(η · sv,k⊤rk).

This proves that

lv,k(t) =
exp

(
η · sv,k⊺ru,k(t− 1)

)∑K
k′=1 exp

(
η · sv,k′⊺ru,k′(t− 1)

)
will be performing the E-step, and that

lv,k = q(av = k) = l(av = k | S; θ).

After every E-step, the EM algorithm performs an M step to maximize the lower bound L(θ, q) w.r.t. θ, with q(A) fixed to
the value found in the E-step. Note that we have

∂L(θ, q)

rk
= rk

⊤

(
su,k +

∑
v

lv,ksv,k

)
.

We optimize rk via setting ∂L(θ,q)
∂rk

to zero, and it turns out that the optimal rk can be expressed exactly as follows,

ru,k(t) =
su,k +

∑
v:(u,v)∈E lv,k(t) sv,k

1 +
∑

v:(u,v)∈E lv,k(t),

which is in fact performing the M-step.

Let q(t)(A) and θ(t) be the result of the tth E-step and the tth M-step, respectively, then

ln l(S; θ(t−1))

=L(θ(t−1), q) +DKL (q∥lθ(t−1))

=L(θ(t−1), q(t))

≤L(θ(t), q(t))

≤L(θ(t), q(t)) +DKL

(
q(t)∥lθ(t)

)
= ln l(S; θ(t)).

Thus the likelihood will increase monotonically, at the same time being upper-bounded by zero. Therefore, the algorithm
converges, which completes the proof.
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B. Additional Experimental Settings
B.1. Dataset Preprocessing

We split the whole dataset into training set, validation set and test set according to the ratio of 8:1:1. Particularly for Amazon
dataset which is based on explicit ratings, we binarize it by labeling ratings higher than or equal to 4 as 1, and only keep
those users who write at least 5 reviews. Since the connections are not originally provided in Amazon dataset, we utilize the
categories of the items bought by each user to simulate a social network

G = (V,E).

Concretely, we calculate the preference vector

pu = [p1u; p
2
u; · · · ; pku]

for user u, where
piu =

∑
cj=i

xu,j

denotes the summation of user u’s preference towards item i under category i, i.e., the preference of user u over all the items
under category i.

Then we use the cosine similarity between pu and pv to approximate the affinity between user u and v. We add an edge

(u, v) ∈ E,

if and only if
consine(u, v) > γ,

where γ is a parameter controlling the edge density of graph G.

B.2. Explainability for Recommendation

We in detail illustrate our strategy to retrieve items in the representation space. Let us assume that y∗ is the original
representation, which can be either the item representation mi or a component of the user representation z

(i)
u , and that

prototype k∗ is the prototype closest to y∗.

We then determine A consecutive intervals
(ai, ai+1], i = 1, 2, · · · , A

for the jth dimension of y∗ such that when y∗,j is altered within the range

(a1, aA+1],

the prototype assigned, i.e., k∗, remains unchanged. In addition, we ensure that approximately the same number of items
within prototype k∗ will fall into each interval. Finally, we derive A items {it}At=1 by maximizing the following objective:∑

1≤t≤A

e
COSINE(yit,−j ,y∗,−j)

τ + γ ·
∑

1≤t1<t2≤A

e
COSINE(yit1

,−j ,yit2
,−j)

τ ,

where
yi,−j = [yi,1; yi,2; · · · ; yi,j−1; yi,j+1; · · · ; yi,d] ∈ Rd.

Each item it is chosen from the tth interval, i.e.,

yit,j ∈ (at, at+1]

and is within prototype k∗. The maximization is solved using beam search.

C. Full Tables for Experimental Results
We show the full experimental results of recommendation accuracy in Table 5 and the full ablation studies on the effectiveness
of the Kernighan-Lin (KL) algorithm as well as curriculum subgraph weighing strategy in Table 8.
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Dataset Method
Metric

NDCG@100 Recall@20 Recall@50

Lastfm

Diffnet 0.26318(±0.00552) 0.22919(±0.00559) 0.34557(±0.00652)
LightGCN 0.28691(±0.00573) 0.24333(±0.00559) 0.36899(±0.00650)

MHCN 0.32702(±0.00597) 0.29121(±0.00595) 0.41715(±0.00674)
SEPT 0.32216(±0.00588) 0.28305(±0.00593) 0.41141(±0.00673)

DISGCN 0.28555(±0.00478) 0.28092(±0.00548) 0.41243(±0.00655)
CurCoDis 0.30714(±0.00519) 0.30172(±0.00607) 0.43236(±0.00676)

Improvement - 3.61% 3.65%

Yelp

Diffnet 0.08594(±0.00122) 0.08638(±0.00187) 0.15670(±0.00245)
LightGCN 0.09857(±0.00130) 0.09656(±0.00196) 0.17686(±0.00255)

MHCN 0.11114(±0.00142) 0.11384(±0.00212) 0.19489(±0.00265)
SEPT 0.10695(±0.00136) 0.10995(±0.00207) 0.19243(±0.00264)

DISGCN 0.10329(±0.00232) 0.11803(±0.00409) 0.20128(±0.00537)
CurCoDis 0.11191(±0.00134) 0.12846(±0.00223) 0.21820(±0.00279)

Improvement 0.69% 8.84% 8.41%

Amazon

Diffnet 0.04745(±0.00420) 0.06325(±0.00714) 0.10538(±0.00906)
LightGCN 0.07470(±0.00557) 0.09335(±0.00850) 0.14926(±0.01053)

MHCN 0.07237(±0.00533) 0.08289(±0.00818) 0.14603(±0.01049)
SEPT 0.04336(±0.00369) 0.06047(±0.00711) 0.10792(±0.00923)

DISGCN 0.07046(±0.00322) 0.09964(±0.00809) 0.16245(±0.01140)
CurCoDis 0.08047(±0.00513) 0.11665(±0.00953) 0.19126(±0.01173)

Improvement 7.72% 17.1% 17.7%

Epinion

Diffnet 0.04334(±0.00069) 0.04709(±0.00118) 0.08448(±0.00155)
LightGCN 0.05532(±0.00080) 0.06199(±0.00134) 0.10698(±0.00173)

MHCN 0.06070(±0.00086) 0.06612(±0.00137) 0.11309(±0.00175)
SEPT 0.06557(±0.00089) 0.07502(±0.00147) 0.12615(±0.00186)

DISGCN 0.05680(±0.00370) 0.06760(±0.00804) 0.11839(±0.00804)
CurCoDis 0.07431(±0.00095) 0.08908(±0.00160) 0.14578(±0.00199)

Improvement 13.3% 18.7% 15.6%

Table 4. Full table of Comparisons between our proposed CurCoDis model and baselines on all four datasets, with bold font denoting the
best approach. The relative improvement of our model over the best performing baseline is recorded in row Improvement for each dataset.
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Amazon

Metric Method Metric@5 Metric@10 Metric@15

Recall

Diffnet 0.02563(±0.00361) 0.02228(±0.00352) 0.01664(±0.00332)
LightGCN 0.04699(±0.00504) 0.04160(±0.00496) 0.03689(±0.00485)

MHCN 0.04140(±0.00461) 0.03641(±0.00451) 0.02855(±0.00429)
SEPT 0.02610(±0.00377) 0.02191(±0.00366) 0.01834(±0.00355)

DISGCN 0.05290(±0.00139) 0.04577(±0.00136) 0.03591(±0.00129)
CurCoDis 0.06246(±0.00582) 0.05721(±0.0057) 0.04779(±0.00561)

Improvement 18.1% 25.0% 29.5%

NDCG

Diffnet 0.05268(±0.00656) 0.04031(±0.00577) 0.02352(±0.00447)
LightGCN 0.08481(±0.00817) 0.06507(±0.00722) 0.05119(±0.00650)

MHCN 0.08005(±0.00823) 0.06547(±0.00741) 0.04120(±0.00591)
SEPT 0.05236(±0.00659) 0.03666(±0.00553) 0.02646(±0.00480)

DISGCN 0.10407(±0.00239) 0.07723(±0.00208) 0.04775(±0.00165)
CurCoDis 0.11384(±0.00944) 0.09481(±0.00875) 0.06537(±0.00734)

Improvement 9.39% 22.8% 27.7%

Table 5. Extra experiments on Amazon under the same experimental settings in terms of several commonly used evaluation metrics, i.e.,
Recall@K and NDCG@K, where K is set to 5, 10, 15. We can observe that our proposed CurCoDis still outperforms other baselines.

Value of ρ
NDCG@100 Recall@20 Recall@50

vanilla CurCoDis vanilla CurCoDis vanilla CurCoDis

ρ = 0.5 0.29920(±0.00518) 0.30230(±0.00520) 0.30029(±0.00604) 0.29889(±0.00608) 0.42818(±0.00682) 0.42435(±0.00673)
ρ = 1 0.30341(±0.00524) 0.30294(±0.00521) 0.29750(±0.00600) 0.30026(±0.00609) 0.42085(±0.00681) 0.42734(±0.00683)
ρ = 2 0.30271(±0.00515) 0.30055(±0.00517) 0.30151(±0.00608) 0.29865(±0.00608) 0.42108(±0.00669) 0.42443(±0.00672)
ρ = 4 0.29826(±0.00516) 0.29920(±0.00517) 0.29048(±0.00596) 0.29324(±0.00599) 0.42359(±0.00676) 0.42224(±0.00671)

Table 6. Full table of comparisons between CurCoDis and vanilla, which is trained using the whole social graph.

Value of ρ
NDCG@100 Recall@20 Recall@50

vanilla CurCoDis vanilla CurCoDis vanilla CurCoDis

ρ = 0.5 0.25863(±0.00506) 0.30230(±0.00520) 0.25074(±0.00590) 0.29889(±0.00608) 0.36875(±0.00679) 0.42435(±0.00673)
ρ = 1 0.25418(±0.00503) 0.30294(±0.00521) 0.24912(±0.00588) 0.30026(±0.00609) 0.36448(±0.00675) 0.42734(±0.00683)
ρ = 2 0.25534(±0.00502) 0.30055(±0.00517) 0.24840(±0.00584) 0.29865(±0.00608) 0.37040(±0.00675) 0.42443(±0.00672)
ρ = 4 0.25533(±0.00501) 0.29920(±0.00517) 0.24809(±0.00590) 0.29324(±0.00599) 0.36605(±0.00674) 0.42224(±0.00671)

Table 7. Full table of comparisons between CurCoDis and vanilla, which substitutes the social dynamic routing with classic GCN.
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Dataset Method Metric

NDCG@100 Recall@20 Recall@50

Lastfm

vanilla 0.28634(±0.00501) 0.28315(±0.00589) 0.41080(±0.00668)
Kernighan-Lin (KL) 0.30343(±0.00521) 0.29830(±0.00607) 0.43100(±0.00676)
KL+Cur (CurCoDis) 0.30714(±0.00519) 0.30172(±0.00607) 0.43236(±0.00676)

KL Improvement 5.97% 5.35% 4.92%

Curriculum Improvement 1.22% 1.15% 0.32%

Overall Improvement 7.26% 6.56% 5.25%

Yelp

vanilla 0.10833(±0.00132) 0.12382(±0.00220) 0.20740(±0.00272)
Kernighan-Lin (KL) 0.11146(±0.00133) 0.12817(±0.00223) 0.21575(±0.00277)
KL+Cur (CurCoDis) 0.11191(±0.00134) 0.12846(±0.00223) 0.21820(±0.00279)

KL Improvement 2.89% 3.51% 4.03%

Curriculum Improvement 0.40% 0.23% 1.14%

Overall Improvement 3.30% 3.75% 5.21%

Amazon

vanilla 0.05959(±0.00444) 0.08947(±0.00846) 0.14334(±0.01036)
Kernighan-Lin (KL) 0.07801(±0.00366) 0.10501(±0.00915) 0.18114(±0.01145)
KL+Cur (CurCoDis) 0.08047(±0.00513) 0.11665(±0.00953) 0.19126(±0.01173)

KL Improvement 30.3% 17.4% 26.4%

Curriculum Improvement 3.15% 11.1% 5.59%

Overall Improvement 35.0% 30.4% 33.4%

Epinion

vanilla 0.07343(±0.00095) 0.08632(±0.00158) 0.14108(±0.00196)
Kernighan-Lin (KL) 0.07402(±0.00095) 0.08781(±0.00159) 0.14294(±0.00197)
KL+Cur (CurCoDis) 0.07431(±0.00095) 0.08908(±0.00160) 0.14578(±0.00199)

KL Improvement 0.80% 1.73% 1.32%

Curriculum Improvement 0.39% 1.45% 1.99%

Overall Improvement 1.20% 3.20% 3.33%

Table 8. Full results of ablation study. The relative improvement of Kernighan-Lin (KL) over vanilla, KL+Cur (CurCoDis) over Kernighan-
Lin (KL) and KL+Cur (CurCoDis) over vanilla are presented in row KL Improvement, Curriculum Improvement and Overall Improvement
respectively for each dataset in terms of different evaluation metrics.
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