
DenseFormer: Enhancing Information Flow in
Transformers via Depth Weighted Averaging

Matteo Pagliardini∗
EPFL

matteo.pagliardini@epfl.ch

Amirkeivan Mohtashami∗
EPFL

amirkeivan.mohtashami@epfl.ch

Francois Fleuret
University of Geneva

Francois.Fleuret@unige.ch

Martin Jaggi
EPFL

martin.jaggi@epfl.ch

Abstract

The transformer architecture by Vaswani et al. [31] is now ubiquitous across
application domains, from natural language processing to speech processing and
image understanding. We propose DenseFormer, a simple modification to the
standard architecture that improves the perplexity of the model without increasing
its size—adding at most a few thousand parameters for large-scale models. Our
approach relies on an additional averaging step after each transformer block, which
computes a weighted average of current and past representations—we refer to this
operation as Depth-Weighted-Average (DWA). The learned DWA weights exhibit
coherent patterns of information flow, revealing the strong and structured reuse
of activations from distant layers. Experiments demonstrate that DenseFormer
is more data efficient, reaching the same perplexity of much deeper transformer
models, and that for the same perplexity, these new models outperform transformer
baselines in terms of memory efficiency and inference time.

1 Introduction

The transformer architecture [31] is the workhorse of modern natural language processing. Recent
leaps in the state of the art can be attributed in a large part to efforts scaling this architecture, from
millions of parameters [3] to large billion-parameter models [1, 18, 23, 29, 30]. Unfortunately, those
larger models come with an increased computational cost, and a large memory footprint. This renders
them impractical to use in a wide range of use-cases, limiting who can benefit from them to a handful
of big corporations. As an attempt to mitigate this issue, Touvron et al. [29] propose training a smaller
model for more steps. However, longer training requires larger datasets which becomes challenging as
we are reaching scales where even extremely large datasets fall short of sufficient amounts of data [32].

Furthermore, recent observations suggest that we are reaching the state of diminishing returns where
increasing the depth of the model beyond a certain point does not significantly improve performance
[21]. Interestingly, a similar state of diminishing returns has been observed in the field of computer
vision focused on the training of deep convolutional neural networks. Various solutions were proposed
to address this issue, including DenseNets [11] which alleviated the problem by allowing subsequent
layers to directly access outputs of earlier layers.

In this work, using a similar intuition as DenseNets, we propose the DenseFormer architecture. In
particular, instead of only having skip connections from one block to the next, in DenseFormer, a

∗Equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

next token prediction

D
W

A
=

+
+

D
W

A
=

+

Transform
er Block

Transform
er Block

(a) DenseFormer Architecture. (b) DWA Weights with Dilation.

Figure 1: DenseFormer architecture. The diagram in (a) shows the DenseFormer architecture
with two transformer layers and a dilation of 1. After the first (resp. second) block, the past and
current intermediary representations {X0, X1} (resp. {X0, X1, X2}) are averaged using the first
(resp. second) DWA weights [α1,0, α1,1] (resp. [α2,0, α2,1, α2,2]). The DWA weights are supported
by red arrows. Those weights are represented in matrix form in (b), for a 12 layers DenseFormer. A
DWA module at depth i has i+ 1 weights, represented in red. Increasing the dilation sparsifies this
matrix, reducing the computational overhead without degrading the perplexity, see Section 3.2 for
more details.

weighted average of the outputs of all previous blocks is given as the input of the next block. The
approach is visually summarized in Fig. 1a.

We show that DenseFormers can perform the same as a much deeper standard Transformer model
while at the same time being smaller in size, faster, and consuming less memory at inference.
More importantly, this is achieved without increasing the amount of required data. As such,
DenseFormers are also more data efficient, obtaining much better performance when trained on
the same amount of data than a standard model with a similar number of parameters. Our results
establish the DenseFormer architecture as an improved version of Transformers for language
modeling, encouraging their future use.

In addition to providing experimental results on DenseFormer’s performance, we also provide
additional insights and intuition for their success. Looking at the learned weights of the DWA modules
we observe a surprisingly stable pattern in the learned weights that emerges at multiple depths and
generalizes across random seeds (see Fig. 4). Overall, similar to Huang et al. [11], we hypothesize
that the inter-block connectivity enables the model to more directly re-use early features, without
requiring to allocate as much bandwidth to propagate them through multiple layers. Intuitively, this
seems to help resolve an ambiguity caused by skip-connections which force the deeper representations
to maintain the current token representation while at the same time having to predict the next token.
Contributions. Our contributions can be summarized as follows:

• Introducing DenseFormer architecture by adding a depth-weighted-average module after each
Transformer block.

• Demonstrating over different settings (e.g. datasets, batch sizes, sequence lengths) the sig-
nificantly superior performance of DenseFormer over deeper Transformers, yielding a better
speed-performance trade-off during both inference and training.

• Providing additional empirically grounded insights and intuition that support the benefits of using
DenseFormer.

2 Related Work

While larger models have shown great promise in delivering better capabilities, recent results suggest
that the gain from using deeper models faces diminishing returns [22]. Interestingly, the same
challenge presented itself earlier for scaling convolutional neural networks [9]. Methods that allow a
better flow of information from earlier to later layers such as Residual connections [10] and Highway
Networks [27] have been proposed as a successful solution to tackle this challenge, stabilizing training
and increasing the threshold where a gain can be observed from increasing depth. Taking it to the
extreme, DenseNets [11] demonstrate the benefit of having access to the output of all previous layers.
We propose DenseFormer by building on a similar intuition, allowing each block to directly access
the output of all previous blocks.

Some advantages of attending to representations from earlier layers have already been explored in
prior work. Depth-wise Attention [4] suggests adding an attention-like layer before Transformer’s

2

final projection layer. This new layer applies attention across the outputs of the Transformer’s
blocks for the current token (instead of over different tokens as in the standard attention layer).
This operation is similar to the weighted averaging block introduced in this work which mixes the
outputs of earlier blocks. However, whereas in our proposal the weights are learned during training,
Depth-wise Attention computes the weights using the dot product (similar to the attention) which
levies a higher overhead. In our experiments, we also show that only a single DWA step before the
last layer does not yield the same performance as a full DenseFormer. In another recent relevant work
Mohtashami et al. [17] suggest interleaving current and past representations. This allows current
tokens to attend to previous representations of themselves and past tokens. Our DenseFormer can
be seen as a crude and much more efficient approximation of this mechanism in which we restrict
each token to only attend to past representations of themselves, using static (as opposed to dynamic)
attention weights. Most relevant to us—in the context of low data training—the concurrent work of
Charpentier & Samuel [2] also adds links from the input of each block to representations from earlier
layers. An important difference is their use of softmax weights. We conjecture it is important to let
the model subtract representations using negative weights (see § 5), and implementing their methods
only outperformed the baseline in a low-data regime (see App. B.7). Moreover, they do not provide
an efficient implementation of their method.

Since its original design by Vaswani et al. [31], the Transformer architecture used in most applications
changed surprisingly little. LLM training is costly, and architecture choices are often conservative.
Small variations include changing the activation function [26], adopting RMSNorm instead of Lay-
erNorm, or computing the feed-forward and attention in parallel [20, 29, 33]. More progressive
proposals have been made to alleviate computational challenges of the self attention module, such as
using kernel methods or other linear approximations [12, 13, 34], or removing redundant operations
without impacting performance [8, 25]. These proposals only affect the internal structure of Trans-
former blocks. As DenseFormer only adds DWA modules that operate between blocks, we expect
that it can be readily used together with these existing proposals.

Recent explorations also have shown gains from using multiple language models instead of one.
An example is using a mixture of experts, which rely on a routing mechanism [5] to select which
expert(s) to use in a given context. Other examples include deploying the same instance of a model
in different roles allowing them to debate or provide feedback to each other leading to performance
improvements [14, 16]. As these approaches mostly retain the structure of the Transformer
architecture and focus on the communication structure between multiple models (or sub-modules),
we also expect them to be adaptable to use DenseFormers.

3 Method

Setup & Notations. We consider the standard Transformer architecture. Given a depth d, it consists
in a succession of d Transformer blocks B1, . . . , Bd, each composed of a self-attention module
followed by a single hidden layer Multi-Layer-Perceptron (MLP). We name X0, . . . , Xd the different
intermediary representations, with X0 being the embedded token sequence, and Xi for i ≥ 1 being
the output of block Bi.

We summarize the Transformer architecture as follows:

X0 := Embedding(X)

∀i = 1, . . . d, Xi := Bi(Xi−1)

Transformer(X) := Xd.

DenseFormer. The only change to the original architecture is the addition of a Depth Weighted
Average module (DWA) after each transformer block. A DWA module at depth i performs a weighted
average between (i) the output from the current block Bi, (ii) the output of all previous blocks Bj<i,
and (iii) the embedded input X0. The weights of the weighted-average for the DWAi module at
depth i are αi,0, . . . , αi,i. A visual summary can be seen in Fig 1a. The elements of the α matrix
are the only additional parameters of our method. More formally, our DenseFormer model can be

3

summarized as follows:

X0 := Embedding(X)

Y0 := X0

∀i = 1, . . . d, Xi := Bi(Yi−1)

∀i = 1, . . . d, Yi := DWAi({X0, . . . , Xi}) =
i∑

j=0

αi,j ·Xj

DenseFormer(X) := Yd.

In Section 4 we demonstrate that the DenseFormer architecture can outperform the standard Trans-
former architecture. In particular, it obtains a much stronger performance (in terms of perplexity)
than a model of the same depth, matching the performance of a much deeper model which is both
slower at inference and larger in size, leading to a much higher memory footprint than DenseFormer.
We further demonstrate the importance of the improved inter-block connectivity brought by the
DWA modules in Section 5. We do so by comparing our architecture to a variety of baselines with
constrained connections and show those do not perform as well as DenseFormers.

Initializing the DWA modules. We note that if αi,i is set to 1 while others are set to 0, the DWA
module acts as an identity function, reducing DenseFormer to the standard Transformer architecture.
Therefore, we start our training from this initialization.

3.1 Impact on Resources

Negligible Model Size Overhead. At depth i the DWA module has i+ 1 weights. Therefore, for a
DenseFormer of depth d, the total number of additional parameters is

∑d
j=1(j + 1) = d(d+3)

2 . For
typical model depths (less than 100 blocks), this represents at most an order of 103 parameters, which
is negligible when compared to the full size of the models.

Negligible Memory Overhead. We also emphasize that while DWA requires access to the output
of blocks and embedded input X0, . . . , Xd, these values are stored even when using the standard
Transformer architecture. During training, the outputs of the blocks are kept in memory to allow
backpropagation, while at inference, only the blocks’ outputs for the current token need to be stored.
Therefore, the total memory overhead of DenseFormer is negligible.

Computational Overhead. Computing the output of the DWA modules increases the computational
cost since it requires averaging over multiple large tensors of size (batch size × sequence length ×
hidden dimension). In this work, we provide an efficient implementation of DWA to reduce the
overhead and avoid unnecessary data movement. In addition, we introduce two architectural hyperpa-
rameters, which allow building a set of DenseFormer variants that approximate the full DenseFormer.
These hyperparameters are DWA dilation and DWA periodicity, respectively introduced in Sec-
tions 3.2 and 3.3. We refer to a DenseFormer variant with the dilation factor k and the DWA
periodicity p as kxp-DenseFormer. In this notation, the full DenseFormer is a 1x1-DenseFormer.

3.2 Dilated DenseFormer

In order to further reduce the computational overhead, we introduce a dilation parameter which
sparsifies the DWA weights by periodically setting them to 0. In particular, each DWA module is now
given the output of every k-th block, where k is called the dilation factor. More formally, given a
DWA module at depth i, a dilation factor of k implies DWAi is only computing a weighted average
over {Xj |j ≤ i, j ≡ i(mod k)}). See Fig. 1b for a visual explanation. Our dilated DenseFormer can
be described as:

X0 := Embedding(X)

Y0 := X0

∀i = 1, . . . d, Xi := Bi(Yi−1)

∀i = 1, . . . d, Yi := DWAdilated
i ({Xj |j ≤ i, j ≡ i(mod k)})

DenseFormer(X) := Yd .

As shown in Section 4, we observe no noticeable performance degradation for small values of k (e.g.
2 or 4) while the computational overhead is significantly reduced, leading to much faster inference

4

(a) DWA weights with dilation and DWA period.
3 4 5 6

Batches Per Second

16.5

17.0

17.5

18.0

18.5

P
er

p
le

x
it

y

48

72

90

104

48

72

90

104

48

72

90

104

4x1-DenseFormer

4x5-DenseFormer

Transformer

(b) Speed and performance trade-off.

Figure 2: (a): DWA weights with dilation and DWA period: For a 12 layers DenseFormer, the
α weights are sparsified using dilation k and DWA periodicity p (referred to as kxp). Compared to
Fig. 1b, only certain rows have some weights other than the upper diagonal weights (which correspond
to the regular transformer information flow). Increasing the dilation and period sparsifies the α matrix,
reducing the computational overhead without degrading the perplexity, see Sections 3.2 and 3.3
for more details. (b): Speed and performance trade-off: Comparison of speed and performance
trade-off between the standard Transformer architecture and DenseFormer. The number of blocks
in each architecture is reported next to the data-point. All DenseFormer models on this plot use a
dilation factor of 4. We show results using a DWA period of 1 and 5. Comparing perplexities:
Considering only the perplexity (y-axis), a 48 block DenseFormer performs similarly as a much
deeper 72 block Transformer. Comparing trade-offs: A 48 block 4x5-DenseFormer matches the
better perplexity of a 72 block Transformer while being 1.4× faster at inference.

and training. More precisely, a dilation of k reduces the computational overhead induced by DWA
modules by a factor of 1/k.

3.3 Periodic DenseFormer

An alternative method to dilation for sparsifying DWA weights is adding DWA modules to the
architecture less frequently. In particular, we can consider only adding the DWA after every p blocks
(instead of after every block as in the standard DenseFormer). We refer to p as the DWA period. A
standard DenseFormer has period 1. A DenseFormer with dilation k and DWA period p—referred to
as kxp-DenseFormer—can be formalized similarly as a DenseFormer with the following distinction:

∀i = 1, . . . d, Yi :=

{
DWAdilated

i ({Xj |j ≤ i, j ≡ i(mod k)}) p | i
Xi p ∤ i

A visual representation of the matrix of α weights can be seen in Fig. 2a. By increasing the periodicity
p, we further reduce the computational cost of DenseFormer. In Section 4 we evaluate the effect
of increasing the period for a 4-dilated DenseFormer on both performance and speed. We observe
that using small values larger than 1 for the period can provide a noticeable boost in speed without
noticeable performance degradation. Using a period of p reduces the computational overhead by a
factor of 1/p. Hence, a kxp-DenseFormer only has 1/kp of the computational overhead of a regular
DenseFormer. In Section 5 we also provide results with other sparsity patterns for the DWA weights
(α) but show that using dilation and periodicity works most favorably.

Interplay between k and p. The ideal value of p can depend on the dilation k used. For instance,
using k = p = 4 implies the DWA module after block 4 will look at {X0, X4}. Its output, Y4, will
be sent through block 5 to yield X5. However, the next DWA module after block 8 will only look at
{X0, X4, X8} (and not at X5). This means that Y4 will have to go through blocks 5, 6, 7, 8 before
being accessible by later DWA modules. In contrast, using k = 4 and p = 5 allows the information
to propagate much faster since DWA modules always have access to the processed output of the
previous DWA module. This interplay can be visualized in Fig. 2a as well as in Appendix B.2.

5

Table 1: Performance of DenseFormer and the standard architecture of different sizes on
OpenWebText2 dataset. The number of millions of parameters is reported as well as the final
perplexity. Additionally the number of batches of size 64 that can be processed in one second
is reported as a measure of inference speed. The results are based on three runs with different
seeds. The mean value is reported with the standard error reported in parenthesis. In terms of
perplexity, DenseFormer clearly outperforms a standard Transformer of the same depth as well
as standard Transformers with a similar inference speed. While sometimes a deeper model with
the standard architecture can match the performance of a shallower DenseFormer (e.g. 72 block
standard architecture and 48 block DenseFormer), inference using the shallow DenseFormer remains
much faster. The inference speed is significantly improved with negligible effect on perplexity when
increasing the dilation factor and DWA period. Adding a scaling factor to all skip connections in
the standard architecture (named Skips with Gains) does not yield the same performance boost as
DenseFormer highlighting the importance of inter-block connectivity in DenseFormer.

Model Dilation×Period Depth Parameters # (M) Perplexity (↓) Inference BPS (↑)

Transformer - 48 378.45 18.61 (0.02) 5.94 (0.00)
Skips With Gains - 48 378.45 18.45 (0.03) 5.72 (0.01)

DenseFormer
1× 1 48 378.45 17.84 (0.00) 4.65 (0.00)
4× 1 48 378.45 17.86 (0.02) 5.31 (0.01)
4× 5 48 378.45 17.87 (0.02) 5.72 (0.00)

Transformer - 64 491.72 17.94 (0.01) 4.57 (0.00)
- 72 548.35 17.82 (0.04) 4.08 (0.00)

DenseFormer
1× 1 72 548.36 17.12 (0.02) 2.93 (0.00)
4× 1 72 548.35 17.17 (0.00) 3.60 (0.00)
4× 5 72 548.35 17.21 (0.01) 3.90 (0.00)

Transformer - 84 633.31 17.48 (0.01) 3.54 (0.00)
- 90 675.78 17.44 (0.01) 3.32 (0.00)

4 Results
We demonstrate the effectiveness of DenseFormer through experiments on language modeling
tasks. We compare the performance of DenseFormer architectures with the standard Transformer
architecture using model size, inference time, training time, and final perplexity (sometimes
abbreviated as PPL) as metrics. For each metric, we consider a baseline that performs the same as
DenseFormer on that metric. Concretely, we include the following baselines:

Same Depth Baseline. A standard architecture with the same depth as the DenseFormer. It roughly
has the same number of parameters as DenseFormer given the negligible number of DWA parameters.

Same Inference Time Baseline. A standard architecture that has the same inference time as the
DenseFormer. Since adding DWAs to the architecture has a computational overhead, this baseline
has more layers (i.e. more capacity) than DenseFormer.

Same Perplexity Baseline. A standard architecture with roughly the same PPL as the DenseFormer.
It usually is much deeper than the DenseFormer, showcasing the benefits of using DWAs.

Same Training Time Baseline. A standard architecture that has the same training time as the
DenseFormer. Since adding DWAs to the architecture has a computational overhead, this baseline is
trained for more iterations than DenseFormer.

Skips with Gains. It can be observed that DenseFormer, among other things, allows scaling the
output of the previous layer, providing more control than the original skip connections. Therefore,
we provide an additional baseline to show this is not the only benefit offered by DenseFormer and
emphasize the importance of having direct access to the outputs of earlier layers. In particular, we
consider a modified version of the standard architecture where each skip connection also contains a
learned scaling factor which is applied to the the values moving through the skip connection before
being summed with the output from a different layer (e.g. self-attention).

Experimental setup. We use models with 8 heads, each having 64 dimensions, and train them using
batches of 400 sequences of length 256. We use rotary positional encoding [28]. We optimize the
model using AdamW [15] with β1 = 0.9 and β2 = 0.95 with weight decay factor 0.1.

6

5.0 5.5 6.0

Batches Per Second (during inference)

17.8

18.0

18.2

18.4

18.6

P
er

p
le

x
it

y

1x1 2x1 4x1
8x1

12x1

4x5
4x8

4x10
4x15

4x20

kxp-DenseFormer

Transformer

(a) PPL vs. Inference speed (BPS)

1.0 1.2 1.4

Batches Per Second (during training)

17.8

18.0

18.2

18.4

18.6

P
er

p
le

x
it

y

1x1 2x1 4x1
8x1

12x1

4x5
4x8

4x10
4x15

4x20

kxp-DenseFormer

Transformer

(b) PPL vs. Training speed (BPS)

2 4 6 8

Time (hours)

18

20

22

24

P
er

p
le

x
it

y

Transformer (41.5k iters)

4x5-DenseFormer (40k iters)

(c) Comparison under same training time

Figure 3: Training and inference efficiency of kxp-DenseFormer vs. Transformer. For 48 block
models, we compare in (a) the different perplexity/inference speed trade-offs reached by a regular
Transformer and kxp-DenseFormers. In the top right corner, the Transformer baseline is the model
with the worst perplexity but the fastest at inference. In contrast, the 1x1-DenseFormer in the bottom
left corner, is reaching the best perplexity but incurs a cost in inference speed. By varying the dilation k
and DWA period p, some kxp-DenseFormer models (e.g. 4x5) provide most of the perplexity improve-
ment of the original DenseFormer while significantly reducing the time overhead. A similar analysis
holds when looking at the training speed in (b). In (c), we show the perplexity decreasing during
training. The x-axis is time. To compensate for the computational overhead of DenseFormer, we train
the Transformer baseline for more iterations, such that the two methods have the same training time
budget. We observe how our 4x5-DenseFormer is reaching a better perplexity faster than the baseline.

We perform most of our experiments on the OpenWebText2 dataset [6], an enhanced version of
OpenWebTextCorpus [7] with around 17B tokens. We train all models for 40k steps, thus keeping
the number of data points used in training fixed. We use learning rate 0.001 with a cosine scheduler
and do a warmup in the beginning 5% steps.

We present the result of training 48 block and 72 block DenseFormers along with baselines of various
sizes in Tab. 1. We make the following observations based on these results:

Better perplexity than same depth baseline. When comparing with a baseline of the same depth,
DenseFormer significantly outperforms the standard architecture. Moreover, as it can be seen in
Fig. 2b, the perplexity of a 48 block DenseFormer is only matched by a 72 block Transformer baseline.

Faster than a baseline with the same perplexity. The performance of a 48 block DenseFormer
is on par with a 72 block standard architecture. Still, the 48 block DenseFormer is much faster at
inference (measured in batches per second) than the 72 block standard architecture. Moreover, the
number of parameters and memory footprint of the 72 block baseline is 45% larger than the one of
the 48 block DenseFormer.

Better perplexity than a baseline with the same inference time. Comparing the 48 block Dense-
Former without dilation, with a 64 block standard architecture (which has the same inference speed),
shows a wide gap between the higher performance of DenseFormer (17.84) and the standard Trans-
former architecture (17.94). Considering DenseFormer models with a dilation of 4 and/or a DWA
period of 5 would increase this gap further.

Weighted skip-connections are insufficient. DenseFormer is changing the flow of information in the
model. We can wonder whether it leverages the additional expressivity or whether the performance
gains could be explained by making it easier to rescale the contribution of each block. When compar-
ing the 48 block Transformer baseline to the 48 block skip-with-gains baseline, it seems adding tunable
weights to each skip connection does not lead to a significant improvement. When compared with the
48 block DenseFormer, this showcases the importance of having direct access to all previous layers.

Faster with dilation and DWA period. Finally, our Tab.1 results show that for small dilation factors
k and DWA period p, kxp-DenseFormer perform comparably while significantly boosting speed.
Indeed, as can also be seen in Fig. 2b, using 4x1-DenseFormers or 4x5-DenseFormers allows pushing
the Pareto frontier on speed and performance trade-off forward.

More efficient during training. We train a 48 block 4x5-DenseFormer and compare it against a 48
block Transformer baseline trained with the same time budget. The baseline is therefore trained for
more iterations (41.5k vs. 40k) to compensate for the time overhead of DenseFormer. In Fig. 3c we

7

0 10 20 30 40
Xi

0

10

20

30

40

D
W

A
In

d
ex

−1.000

−0.368

−0.135

−0.050

0.000

0.050

0.135

0.368

1.000

D
W

A
w

ei
gh

ts
(s

y
m

lo
g

sc
al

e)

(a) 48 block DenseFormer.

0 20 40 60
Xi

0

10

20

30

40

50

60

70

D
W

A
In

d
ex

−1.000

−0.368

−0.135

−0.050

0.000

0.050

0.135

0.368

1.000

D
W

A
w

ei
gh

ts
(s

y
m

lo
g

sc
al

e)

(b) 72 block DenseFormer.

0 10 20 30 40
Xi

0

10

20

30

40

D
W

A
In

d
ex

−1.000

−0.368

−0.135

−0.050

0.000

0.050

0.135

0.368

1.000

D
W

A
w

ei
gh

ts
(s

y
m

lo
g

sc
al

e)

(c) 48-block 4x1-DenseFormer.

Figure 4: Visualization of DWA Learned Weights. Each row shows the weights α learned by a
DWA module at a given depth. While the heatmaps are averaged across 3 runs with different seeds,
those patterns are very consistent across seeds. In (a) and (b), strikingly similar patterns can be
observed in both 48 and 72 layer DenseFormers. In (c), we show the learned weights for a 48 block
DenseFormer trained with a dilation of 4. Despite the sparsity, we still observe a very similar pattern
to those learned by the non-dilated models.

Table 2: Same training time comparison. Comparison of 4x5-DenseFormer’s performance against
a standard Transformer trained for more iterations. The number of training steps of the standard
architecture is chosen such that the training time is roughly the same (and always more than) that of
the DenseFormer. Both architectures have 48 blocks and are trained with 2000 warmup steps. Even
though the Transformer is trained with more steps, it is still outperformed by the DenseFormer.

Model Steps Train time (h) Perplexity

Standard 41500 8.09 18.33 (0.00)
4x5-DenseFormer 40000 8.04 17.87 (0.02)

visualize the perplexity (approximated on a small subset of the validation set) dropping as a function
of the training time. The DenseFormer’s perplexity is dropping faster than that of the Transformer
baseline. This shows the superior efficiency of DenseFormer during training. While the Transformer
is trained for more steps, thus using more data points, it is still outperformed by the DenseFormer.
The final perplexities on full validation set reached by the two models can be seen in Tab. 2.

4.1 Additional Experiments

We perform additional experiments to show that our results are general and extend to different settings
and larger scales. We also study the impact of the dilation factor k and DWA period p on the efficiency
of our kxp-DenseFormer architecture.

Experiments with longer sequences. Due to computation limitations, we can not run all experiments
at a large scale. We however repeat a limited set of experiments with longer sequences of 512 tokens
using a smaller batch size of 128. A 48 block Transformer baseline reaches a final perplexity of
18.28 ± 0.03 against 17.73 ± 0.02 for the DenseFormer. This result shows that the gap between
the two architectures persists for longer sequences.

Effect of Dilation and DWA period. Fig. 3a and Fig. 3b show the impact of using different
combinations of dilation k and DWA period p on the final perplexity, training and inference speed.
As can be seen, small values of the dilation factor (e.g. up to 4) have a negligible effect on the
perplexity. However, increasing the dilation factor further affects the performance more adversely
while the gain in both training and inference speed starts to plateau. Increasing the DWA period also
provides a similar trade-off, with the perplexity being barely affected for p ≤ 5. From those figures,
we conclude that a dilation of 4 and a DWA period of 5 seem to offer the best compromise between
speed and perplexity. In Appendix B.2, we provide more detailed results, including showing how
increasing dilation yields a more pronounced speed-up for deeper models, making larger dilation
factors more effective in those scales.

PG-19 experiments. We also show the superior performance of DenseFormer on the PG-19 dataset
[24]. At any depth, DenseFormers outperform Transformers in PPL. See App. B.3 for details.

8

1 6 12 18 24 30 36 42 48
Depth

0.00

0.05

0.10

0.15

0.20

C
os

in
e

si
m

il
ar

it
y

DenseFormer

Transformer

Figure 5: Cosine similarity between the output
of each DWA module and the initial embedding
vectors. The results are averaged over three seeds,
for DenseFormer models with 48 blocks and no
dilation (corresponding to the weights in Fig. 1a).
The model initially maintains a high correlation
between the input and the output of each DWA
module. That correlation decreases in later layers.
Intuitively, we can hypothesize that this is the
stage where the model is preparing to output the
next token. A very similar plot can be observed
for 72 block models in Appendix B.1.

Table 3: Alternative DWA Sparsity Patterns.
We compare 48 block architectures with different
sparsity patterns. In Last K, DWA can only access
the output of the last k blocks as well as the input
embedding vectors. Connect to Last includes only
a single DWA module in the architecture placed
after the last layer, i.e. connecting every block to
the last block. Neither of these patterns achieves
the same perplexity boost as our proposed Dense-
Former. 12x1 and 4x5-DenseFormers—with spar-
sities of respectively 92% and 95%—outperform
other sparsity patterns, which signifies the impor-
tance of pairwise inter-block connections.

Sparsity Pattern Perplexity Sparsity

Baseline Transformer 18.61 (0.02) -
Last K (K = 4) 18.28 (0.01) 84%
Connect to Last 18.33 (0.02) 96%
12x1-DenseFormer 17.96 (0.01) 92%
4x5-DenseFormer 17.87 (0.02) 95%

5 Analyzing the Information Flow

In this section, we investigate the learned DWA α weights to gain more insight and intuition on the
reason behind the superiority of DenseFormer.

A stable weight pattern emerges. We start by visualizing the learnt DWA weights for 48 and
72-block DenseFormer models (with a dilation and period of 1) in Fig. 4. Interestingly, the α weight
patterns learned at both depths are very similar:

• High weights are on the diagonal (corresponding to the normal information flow as in a standard
Transformer) as well as on the immediate previous blocks.

• High weights are given to the initial embedding vectors. Those weights are positive in earlier
layers while later layers assign a negative weight.

• An aggregation block is observed near the final layers where a high weight is given to all previous
layers in the block (seen as a high-weight triangle near the diagonal in the lower right corner).

Finally, Fig. 4c shows similar patterns persist to some extent when using dilation factors higher than
1. Similar results hold for kxp-DenseFormers as can be seen in Appendix B.1.

Other sparsity patterns during training. Alternative to pruning after training, we also consider
imposing different sparsity patterns during training. We already have experimented with such sparsity
patterns induced through dilation and DWA period. In Fig. 4, we observe that in many cases the
largest weights are given to the few previous blocks as well as the first block. As such, we experiment
with a sparsity pattern allowing DWA to access previous k blocks as well as the input embedding
vectors calling it “Last K”. Furthermore, given the large magnitude of weights on the last layer, we
also experiment with only having a single DWA in the architecture which is placed after the last layer,
calling it “Connect to Last”. Tab. 3 shows the perplexities when using these sparsity patterns and
shows that they do not achieve the boost in performance obtained with DenseFormer. This observation
further strengthens the importance of small DWA weights both during training and inference.

Correlation with Input Embeddings. Based on the special pattern of weights given to the
embedding vectors—especially the negative weights given to the input by the last layers (see
Fig. 4)—we hypothesize that the model tries to use the information in the input in earlier layers while
removing the influence of the current token as it tries to predict the next token. In order to test this
hypothesis we plot the average cosine similarity of each token’s vector after each DWA block with
its input embedding in Fig. 5. As expected based on the weight pattern, we observe that the similarity
is high in the earlier layers. At the later stage, the model decreases this similarity significantly.

9

We hypothesize this final decrease is due to the model moving from processing the current token
to building the next token’s representation. In contrast, the similarity drops down very early for a
standard transformer and remains low for the rest of the layers.

6 Future Work & Conclusion

In this paper, we introduced the DenseFormer architecture. This architecture adds an averaging
module called DWA after each block which allows it to directly access the outputs of previous blocks.
We established the superiority of this architecture over Transformers in terms of perplexity/speed
trade-off through experiments in a variety of settings. Additionally, we provided dilation and DWA
periodicity as simple methods to improve speed without significantly hurting performance. Finally,
we provided insights about the learned weights, revealing patterns persisting over different depths.

As the next steps, finding more efficient implementations of DenseFormer is grounds for future work.
One possible direction is finding better sparsity patterns that also can be implemented efficiently. The
weights visualization in Fig. 4 suggests such patterns might exist. Furthermore, finding efficient ways
to shard DWA across multiple nodes is important to allow large-scale distributed training.

References

[1] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T.,
Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.,
Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I.,
and Amodei, D. Language Models are Few-Shot Learners, July 2020. URL http://arxiv.
org/abs/2005.14165. arXiv:2005.14165 [cs].

[2] Charpentier, L. G. G. and Samuel, D. Not all layers are equally as important: Every layer counts
BERT. CoRR, abs/2311.02265, 2023.

[3] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of deep bidirectional
transformers for language understanding, 2019.

[4] ElNokrashy, M., AlKhamissi, B., and Diab, M. Depth-wise attention (dwatt): A layer fusion
method for data-efficient classification. arXiv preprint arXiv:2209.15168, 2022.

[5] Fedus, W., Zoph, B., and Shazeer, N. Switch transformers: Scaling to trillion parameter models
with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39, 2022.

[6] Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., Phang, J., He, H., Thite,
A., Nabeshima, N., Presser, S., and Leahy, C. OpenWebText2 dataset, as part of ‘the Pile: An
800gb dataset of diverse text for language modeling‘. arXiv preprint arXiv:2101.00027, 2020.

[7] Gokaslan, A. and Cohen, V. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

[8] He, B. and Hofmann, T. Simplifying transformer blocks. CoRR, abs/2311.01906, 2023.

[9] He, K. and Sun, J. Convolutional neural networks at constrained time cost. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 5353–5360, 2015.

[10] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778,
2016.

[11] Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. Densely connected convolutional
networks. In CVPR, pp. 2261–2269. IEEE Computer Society, 2017.

[12] Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F. Transformers are RNNs: Fast
autoregressive transformers with linear attention. In Proceedings of the International Conference
on Machine Learning (ICML), pp. 5294–5303, 2020. URL https://fleuret.org/papers/
katharopoulos-et-al-icml2020.pdf.

10

http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://fleuret.org/papers/katharopoulos-et-al-icml2020.pdf
https://fleuret.org/papers/katharopoulos-et-al-icml2020.pdf

[13] Kitaev, N., Kaiser, L., and Levskaya, A. Reformer: The efficient transformer. In ICLR.
OpenReview.net, 2020.

[14] Liang, T., He, Z., Jiao, W., Wang, X., Wang, Y., Wang, R., Yang, Y., Tu, Z., and Shi, S.
Encouraging divergent thinking in large language models through multi-agent debate. arXiv
preprint arXiv:2305.19118, 2023.

[15] Loshchilov, I. and Hutter, F. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[16] Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L., Wiegreffe, S., Alon, U., Dziri, N.,
Prabhumoye, S., Yang, Y., et al. Self-refine: Iterative refinement with self-feedback. arXiv
preprint arXiv:2303.17651, 2023.

[17] Mohtashami, A., Pagliardini, M., and Jaggi, M. Cotformer: More tokens with attention make up
for less depth. In Workshop on Advancing Neural Network Training: Computational Efficiency,
Scalability, and Resource Optimization (WANT@ NeurIPS 2023), 2023.

[18] OpenAI. GPT-4 Technical Report, March 2023. URL http://arxiv.org/abs/2303.08774.
arXiv:2303.08774 [cs].

[19] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A.,
Antiga, L., and Lerer, A. Automatic differentiation in pytorch. 2017.

[20] Penedo, G., Malartic, Q., Hesslow, D., Cojocaru, R., Cappelli, A., Alobeidli, H., Pannier, B.,
Almazrouei, E., and Launay, J. The refinedweb dataset for falcon LLM: outperforming curated
corpora with web data, and web data only. CoRR, abs/2306.01116, 2023.

[21] Petty, J., van Steenkiste, S., Dasgupta, I., Sha, F., Garrette, D., and Linzen, T. The impact of
depth and width on transformer language model generalization. CoRR, abs/2310.19956, 2023.

[22] Petty, J., van Steenkiste, S., Dasgupta, I., Sha, F., Garrette, D., and Linzen, T. The im-
pact of depth and width on transformer language model generalization. arXiv preprint
arXiv:2310.19956, 2023.

[23] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. Language models are
unsupervised multitask learners, 2019.

[24] Rae, J. W., Potapenko, A., Jayakumar, S. M., Hillier, C., and Lillicrap, T. P. Compressive
transformers for long-range sequence modelling. In ICLR. OpenReview.net, 2020.

[25] Shazeer, N. Fast transformer decoding: One write-head is all you need. CoRR, abs/1911.02150,
2019.

[26] Shazeer, N. GLU variants improve transformer. CoRR, abs/2002.05202, 2020.

[27] Srivastava, R. K., Greff, K., and Schmidhuber, J. Highway networks. arXiv preprint
arXiv:1505.00387, 2015.

[28] Su, J., Lu, Y., Pan, S., Wen, B., and Liu, Y. Roformer: Enhanced transformer with rotary
position embedding. CoRR, abs/2104.09864, 2021.

[29] Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B.,
Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lample, G. Llama:
Open and efficient foundation language models, 2023.

[30] Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra,
S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen, M., Cucurull, G.,
Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev,
A., Koura, P. S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X.,
Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R., Tan, X. E., Tang, B., Taylor, R.,
Williams, A., Kuan, J. X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang,
S., Rodriguez, A., Stojnic, R., Edunov, S., and Scialom, T. Llama 2: Open foundation and
fine-tuned chat models, 2023.

11

http://arxiv.org/abs/2303.08774

[31] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. Attention is all you need. CoRR, abs/1706.03762, 2017. URL http:
//arxiv.org/abs/1706.03762.

[32] Villalobos, P., Sevilla, J., Heim, L., Besiroglu, T., Hobbhahn, M., and Ho, A. Will we run
out of data? an analysis of the limits of scaling datasets in machine learning. arXiv preprint
arXiv:2211.04325, 2022.

[33] Wang, B. and Komatsuzaki, A. GPT-J-6B: A 6 Billion Parameter Autoregressive Language
Model. https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

[34] Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H. Linformer: Self-attention with linear
complexity. CoRR, abs/2006.04768, 2020.

12

http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://github.com/kingoflolz/mesh-transformer-jax

Contents

1 Introduction 1

2 Related Work 2

3 Method 3
3.1 Impact on Resources . 4

3.2 Dilated DenseFormer . 4

3.3 Periodic DenseFormer . 5

4 Results 6
4.1 Additional Experiments . 8

5 Analyzing the Information Flow 9

6 Future Work & Conclusion 10

A Implementation details 14
A.1 Naive Pytorch implementation . 14

A.2 More Optimized Pytorch implementation . 15

A.3 Hyperparameters and Hardware Used . 16

B Additional Results 17
B.1 Information Flow . 17

B.2 Analysis of Dilation and DWA Period . 18

B.3 PG-19 Experiments . 19

B.4 Delaying the Training of DWA Weights . 19

B.5 Rank Analysis . 19

B.6 Experiments with a batch size of 128 . 19

B.7 Comparison with ELC-BERT . 23

B.8 Effect of varying the width . 23

13

A Implementation details

In this section, we provide several implementations in Pytorch [19]. The first implementations we
propose are very simple and rely on looping over the past representations to compute each DWA
output. As a result, those naive implementations are slow when dilation and DWA periodicity are not
used. In a second time, we propose a more optimized and faster implementation. As a comparison,
for a 4x5-DenseFormer with 48 blocks, the naive implementation takes 674ms per training iteration
against 657ms for the later implementation. In Appendix A.2, we provide a denseformer python
package to help turn Transformers into DenseFormers in only 3 simple steps.

TL;DR: If you want to implement your own DenseFormer, simply check the denseformer python
package: https://github.com/epfml/DenseFormer

A.1 Naive Pytorch implementation

Naive 1x1-DenseFormer implementation. A naive implementation in Pytorch would consist of
storing the output of each block during the forward, and feeding those representations to DWA
modules after each block. A pseudocode would look like the following:

Listing 1: Naive 1x1-DenseFormer implementation
1 import torch
2
3
4 class DWA(torch.nn.Module):
5
6 def __init__(self , n_alphas):
7 super ().__init__ ()
8 self.n_alphas = n_alphas
9 alphas = torch.zeros((n_alphas ,))

10 alphas [-1] = 1.0
11 self.alphas = torch.nn.Parameter(alphas)
12
13 def forward(self , all_previous_x):
14 weighted_avg = all_previous_x [0] * self.alphas [0]
15 for i in range(1, self.n_alphas):
16 weighted_avg += self.alphas[i] * all_previous_x[i]
17 return weighted_avg
18
19
20 class GPTBase(torch.nn.Module):
21
22 def __init__(self , config):
23 super ().__init__ ()
24 self.config = config
25 self.dwa_modules = torch.nn.ModuleList ([DWA(n_alphas=i+2) for i in range(config.n_blocks)])
26 self.wte = torch.nn.Embedding(config.vocab_size , config.n_embd)
27 self.blocks = torch.nn.ModuleList ([Block(config) for _ in range(config.n_blocks)])
28 self.ln_f = LayerNorm(config.n_embd , bias=config.bias)
29 self.lm_head = torch.nn.Linear(config.n_embd , config.vocab_size , bias=False)
30 self.transformer.wte.weight = self.lm_head.weight # weight tying
31
32 def forward(self , idx):
33 x = self.wte(idx)
34 all_previous_x = [x] # This stores all the intermediary representations
35 for i in range(self.config.n_blocks):
36 x = self.blocks[i](x)
37 all_previous_x.append(x)
38 x = self.dwa_modules[i](all_previous_x) # Computing the weighted average
39 x = self.ln_f(x)
40 logits = self.lm_head(x)
41 return logits

Naive kxp-DenseFormer implementation. Here we introduce a naive implementation with dilation
and DWA-frequency. The DWA module in the following implementation would be the same as for
the 1x1-DenseFormer naive implementation.

Listing 2: Naive kxp-DenseFormer implementation
1 class GPTBase(torch.nn.Module):
2
3 def __init__(self , config):
4 super ().__init__ ()
5 self.config = config
6 self.dwa_modules = torch.nn.ModuleList ([DWA(n_alphas =(i+1+ config.dilation)// config.dilation)

for i in range(config.n_blocks)])
7 self.wte = torch.nn.Embedding(config.vocab_size , config.n_embd)
8 self.blocks = torch.nn.ModuleList ([Block(config) for _ in range(config.n_blocks)])
9 self.ln_f = LayerNorm(config.n_embd , bias=config.bias)

10 self.lm_head = torch.nn.Linear(config.n_embd , config.vocab_size , bias=False)
11 self.transformer.wte.weight = self.lm_head.weight # weight tying
12
13 def forward(self , idx):
14 x = self.wte(idx)
15 all_previous_x = [x] # This stores all the intermediary representations
16 for i in range(self.config.n_blocks):
17 x = self.blocks[i](x)

14

https://github.com/epfml/DenseFormer

18 all_previous_x.append(x)
19 if (i+1) % self.config.dwa_period == 0: # Use DWA every dwa_period
20 all_previous_x_dilated = [x_ for j, x_ in enumerate(all_previous_x) if

(len(all_previous_x)-1-j) % self.config.dilation == 0]
21 x = self.dwa_modules[i](all_previous_x_dilated) # Computing the weighted average with

dilation
22 x = self.ln_f(x)
23 logits = self.lm_head(x)
24 return logits

A.2 More Optimized Pytorch implementation

The point of this more optimized implementation is to remove the for loops of the naive implemen-
tation, and instead use tensor operations. To achieve this, we need to create a tensor containing
the previous representations instead of a list. Given the structure of this tensor which will simply
accumulate all the past representation during the forward pass, we would want to pre-allocate an
accumulator and update this accumulator with a new representation after each block. However, this
implies using in-place operations that conflict with Pytorch’s autograd. We find a workaround by
defining the InPlaceSetSlice class. We implement a helper module DWAModules built on top of
this new class:

Listing 3: Content of the denseformer python package
1 import torch
2
3
4 class InPlaceSetSlice(torch.autograd.Function):
5
6 @staticmethod
7 def forward(ctx , full_tensor , last_slice , x_idx , x_val):
8 full_tensor[x_idx] = x_val
9 ctx.x_idx = x_idx

10 ret = torch.Tensor ().to(full_tensor.device)
11 ret.set_(full_tensor [:x_idx + 1])
12 return ret
13
14 @staticmethod
15 def backward(ctx , grad_out):
16 if ctx.x_idx == 0:
17 return None , None , None , grad_out[ctx.x_idx]
18 else:
19 return None , grad_out [:ctx.x_idx], None , grad_out[ctx.x_idx]
20
21
22 def apply_inplace_set(x_acc , x_idx , x_val):
23 full_tensor , last_slice = x_acc
24 new_slice = InPlaceSetSlice.apply(full_tensor , last_slice , x_idx , x_val)
25 return full_tensor , new_slice
26
27
28 class DWAModules(torch.nn.Module):
29
30 def __init__(self , n_blocks , dilation=1, period =1):
31 super ().__init__ ()
32 self.n_blocks = n_blocks
33 self.dilation = dilation
34 self.period = period
35 self.alphas = torch.nn.ModuleList ([torch.nn.Linear ((i+1+ dilation)//dilation , 1, bias=False) if

(i+1)%period == 0 else None for i in range(n_blocks)])
36 self.accumulators = None
37 self._init_weights ()
38
39 def _init_weights(self):
40 for module in self.alphas:
41 if module is not None:
42 module.weight.data.zero_ ()
43 module.weight.data[0, -1] = 1.
44
45 def init_accumulators(self , x):
46 x_accs = []
47 for i in range(self.dilation):
48 current_group_size = (self.n_blocks + 1) // self.dilation
49 if i < (self.n_blocks + 1) % self.dilation:
50 current_group_size += 1
51 x_accs.append ((torch.zeros((current_group_size , *x.shape), device=x.device , dtype=x.dtype),

None))
52 x_accs [0] = apply_inplace_set(x_accs [0], 0, x)
53 self.accumulators = x_accs
54
55 def forward(self , x, block_idx):
56 assert self.accumulators is not None , "‘init_accumulators(x)‘ needs to be called first"
57 self.accumulators [(block_idx +1) % self.dilation] = apply_inplace_set(
58 self.accumulators [(block_idx +1) % self.dilation],
59 (block_idx +1)//self.dilation ,
60 x
61)
62 if (block_idx +1) % self.period == 0:
63 x = torch.tensordot(self.alphas[block_idx]. weight.view(-1),

self.accumulators [(block_idx +1)%self.dilation][1], dims =1)
64 return x

15

denseformer python package. The above module is available in the denseformer package
which can be installed through the following link: https://github.com/epfml/DenseFormer.
It provides the DWAModules class which orchestrates all the DWA logic given a number of blocks, a
dilation factor, and a DWA period. After installing the package, a Transformer can be turned into a
DenseFormer in three simple steps:

Listing 4: Faster kxp-DenseFormer implementation using the denseformer package.
1 import torch
2 from denseformer import DWAModules
3
4 class DenseFormer(torch.nn.Module):
5
6 def __init__(self , config):
7 super ().__init__ ()
8 self.config = config
9 self.dwa_modules = DWAModules(config.n_blocks , config.dilation , config.dwa_period) # Step 1

10 self.wte = torch.nn.Embedding(config.vocab_size , config.n_embd)
11 self.blocks = torch.nn.ModuleList ([Block(config) for _ in range(config.n_blocks)])
12 self.ln_f = LayerNorm(config.n_embd , bias=config.bias)
13 self.lm_head = torch.nn.Linear(config.n_embd , config.vocab_size , bias=False)
14 self.transformer.wte.weight = self.lm_head.weight
15
16 def forward(self , idx):
17 x = self.wte(idx)
18 self.dwa_modules.init_accumulators(x) # Step 2
19 for i in range(self.config.n_blocks):
20 x = self.blocks[i](x)
21 x = self.dwa_modules(x, block_idx=i) # Step 3
22 x = self.ln_f(x)
23 logits = self.lm_head(x)
24 return logits

A.3 Hyperparameters and Hardware Used

In all our experiments we trained on A100-80GB GPUs. In most of our experiments we trained using
data-parallelism, distributing the batches over up to 4 GPUs.

All of our models share the following hyperparameters:

• Max learning rate of 0.001. For different depth, we tested values in
{0.0001, 0.0003, 0.0005, 0.0007, 0.001, 0.002} and found 0.001 to be consistently
better.

• 2000 warmup steps, chosen between {1000, 2000}
• A weight decay of 0.1
• AdamW hyperparameters β1 = 0.9 and β2 = 0.95

• We use the GPT-2 tokenizer with a vocab size of 50304
• 12 attention heads of 64 dimensions
• An embedding size of 768

16

https://github.com/epfml/DenseFormer

B Additional Results

B.1 Information Flow

Small α weights matter. In the visualized weight matrix of Fig. 4, most of the weights on the
inter-block connections are small. This observation raises the question as to whether it is possible to
drop most of these connections or not. To answer this question, we plot the perplexity after dropping
a portion of the smallest DWA weights and report the results in Fig. 6. It can be seen that even
though a large portion of weights in Fig. 4 are small, dropping beyond 15% of the weights leads to a
significant increase in perplexity. Therefore, even though these weights are small, they seemingly
play an important role in predicting the next token.

0 10 20 30 40 50

Sparsity (% of α dropped)

17.5

18.0

18.5

19.0

19.5

20.0
P

er
p

le
x
it

y

DenseFormer

Transformer

Figure 6: Performance after dropping small DWA weights. The figure shows the performance
when the model is trained with no sparsity induced (dilation and period of 1) and the DWA weights
are later sparsified based on their magnitude at inference. One can see that the perplexity quickly
explodes after only sparsifying 15% of the weights. This observation suggests that even though many
of the DWA weights are small (as can be seen in Fig. 4) they still play an important role in the output
of the model.

Visualizing αs with periodicity. Similarly to Fig. 4, we show in Fig. 7 the DWA weights for 4x3,
4x4, and 4x5-DenseFormers. We observe patterns similar to the 1x1-DenseFormer in Fig. 4 but at a
lower resolution.

0 10 20 30 40
Xi

0

10

20

30

40

D
W

A
In

d
ex

−1.000

−0.368

−0.135

−0.050

0.000

0.050

0.135

0.368

1.000

D
W

A
w

ei
gh

ts
(s

y
m

lo
g

sc
al

e)

(a) 48-block 4x3-DenseFormer.

0 10 20 30 40
Xi

0

10

20

30

40

D
W

A
In

d
ex

−1.000

−0.368

−0.135

−0.050

0.000

0.050

0.135

0.368

1.000

D
W

A
w

ei
gh

ts
(s

y
m

lo
g

sc
al

e)

(b) 48-block 4x4-DenseFormer.

0 10 20 30 40
Xi

0

10

20

30

40

D
W

A
In

d
ex

−1.000

−0.368

−0.135

−0.050

0.000

0.050

0.135

0.368

1.000

D
W

A
w

ei
gh

ts
(s

y
m

lo
g

sc
al

e)

(c) 48-block 4x5-DenseFormer.

Figure 7: Visualization of DWA Learned Weights. Each row shows the weights α learned by
a DWA module at a given depth. Those patterns are very consistent with the ones learned by a
1x1-DenseFormer, as seen in Fig. 4.

Correlation with input embeddings at 72 blocks. As in Fig. 5, we analyze the cosine similarity
between the output of each DWA module and the initial embedding vectors for models of 72 blocks.
The results in Fig. 8 are very consistent with those obtained with shallower models (Fig. 5).

Evolution of DWA weights during training. In Fig. 9, we plot the DWA weights of a 48 block
DenseFormer during training. We observe how the pattern is learned relatively fast, within the first
5000 iterations.

17

1 6 12 18 24 30 36 42 48 54 60 66 72
Depth

0.00

0.05

0.10

0.15

0.20

0.25

C
os

in
e

si
m

il
ar

it
y

DenseFormer

Transformer

Figure 8: Cosine similarity between the output of each DWA module and the initial embedding
vectors. The results are averaged over three seeds, for DenseFormer models with 72 blocks and no
dilation. The model initially maintains a high correlation with the output of each DWA modules, but
reduces that correlation towards later layers. Intuitively, we can hypothesize that this is the stage
where the model is preparing to output the next token.

0 10 20 30 40
Xi

0

10

20

30

40

D
W

A
In

d
ex

(a) Step 0

0 10 20 30 40
Xi

0

10

20

30

40

D
W

A
In

d
ex

(b) Step 1000

0 10 20 30 40
Xi

0

10

20

30

40

D
W

A
In

d
ex

(c) Step 2000

0 10 20 30 40
Xi

0

10

20

30

40

D
W

A
In

d
ex

(d) Step 3000

0 10 20 30 40
Xi

0

10

20

30

40

D
W

A
In

d
ex

(e) Step 4000

0 10 20 30 40
Xi

0

10

20

30

40

D
W

A
In

d
ex

(f) Step 5000

0 10 20 30 40
Xi

0

10

20

30

40

D
W

A
In

d
ex

(g) Step 6000

Figure 9: Rapid convergence of DWA weights during training. The DWA weights are rapidly
converging to their final pattern. After 5000 iterations, the weight pattern already looks very similar
to the one in Fig. 4.

B.2 Analysis of Dilation and DWA Period

More detailed analysis of dilation. For 48 block models, we study the impact of varying the
dilation factor k, we do not vary the DWA period which is set to 1. The results of this experiment are
in Fig. 10. We observe how small dilation coefficients do not significantly deteriorate the perplexity
yet increase the inference speed.

1 2 4 6 8 12
Dilation Factor

17.8

18.0

18.2

18.4

18.6

P
er

p
le

x
it

y

DenseFormer

Transformer

(a) Perplexity of 48 block kx1-DenseFormer
on OWT2

1 2 4 6 8 12
Dilation Factor

1.0

1.1

1.2

R
el

.
B

P
S

Im
p

ro
ve

m
en

t

DenseFormer (48 Blocks)

DenseFormer (72 Blocks)

(b) Relative speed improvement over dilation
factor 1

Figure 10: Effect of the Dilation Factor k on Speed and Performance. Part (a) shows the
degradation in perplexity as we increase the dilation factor of kx1-DenseFormer models. A noticeable
drop in performance occurs for larger dilation factors, e.g. after k = 4. However, surprisingly,
12-Dilated DenseFormer still outperforms the Transformer baseline. As shown in (b), while the
perplexity is not so impacted by dilation, the inference speed is significantly improved. Interestingly,
the speed gain also plateaus for larger values of k, e.g. roughly k = 4 for 48 blocks. The gain
increases with the depth of the DenseFormer, and the plateau threshold occurs later for deeper models.

More detailed analysis of the DWA period. For 48 block models, we study the impact of varying
the DWA period p. We do not vary the dilation which is set to 4. In Fig. 11, we observe the impact
of increasing p on the perplexity. Interestingly, the perplexity profile is non-monotonic in p, which
exposes the interplay between k, p, and the depth of the model. Moreover, increasing the DWA period
further increases the inference speed over increasing the dilation.

18

1 3 4 5 6 7 8 9 10 15 20
DWA period p

17.8

18.0

18.2

18.4

18.6

P
er

p
le

x
it

y

DenseFormer 4× p
Transformer

(a) Perplexity of 48 block 4xp-DenseFormer
on OWT2

1 3 4 5 6 7 8 9 10 15 20
DWA period p

1.0

1.1

1.2

R
el

.
B

P
S

Im
p

ro
ve

m
en

t

(b) Relative speed improvement over 1x1-
DenseFormer

Figure 11: Effect of the DWA period p on Speed and Performance. Part (a) shows the degradation
in perplexity as we increase the DWA period of 4xp-DenseFormer models. Surprisingly, a
4x20-DenseFormer still outperforms the Transformer baseline. As shown in (b), while the perplexity
is not so impacted, the inference speed is significantly improved.

B.3 PG-19 Experiments

PG-19 experiments. Tab. 4 shows the performance of DenseFormer against standard Transformer
on PG-19, which consists of a large collection of full-length books from Project Gutenberg [24]. We
trained both architectures for 48k steps and used a batch size of 128 instead of 400. All the other
training parameters are kept the same as for OWT2 experiments. On this dataset, we can clearly see
the superior performance of DenseFormer.

Table 4: Comparison on PG-19. Comparing DenseFormers and Transformers on the PG19 dataset.
The results show similar improvements as the ones observed on the OpenWebText2 dataset. This
demonstrates the generality of our results. Those results were obtained using a batch size of 128.

Model Depth Perplexity

Transformer 24 20.13
1x1-DenseFormer 24 19.60
Transformer 48 18.94
1x1-DenseFormer 48 18.43
Transformer 72 18.44

B.4 Delaying the Training of DWA Weights

In this section, we study what would happen if we started training the DWA weights at different
training iterations. As seen in Fig. 9, the DWA weights are rapidly converging to their final values
within the first 5000 iterations. Moreover, the initialization of the DWA weights corresponds to the
same flow of information as in a normal transformer. This raises the question of whether training
the DWA weights during the first training iterations is important, or whether a pre-trained model
would still gain from adding the DWA weights later. To answer this question we experiment with
training the DWA-weights after N iterations. We do not modify the learning rate scheduler or any
hyperparameter besides N . Results in Tab. 5 show a diminishing return as N increases. It seems
important to tune the DWA weights from the beginning. A possible hypothesis could be that the
iterates commit to a valley in the loss landscape relatively early during training. Once deciding to go
to the valley where DWA weights are not used, it is difficult to recover and ultimately benefit from
newly added DWA weights. We believe this phenomenon could be mitigated using a better learning
rate scheduler. We leave this investigation as future work.

B.5 Rank Analysis

In this section, we compare the ranks of matrices learned using DenseFormer and Transformer
architectures. Our main result in Fig. 12 is that there is no significant difference in rank between the
two approaches.

B.6 Experiments with a batch size of 128

In this section, we revisit experiments from the main paper but use a small batch size of 128 instead
of 400 during training.

19

Table 5: Start training the DWA weights after N iterations. At initialization, a DenseFormer is the
same as a Transformer. We experiment with tuning the DWA weights only after N iterations. This
means the model is trained as a Transformer for N iterations, and as a DenseFormer from N to 40k
iterations.

Model N Perplexity

Baseline Transformer - 18.61 (0.02)
4x5-DenseFormer 0 17.87 (0.02)
4x5-DenseFormer 1k 17.99
4x5-DenseFormer 2k 18.07
4x5-DenseFormer 4k 18.13
4x5-DenseFormer 6k 18.17
4x5-DenseFormer 10k 18.23
4x5-DenseFormer 20k 18.33
4x5-DenseFormer 30k 18.40

0 250 500 750
Ranked singular values

0

5

10

In
te

n
si

ty

Transformer

DenseFormer

(a) QKV attn matrix

0 200 400 600 800
Ranked singular values

0

2

4
In

te
n

si
ty

Transformer

DenseFormer

(b) Output attn matrix

0 250 500 750
Ranked singular values

0

5

10

15

In
te

n
si

ty

Transformer

DenseFormer

(c) MLP up proj.

0 200 400 600 800
Ranked singular values

0.0

2.5

5.0

7.5

In
te

n
si

ty

Transformer

DenseFormer

(d) MLP down proj.

0 250 500 750
Ranked singular values

0

20

40

In
te

n
si

ty

Transformer

DenseFormer

(e) Embeddings

Figure 12: Ranked singular values averaged across blocks. For 48 block models, we average the
singular values for each matrix across blocks (except for the embedding matrix). We observe no
significant differences between Transformers and DenseFormers. Results are averaged over 3 seeds.

Speed and performance trade-off. In Fig. 13 we show the trade-off between inference speed
and perplexity for different numbers of blocks. Similarly to Fig. 2b, DenseFormers reach a better
perplexity than much deeper Transformer models. Interestingly, the perplexity gap is larger than
when using larger batches (compared to a batch size of 400 used in Fig. 2b). A 48 block DenseFormer
is performing on par with a 90 block Transformer. This might indicate that the DenseFormer is more
robust to large gradient noise compared to Transformers. DenseFormers reach better trade-offs in
terms of inference speed and perplexity. Those results are expected to improve if we were to train a
4x5-DenseFormer instead of a 4x1-DenseFormer. Detailed results can be seen in Tab. 6.

Results with other sparse patterns. In Tab. 7 we reproduce the experiments of Tab. 3 but with a
batch size of 128. Similar conclusions follow.

Visualizing the DWA weights (trained with a batch size of 128). In Fig. 14 we plot the DWA
weights obtained when training with a batch size of 128. The learned patterns are very consistent
with the ones of Fig. 4 obtained with a larger batch size.

20

3 4 5 6
Batches Per Second

22.0

22.5

23.0

23.5

P
er

p
le

x
it

y

48

72

84
90

48

72

84

90

DenseFormer

Transformer

Figure 13: Speed and performance trade-off. Comparison of speed and performance trade-off
between the standard Transformer architecture and 4x1-DenseFormer. The number of blocks in
each architecture is reported next to the data-point. All DenseFormer models on this plot use a
dilation factor of 4. Comparing perplexities: Considering only the perplexity (y-axis), a 48 layer
DenseFormer strikingly outperforms much deeper Transformer baselines. Comparing trade-offs: A
48 layer 4-Dilated DenseFormer matches the better perplexity of a 90 layer Transformer while being
1.6× faster at inference.

Table 6: Performance of DenseFormer and the standard architecture of different sizes on
OpenWebText2 dataset. Using a batch size of 128, and a DWA period of 1. DenseFormer clearly
outperforms a standard architecture of the same depth as well as standard architecture with the same
inference speed. While sometimes a deeper model with the standard architecture can match the
performance of a shallower DenseFormer, inference using the shallow DenseFormer remains much
faster.

Model Dilation Depth Parameters # (M) Perplexity Inference BPS

Transformer - 48 378.45 23.67 (0.09) 5.98 (0.00)
Skips With Gains - 48 378.45 23.78 (0.19) 5.72 (0.01)

DenseFormer
1 48 378.45 22.61 (0.05) 4.67 (0.00)
2 48 378.45 22.60 (0.04) 5.15 (0.01)
4 48 378.45 22.68 (0.06) 5.36 (0.00)

Transformer - 64 491.72 23.21 (0.07) 4.59 (0.00)
- 72 548.35 23.10 (0.02) 4.12 (0.00)

DenseFormer
1 72 548.36 21.81 (0.00) 2.93 (0.00)
2 72 548.35 21.92 (0.04) 3.39 (0.00)
4 72 548.35 22.03 (0.04) 3.62 (0.00)

Transformer - 84 633.31 22.84 (0.07) 3.56 (0.00)
- 90 675.78 22.67 (0.04) 3.35 (0.00)

Table 7: Alternative DWA Sparsity Patterns. We compare 48 block architectures with different
sparsity patterns. In Last K, DWA can only access the output of the last k blocks as well as the
embedding vectors. Connect to Last includes only a single DWA module in the architecture placed
after the last layer, i.e. connecting every block to the last block. Neither of these patterns allows
achieving the same perplexity boost as the original DenseFormer. Even with a dilation of 12, which
implies a sparsity of 92%, the Denseformer models outperform other sparsity patterns, which signifies
the importance of pairwise inter-block connections.

Sparsity Pattern Perplexity Sparsity

Baseline Transformer 23.67 (0.09) -
12x1-DenseFormer 22.91 (0.06) 92%
Last K (K = 4) 23.23 (0.07) 84%
Connect to Last 23.45 (0.05) 96%

21

0 10 20 30 40
Xi

0

10

20

30

40

D
W

A
In

d
ex

−1.000

−0.368

−0.135

−0.050

0.000

0.050

0.135

0.368

1.000

D
W

A
w

ei
gh

ts
(s

y
m

lo
g

sc
al

e)

(a) 48 block DenseFormer.

0 20 40 60
Xi

0

10

20

30

40

50

60

70

D
W

A
In

d
ex

−1.000

−0.368

−0.135

−0.050

0.000

0.050

0.135

0.368

1.000

D
W

A
w

ei
gh

ts
(s

y
m

lo
g

sc
al

e)

(b) 72 block DenseFormer.

0 10 20 30 40
Xi

0

10

20

30

40
D

W
A

In
d

ex
−1.000

−0.368

−0.135

−0.050

0.000

0.050

0.135

0.368

1.000

D
W

A
w

ei
gh

ts
(s

y
m

lo
g

sc
al

e)

(c) 48-block 4x1-DenseFormer.

Figure 14: Visualization of DWA Learned Weights. Each row shows the weights α learned by a
DWA module at a given depth. While the heatmaps are averaged across 3 runs with different seeds,
those patterns are very consistent across seeds. In (a) and (b), strikingly similar patterns can be
observed in both 48 and 72 layer DenseFormers. In (c), we show the learned weights for a 48 block
DenseFormer trained with a dilation of 4. Despite the sparsity, we still observe a very similar pattern
to those learned by the non-dilated models.

22

B.7 Comparison with ELC-BERT

In this section we compare our work with the concurrent work of Charpentier & Samuel [2]. We
implement the different variants they suggest and show the results we obtain in Fig. 15. We observe
that while their architecture is more data efficient in the low data regime, DenseFormers catch-up
quickly (after about 1.2k iterations). In the non low data regime, ELC-Bert performs similarly as the
baseline, while DenseFormer is consistently better.

0 5 10 15 20 25 30 35 40
Steps (k)

18

20

22

24

26

28

30

Va
lid

at
io

n
(S

ub
se

t)
Pe

rp
le

xi
ty

Transformer
ELC Bert + Skips
ELC Bert + Skips + 0-Init
DenseFormer
ELC Bert

(a) ELC-BERT vs. DenseFormer

600 700 800 900 1000 1100 1200 1300 1400
Steps (k)

50

100

150

200

250

Va
lid

at
io

n
(S

ub
se

t)
Pe

rp
le

xi
ty

Transformer
ELC Bert + Skips
ELC Bert + Skips + 0-Init
DenseFormer
ELC Bert

(b) ELC-BERT vs. DenseFormer in low data regime

Figure 15: Comparison with ELC-Bert. Part (a) Shows that ELC-Bert does not improve upon
the baseline, while DenseFormer is consistently better. In (b), we observe that ELC-Bert is better
in low data-regime, which is the setting for which it was developed. Yet the DenseFormer is catching
up fast and outperforms ELC-Bert after approx. 1.2k iterations.

B.8 Effect of varying the width

Information capacity bottleneck. We can postulate that the larger the width of our model, the easier
it is to pass information sequentially from layer to layer. Therefore, the wider the network, the less we
expect to gain from adding inter-layer residual connections. We experiment with varying the width of
24 block models, using the following values: {384, 768, 1536}. Results are summarized in Table 8.
We also train a transformer model with a larger hidden size of 1664. For the larger widths of 1536
and 1664, we tuned the learning rate in {0.001, 0.0005, 0.0003} and found 0.0005 to be best. We use
a batch size of 128, a learning rate of 0.001, a sequence length of 256, and train for 40k iterations.
We observe—as expected—the gap becomes smaller for wider models, yet does not disappear. A
DenseFormer with a smaller hidden size of 1536 performs better than a Transformer with a hidden
size of 1664. In general, as the complexity of the task increases, followed by the need for more
capacity, it is more compute and memory efficient to use a DenseFormer instead of a Transformer.
This is especially relevant when we think of deploying LLM on devices with hardware constraints.

Table 8: Effect of varying the width. .

Width Transformer PPL DenseFormer PPL Parameters

384 31.039 30.120 62M
768 25.020 24.631 209M
1536 21.597 21.279 757M
1664 21.313 - 881M

23

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The superior performances of DenseFormer are reflected in Fig. 2b and Fig. 3.
Those figures show that (i) during training, DenseFormers are reaching a lower perplexity
faster than a transformer baseline, as well as (ii) during inference, DenseFormer provide a
better perplexity for a given inference time budget. See § 4 for more detailed results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Addressing the limitations of the proposed architecture is an important part
of our work. In § 3, we discuss the impact on the resources, which we tackle through
introducing sparsity in the DWA weight matrix. Finally, in the conclusion, we mention
how future works should focus on understanding how this architecture can be efficiently
distributed in the context of large scale training.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

24

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This work is empirical in nature.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In addition to providing the source code, we give great details on how to
implement our approach in App. A. The method is detailed at length in the main paper, see
§ 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.

25

In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code as well as the general command line to run the experiments.
One of the datasets, we used: OpenWebText2, was publicly available. Unfortunately this is
no longer the case. Given that someone has access to this data, they can use our code for
processing it.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The hyperparameters for training are discussed in the main paper in § 4 as well
as in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars are always given, our results are averaged across three seeds.

Guidelines:

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the hardware used in App. A, as well as discuss the computational
time required extensively in the main paper (see. § 4).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No special consideration.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

27

https://neurips.cc/public/EthicsGuidelines

Justification: Our work proposes a generic replacement for the Transformer architecture.
While we focus on language modeling, it does not target any specific domain of application,
therefore there is no direct path to a negative application.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: the paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all datasets and libraries used in our work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

28

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: We share source code and guidelines to reproduce our experiments, but we do
not share any other asset.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

29

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30

	Introduction
	Related Work
	Method
	Impact on Resources
	Dilated DenseFormer
	Periodic DenseFormer

	Results
	Additional Experiments

	Analyzing the Information Flow
	Future Work & Conclusion
	Implementation details
	Naive Pytorch implementation
	More Optimized Pytorch implementation
	Hyperparameters and Hardware Used

	Additional Results
	Information Flow
	Analysis of Dilation and DWA Period
	PG-19 Experiments
	Delaying the Training of DWA Weights
	Rank Analysis
	Experiments with a batch size of 128
	Comparison with ELC-BERT
	Effect of varying the width

